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ABSTRACT

A synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation
dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019
(PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the
pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW),
the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To
evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set
up in the water tank, and the response to 100 MU was measured every 20 s. The depth–dose and profiles data
were collected for various field sizes and depths. For all radiation types and field sizes, the depth–dose data of the
diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond
detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers
showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the
range of 4–41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5%
and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosim-
etry, for relative dose, depth–dose and profile measurements for a wide range of field sizes. However, at least
1000 cGy of pre-irradiation will be needed for accurate measurements.
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INTRODUCTION
Finding a perfect detector with wide applications in radiation fields
has always been elusive. Improvements in detector characteristics for
radiation (photon, electron and protons), dose, dose rate and fields
(small and large) has been steadily pursued. Advances in treatment
techniques like stereotactic radiotherapy (SRT), CyberKnife, Gamma
Knife, Tomotherapy, intensity-modulated radiotherapy (IMRT) and
volumetric-modulated arc therapy (VMAT) have created an urgency
for suitable detectors for small-field dosimetry [1–3]. Accurate
dosimetry of small fields is challenging because the finite range of

detectors leads to volume-averaging effects with various types of per-
turbations [4–8]. A number of detectors (including small ionization
chambers, diode detectors, and diamond detectors) have been inves-
tigated with limited success or limited scope [9, 10].

Natural diamond detectors have been extensively studied and
found to have suitable characteristics for dosimetry [11–16]. Unfortu-
nately, natural diamond detectors, even those with superior characteris-
tics, have become obsolete due to poor design, selection of crystal, and
craftsmanship and to cost. Although synthetic diamonds produced by
chemical vapor deposition (CVD) [17, 18] have been considered for
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small-field dosimetry, some problems, including the difficulties in
controlling the incorporation of impurities into synthetic crystals, and
encapsulation have limited the performance of the detector. Recently,
a new single crystal diamond detector (SCDD) was developed at the
laboratories of the University of Rome ‘Tor Vergata’. Ciancaglioni
et al. reported the characteristics of the SCDD for small-field dosim-
etry [19]. Several studies investigating the dosimetry of photon, elec-
tron and proton beams have also been reported [9, 10, 20, 21]. The
prototype of the SCDD was embedded in a polymethyl-methacrylate
(PMMA) waterproof cylindrical housing [19–22] or in the same
PTW housing used for the unshielded Silicon diode model 60017
(PTW-Freiburg GmbH, Freiburg, Germany) [23–25]. Currently, a
commercial product model of the SCDD (Model 60019, PTW) is
available. Several studies have investigated the characteristics of the
commercial model for electron beams [24, 26] and small-field
photon dosimetry [27, 28]. Although the characteristics of the proto-
type SCDD for proton dosimetry are reported by Mandapaka et al.
[20], those of the commercial model have not been reported. In add-
ition, some characteristics for photon dosimetry (such as pre-irradi-
ation) showed variation among previous reports. In this study, we
have reported the characteristics of the commercial SCDD model
60019 for uniform-scanning proton-beam dosimetry and also carried
out a re-investigation of megavoltage photon dosimetry.

MATERIALS AND METHODS
Diamond detector

A photo and radiographic images of the microDiamond model 60019
(PTW) are shown in Fig. 1. The detector’s sensitive volume is 0.004
mm3 and is of a circular shape with a 1.1-mm radius and 1-μm thick-
ness. In all of the measurements in this study, the SCDD was oper-
ated in photovoltaic mode, i.e. with no external bias voltage applied.
The shape of SCDD is cylindrical, 7 mm in diameter and 45.5 mm in
length. The water-equivalent entrance window (1.0-mm thickness)
consists of 0.3 mm of RW3, 0.6 mm of Epoxy, and 0.01 mm of Alu-
minum. A thorough study of the physical properties and detection
mechanism of such a device is reported elsewhere [11].

Measurements
A uniform-scanning proton-beam (USPB) was investigated in this
study. The initial energy of the proton beam was 208 MeV. A detailed
description of the USPB has been provided elsewhere [29, 30]. The

characteristics of the SCDD with a USPB beam was compared with
that of a plane-parallel PTW 34045 Markus ionization chamber. The
SCDD and Markus chamber were mounted on the arm of a Blue
Phantom scanning water phantom (IBA Dosimetry, GmbH, Schwar-
zenbruck, Germany). The proton beam was irradiated from 270° dir-
ection (IEC convention). The air gap was 5 cm. For percentage
depth dose (PDD) measurements, 100 MU of pristine Bragg peaks
with the energy range of 8, 16 and 24 cm was measured at various
depths because a continuous scanning measurement is not suitable
for USPB. To investigate the beam linearity of the response, proton
beams with various monitor units (10–1000 MU) were measured at
the center of the spread-out Bragg peak (SOBP). Dose-rate depend-
ency was also evaluated by measurements of the proton beam with
various beam current (equivalent to 0.5–6 Gy/min dose rate).

The characteristics of the SCDD for photon beam dosimetry were
also investigated for 6- and 15-MV photon beams generated by a
Clinac 2100C/D linear accelerator (Varian Medical Systems, Palo Alto,
USA). An MP3 water phantom scanning system (PTW) was used for
measurements, with its surface at a source–surface distance = 100 cm.
The dose linearity of the response of each detector was evaluated by
measuring 3–1000 MU with a 10 × 10 cm2

field size at 10 cm depth.
The measurements were performed for the dose rates of 100, 300 and
500 MU/min in order to evaluate the dose-rate dependency. The
PDD and off-center ratio (OCR) data were collected for 3 × 3 cm2,
10 × 10 cm2, 20 × 20 cm2 and 30 × 30 cm2

field sizes. Profile data were
analyzed using an Akilles in-house software.

To compare the characteristics of SCDD with those of other pre-
characterized detectors, Semiflex (model 31010, sensitive volume of
0.125 cm3) and PinPoint (model 31006, sensitive volume of 0.016
cm3) ionization chambers (PTW), the EDGE diode detector (Sun
Nuclear Corp, Melbourne, USA) and the SFD Stereotactic Dosim-
etry Diode Detector (IBA Dosimetry) were also used for measure-
ments with the same settings. The Semiflex ionization chamber was
considered to provide the reference data in this study because of its
typical sensitive volume for data collection for the commissioning. A
CNMC model K602 electrometer (CNMC Co., Nashville, U.S.A.)
was used for point dose measurement. For the ionization chambers,
measurements were conducted under an applied +300 V. For the
other detectors (SCDD, EDGE, and SFD), no bias was applied.

The temperature dependency was tested in water for the range
of 4–60°C. The diamond detector was hung vertically with a metal-
lic stand, and the sensitive volume of the chamber was positioned at
the isocenter of the linac in a plastic case filled with ice-cold water.
The metallic holder was at least 20 cm away from the sensitive
volume of SCDD to eliminate any effects due to scattered radiation
from the metallic stand. The response of the chamber to 100 MU of
a 6-MV photon beam was evaluated for various water temperatures
by replacing a part of the water with hot water, keeping the volume
of water in the plastic case constant. After stirring the water, the
water temperature was measured at several positions using an elec-
tric thermometer. To evaluate the effects of the pre-irradiation, the
diamond detector, which had not been irradiated on the day, was
set up in the water tank and the response to 100 MU was measured
every 20 s. The measurements were repeated on three different
days. After enough irradiation for stabilizing the SCDD, the mea-
surements were repeated after 0.25–4 h intervals to investigate the
‘destabilization’.

Fig. 1. Photo and X-ray image of the PTW Type 60019
detector.
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RESULTS
Figure 2a shows the dose linearity evaluated for the 6-MV photon
beam measured with a 500 MU/min dose rate. The linearity of the
SCDD was within 1% except for at small MU. The values of SFD
became larger than those of other detectors with large MU. Figure 2b
illustrates the dose linearity evaluated for the proton beam. SCDD
showed excellent linearity for ≥100 MU. Although the values
increased at <100 MU, the values of the Markus chamber also
increased, representing the stability issue of the beam output but not
the dose dependency of the detectors.

Figure 3a shows the dose-rate dependency against 100 MU of 6-
MV photon beam. Both the Semiflex ion chamber and the SCDD
showed an increase in charge of up to 1.6% with decreasing dose rate,
representing the machine characteristics but not the dose-rate depend-
ency of each chamber. The difference between these two chambers
was <0.3%. Figure 3b shows the relative response of the SCDD and the
Markus chamber against proton beams with various beam currents.
Although dose-rate-dependent variation was observed, the differences
between the Markus and diamond detectors were within 1% in the
range of 0.5–6 Gy/min dose rate, representing the variation in beam
output but not the dose-rate dependency of the detectors.

Figure 4a and b show the PDD of the 6-MV photon beam with
3 × 3 cm2 and 30 × 30 cm2

field sizes, respectively. Percentage differ-
ences relative to the value of the Semiflex ionization chamber were
also plotted in the lower graphs. For 3 × 3 cm2

field size, all detectors
showed similar results, with the differences within 1.5% at the region
deeper than dmax. For 30 × 30 cm

2
field size, in contrast, the values of

SFD showed a difference of up to 7.1%. The PinPoint chamber and
EDGE detector also showed differences of up to 2.2% and 3.3%,
respectively. The SCDD showed a small difference (within 0.6%).

Similar variability among detectors are known and reported in TG-
106 [31].

Figure 5 illustrates the PDD of the pristine Bragg peak of the
proton beam with the energy range of 8, 16 and 24 cm. The data
measured with the SCDD showed very similar data, representing the
small energy-dependency of the SCDD against the proton beams.

Figure 6a shows the OCR of the 6-MV X-ray beam with various
field sizes measured at dmax. For large field sizes, only the SFD
showed larger values in the ‘tail’ region. Figure 6b illustrates the OCR
of 3 × 3 cm2

field size. The diamond, EDGE detector and SFD
showed almost identical profiles with steep penumbrae. The Semiflex
chamber showed an averaging effect at the penumbrae region.
Although the PinPoint chamber showed a slightly better profile, the
averaging effect is still observed.

The temperature dependence is shown in Fig. 7a for the response
of diamond detector against 100 MU of a 6-MV photon beam.
Values were normalized at 22°C. In the range of 4–41°C, the differ-
ences were within 0.7%. At temperatures ≥44°C, a large signal was
observed without irradiation. Although the values were corrected
by subtracting the average value of the leakage for the beam-on time
(12 s for 500 MU/min), the measured values at temperatures >50°C
will not be correct.

Figure 7b shows the stabilization of the diamond chamber by pre-
irradiation. Values were normalized by the average value in the range
between 2000 and 3000 MU of three series of measurements. The
response of the initial irradiation was, on average, 4.3% higher than
the value at plateau. A dose of 900 cGy and 1200 cGy was needed to
stabilize the chamber to the level within 0.5% and 0.2%, respectively.
At 0.25–4 h after pre-irradiation, the measurements were repeated to
assess the destabilization. The charges measured for the initial 100

Fig. 2. Dose linearity of (a) a 6-MV photon beam and (b) a uniform-scanning proton beam. For each detector, the dose/MU is
plotted in the lower graphs. Values are normalized at 500 MU.
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Fig. 4. Percentage depth–dose of a 6-MV photon beam of (a) 3 × 3 cm2 and (b) 30 × 30 cm2
field sizes. For each data, the

difference from Semiflex chamber is plotted in the lower graphs. Note that the diamond data has the smallest difference at depths
and field size.

Fig. 3. The relative charge and the ratio between the data of the diamond and the ion chamber are plotted against dose rate and
shown in the upper and lower graphs, respectively. (a) A 6-MV photon beam. Values are normalized at that of a 500 MU/min
dose rate. (b) Uniform-scanning proton beam with an energy range of 16 cm and 10 cm SOBP. Values are normalized at that of
2 Gy/min dose rate.
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MU of irradiation were 0.9%, 1.6% and 2.2% higher than the values at
plateau for 0.25-, 1- and 4-h intervals, respectively.

DISCUSSION
Several studies have investigated the characteristics of this commercial
diamond detector, especially for electron-beam and small-field
photon-beam dosimetry. For proton-beam dosimetry, Mandapaka
et al. previously investigated the characteristics of the prototype
SCDD with the PMMA housing [20]. However, the characteristics of
the commercial model 60019 for proton-beam dosimetry have not
been reported. In this study, we have investigated the characteristics
of the commercial SCDD type 60019 for the dosimetry of a uniform-
scanning proton beam. As shown in Fig. 2, the SCDD showed similar
results for dose linearity to those of the parallel-plate ionization

chamber. Although the response was slightly large at doses <100 MU,
the result will be due to the beam output stability, since the ionization
chamber showed similar results. As illustrated in Figs 3 and 5, the
SCDD showed good characteristics for proton dosimetry in terms of
the dose rate and energy dependency. Mandapaka et al. also reported
small dose-rate dependency of the SCDD and good agreement for
PDD measured with the ion chamber and the SCDD [20].

For photon-beam dosimetry, Chalkley et al., Morales et al. and
Laub et al. investigated the dosimetric characteristics of the commer-
cial SCDD model 60019 for the CyberKnife, for the Novalis Trilogy
linac and for the Elekta Synergy linac, respectively [26–28]. In this
study, we investigated the dose linearity, dose-rate dependency, PDD,
and profile of the Varian Clinac 2100C/D linac. As illustrated in
Figs 2–4, the SCDD showed excellent characteristics for photon-
beam dosimetry in terms of the consistency of response and dose-
rate dependency, as supported by previous reports. As shown in
Fig. 6, the SCDD showed a steep profile penumbra, similar to the
EDGE and SFD diode detectors, indicating small volume-averaging
effects. At the tail region, the SCDD showed a similar profile to the
ionization chambers, indicating low energy dependency. The sensitive
volume is circular shape, with 1.1 mm radius and 1 μm thickness.
Ciancaglioni et al. showed that horizontal setting of SCDD to the
beam axis showed better resolution of the beam profile measurements
[19]. With horizontal set-up of the SCDD, the averaging effects can
be minimized.

The commercial SCDD showed a stable response in the tempera-
ture range of 4–41°C, with variation within ±0.7% (Fig. 7a). Cianca-
glioni et al. investigated the prototype SCDD embedded in the PMMA
housing in the 18–40°C range and reported the temperature depend-
ency within 0.2% [19]. They also reported that 60 cGy of pre-irradi-
ation was necessary for the prototype SCDD in order to stabilize the
detector response within ±0.5%. Di Venanzio et al. reported that the
response of the prototype SCDD embedded in the waterproof housing
of a PTW type 60017 diode detector was stabilized by 500 cGy of elec-
tron beam from 0.7% to 0.1% [24]. Laub et al. reported that the

Fig. 5. Percentage depth–dose of proton beams with the
energy range of 8, 16 and 24 cm.

Fig. 6. (a) Profiles of 6-MV photon beams of 3 × 3 cm2, 10 × 10 cm2, 20 × 20 cm2, and 30 × 30 cm2
field size measured at dmax.

(b) Profiles of 3 × 3 cm2
field size are focused. Note the diamond detector provides a superior profile.
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response of the microDiamond detector was within 0.5%, without any
pre-irradiation [26]. They concluded that ∼300 cGy of pre-irradiation
would be sufficient. In contrast, our study showed that a dose of 900
cGy and of 1200 cGy was needed to stabilize the chamber to the level
within 0.5% and 0.2%, respectively (Fig. 7b). For the detector we used,
at least 1000 cGy of pre-irradiation is recommended in order to
conduct accurate measurements. In addition, pre-irradiation is recom-
mended after a few hours, indicating the importance of the character-
ization of each detector before usage for data collection.

CONCLUSION
We investigated the characteristics of the new commercial SCDD
type 60019 for uniform-scanning proton-beam dosimetry. The
SCDD showed sufficient constancy, similar to that of the ionization
chamber. The SCDD also showed significantly better characteristics
than other detectors for radiation dosimetry in terms of excellent
spatial resolution and stability of response. However, at least 1000
cGy of pre-irradiation will be needed for accurate measurements.
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