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Abstract

Subject dropout is a vexing problem for any biomedical study, especially when
the dropout subjects differ from the non-dropout subjects in terms of the main
outcome(s). Usual statistical method that intends to correct estimation bias re-
lated to this phenomenon involves unverifiable assumptions about the dropout
mechanism. We consider a unique cohort study in Africa that uses an outreach
program to ascertain the mortality information vital status for dropout subjects.
These data can be used to identify a number of relevant distributions. However
only a subset of dropout subjects were followed, vital status ascertainment was
incomplete. We use semi-competing risk methods as our analysis framework to
address this specific case where the terminal event is incompletely ascertained and
consider various procedures for estimating the marginal distribution of dropout
and the marginal and conditional distributions of survival. We also consider
model selection and estimation efficiency in our setting. Performance of the pro-
posed methods is demonstrated via simulations, asymptotic study, and analysis
of the study data.
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1 Introduction

Competing risk data are common for time-to-event outcomes (Klein and Moeschberger

1997). In particular, the usual censored failure time data can be viewed as competing

risk data when censoring is regarded as a competing cause of failure. More generally,

study subjects may experience a number of distinct failure types. It is well-known that,

with competing risk data, nonparametric estimation of the marginal and conditional

distributions of the competing outcomes is generally infeasible (Tsiatis 1975).

Semi-competing risk data are related to two types of events, a terminal event and

a non-terminal event, where a terminal event such as death is always observed but

the non-terminal event (such as disease progression or treatment interruption) may be

censored by the terminal event. Semi-competing risk data are therefore an enriched

form of competing risk data in the sense that the non-terminal event is not a competing

cause of the terminal event but not vice versa. This special structure allows estimation

of the marginal distribution of the terminal event. Using copula models for the joint

distribution of the two types of events, the marginal distribution of the non-terminal

event can also be identified, and the correlation between the two events can be modeled

explicitly (Fine, Jiang, Chappell 2011, Wang 2003, Lakhal, Rivest, Abdous 2008).

Semi-competing risk data are frequently encountered. A typical example is the

illness-death situation (Fix and Neyman 1951, Sverdrup 1965, Xu, Kalbfleisch, and

Tai 2010), where death can censor the observation of illness if it occurs prior to illness,

but occurrence of the illness may not prevent further follow-up on death. There are

other semi-competing risk examples that do not fit into the illness-death framework. In

AIDS studies, for example, time to first virologic failure and treatment discontinuation

can be considered as the non-terminal and terminal events respectively (Jiang, Fine,

Kosorok, and Chappell 2005). In oncology, they can be times to local and distant

recurrences respectively (Dignam, Wieand, Rathouz 2007). Other interesting examples

exist in biomarker studies (Ghosh 2009, Day, Bryant, and Lefkopolou 1997).

In this article, we consider the case when it is difficult or infeasible to ascertain all

terminal events, especially in large cohort studies. This is the case of our motivating

example, a cohort study of 8,977 adults who were enrolled between January 1, 2005 and
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January 31, 2007 in the Academic Model Providing Access To Healthcare (AMPATH)

program (Mamlin, Kimaiyo, Nyandiko, et al. 2004). AMPATH, the Nobel Peace Prize-

nominated HIV care and treatment program, is a partnership between the Indiana

University and Moi University Schools of Medicine in western Kenya. A key component

in the evaluation of the effectiveness of this program is the marginal survival as well

as the conditional survival (on being retained in care) distributions for patients under

care. However, estimation of the distributions are severely complicated by the fact that

there is a very high rate of patient loss to follow-up (Wools-Kaloustian et al., 2008).

Moreover, there was evidence that the individuals lost to follow-up were generally sicker

than those who remained on observation (An, Frangakis, Musick, and Yiannoutsos

2008, Yiannoutsos, An, Frangakis et al. 2008). These factors have the potential of

introducing a significant bias if estimation is based only on data derived from patients

under care.

Fortunately, AMPATH has instituted a major campaign to locate as many of the

patients who are lost to follow-up as possible. The AMPATH patient outreach pro-

gram uses location information available on all patients in an effort to ascertain the

whereabouts of missing patients and attempt to persuade them to return to care. In

the process, the program records, among other information, the vital status of all

patients sought and successfully located. Using outreach data and theory on double

sampling (Frangakis and Rubin 2001), estimation of the marginal survival distribution

is possible (An et al. 2008). In this article, by viewing dropout as the non-terminal

event and death as the terminal event, we revisit this estimation and consider more

efficient estimators within the semi-competing risk data framework. In addition, we

consider estimation of the conditional survival distributions and of the marginal dis-

tributions of the dropout in rural and urban areas that is informative for future policy

making in providing care. Note that our considerations are applicable to the usual

semi-competing risk situation (i.e. with 100% outreach), which is a special case of our

setting.

The rest of the article is organized as follows. In Section 2 we consider estimation

for the dependency between the terminal and non-terminal events using copula mod-
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els. In Section 3 we discuss estimation of marginal distributions for non-terminal and

terminal events. In particular, we investigate how to improve the efficiency of marginal

distribution estimation for the terminal event by using the non-terminal event infor-

mation. In Section 4, we consider estimation of the conditional survival distribution

for the terminal event, conditioning on the non-terminal event. In Section 5, we con-

sider model selection among possible models. In Section 6 we assess the performance

of our revised copula estimators through simulations, using realistic parameters from

our experience in this setting and perform a reanalysis of the AMPATH database (An

et al. 2008 and Yiannoutsos et al. 2008). We conclude with a brief discussion of the

implications of this methodological development in Section 7.

2 Modeling the dependency between X and Y

Let X be the time to the non-terminal event, Y the time to the terminal event, and C

the administrative censoring time. In semi-competing risk data, X can be censored by

Y if Y < X, but is observable if Y ≥ X. However both X and Y can be censored by C.

Therefore the observable quantities are: R = Y ∧C, δR = 1(Y < C), S = X ∧Y ∧C =

X ∧ R, and δS = 1(X < R) where ∧ is the minimum operator. Now suppose that,

among all subjects with δS = 1, we only observe R in a subset. Therefore, we have

an indicator variable η for each subject such that R is only observed if η = 1. We

assume that π , P (η = 1) = δSp+ (1− δS) where p is the proportion of dropouts who

have been successfully located. Our objective is to estimate the marginal distributions

FX(x) = P (X > x) and FY (y) = P (Y > y), and the conditional survival distributions

such as P (Y > y|X = x, Y > t) and P (Y > y|X > x, Y > t) for y > t > x.

We assume the following copula model for the joint survival distribution of X and

Y (Oakes 1989):

F (x, y) = P (X > x, Y > y) = Cα{FX(x), FY (y)}

We are particularly interested in a class of copulas indexed by a single parameter α. A

possible choice for Cα is the well known Archimedean copula with generator ϕα (Fine
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et al. 2001, Wang 2003),

Cα(u, v) = ϕ−1
α {ϕα(u) + ϕα(v)}, 0 ≤ u, v ≤ 1

Popular choices of ϕα include the Clayton copula (Clayton 1978): ϕα(t) = t1−α−1 and

the Gumbel copula: ϕα(t) = (− log t)α, α ≥ 1.

A quantity which is useful in the effort to explicitly model the dependency between

the terminal and non-terminal event is the cross-ratio function (Oakes 1989):

θ∗α(x, y) =
P{(Xi −Xj)(Yi − Yj) > 0|Xi ∧Xj = x, Yi ∧ Yj = y}
P{(Xi −Xj)(Yi − Yj) < 0|Xi ∧Xj = x, Yi ∧ Yj = y}

. (1)

This function is related to Kendall’s tau (Wang 2003, Lakhal et al. 2008). Under

the Archimedean copulas, θα depends on x and y only through their joint survival

distribution F (x, y) and takes the form

θ∗α(x, y) = −F (x, y)
ϕ′′
α(F (x, y))

ϕ′
α(F (x, y))

, θα(F (x, y)), (2)

where θα(v) = −vϕ′′
α(v)/ϕ

′
α(v) for any v.

Utilizing (2), Lakhal et al. (2008) proposed the following estimating equation for

general Archimedean copulas:

Ψn(α) =

(
n

2

)−1 ∑
i<j

W (S̃ij, R̃ij)Zij

{
∆ij −

θα{F̂ (S̃ij, R̃ij)}
1 + θα{F̂ (S̃ij, R̃ij)}

}
(3)

where S̃ij = Si∧Sj, R̃ij = Ri∧Rj, and C̃ij = Ci∧Cj; ∆ij = 1{(Si−Sj)(Ri−Rj) > 0};
Zij = 1(S̃ij < R̃ij < C̃ij); and W is a weighting function. Because

F (x, y) =
P (S > x,R > y)

P (C > y)
, (4)

F (x, y) is estimated by

F̂ (x, y) =
n−1

∑n
i=1 1(Si > x,Ri > y)

Ĝ(y)

with

Ĝ(y) =
∏

i:Ci≤y

{
1− 1−∆Ri∑n

k=1 1(Rk ≥ y)

}
5



being the Kaplan-Meier estimator for the censoring distribution. Zij is needed in (3)

because ∆ij is evaluable only when Zij = 1 (Lakhal et al. 2008, Fine et al. 2001)

and in this case ∆ij equals the concordance between (Xi, Yi) and (Xj, Yj), that is,

1{(Xi −Xj)(Yi − Yj) > 0}. The weighting function may be taken as 1 but a preferred

form is given by (Fine et al. 2001)

Wa,b(x, y) =
n∑n

i=1 1{Si ≥ a ∧ x,Ri ≥ b ∧ y}
(5)

where a and b are constants and may be selected to down weight for ‘large’ x and y.

In our case, because for subjects with Si < Ri, Ri is observable only when ηi = 1,

we propose the following estimating function when double sampling data are available:

Ψπ
n(α) =

(
n

2

)−1∑
i<j

ηiηj
πiπj

W π(S̃ij, R̃ij)Zij

{
∆ij −

θα{F̂ π(X̃ij, Ỹij)}
1 + θα{F̂ π(X̃ij, Ỹij)}

}
. (6)

We can take the weighting function W π as 1, or corresponding to (5), use

W π
a,b(x, y) =

n∑n
i=1

ηi
πi
1{Si ≥ a ∧ x,Ri ≥ b ∧ y}

(7)

F̂ π(x, y) estimates F (x, y) and again take the following form because of (4),

F̂ π(x, y) =
P̂ (S > x,R > y)

P̂ (C > y)
(8)

When double sampled data are available, various estimators can be used for the nu-

merator and denominator in (8). For P̂ (S > x,R > y), we can use

P̂ π,1(S > x,R > y) = n−1

n∑
i=1

ηi
πi

1(Si > x,Ri > y) (9)

which inversely weighs the observations because of double sampling. However, an

alternative choice is

P̂ π,2(S > x,R > y) = n−1

n∑
i=1

{
1(Si > y) +

ηi
πi

1(Si > x, Si <= y,Ri > y)
}

(10)

where inverse weighting is only used for the subjects that need double sampling to

ascertain the indicator 1(Si > x,Ri > y). Because (10) utilizes more information, we

use it in this article.
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There are also two choices to estimate the censoring distribution in (8) under the

double sampled data. One is

Ĝπ(y) =
∏

i:Ci≤y

{
1− ηi

πi

1−∆Ri∑n
k=1

ηk
πk
1(Rk ≥ y)

}
,

which utilizes inverse weighting. The other is

G̃(y) =
∏

i:Ci≤y

{
1− (1−∆Si)(1−∆Ri)∑n

k=1 1(Sk ≥ y)

}
.

which uses X ∧Y as a censoring variable for C and does not involve inverse weighting.

We use ˜G(y) in (8) because greater efficiency gains were observed in simulations.

By recognizing that the weighted estimator is related to U-statistics, we derive

the asymptotic properties of the resulting estimator α̂π from (6) in the Appendix.

Because the asymptotic variance is complicated, we use a bootstrap procedure to obtain

standard error estimates as in Lakhal et al (2008).

Finally, we note that for the Clayton copula, θ∗α = α is not related to either x or y

and P (∆ij = 1) = α
1+α

for any i ̸= j (Oakes 1989, Fine et al. 2001). Then it is easily

seen that an explicit solution for α exists from (3):

α̂π =

∑
i<j

ηiηj
πiπj

W π(S̃ij, R̃ij)Zij∆ij∑
i<j

ηiηj
πiπj

W π(S̃ij, R̃ij)Zij(1−∆ij)
.

When π ≡ 1 in the semi-competing risk data, this reduces to the estimator from Fine

et al. (2001).

3 Estimation of marginal distributions

3.1 Estimation of the marginal survival distribution of Y

Adopting the counting process notation (Kalbfleisch and Prentice 2002), we estimate

the cumulative hazard function of Y by

Λ̂π,1
Y (t) =

∫ t

0

∑n
i=1(1− δSi)dNi(u) +

∑n
i=1

ηi
πi
δSidNi(u)∑n

i=1(1− δSi)1(Ri ≥ u) +
∑n

i=1
ηi
πi
δSi1(Ri ≥ u)
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where Ni(u) = 1(Yi ≤ u,Ci > Yi). This estimator was proposed in Frangakis and

Rubin (2001). The corresponding survival function estimate is then

F̂ π,1
Y (t) = exp

{
−

n∑
i=1

Λ̂π,1
Y i (t)

}
. (11)

An alternative way is to estimate the cumulative hazard function of Y by

Λ̂π,2
Y (t) =

∫ t

0

∑n
i=1(1− δSi)dNi(u) +

∑n
i=1

ηi
πi
δSidNi(u)∑n

i=1(1− δSi)1(Ri ≥ u) +
∑n

i=1 δSi1(Si ≥ u) +
∑n

i=1
ηi
πi
δSi1(Si < u)1(Ri ≥ u)

.

This estimator has been mentioned in Robins, Rotnitzky, and Bonetti (2001). Notice

that the calculation of the at-risk set at any time u uses the similar idea as in the

estimation of P̂ π,2(S > x,R > y) in (10) where inverse weighting is only used for the

subjects that need double sampling to ascertain the at risk status. The corresponding

survival function estimate is then

F̂ π,2
Y (t) = exp

{
−

n∑
i=1

Λ̂π,2
Y i (t)

}
. (12)

Asymptotics for both (11) and (12) can also be established in a similar fashion as in

Yu and Nan (2010).

Neither approach utilizes the correlation between X and Y . We therefore consider

a model-based estimator. In particular, by partitioning P (Y > t) as

P (Y > t) = P (Y ∧ C > t) + P (Y > t, C ≤ t,X < C) + P (Y > t, C ≤ t,X > C),

we propose the following estimate

F̂ π,M
Y (t) =

1

n

n∑
i=1

1(Ri > t)
{
(1− δSi) +

ηi
πi

δSi
}

+
1

n

n∑
i=1

1(Ri ≤ t)(1− δRi)
ηi
πi

δSiP̂ (Y > t|X = Si, Y > Ri) (13)

+
1

n

n∑
i=1

1(Ri ≤ t)(1− δRi)(1− δSi)P̂ (Y > t|X > Si, Y > Si).

Here the P̂ (Y > t|X = Si, Y > Ri) and P̂ (Y > t|X > Si, Y > Si) are conditional

estimates of the corresponding probabilities. The estimates will be discussed in Section
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4. To avoid a circular problem, we use F̂ π,2
Y in estimation of these conditional distri-

butions (see Section 4) because F̂ π,2
Y is generally more efficient than F̂ π,1

Y (see Figure

1).

As we demonstrate in our numerical section, compared to (11) and (12), F̂ π,M
Y (t)

improves efficiency noticeably when there is moderate to high correlation between X

and Y . Such improvement is important especially when a large number of subjects

experience X and double sampling for Y is costly (i.e., p is small).

3.2 Estimation of the marginal distribution of X

We adapt the copula graphic (CG) estimator for the marginal distribution FX(x) from

Lakhal et al. (2008) in our double sampled data. The CG estimator utilizes the

following relationship (Zheng & Klein 1995):

FX(x) = ϕ−1
α {ϕα[F (x, x)]− ϕα[FY (x)]}

where F (x, x) = P (X ∧ Y > x) , FX∧Y (x) and FY is the marginal distribution of Y .

By replacing unknown parameters with estimates, the resulting CG estimator is

F̂CG
X (x) = ϕ−1

α̂

{ ∑
Si≤x,δSi=1

ϕα̂[F̂X∧Y (Si)]− ϕα̂[F̂X∧Y (Si−)]
}
. (14)

Here F̂X∧Y is the Kaplan-Meier estimator for X ∧ Y which needs no inverse weighting

because observation of X ∧ Y is unaffected by double sampling. Note that because

FY is discrete and jumps only at observed failure times of Y , the term involving FY

disappears in (14) (Rivest and Wells 2001, Lakhal et al. 2008). The CG estimator is

therefore a discrete function that jumps only at observed failure times of X.

In the presence of double sampling, because Si are always observed and therefore

are used in the same way to estimate F (x, x) and because FY is not involved in (14),

the CG estimator has exactly the same format as in (14), i.e.,

F̂ π,CG
X (x) = ϕ−1

α̂π

{ ∑
Si≤x,δSi=1

ϕα̂π [F̂X∧Y (Si)]− ϕα̂π [F̂X∧Y (Si−)]
}
. (15)

The asymptotic distribution of this estimator is therefore exactly the same as in the

complete ascertainment case, except that we replace α̂ with α̂π given as a solution of

(6), taking into consideration the asymptotic normality of α̂π from the Appendix.
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4 Estimation of Conditional Distributions

The conditional survival function of a patient that has not dropped out at time x

is P (Y > y|X > x;Y > x). Note here that the ability to evaluate this conditional

probability is particularly relevant in our context, since it is useful in directly addressing

the question of what the survival distribution is for a patient who is retained in care

up to time x > x∗, where x∗ is a clinically meaningful threshold (e.g., three or six

months from start of antiretroviral therapy, a critical period in the care and treatment

of HIV-infected patients initiating therapy).

Just like in the estimation of the marginal distribution of Y , two different estimators

can be used for P (Y > y|X > x;Y > x) = F (x, y)/F (x, x). One is nonparametric:

P̂ π(Y > y|X > x;Y > x) =
F̂ π(x, y)

F̂X∧Y (x)

where F̂ π is defined in (8). The other is model based:

P̂M(Y > y|X > x;Y > x) =
Cα̂π{F̂ π,CG

X (x), F̂ π,2
Y (y)}

Cα̂π{F̂ π,CG
X (x), F̂ π,2

Y (x)}
(16)

with F̂ π,CG from (15) and F̂ π,2
Y from (12). Of course F̂ π,1

Y from (11) can also be used

in (16) with some loss of efficiency.

The conditional survival function of a patient who drops out at time x and is alive

at x is P (Y > y|X = x;Y > x) for y > x. It satisfies (Lakhal et al. 2008)

P (Y > y|X = x;Y > x) =
ϕ′
α{F (x, x)}

ϕ′
α{F (x, y)}

=
ϕ′
α{FX∧Y (x)}
ϕ′
α{F (x, y)}

.

with ϕ′
α(t) the derivative of ϕα(t) with respect to t. We can then obtain an estimator by

plugging in estimators for α, FX∧Y (x), and F (x, y). Similar to estimation of P̂M(Y >

y|X > x;Y > x), we can use a nonparametric estimator,

P̂ π(Y > y|X = x;Y > x) =
ϕ′
α̂π

[
F̂ π(x, y)

]
ϕ′
α̂π

[
F̂X∧Y (x)

]
or a model based estimator,

P̂M(Y > y|X = x;Y > x) =
ϕ′
α̂π

[
Cα̂π{F̂ π,CG

X (x), F̂ π,2
Y (y)}

]
ϕ′
α̂π

[
Cα̂π{F̂ π,CG

X (x), F̂ π,2
Y (x)}

] (17)
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The performance of all these semi-parametric estimators of the conditional survival

distributions is explored through simulations.

5 Model selection

The idea is to choose a quantity that is both estimable by the data (nonparametrically)

and by the proposed models. Among the proposed models, the model which produces

the closest estimate to the quantity is deemed the best. Such quantity should not be

used already in the estimating procedure and sensitive to different models. One such

quantity is F (x, y; δS=δR=1) , P (X > x, Y > y,∆S = 1,∆R = 1), which is estimable

nonparametricly by

F̂ (x, y; δS=δR=1) , n−1

n∑
i=1

ηi
πi

1(Si > x,Ri > y,∆Si = 1,∆Ri = 1).

Under an Archimedean copula model,

F (x, y; δS=δR=1) =

∫ ∞

y

{
ϕ′
α

[
FY (t)

]
fY (t)

ϕ′
α

[
F (x, t)

] −
ϕ′
α

[
FY (t)

]
fY (t)

ϕ′
α

[
F (t, t)

] }
G(t)dt

Therefore it can also be estimated by

F̃ (x, y; δS=δR=1) =

∫ ∞

y

{
ϕ′
α̂π

[
F̂ π,2
Y (t)

]
ϕ′
α̂π

[
F̂ π(x, t)

] − ϕ′
α̂π

[
F̂ π,2
Y (t)

]
ϕ′
α̂π

[
F̂ π(t, t)

]}Ĝ(t)dF̂ π,2
Y (t)

The maximum distance, D , max0<x<y|F̂ (x, y; δS = δR =1) − F̃ (x, y; δS = δR =1)|
is then used as a criterion to choose different models. In other words, among possible

AC models, the model with the smallest difference measure D is chosen. This builds

on the model checking method of Hsieh, Wang and Adam (2008).

Of course, it is likely that no model among the proposed ones provides adequate fit

to the data. In this case, calibration by p-values may be desirable for model selection

purposes (Hsieh et al. 2008). A similar bootstrap approach will be taken to approx-

imate the null distribution of the difference measure. Specifically, bootstrap samples

of (X, Y ) will be generated from the estimated copula model and C from Ĝ. The

bootstrap samples will then be censored according to semi-competing risk framework.

The model fitting measures are then calculated for all the bootstrap samples to create

the null distribution.
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6 Numerical examples

In this section we assess the performance of various proposed estimators and the model

selection procedure. We also analyze the data from the AMPATH study.

6.1 Simulations

In generating data, the marginal distribution of Y is taken to be unit exponential

and the marginal distribution of X exponential with rate 0.8. This leads to about

40 percent dropout. This is close to the rate of 39.3% reported in An, Yiannoutsos,

Frangakis et al. (2008). The censoring distribution is uniform within the interval (0, 4).

To save space, we present results using the Clayton and Gumbel copulae with various

α for the correlation between X and Y . We used the bootstrap procedure for standard

error estimation in all analyses.

In the following sections, we present results for estimation of the correlation between

X and Y in Table 1; for the marginal distributions of X and Y in Table 2; and for

the conditional distributions of Y given X in Table 3. A total of 400 data sets were

simulated in each scenario with various correlations between X and Y . The sample

sizes were set to be 1000 and 3000 in each setting. The double sampling proportion is

set to be 0.2.

In Table 1, we see that our estimation procedure performs satisfactorily in all cases.

The standard error decreases with larger sample size n = 3000 as compared with

n = 1000. In Table 2, we try to estimate the marginal distribution of X at one year

(i.e., t = 1) and the marginal distribution of Y at 2 years (t = 2). The CG estimates

are all close to the true value exp(−1) = 0.368 and the estimates for FY (2) are all

close to the true value exp(−0.8 ∗ 2) = 0.202. Among the standard error estimates of

the three estimators of FY , we see that F̂ π,1
Y is the most inefficient and F̂M

Y the most

efficient among the three. The improvement of efficiency is actually related to the

strength of correlation between X and Y . Figure 1 illustrates the efficiency comparison

among these marginal distribution estimators under the two copulae. Here the x-axis

represents the correlation between X and Y (instead of α values in the copulae). The

results are based on the same setting as in Table 1 but with 50,000 simulated data.
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We see that F̂ π,2
Y is in general more efficient than F̂ π,1

Y except in the case of very high

correlations. When the correlation is small, model based estimator can be inefficient.

However the efficiency improves dramatically as correlation increases. This implies that

the model-based estimator may be preferred if there is moderate to high correlations.

Table 3 gives results for estimation of conditional distributions F1.5|.75 , P (Y >

1.5|X = 0.75, Y > 0.75) and F1.5|.75+ , P (Y > 1.5|X > 0.75, Y > 0.75). Again

the results are satisfactory. Finally, we conducted model selection procedures under

the same setting with results listed in Table 4. We can see that correct models were

selected with very high percentage in all cases. The correct selection percentages are

higher with the larger sample size as expected.

6.2 The AMPATH study

The study included 8,977 adults coming from both urban and rural clinics in western

Kenya between January 1, 2005 and January 31, 2007. There is a very high rate of

patient loss to follow-up (3,528 dropouts). In the outreach program, 621 were double

sampled for further follow-up. The initial goal of AMPATH was to establish an HIV

care system to serve the needs of both urban and rural patients and to assess the

barriers to and outcomes of antiretroviral therapy. It is important to explore differences

in dropout patterns and patient survival between the rural and urban areas. For the

urban area, there were 6561 subjects among whom 38% dropped out. The outreach

rate is 18%. The maximum follow up is 761 days with a total of 136 deaths observed.

For the rural area, there were 2416 subjects among whom 43% dropped out. The

outreach rate is 23%. The maximum follow up is 761 days with a total of 86 deaths

observed.

The analysis results listed in Table 5 are based on the Clayton copula which was

selected based on the difference measure proposed in Section 5. The marginal distribu-

tions for dropout and survival in rural and urban clinics are plotted in Figure 2. The

conditional survival distributions in rural and urban clinics are plotted in Figure 3.

In Table 5, the estimate of the α index of the Clayton copula (s.e.) was 2.865

(0.481) among patients enrolled in the urban clinic and 1.852 (0.419) for rural clinics.
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These estimates correspond to correlations of 0.59 and 0.48, which in turn suggests

that patient dropout is non-ignorable. We can also see that the rural clinics appear to

have inferior outcomes in several aspects (Table 5). Among the statistical significant

differences, the non-dropout rate at 1 year is 59.8% compared with 62.4% in the urban

area. Patients retained in care for 3 or 6 months, also have shorter survival when at-

tending rural clinics versus receiving care from the referral hospital. From the marginal

distribution curve of dropout, we find that the dropout rates are similar in the early

period (up to about 180 days) and then the dropout rate increases in the rural area

(Figure 2).

The conditional survival probabilities are seen to increase noticeably when subjects

are kept in care longer. In Figure 3, we see a similar increase in conditional survival

for both urban and rural clinics comparing dropout at 3 months with 6 months, or

comparing survival given retention in care > 3 months with > 6 months.

7 Discussion

In this article, we considered various estimation aspects and model selection for mor-

tality and dropout in the context of a large HIV care and treatment program in western

Kenya. We developed novel statistical methods in a semi-competing risk framework

where we were able to ascertain only a fraction of the terminal events. By utilizing

the correlation between the non-terminal and terminal events, we demonstrated that

improved estimation for the marginal and conditional distribution of the terminal event

is feasible as is the marginal distribution of the non-terminal event.

In addition to proving the asymptotic properties of the proposed estimators (Ap-

pendix), we performed simulations to assess their performance under scenarios closely

resembling the real-life settings where these methods will be applied. In all cases,

the performance of these estimators was excellent. This has a number of important

implications for the practical application of our methods. It means that program eval-

uation by assessment of HIV care and treatment program effectiveness metrics such

as mortality, patient retention, treatment interruption or disease progression rates, all

falling under our semi-competing risk framework, can be accomplished by locating only
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a relatively small subset of patients who are lost. This ensures the viability and sus-

tainability of ongoing program evaluation efforts in this setting as most programs in

low and middle-income countries in sub-Saharan Africa, Asia and Latin America are

so large and the loss to follow-up problem so pronounced (Rosen, Fox, and Gill 2007)

as to make it infeasible to follow-up all patients who discontinue treatment.

Our re-analysis of the AMPATH data (An, et al., 2008, Yiannoutsos, et al., 2008)

showed the advantages of being able to estimate conditional survival distributions for

the terminal event conditional on loss-to-follow-up (the non-terminal event). We con-

sidered three and six months, two important landmarks from start of therapy, when the

hazard of mortality is highest (Yiannoutsos, 2009). Conditioning on being retained on

treatment (and thus being alive) at 3 and 6 months after therapy produced estimates

of mortality (Figure 3 right panel), which were much lower than overall (marginal)

mortality (Figure 2 right panel). In addition, patient retention for at least six months

is associated with substantial improvement of mortality (both early and late) compared

to retention at least for three months (Figure 3). These results have important policy

implications about interventions which target patients early after initiating antiretro-

viral therapy. AMPATH for example, has instituted an intense follow-up of patients

during the first three months after treatment initiation. These analyses provide strong

supportive evidence for such interventions.

While these analyses are intended more as a proof of concept rather than an ex-

haustive analysis of all possible explanatory factors of dropout and mortality patterns

in our setting, these first results underline some important issues and further empha-

size the practical utility of these methods. The ability to explicitly model the possible

correlation between X and Y allows both the assessment of the strength of the associ-

ation as well as the comparison of these quantities between groups. In our re-analysis

of the AMPATH data, we see a possibly different pattern in the urban versus the rural

settings with dropout being associated less strongly with mortality in the rural setting.

These observations are important because they underscore the necessity of methods

which do not rely on independence assumptions between X and Y and the absolute

critical nature of outreach and vital status ascertainment among lost patients. In ad-
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dition, these findings could be used to tailor contextually appropriate interventions

depending on the setting (rural versus urban).

While our motivating example was focused on issues arising in the evaluation of

large care and treatment programs recently proliferating in low and middle-income

countries, the applicability of the proposed methods is quite broad. The extent of

the application of this methodology is related both to the number of issues in this

context as well as any other chronic disease intervention requiring patient retention

and long-term adherence to treatment or prevention interventions.
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Appendix

We show the consistency and asymptotic distribution of α̂π, the estimator of the depen-

dency between X and Y in the context of semi-competing risks with incomplete vital

status ascertainment. Assume that the outreach probability p > 0, then similar to the

arguments in the web appendix of Lakhal et al. (2008), for any ϵ > 0, all comparable

pairs belong to a bounded set S0 = {(x, y) : τ0 > y ≥ x > 0} with a high probability

1−2ϵ2, where τ0 is a fixed number such that 0 < FX(τ0)G(τ0) < ϵ, 0 < FY (τ0)G(τ0) < ϵ,

and 0 < F (τ0, τ0)G(τ0). Then because Ĝ(y), P̂ π,2 are consistent estimators of their limit

in the set S0, F̂
π(x, y) is consistent for F (x, y) in S0. This leads to the consistency of α̂π

because (6) converges to its limit and is monotonic as a function of α for Archimedean

copulae.

For the asymptotic distribution, consider a Taylor expansion of the function ξα(v) =

{1 + θα(v)}−1θα(v). The estimating function Ψn(α) is asymptotically equivalent to

Ψn(α) ≃
(
n

2

)−1 ∑
i<j

W (S̃ij, R̃ij)Zij

[
∆ij − ξα{π(X̃ij, Ỹij)}

−ξ′α{π(X̃ij, Ỹij)}{π̂(X̃ij, Ỹij)− π(X̃ij, Ỹij)}
]

Because

π̂(x, y)− π(x, y) = n−1Ĝ(y)−1

n∑
k=1

1(Sk > x,Rk > y)−G(y)−1P (Sk > x,Rk > y)

= n−1{Ĝ(y)−1 −G(y)−1}
n∑

k=1

1(Sk > x,Rk > y)

+n−1G(y)−1

n∑
k=1

{1(Sk > x,Rk > y)− P (Sk > x,Rk > y)}
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we can break Ψn(α) into two parts Ψ(α) = A+B where,

A = −
(
n

2

)−1 ∑
i<j

W (S̃ij, R̃ij)Zij

[
ξ′α{π(X̃ij, Ỹij)}n−1{Ĝ(Ỹij)

−1 −G(Ỹij)
−1}

×
n∑

k=1

1(Sk > X̃ij, Rk > Ỹij)
]

= −
(
n

2

)−1

n−1

n∑
k=1

∑
i<j

W (S̃ij, R̃ij)Zijξ
′
α{π(X̃ij, Ỹij)}{Ĝ(Ỹij)

−1 −G(Ỹij)
−1}

×1(Sk > X̃ij, Rk > Ỹij)

and

B =

(
n

2

)−1 ∑
i<j

W (S̃ij, R̃ij)Zij

[
∆ij − ξα{π(X̃ij, Ỹij)}

−ξ′α{π(X̃ij, Ỹij)}n−1G(Ỹij)
−1

n∑
k=1

{1(Sk > X̃ij, Rk > Ỹij)− P (Sk > X̃ij, Rk > Ỹij)}
]

=

(
n

2

)−1

n−1

n∑
k=1

∑
i<j

W (S̃ij, R̃ij)Zij

[
∆ij − ξα{π(X̃ij, Ỹij)}

−ξ′α{π(X̃ij, Ỹij)}{G(y)−11(Sk > X̃ij, Rk > Ỹij)− π(X̃ij, Ỹij)}
]
.

The first part is asymptotically equivalent to

A ≃ −
(
n

2

)−1 ∑
i<j

W (S̃ij, R̃ij)Zijξ
′
α{π(X̃ij, Ỹij)}{Ĝ−1(Ỹij)−G−1(Ỹij)}π(X̃ij, Ỹij)/G(Ỹij)

because {Ĝ−1(Ỹij) − G−1(Ỹij)} can be written as an iid random sum (Gill 1980 p37).

The second part is asymptotically equivalent to

B ≃ −
(
n

2

)−1
1

n

n∑
k=1

∑
i<j

W (S̃ij, R̃ij)Zij

{1(Ck ≤ t)(1−∆ZXk)

SZ(Ck−)
−G(Ỹij)

}
ξ′α{π(X̃ij, Ỹij)}

π(X̃ij, Ỹij)

G(Ỹij)

This is a U-statistic with order 3. Asymptotic normality then directly follows from the

theory of U-statistics.
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Table 1: Simulation results for the estimation of α

α = 2 α = 3 α = 4

Clayton; n = 1000
Mean Est 2.058 3.038 4.117
SE .411 .536 .658
Emp SE .410 .509 .660
95% CP 94.0 96.0 94.5
Clayton; n = 3000
Mean Est 1.993 3.035 4.011
SE .228 .298 .363
Emp SE .237 .290 .354
95% CP 92.8 95.2 96.8

Gumbel; n = 1000
Mean Est 2.023 2.935 4.001
SE .237 .407 .605
Emp SE .259 .418 .619
95% CP 91.8 92.8 93.2
Gumbel; n = 3000
Mean Est 2.077 2.972 3.965
SE .135 .234 .335
Emp SE .135 .251 .328
95% CP 92.8 92.5 93.2
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Table 2: Simulation results for the estimation of marginal distributions at times t = 1
(FX) and t = 2 (FY ). The target quantities are FX(1) = exp(−1) = 0.368 and
FY (2) = exp(−0.8× 2) = 0.202.

α = 2 α = 3 α = 4

F̂X F̂ π,1
Y F̂ π,2

Y F̂ π,M
Y F̂X F̂ π,1

Y F̂ π,2
Y F̂ π,M

Y F̂X F̂ π,1
Y F̂ π,2

Y F̂ π,M
Y

Clayton; n = 1000

Mean Est .368 .204 .205 .203 .369 .206 .209 .205 .368 .206 .208 .206
SE .021 .030 .029 .028 .020 .030 .029 .027 .018 .030 .030 .026
Emp SE .021 .032 .030 .029 .019 .033 .031 .029 .018 .030 .029 .026
95% CP 95.5 93.5 93.5 93.5 96.0 91.8 92.2 91.8 95.0 95.2 94.2 96.0
Clayton; n = 3000

Mean Est .368 .204 .205 .204 .368 .203 .205 .203 .368 .203 .205 .203
SE .012 .018 .017 .016 .011 .018 .017 .016 .011 .018 .017 .016
Emp SE .012 .018 .018 .016 .011 .019 .017 .017 .011 .019 .017 .017
95% CP 94.5 96.0 93.8 95.5 92.8 93.2 95.5 92.8 92.8 93.2 95.5 92.8

Gumbel; n = 1000

Mean Est .372 .208 .209 .208 .372 .205 .206 .206 .369 .208 .209 .207
SE .021 .032 .030 .031 .019 .031 .029 .029 .018 .031 .030 .028
Emp SE .022 .034 .032 .033 .018 .032 .032 .030 .019 .031 .031 .028
95% CP 93.0 92.0 91.8 93.8 96.8 93.5 92.5 93.5 91.5 93.2 93.0 93.8
Gumbel; n = 3000

Mean Est .370 .204 .204 .204 .370 .203 .202 .202 .370 .203 .202 .202
SE .012 .019 .018 .018 .011 .018 .017 .017 .011 .018 .017 .017
Emp SE .013 .020 .019 .020 .011 .019 .017 .017 .011 .019 .017 .017
95% CP 93.0 93.0 93.8 94.0 93.0 93.8 95.5 94.0 93.0 93.8 95.5 94.0
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Table 3: Simulation results for the estimation of the conditional distributions.

α = 2 α = 3 α = 4

F̂1.5|.75 F̂1.5|.75+ F̂1.5|.75 F̂1.5|.75+ F̂1.5|.75 F̂1.5|.75+

Clayton; n = 1000
Mean Est .207 .587 .127 .585 .072 .576
SE .070 .062 .063 .065 .051 .068
Emp SE .074 .066 .065 .070 .048 .069
95% CP 92.0 92.0 94.8 90.2 95.0 92.2
Clayton; n = 3000
Mean Est .207 .588 .116 .581 .064 .569
SE .041 .036 .035 .039 .026 .041
Emp SE .044 .038 .034 .038 .028 .044
95% CP 92.0 93.0 94.2 93.5 94.0 92.2

Gumbel; n = 1000
Mean Est .363 .533 .246 .545 .162 .556
SE .067 .060 .064 .062 .058 .065
Emp SE .069 .066 .067 .067 .058 .068
95% CP 93.5 90.5 91.5 91.5 95.0 92.8
Gumbel; n = 3000
Mean Est .355 .526 .233 .540 .150 .545
SE .040 .036 .038 .038 .032 .039
Emp SE .043 .039 .039 .038 .032 .040
95% CP 93.0 94.0 94.8 95.5 95.0 94.5
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Table 4: Correct model selection percentage results based on 400 simulated data sets.

α = 2 α = 3 α = 4

n = 1000

Clayton 96 95 81
Gumbel 93 98 98

n = 3000

Clayton 100 99 89
Gumbel 100 100 100

Table 5: Data analysis results for the AMPATH study.

Urban Rural P-value

Estimand Est SE Est SE (Urban vs. Rural)

α 2.865 .481 1.852 .419 .029
P (X > 1yr) .624 .007 .598 .013 .004
P (Y > 1yr) .915 .014 .892 .024 .183
P (Y > 1yr|X = 3mo, Y > 3mo) .864 .018 .846 .028 .395
P (Y > 1yr|X > 3mo, Y > 3mo) .958 .006 .941 .010 .020
P (Y > 1yr|X = 6mo, Y > 6mo) .949 .014 .930 .021 .240
P (Y > 1yr|X > 6mo, Y > 6mo) .985 .004 .974 .008 .041
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Figure 1: Efficiency comparison for marginal survival estimation
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Figure 2: Marginal distribution estimation
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Figure 3: Conditional distribution estimation
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