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Abstract

Inter-individual variation in gene regulatory elements is hypothesized to play a causative role in adverse drug reactions and
reduced drug activity. However, relatively little is known about the location and function of drug-dependent elements. To
uncover drug-associated elements in a genome-wide manner, we performed RNA-seq and ChIP-seq using antibodies
against the pregnane X receptor (PXR) and three active regulatory marks (p300, H3K4me1, H3K27ac) on primary human
hepatocytes treated with rifampin or vehicle control. Rifampin and PXR were chosen since they are part of the CYP3A4
pathway, which is known to account for the metabolism of more than 50% of all prescribed drugs. We selected 227
proximal promoters for genes with rifampin-dependent expression or nearby PXR/p300 occupancy sites and assayed their
ability to induce luciferase in rifampin-treated HepG2 cells, finding only 10 (4.4%) that exhibited drug-dependent activity. As
this result suggested a role for distal enhancer modules, we searched more broadly to identify 1,297 genomic regions
bearing a conditional PXR occupancy as well as all three active regulatory marks. These regions are enriched near genes that
function in the metabolism of xenobiotics, specifically members of the cytochrome P450 family. We performed enhancer
assays in rifampin-treated HepG2 cells for 42 of these sequences as well as 7 sequences that overlap linkage-disequilibrium
blocks defined by lead SNPs from pharmacogenomic GWAS studies, revealing 15/42 and 4/7 to be functional enhancers,
respectively. A common African haplotype in one of these enhancers in the GSTA locus was found to exhibit potential
rifampin hypersensitivity. Combined, our results further suggest that enhancers are the predominant targets of rifampin-
induced PXR activation, provide a genome-wide catalog of PXR targets and serve as a model for the identification of drug-
responsive regulatory elements.
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Introduction

Adverse reactions to drug treatment constitute a substantial

health problem that is a leading cause of morbidity and mortality

in hospitalized patients [1]. Differential expression of drug

metabolizing enzymes and drug transporters is a major determi-

nant of inter-individual drug response variability [2–5]. By

sequestering and metabolizing drug compounds in the liver and

intestine, these enzymes and transporters effectively determine

whether target organs and tissues are exposed to optimal drug

dosages. Several coding mutations in these proteins have been

detected which lead to adverse outcomes [6–10] and reduced drug

activity [11,12]. Regulatory elements, including promoters and

enhancers, also likely play an important role that has so far been
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largely uncharacterized [13,14]. The systematic identification of

drug-responsive regulatory elements would thus provide a unique

resource to discover novel genetic variants that lead to differences

in drug response.

The vast majority of pharmaceutical compounds are metabo-

lized by the cytochrome P450 family (CYP) of enzymes. Of these,

CYP3A4 is the most abundantly expressed in sites of drug

disposition in the liver [15] and is also thought to be responsible

for the metabolism of at least 50% of prescribed pharmaceuticals

[16]. CYP3A4 activity can vary 5–20 fold between individuals [17]

and its mRNA expression can vary as much as 120 fold [18]. Only

a few single nucleotide polymorphisms (SNPs) in the immediate

CYP3A4 locus have been found to be associated with CYP3A4

hepatic expression [19–21], suggesting that its variable expression

could be caused by other genes and distant regulatory elements.

CYP3A4 is one of many targets of the nuclear receptor PXR

(coded by NR1I2), which is expressed predominantly in the liver

and intestine [22] and is essential for activating Phase I and II

enzymes in response to xenobiotics. PXR’s broad substrate

specificity allows it to be activated by a wide variety of drugs

including the antibiotic rifampin, the malaria resistance drug

artemisinin, the hypolipidemic agent mevastatin, and the chemo-

therapeutic agent paclitaxel [2]. Relatively little is known about

the mechanism by which PXR drives CYP3A4 transcription in
vivo, although PXR response elements have been identified in the

putative CYP3A4 promoter [23] and upstream cis-regulatory

elements [24,25] that drive its expression in vitro. Additional PXR

responsive enhancers have been found for other CYPs [26,27].

Chromatin immunoprecipitation followed by sequencing (ChIP-

seq) of PXR-bound DNA elements in livers from mice treated with

PCN (a mouse PXR agonist) identified .3,000 drug-induced

binding sites [28]. ChIP-seq for other drug-associated transcription

factors such as LXR, RXR and PPARA has also been carried out

in mouse liver [29]. However, the inherent drug metabolism

differences between mouse and humans, in particular for PXR

and the mouse homolog of CYP3A4 [22,30,31], hinder the ability

to directly translate these results to humans.

To identify PXR-associated regulatory elements in a genome-

wide manner, we carried out RNA sequencing (RNA-seq) and

ChIP-seq with antibodies for PXR and three different enhancer

marks on primary human hepatocytes treated with rifampin or

vehicle control. These included the E1A binding protein p300

(EP300/p300) which has been used to identify functional

enhancers in vivo with high success rates [32], and two histone

marks, H3K4me1 and H3K27ac. H3K4me1 marks both poised

and active regulatory regions [33] while H3K27ac was shown to

selectively mark active regions [34,35]. We identified thousands of

sequences that had rifampin induced ChIP-seq peaks. A reporter

validation screen of proximal promoters associated with these

peaks yielded only a few functional rifampin-dependent sequences.

A similar assay for distal enhancers resulted in the identification of

several novel drug-dependent enhancers. Analyses of nucleotide

variants in selected sequences found a common African haplotype

in the GSTA locus to possibly affect rifampin sensitivity.

Results

We acquired induction-qualified cryopreserved human hepa-

tocytes originating from a single male donor (see Methods). To

verify their inducibility, we treated cultured cells with 10 mM

rifampin or DMSO control for 24 hours and then carried out

quantitative PCR (qPCR) for 84 genes involved in Phase I

metabolism (Table S1). Rifampin was used to activate PXR

because of the wide body of literature on this interaction [36].

Furthermore, the FDA recommends using rifampin for in vitro
and in vivo enzyme and transporter induction studies during

drug development (http://www.fda.gov/downloads/Drugs/

GuidanceComplianceRegulatoryInformation/Guidances/ucm29

2362.pdf). Ten genes were induced greater than two-fold

(CYP3A4, CYP3A43, CYP3A7, CYP2C8, CYP2A13, CYP2C9,

CYP24A1, CYP1A1, CYP2B6, CYP3A5) and only one was

downregulated (CYP26B1). CYP3A4 was by far the most

differentially expressed gene with a .1,000 fold induction (.10

PCR cycles difference), followed by the other members of the

CYP3A family (Table S1). These results indicated that this lot of

cryopreserved human hepatocytes was highly inducible by

rifampin, making it suitable for subsequent RNA-seq and

ChIP-seq assays.

To identify PXR-associated regulatory elements in a genome-

wide manner, we performed ChIP-seq on rifampin and DMSO-

treated hepatocytes using antibodies for PXR and three enhancer

marks (p300, H3K27ac, H3K4me1) (Figure 1A). The resulting

libraries from these samples were sequenced along with a

chromatin input sample that was used as a reference for peak

calling. In addition, we collected total RNA for each treatment

and carried out RNA-seq to acquire a broader view of rifampin-

induced gene expression changes. To increase our reproducibility,

we combined our RNA-seq results with a previously reported

RNA-seq dataset for rifampin treated and non-treated human

hepatocytes from seven different individuals [37] (see methods).

Drug-associated genes are differentially expressed upon
rifampin treatment

Our RNA-seq analyses found several differentially expressed

genes, the majority of which are known to be involved in drug

response. The number of differentially expressed genes using a p-

value cutoff, after adjustment for multiple testing less than or equal

to 0.05, was 157 (Table S1). Amongst them, 11 were CYPs, with

the top differentially expressed gene being CYP3A4, similar to our

qPCR results. Of the eleven differentially expressed genes

identified by qPCR, seven (64%) were also found to be

differentially expressed by RNA-seq. It is worth noting that two

(CYP2C9, CYP2C19) of the four genes that didn’t replicate in the

RNA-seq data, showed a non-statistically significant induction by

rifampin in our RNA-seq.

Author Summary

Drug response varies between individuals and can be
caused by genetic factors. Nucleotide variation in gene
regulatory elements can have a significant effect on drug
response, but due to the difficulty in identifying these
elements, they remain understudied. Here, we used
various genomic assays to analyze human liver cells
treated with or without the antibiotic rifampin and
identified drug-induced regulatory elements genome-
wide. The testing of numerous active promoters in human
liver cells showed only a few to be induced by rifampin
treatment. A similar analysis of enhancers found several of
them to be induced by the drug. Nucleotide variants in
one of these enhancers were found to alter its activity.
Combined, this work identifies numerous novel gene
regulatory elements that can be activated due to drug
response and thus provides candidate sequences in the
human genome where nucleotide variation can lead to
differences in drug response. It also provides a universally
applicable method to detect these elements for other
drugs.

Drug-Dependent Liver Enhancers
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Rifampin drives PXR and p300 recruitment at putative
regulatory elements

We observed a massive recruitment of PXR binding across the

genome following rifampin treatment. PXR-bound DNA frag-

ments clustered into 1,158 discrete peaks with DMSO treated cells

versus 6,302 after treatment with rifampin (Figure 1A, Table S2),

with only 239 overlapping in both datasets (Figure 1B). Rifampin

treatment led to a small increase in the percentage of promoters

(25.6% versus 24.1%) bound by PXR and a larger increase for

intronic (35.18% versus 29.9%) and exonic (5.3% versus 1.8%)

regions (Table S2). In contrast, there was a reduction in the

percentage of rifampin-induced PXR binding sites in intergenic

regions (33.9% versus 44.2%). An analysis of the location of

rifampin-induced PXR peaks found them to be enriched at

transcription start sites (TSSs), but not at a particular location

upstream or downstream to the TSS(Figure S1).

The binding of p300 was also more extensive after rifampin

treatment, with 13,811 peaks compared to 10,253 in DMSO-

treated cells (Figure 1A, Table S2). There was a larger overlap

between rifampin and DMSO treated ChIP-seq peaks compared

to PXR, with 4,374 (31.7%) in common between the two sets

(Figure 1B, Table S2). We also observed a change in the functional

distribution of binding sites, with rifampin increasing the

percentage of intronic (42.6% versus 36.3%) and intergenic

(38.0% versus 31.7%) p300 binding versus a small change in

exons (3.8% versus 2.6%) and a reduction in promoter binding

(15.5% versus 29.4%) (Table S2). This result was consistent with

our observation that only 1,076 rifampin-induced p300 peaks

overlapped rifampin-induced PXR peaks (Table S2).

In contrast to PXR and p300, the distribution of histone marks

was relatively stable, with about 49,000 enriched islands of

H3K4me1 activity and about 40,000 H3K27ac islands in both

treatments (Figure 1A). We also observed a large overlap between

rifampin and DMSO treated H3K4me1 (82.07%) and H3K27ac

(87.89%) enriched islands (Figure 1B, Table S2). Combined, these

results suggest that histone marks are more stable in response to

rifampin treatment compared to PXR and p300.

We next looked at overlaps between the different ChIP-seq

peaks. Amongst the 6,302 PXR rifampin treated peaks 1,037

(16%) overlapped p300 and around half overlapped histone marks

(3,553 for H3K27ac and 2,942 for H3K4me1). This was similar

for PXR peaks in the DMSO treated cells (Table S2). For p300 we

observed a greater overlap with histone marks, with ,70% of the

peaks overlapping either H3K27ac (9,487/13,811) and H3K4me1

(9,840/13,811). In the DMSO treated cells, we observed a much

higher overlap for p300 peaks with the active H3K27ac mark

(9,487/10,253; 92%) versus H3K4me1 (7,789/10,253; 76%),

suggesting that the p300 peaks in this condition tend to be in

active regions.

Functional validation of putative rifampin induced
promoters

There are multiple examples of promoter nucleotide variants

that are associated with inter-individual drug response

[4,5,13,38,39]. We thus sought to identify drug-dependent

promoters in our dataset which may harbor common variants

with novel effects on drug response. We selected 227 promoters for

200 genes (some genes had more than one promoter; Table S3)

from the LightSwitch Promoter Collection (SwitchGear Geno-

mics) for genes whose expression was induced by rifampin or

reside near rifampin-induced ChIP-seq peaks (Table S3). Of the

227 promoters, 154 overlap a PXR peak, 45 overlap p300, 164

overlap H3K27ac and 84 overlap H3K4me1 (Table S3). This

library consists of ,1,000 bp proximal promoter fragments cloned

into pLightSwich_Prom vector (see Methods, Table S3). We also

included two positive controls: 1) The beta-actin promoter

(ACTB), a strong constitutive promoter that should not be induced

by rifampin and 2) The CYP3A4 proximal promoter, which is

known to be induced by rifampin. We tested the 227 promoters in

HepG2 cell lines co-transfected with human PXR and treated with

rifampin or vehicle control (DMSO). Out of the 227 tested

promoters, 179 were found to be functional promoters (.2 fold

luciferase activity above empty vector) in the DMSO treated cells

(Figure 2A, Table S3). Among those promoters, only 10 exhibited

.2 fold increase in promoter activity upon rifampin treatment

including our CYP3A4 proximal promoter control (Figure 2A). To

confirm that the effects of rifampin were mediated through PXR,

we also tested the 10 rifampin-induced promoters (including

CYP3A4) in a similar assay, only this time without co-transfecting

human PXR, and found only 2 of them to be induced by rifampin

(.2 fold increase in promoter activity upon rifampin treatment)

and at much lower levels (Figure 2B, Table S3). In addition, the

CYP3A4 promoter was also not induced by rifampin in this assay.

Figure 1. ChIP-seq summary. (A) Schematic of our RNA-seq and
ChIP-seq assays, showing the various antibodies used for ChIP-seq and
the total number of peaks obtained for each antibody and treatment.
(B) Overlap between DMSO and rifampin treated ChIP-seq peaks for
each antibody.
doi:10.1371/journal.pgen.1004648.g001

Drug-Dependent Liver Enhancers
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In both experiments, our ACTB control was a strong promoter,

but not induced by rifampin. The overall lack of rifampin-sensitive

promoters and previous results finding a role for enhancers in

driving this drug response [24–27] suggests that other regulatory

sequences, such as enhancers, may be involved in driving the

effects of rifampin treatment on gene expression.

Rifampin induced regions reside near drug-associated
genes

Since most of the promoters tested in our assay did not

demonstrate increased activity in the presence of rifampin, we

broadened our search for inducible regulatory elements to include

enhancers. To be more stringent in our analyses, we selected

regions across the genome which showed PXR rifampin-induced

binding in addition to all three enhancer marks. For both the

DMSO and rifampin treatments, we generated a merged track of

all four marks, with each region in the track overlapping one to

four peaks/island. If, for example, a p300 peak is near a PXR

peak, but they don’t overlap, while both overlap a H3K4me1 and/

or a H3K27ac island, they were considered all as one region. Only

225 such regions were present in the DMSO treatment, while

1,387 were identified in the cells treated with rifampin (Figure 3A).

Of the latter group, 1,297 regions were exclusive to the rifampin

treatment and termed Rifampin-Induced Regions (RIRs) for

downstream analyses.

CYP3A4 is by far the most well studied target of PXR, with well

characterized regulatory sequences: the proximal promoter, a 2

7.5 kb upstream xenobiotic responsive enhancer module (XREM)

[24], and a 211 kb constitutive liver enhancer module of CYP3A4
(CLEM4) [25]. A second potential XREM, putatively regulating

CYP3A7, was additionally identified intergenically between

CYP3A7 and CYP3A4 [26]. Our ChIP-seq data completely

recapitulates this picture of regulation in primary human

hepatocytes, with two large RIRs encompassing multiple rifam-

pin-induced peaks (Figure 3B). It is also worth noting that the

CYP3A4 locus is one of the few in which we observed a substantial

difference in rifampin-induced enrichment of the H3K4me1 and

H3K27ac marks.

To identify enriched biological pathways and functions within

the set of 1,297 RIRs, we carried out a genomic analysis using the

Genomic Regions Enrichment of Annotations Tool (GREAT

[40]). Our top enriched term (p-value 1.8561029; binominal fold

enrichment), originating from Pathway Commons (http://www.

pathwaycommons.org), was ‘xenobiotics’ (Figure 3C). This was

attributed to RIRs residing near the following genes: ABCB4,

ACSL1, ADH1A, ADH6, AKR1C2, AKR1C3, ALDH1A1,

CNDP2, CYP26A1, CYP2A6, CYP2B6, CYP2C19, CYP2C8,

CYP2C9, CYP2W1, CYP3A4, CYP3A7, CYP4F12, CYP4F3,

CYP7A1, GCLC, GCLM, GSTA2, GSTO1, GSTO2, HNF4A,

MAT1A, MAT2A, MGST2, MGST3, NCEH1, NNMT,

PAPSS2, PTGIS, SLC35D1, SULT1B1, SULT2A1, UGDH,

UGT1A1. In addition, we observed significant (FDR adjusted p-

value#0.05) gene ontology enrichment terms for drug catabolic

processes and other terms fitting with drug response (Figure 3C,

Table S4). We performed a similar analysis for RIR neighboring

genes using QIAGEN’s Ingenuity Pathway Analysis (IPA,

QIAGEN Redwood City, www.qiagen.com/ingenuity) and found

enrichment for the PXR/RXR Activation Canonical pathway

(Figure S2, Table S5). Combined, these results suggest that our

RIRs are enriched near drug-associated genes.

Functional validation of putative rifampin induced
enhancers

Although ChIP-seq is a valuable tool for the identification of

putative regulatory elements, functional studies are essential for

the validation of such sequences. We selected forty-nine putative

enhancer sequences for validation using two different selection

criteria: 1) Forty-two RIRs residing near drug-associated genes as

manually determined by the literature. 2) Seven rifampin-induced

PXR ChIP-seq peaks harboring SNPs that are in linkage

disequilibrium (LD) with pharmacogenomics or drug related

genome-wide association study (GWAS) lead SNPs, termed

GWAS linked peaks (GLPs) (Table S6). Previous studies have

shown that several GWAS SNPs reside near potential regulatory

elements that encompass SNPs that are in LD with the lead

GWAS SNP [41–43]. To increase our chances to identify these

Figure 2. Functional promoter assays. (A) From the 227 tested promoters (red dots), 179 were found to be functional promoters (.2 fold
luciferase activity above empty vector) in the DMSO treated cells (basal activity). Among those, 10 showed a .2-fold increase upon rifampin
treatment. (B) The 10 promoters exhibiting rifampin induction in A were tested again without PXR. Blue dots are the positive controls (ACTB and
CYP3A4 promoters) and the yellow dot is the empty vector.
doi:10.1371/journal.pgen.1004648.g002
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regulatory elements, we used our rifampin treated PXR-ChIP-seq

dataset, instead of the RIRs, since it had a larger number of peaks.

SNPs in LD with pharmacogenomics GWAS hits were signifi-

cantly enriched near rifampin-dependent PXR peaks compared to

SNPs in LD with non-pharmacogenomic GWAS hits (p,0.0001,

Chi-squared test). None of the sequences chosen overlapped

promoter regions (i.e. were within 22500/+500 bp of a TSS).

Candidate enhancer sequences were cloned into the pGL4.23

(Promega) enhancer assay vector, which contains a minimal

promoter followed by the luciferase reporter gene. Since the peaks

(or islands) enriched for the two histone marks are relatively long

(average length ,5 kb, Table S2), we selected shorter sequences

within each RIR that encompass only the PXR/p300 peaks along

with additional flanking sequence, up to 500 bp on each side of the

peak. We also used different positive controls: 1) The ApoE liver

enhancer [44] whose activity should not be enhanced by rifampin.

2) A CYP3A4 promoter-enhancer combination (p3A4-362(7836/

7208ins) [24] (Table S7) whose activity should be increased by

rifampin treatment. All constructs were tested for their enhancer

activity in HepG2 cells transfected with human PXR and treated

with either rifampin or DMSO, as previously done for the

promoter screen.

Out of the 49 sequences tested, 19 (38.7%) showed significant

reporter expression levels versus the empty vector ($2 two fold) in

either condition: 15 RIRs and 4 GLPs (Figure 4A, Table S7).

Among these 19 positive enhancers, we observed three types of

enhancers: 1) Seven enhancers that were active at similar levels

with DMSO and rifampin, termed ‘rifampin independent’. 2) Five

enhancers that were active without rifampin, but whose expression

levels significantly increased upon rifampin treatment, termed

‘rifampin increased’. 3) Seven enhancers that were active only

when treated with rifampin and were called ‘rifampin dependent’.

Two of these (GLP1 and GLP2) are located in the CYP2C locus

(Figure S3) and contain SNPs in LD with pharmacogenomics

GWAS SNPs for warfarin maintenance dose [45,46], acenocou-

marol maintenance dose [47] and response to clopidogrel therapy

[48]. Combined, these results show that enhancer activity can be

modulated by rifampin.

Genetic variants in enhancers drive differential
expression of PXR target genes and may explain
variability in drug response

We next determined whether common nucleotide variation

within functional, drug-dependent enhancers could alter their

activity. For these experiments we selected five enhancers that

were either rifampin increased or dependent and near important

drug-response genes. These included RIR7, which overlaps the

putative CYP3A7 XREM (Figure 3B; chr7: 99339411–99341549;

hg19) [26] and was rifampin dependent in our assays. We also

selected RIR46, which is located in the glutathione S-transferase

alpha (GSTA) locus near GSTA2 (chr6: 52609942–52611507;

hg19) (Figure S4) and was rifampin-increased in our assays. The

GSTA family of enzymes are known to be involved in the

metabolism of various xenobiotics [49]. We also selected three

different GLP sequences: GLP1, 2, and 5. Both GLP1

(chr10:96507473–96508107; hg19) and GLP2 (chr10:9669618

Figure 3. Genomic characterization of RIRs. (A) Overlap between
the four different ChIP-seq marks for DMSO and rifampin treated
human hepatocytes. Sequences having all four marks in the rifampin
treated datasets, were termed rifampin induced regions (RIRs). (B) The
CYP3A4 locus shows increased CYP3A4 expression in the rifampin
treated hepatocytes (red) versus DMSO treated cells (blue) as observed
through RNA-seq, as well as ChIP-based enrichment of PXR, p300,
H3K27ac and H3K4me1 in rifampin-(red) versus DMSO-treated cells
(blue). The xenobiotic responsive enhancer module (XREM) [24], the 2

11 kb constitutive liver enhancer module of CYP3A4 (CLEM4) [25] and
the CYP3A7 XREM [26] are also shown. RIRs are depicted as black lines
and the cloned RIR7 fragment as a black rectangle. (C) An analysis of
RIRs using GREAT [40] identified enriched biological processes
associated with drug response. Shown are only terms that have
binomial fold enrichment .6 and FDR adjusted P-values,561023. A
full listing can be seen in Table S4.
doi:10.1371/journal.pgen.1004648.g003
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2–96696970; hg19) are located in the CYP2C locus (Figure S3),

which harbors several CYP metabolizing enzymes and has been

analyzed extensively in various pharmacogenomic studies. GLP5

(chr2:234672744–234673398; hg19) harbors a single SNP,

rs3771341, that is in LD with several GWAS lead SNPs correlated

with altered bilirubin levels [50–53] and was rifampin-increased in

our study. This element is located in the UDP glucuronosyl-

transferase 1 family, polypeptide A cluster (UGT1A), ,4 kb

upstream of the UGT1A1 transcription start site (Figure S5).

UGT1A enzymes have important roles in the metabolism of

xenobiotics and both coding and promoter variants within them

have been associated with adverse drug reactions [54].

We determined common haplotypes in all five sequences using

the phased 1000 Genomes data (Table S8). Common haplotypes

for all five sequences (Table S8) were then cloned into our

enhancer assay vector (pGL4.23) either by amplifying DNA from

individuals from various ethnic backgrounds from the studies of

pharmacogenomics in ethnically diverse populations (SOPHIE)

cohort [55] or by site-directed mutagenesis and sequence verified.

The sequences were then tested for enhancer activity in HepG2

cells transfected with human PXR and treated with either

rifampin or DMSO, and compared to the ancestral haplotype.

Out of the five tested enhancers, one haplotype in RIR46 showed

a substantial difference in enhancer activity. For RIR46, we

observed 1.85-fold (4.01/2.16) increase in response to rifampin for

haplotype 3, however after adjusting for multiple testing the

variance in the response was too high to be significant (adjusted p-

value = 0.095 by FDR; ANOVA; Figure 4B, Table S8). This

haplotype is present at a frequency of 6.7% in the 1000 Genomes

AFR population. It is worth noting that our success rate in finding

haplotypes that significantly alter enhancer activity was low.

Nonetheless, the observation that a haplotype in RIR46 could

possibly affect enhancer activity suggests that nucleotide variants

in these enhancers could lead to differential enhancer activity.

Discussion

By carrying out RNA-seq and ChIP-seq on rifampin and

DMSO treated human hepatocytes, we have uncovered numerous

drug-dependent regulatory elements. We observed that promoters

bearing a rifampin-dependent signature were largely unable to

independently induce the expression of a reporter upon rifampin

treatment. This result suggested that other gene regulatory

elements, such as enhancers, could constitute the predominant

group of target sequences that are activated by this drug. An

analysis of nucleotide variation in these enhancers showed that

specific variants could affect enhancer activity, raising the

possibility that nucleotide variants in enhancers could contribute

to pharmacogenomic phenotypes more broadly.

Our RNA-seq analyses that combined eight different individuals

identified 157 differentially expressed genes, using a p-value cutoff

that adjusted for multiple testing less than or equal to 0.05 (Table

S1). Many of these genes are known to be involved in drug

response and the top differentially expressed gene was CYP3A4,

fitting with its role as the most abundantly expressed gene in sites

of drug disposition in the liver [15]. The number of differentially

expressed genes (157), using our 0.05 cutoff, was much lower than

the number of RIRs (1,297) and PXR and p300 rifampin treated

ChIP-seq peaks. This difference could be attributed to having

multiple regulatory elements regulating the same gene. It could

also be due to our conservative RNA-seq differential expression

cutoff, which if relaxed would increase our gene list. Another cause

Figure 4. Functional enhancer assays. (A) RIRs or GLPs that showed positive enhancer activity in our assays. These were divided into three
classes: 1) rifampin independent, where the addition of rifampin did not change enhancer activity; 2) rifampin increased, where rifampin increased
enhancer activity; 3) rifampin dependent, when only upon rifampin treatment did the sequence show significant enhancer activity. An empty vector
was used as a negative control and the ApoE liver enhancer [44] and a CYP3A4 promoter-enhancer combination (p3A4-362(7836/7208ins) [24] labeled
as p3A4-36, were used as positive controls. (B) Haplotype 3 in RIR46 shows increased enhancer activity (adjusted p-value (FDR) = 0.095 from post test
when compared to the reference haplotype; one-way ANOVA).
doi:10.1371/journal.pgen.1004648.g004
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for this can be that several of our identified peaks are not

functional regulatory elements. Our functional characterization

for example, found only 19 of the 49 tested sequences (38.7%) to

have significant reporter expression levels versus the empty vector

($2 two fold). Of note though, that this could also be due to the

different cell types and conditions that were used in this assay, as

later described.

Similar studies have been conducted to detect environmentally

induced regulatory elements [28,56–59]. For example, testing for

changes in estrogen receptor a and RNA polymerase II occupancy

due to estradiol, tamoxifen or fulvestrant treatment in MCF-7

cells, found differences in ligand regulation with tamoxifen leading

to downregulation while fulvestrant increased RNAPII occupancy

[58]. In our study, we observed a large rifampin-induced

recruitment of PXR and p300 binding across the genome. This

was particularly notable in the CYP3A locus, which was radically

altered by rifampin treatment. For the most part, the regulatory

hotspots that we identified in this region are consistent with

established literature. It is worth noting, however, that we saw

almost equal recruitment of PXR and p300 to the XREMs that

putatively regulate CYP3A4 and CYP3A7, despite the fact that we

observed substantially less CYP3A7 mRNA induction by qPCR

and RNA-seq.

We did not observe large changes in the assayed histone marks,

H3K4me1 and H3K27ac. This could be attributed to these sites

being poised to be activated by various xenobiotic responses,

though H3K27ac has been previously shown to mark active

enhancers [34,35]. To get at these differences more systematically,

we performed a second analysis in which H3K4me1 and

H3K27ac peaks were called for the rifampin treatment using the

DMSO treatment as the control (Table S9). We observed 110

differential islands for H3K27ac, and only 2 for H3K4me1 (one of

which was in the CYP3A4 locus). The fact that we observed more

rifampin-induced peaks for H3K27ac is consistent with its

hypothesized role in marking active enhancers. Combined, these

results suggest that while these two marks are incredibly stable in

the face of massive changes in PXR/p300 binding, there are still

measurable drug-induced changes in chromatin structure.

Previous reports have found enhancers to be responders of drug

treatment [24–27]. Our functional validation results broadly

suggest that promoters on their own are largely incapable of

driving the effects of rifampin induction. Instead, our results imply

that enhancers appear to be induced by rifampin, and through

their interaction with promoters, drug response genes are

activated. We tested over 200 promoters of genes based on

relatively loose selection criteria: that their respective genes either

showed increased expression following rifampin treatment, were

tagged by our rifampin ChIP-seq peaks, or were near them. On

the other hand, for enhancers we required that candidates had all

four marks. While it is possible that our promoter selection criteria

missed out on important drug response promoters, we would still

expect to achieve a higher rifampin induction success rate than

what we observed in our assays (10/227; 4.4%). While our assays

may have not been ideal for these purposes, i.e. testing promoters

in vitro in PXR-transfected HepG2 cells, both our negative and

positive controls showed the expected results (Figure 2A).

Furthermore, rifampin-induced promoters tested in non-PXR

transfected conditions showed much lower induction by the drug

(Figure 2B). Further systematic assays including ones carried out

in vivo will be needed to better address this hypothesis.

While 12 out of the 19 functional sequences identified by our

screen exhibited basal enhancer activity, 7 sequences exhibited

enhancer activity only upon rifampin treatment (Figure 4A).

These sequences would not have been identified by conventional

ChIP studies conducted in physiological conditions, nor would

they be validated in functional assays without drug treatment.

Together our results suggest that ChIP-seq datasets are dependent

on the environmental conditions in which they were performed,

and that there are likely many hidden enhancers which only

become active following a specific stimulus.

We identified several functional enhancers that were rifampin-

increased or rifampin-induced whose location was near pharma-

cogenomic-associated variants. One of these elements is RIR46,

which resides near GSTA2, a Phase II enzyme involved in the

detoxification of numerous drugs [49], and is thus a likely target.

Coding variants in GSTA2 have been shown to affect its

detoxification efficiency [60,61] and promoter variants in GSTA2
have been suggested to affect its expression levels [62,63]. We

identified a haplotype present in the 1000 Genomes AFR

population that confers increased rifampin sensitivity (Figure 4B).

Both GSTA2 and GSTA1 (which is 28 kb downstream to

GSTA2), have been shown to have important roles in catalyzing

carcinogenic substrates and nucleotide variation in them has been

shown to be associated with cancer [60,64]. Previous work has

shown a significant difference in the distribution of coding SNPs in

both these genes between African Americans and Caucasians [60].

However, these coding SNPs are not associated with prostate

cancer disease status [60], suggesting that other factors could be

playing a role. Future studies could examine whether variants in

RIR46 or other RIRs are associated with these phenotypes.

It is worth noting that there are several caveats to our study.

Our ChIP-seq experiments only analyzed hepatocytes from a

single donor at a single time point (24 hours post treatment),

selected for being commonplace in rifampin induction studies. It is

possible that there are enhancers that play a role much earlier than

24 hours post-treatment. To test regulatory sequences in reporter

assays, it was also necessary to clone smaller fragments from each

RIR bearing the PXR and p300 peaks. It is possible that we

missed flanking sequences that were essential for enhancer

function. Furthermore, because we had a limited amount of

primary hepatocytes from the same donor, our reporter assays

were carried out in PXR-transfected HepG2 cells, which could

result in false negatives. Finally, we employed the pGL4.23 vector,

which is a commonly used enhancer assay vector, but possesses a

very short TATA-box containing minimal promoter that may not

be compatible with all of the enhancer sequences tested.

Promoter regions upstream of drug metabolizing enzymes and

transporters are presumed to be the major targets of xenobiotic

activators of PXR, such as rifampin. Our work challenges this

conception and strongly supports the idea that the direct targets

could be enhancer elements, which may subsequently interact with

promoters to enhance gene transcription. Combined, our results

show that ChIP-seq in combination with drug treatment has a

large potential in identifying novel regions in the genome

associated with drug response. These regions can provide

exceptional candidates for the detection of nucleotide variants

associated with inter-individual differences in drug response. Our

methodology could easily be adapted to other drugs/target/tissue

combinations. With whole genome datasets becoming more widely

used as a clinical toolbox, the ability to highlight these important

drug response regions in the genome is of extreme importance.

Materials and Methods

Primary hepatocyte culture
Cryopreserved human hepatocytes from a 19 year old

Caucasian male donor with no history of medications (Lot

Hu8080, Life Technologies) were thawed in CHRM recovery
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media (Cat# CM7000, Life Technologies) and cultured in CHPM

plating media (Cat#CM9000, Life Technologies) on 6-well

collagen-coated plates (Life Technologies). After 6 hours, the

media was swapped with maintenance media, consisting of

phenol-free Williams E media containing culture incubation

supplements (Cat#CM4000, Life Technologies) and 0.01%

DMSO or 10 mM rifampin (Sigma) for 24 hours. The rifampin

dose (10 mM for 24 hours) was used based on previously reported

assays achieving high induction rates in human hepatocytes

[65,66]. Dexamethasone, which is included separately with the

culture incubation supplements, was not added to the media as it

can activate PXR.

Quantitative PCR validation
Cultured hepatocytes were treated with DMSO or rifampin for

24 hours in triplicate. The cells were then washed with PBS, and

lysed directly with Buffer RLT from the RNAeasy mini kit

(Qiagen) with the on-column DNase digestion step. One mg of

total RNA was used to generate cDNA using the RT2 First Strand

Kit (Qiagen). Gene expression levels for 84 genes of interest was

determined using the ‘‘Drug Metabolism: Phase I Enzymes’’ RT2

Profiler PCR Array (Qiagen). Five housekeeping genes (B2M,

HPRT1, RPL13A, GAPDH, ACTB) were used to control for

loading. Fold induction was calculated using the DDCt method

[67].

RNA-seq
Total RNA was acquired as described for qPCR for two

replicates each of DMSO and rifampin treated hepatocytes.

Libraries were made with ScriptSeq v2 RNA-Seq Library

Preparation Kit (Epicenter). Briefly, 3–5 ug of total RNA were

subjected to rRNA removal using Ribo-Zero Magnetic Kit

(Epicenter) prior to library construction. 5 ng of the rRNA-

depleted sample was fragmented enzymatically and annealed with

random hexamer to create the first strand of cDNA. Upon

removal of the RNA template transcript by RNase, Terminal-

Tagging Oligo (TTO), a known 59-sequence tag, a 39-random

sequence, and a terminally blocked 39 end to prevent priming of

DNA synthesis, was added to create cDNA with known sequence

tags at their 59 and 39 ends for directionality. Upon purification,

adaptors with barcodes were added to cDNA fragments and

enriched by 15 cycles of PCR. Sequencing was carried out on an

Illumina HiSeq. The resulting reads were demultiplexed and

aligned to the human genome (hg19) using TopHat v2.0.10 [68].

Read counts for each gene in the RefSeq annotation were

obtained using NGSUtils [69] so as to allow comparison to the

RNA-seq data from the other 7 primary hepatocytes treated with

and without rifampin and sequenced with SOLiD as described in

[37]. Analysis for differential expression across the nine replicates

was performed using DESeq2 [70]. DESeq2 was chosen due to its

capability in handling multifactorial experimental designs, in this

case treated with rifampin versus control and SOLiD sequences

versus Illumina. DESeq2 was then used to perform a likelihood

ratio test between the model of treatment plus sequencing type

versus the simplified model of just sequencing type in order to

identify genes differentially expressed upon treatment with

rifampin.

ChIP-seq
Twelve million cells (an entire 6 well plate) per immunoprecip-

itation were fixed with 1% formaldehyde for 15 min and

quenched with 0.125 M glycine. The remainder of the ChIP-seq

protocol was carried out by Active Motif Inc., as follows.

Chromatin was isolated by adding lysis buffer, followed by

disruption with a Dounce homogenizer. Lysates were sonicated

and the DNA sheared to an average length of 300–500 bp.

Genomic DNA (Input) was prepared by treating aliquots of

chromatin with RNase, proteinase K and heat for de-crosslinking,

followed by ethanol precipitation. Pellets were resuspended and

the resulting DNA was quantified on a NanoDrop spectropho-

tometer. Extrapolation to the original chromatin volume allowed

quantitation of the total chromatin yield.

An aliquot of chromatin (30 ug) was pre-cleared with protein G

agarose beads (Invitrogen). Genomic DNA regions of interest were

isolated using 4 ug of antibody against PXR (sc-25381, Santa

Cruz), 4 ug of antibody against p300 (Cat#sc-595, Santa Cruz),

20 ug of antibody against H3K27ac (Cat#ab4729, Abcam) and

5 ug antibody against H3K4me1 (Cat#ab8895, Abcam). Due to

the limited amount of cryopreserved human hepatocytes from this

donor, we elected to do various enhancer-associated ChIP-seq

marks instead of additional replicates. Complexes were washed,

eluted from the beads with SDS buffer, and subjected to RNase

and proteinase K treatment. Crosslinks were reversed by

incubation overnight at 65 C, and ChIP DNA was purified by

phenol-chloroform extraction and ethanol precipitation.

ChIP and input DNAs were prepared for amplification by

converting overhangs into phosphorylated blunt ends and adding

an adenine to the 39 ends. Illumina adaptors were added and the

library was size-selected (175–225 bp) on an agarose gel. The

adaptor-ligated libraries were amplified for 18 cycles. The

resulting amplified DNAs were purified, quantified, and tested

by qPCR at the same specific genomic regions as the original ChIP

DNA to assess quality of the amplification reactions. Amplified

DNA libraries were sequenced on the Illumina Genome Analyzer

II.

The 36-nt sequence reads identified by the Sequencing Service

were mapped to the genome using the ELAND (Illumina). Default

settings were used: only tags that map uniquely, have no more

than 2 mismatches, and that pass quality control filtering were

considered.

PXR and p300 peaks were called against input using MACS

version 1.4 [71] and for H3K27ac and H3K4me1 using SICER

version 1.1 [72]. A p-value cutoff of 161027 was used for MACS

and an FDR of 0.01% was used as a cutoff for SICER, and the

remaining parameters set to the default. For the alternate analysis

presented in Table S9, we used a more stringent threshold in

SICER of 1610210.

For the analysis of the distribution of PXR ChIP-seq peaks

following rifampin treatment, we used knownGene from the

UCSC Genome Browser to define the transcription start site (TSS)

as the center and pybedtools [73] for the calculations followed by

matplotlib (http://matplotlib.org) to plot.

Reporter plasmids
Selected promoters were obtained from the LightSwitch

Promoter Collection (SwitchGear Genomics) and sequence

verified in the pLightSwitch_Prom vector. Candidate enhancers

were amplified from human genomic DNA (Roche) using

oligonucleotides designed in Primer3 with 16 bp overhangs (59-

GCTCGCTAGCCTCGAG-39 and 59CGCCGAGGCCAGAT-

CT-39) complementary to the sequence flanking the BglII and

XhoI sites in the pGL4.23 vector (Promega). Primers were

designed to encompass the PXR/p300 ChIP-seq peak plus up to

500 bp of sequence on either side of the peak. PCR products were

cleaned using the QIAquick PCR Purification Kit (Qiagen) and

cloned into BglII and XhoI digested pGL4.23 using the Infusion

HD cloning system (Clontech). Haplotypes were generated either

by PCR amplification of DNA from various ethnic individuals or
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by site-directed mutagenesis using mutant primers amplified by

PfuUltra High Fidelity DNA polymerase (Agilent) followed by

DpnI digestion of the parental DNA (New England Biolabs) and

transformation into competent cells. Sequences were verified by

Sanger sequencing using RVPrimer3 (59-CTAGCAAAATAG-

fGCTGTCCC-39) and a custom reverse primer (59-TCT-

TCCATGGTGGCTTTACC-39).

Identification of GWAS-associated PXR peaks
We manually curated the NHGRI GWAS catalog [74], dated

December 15th, 2011, to identify 397 SNPs from 92 pharmaco-

genomic GWAS studies. Using data from the 1000 Genomes

March 2012 Interim release (http://1000genomes.org), we iden-

tified a larger set of SNPs in linkage disequilibrium with those

SNPs (r2.0.8) in the race/ethnicity corresponding to the

pharmacogenetics study. Ten rifampin-induced PXR peaks

overlapped at least one of these GWAS-LD SNPs (Table S6)

and seven were selected for functional enhancer assays. To

determine enrichment, we compared overlap of the LD blocks

defined by the 397 lead SNPs from pharmacogenomic GWAS to

5,117 lead SNPs from non-pharmacogenomic GWAS. These

assignments were curated manually. Each list of SNPs was

intersected with the 6,302 rifampin-induced PXR peaks, resulting

in 27 and 162 overlapping SNPs respectively. Using a two-tailed

Chi-squared test with Yates’ correction, we found the enrichment

to be highly significant (p,0.0001).

Luciferase reporter assays
HepG2 cells (ATCC) were maintained in D-MEM (Life

Technologies) supplemented with FBS (JRS Scientific), Penicil-

lin-Streptomycin and Glutamine (UCSF Cell Culture Facility). On

the day of transfection, the cells were trypsinized, washed, and

diluted to a density of 1 million cells/ml in Opti-MEM I Reduced

Serum Media (Life Technologies). Ninety thousand cells and

125,000 cells were added to each well of a 96-well clear bottom

black tissue culture plate (Greiner Bio-One) containing the

transfection mixture for the promoter and enhancer assay

respectively. The transfection mixture consisted of 50 ng of

human PXR (PXR cDNA cloned into the pcDNA3.1(+) vector),

10 ng of pGL4.74, 21.5 ul Opti-MEM, 100 ng of reporter

construct, and 0.48 ul of Lipofectamine LTX reagent (Life

Technologies). After 18 hours of incubation at 37 degrees Celsius,

the cells were washed with 150 ul Opti-MEM and the media was

replaced with 100 ul of Opti-MEM supplemented with 10 uM

Rifampin or 0.1% DMSO. After 24 hours of incubation, the cells

were washed with PBS and the promoter assay cells were placed at

280 degrees Celsius for 30 minutes to lyse and the enhancer

assayed cells were lysed with 25 ul of Passive Lysis Buffer

(Promega). All LightSwitch promoter vectors were measured with

the LightSwitch Luciferase Assay reagents (SwitchGear Genomics)

following the manufacturers protocol. For enhancers, reporter

activity was measured using the Dual-Luciferase Reporter Assay

System (Promega). Both assays were measured on a microplate

luminometer (Promega).

Identification of common haplotypes from 1000
Genomes data

We used the 1000 Genomes March 2012 Interim release (),

which contained genotypes for 379 White, 286 Asian, 181 Latino,

and 246 African race/ethnicity individuals. For each gene RIR/

GLP region, we identified haplotypes determined by computa-

tionally phasing the SNPs in the program PLINK v1.07 [75],

again using the corresponding race/ethnicity.

Accession numbers
ChIP-seq and RNA-seq data has been made publically available

through NCBI (ChIP-seq BioProject ID: PRJNA239635; RNA-

seq BioProject ID: PRJNA239637).

Supporting Information

Figure S1 Distribution of PXR ChIP-seq peaks following

rifampin treatment. (A) All genes. (B) Differentially expressed

genes only.

(PDF)

Figure S2 Ingenuity Pathway Analysis of genes near rifampin

induced regions (RIRs) shows genes involved in ‘‘PXR/RXR

Activation’’. Upregulated genes are colored in red and

downregulated genes are colored in green as determined

through either qPCR or RNA-seq. Fold differences are shown

as a log2 ratio below each one of the differentially expressed

genes. CYP2A6* represents the CYP2A13 gene which is

upregulated.

(PDF)

Figure S3 GLP1 and GLP2. (A)CYP2C locus showing both the

RNA-seq and ChIP-seq results for DMSO (blue) and rifampin

(red) treated hepatocytes. GLP1 and GLP2 are depicted by green

lines above the CYP2C genes. (B) Common SNPs in GLP1 and

GLP2.

(TIF)

Figure S4 GSTA locus showing both the RNA-seq and ChIP-

seq results for DMSO (blue) and rifampin (red) treated

hepatocytes. The cloned RIR46 fragment is depicted by a black

rectangle upstream to GSTA2.

(TIF)

Figure S5 GLP5. (A)UGT1A locus showing both the RNA-seq

and ChIP-seq results for DMSO (blue) and rifampin (red) treated

hepatocytes. GLP5 is depicted by a green line above the UGT1A
genes. (B) The location of common SNPs within GLP5.

(TIF)

Table S1 qPCR results for 84 genes known to be involved in

drug response and RNA-seq results following vehicle or rifampin

treatment.

(XLSX)

Table S2 ChIP-seq summary.

(XLSX)

Table S3 Promoter assay results.

(XLSX)

Table S4 GREAT analysis of rifampin induced regions (RIRs).

(XLSX)

Table S5 Ingenuity Pathway Analysis of genes near rifampin

induced regions (RIRs).

(XLS)

Table S6 GWAS linked peaks (GLPs).

(XLSX)

Table S7 Enhancer assay results.

(XLSX)

Table S8 The various common haplotypes selected for differ-

ential enhancer assays, haplotype enhancer assays results and

ANOVA analyses.

(XLSX)
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Table S9 H3K4me1 and H3K27ac islands identified by

alternate analysis in which the rifampin-treated sample was

compared directly to the DMSO treatment as reference.

(XLSX)
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