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Prevalence and Impact of Alcohol use Disorders
Extensive evidence indicates that alcohol abuse has widespread 

social, economic, behavioral, and physiological consequences [1]. 
The Centers for Disease Control and Prevention (CDC) rank alcohol 
abuse as the third leading cause of preventable death [2]. For example, 
a causal relationship has been suggested between alcohol abuse and at 
least 50 different medical conditions [3]; also see [4] for a discussion 
on the role of genetics). According to the National Highway Traffic 
Safety Administration [5], nearly one-third of traffic fatalities in the 
United States involve at least one vehicle operator with a blood alcohol 
level (BAL) of at least 0.08 gram %, which is the legal BAL threshold 
for driving while impaired in the United States [6]. Direct and indirect 
costs of alcohol abuse have been estimated to approximate $500 billion 
annually [7]. Over half of adult Americans have a close relative with an 
alcohol use disorder (AUD), and a subset of these individuals have this 
trait across multiple generations. 

The gap between men and women in the prevalence of AUDs 
and episodes of intoxication has been decreasing among youth and 
the elderly [8,9]. Regardless of gender, recent years have witnessed an 
increase in alcohol-related problems, particularly in young drinkers 
[10-12]. This is a serious concern, as early onset of alcohol use is a 
significant risk factor in the development and time-course of alcohol 
dependence [13,14]. 

Binge drinking similarly has been associated with future alcohol 
dependence problems and with younger drinkers [15-17]. More than 
70% of surveyed college students report having engaged in alcohol 
binge drinking during their high school years [17]. Alcohol drinking 
in underage drinkers aged 12-20 years accounts for 11% of alcohol 
consumption in the United States, with a majority of this intake 

occurring during binge drinking episodes [18]. Regarding post-college-
age binge-drinking, 45% of Americans aged 21-25 report that they had 
engaged in alcohol binge drinking in the previous month [19]. Nearly 
half of all individuals meeting life-time diagnostic criteria for alcohol 
dependence do so by the age of 21 and this increases to approximately 
two-thirds by the age of 25 [20]. In summary, the association of binge 
drinking with the development of alcohol dependence is magnified by 
the propensity of young people to participate in this behavior.

Caffeine in the Context of Alcohol Abuse
Further complicating this issue is the common occurrence of 

consuming others drugs with alcohol. Polydrug use may introduce 
unique, complex cognitive and behavioral interactions that cannot be 
addressed by assessing the effects of each drug individually. Alcoholic 
populations exhibit an extremely high rate of poly-drug use [21]. One 
substance that is increasingly paired with alcohol is caffeine [22]. 

Caffeine (1,3-trimethylxanthine) is the United States’ most used 
psychoactive substance [23,24]. Caffeine largely has been eschewed 
as a psychoactive drug, despite, or perhaps because of, its widespread 
use. The U.S. Food and Drug Administration (FDA) have categorized 
caffeine as an ingredient “generally recognized as safe” [22]. However, 
it is a mild with motor effects similar to more  with motor effects similar 
to more potent drugs of abuse, such as cocaine and amphetamine 
[25,26]. Despite basic and clinical evidence that caffeine is reinforcing 
[tolerance can develop to some of its effects, and cravings and mild 
withdrawal symptoms can ensue after cessation of consumption [25,27-
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30], it is rarely considered a drug of abuse. Nevertheless, if dependence 
criteria, in their broadest sense, from the fourth edition of the 
Diagnostic and Statistical Manual of Mental Disorders Text Revision 
(DSM-IV-TR) [31] are used, a significant portion of the population 
would be considered dependent upon caffeine intake [32,33]. What is 
especially troubling is that, similar to alcohol, adolescents and young 
adults are especially prone to abuse caffeinated beverages [34-36].

Behavioral and genetic associations indicate that there is a 
significant link between caffeine and alcohol intake [37-42]. Regarding 
caffeine abuse by alcoholics, Zeiner et al. [43] reported that alcohol-
dependent individuals consume approximately 30% more caffeine 
daily, compared to their non-alcoholic counterparts. In addition, 
reports suggest that detoxified alcoholics consume twice as much 
coffee following cessation of alcohol drinking, compared to their intake 
prior to treatment [44]. This could be a serious concern for treatment-
seeking alcoholics. For example, using caffeine intake as a substitute 
stimulus for alcohol consumption could interfere with psychological 
and physiological efforts to overcome addiction-related behaviors. 
Further, it is unclear what impact, if any, a history of heavy alcohol 
drinking could have on caffeine’s pharmacological profile, and whether 
this could affect the caffeine levels consumed by actively drinking and 
detoxified alcoholics. Assuming that caffeine and ethanol share at least 
some mechanisms of action, it is possible that physiological adaptations 
could generalize between the two substances. In addition, this elevated 
caffeine intake by alcoholics could be indicative of a more generalized 
physiological or genetic vulnerability to substance abuse and could 
mandate specialized treatment strategies.

In support of this latter suggestion, an assessment of adult twins 
indicates that ethanol and caffeine use disorders reflect approximately 
50% heritability, although genetic loading for caffeine dependence may 
be lower than that for alcoholism [45-47]. In addition, poly-drug twin 
study analyses have reported a significant heritability effect on the co-
use of ethanol and caffeine [48-50]. Similarly, Svikis et al. [51] reported 
that caffeine-dependent women who were family history positive (FHP) 
for alcoholism were less successful in reducing caffeine intake during 
pregnancy, relative to those who were family-history negative (FHN) 
for alcoholism. These authors [51] concluded that FHP individuals 
may require more intensive dependence interventions due to a 
generalized vulnerability to heavy substance use. Within the context 
of dual-diagnosis, it is important to recognize that Bergin and Kendler 
[52] reported significant correlations (genetic and/or environmental) 
between caffeine use, tolerance and/or withdrawal and generalized 
anxiety, panic, phobic as well as major depressive disorders, conditions 
which also have been associated with heavy alcohol use.

Behavioral genetic reports indicating that a family history of 
alcoholism affects caffeine intake coincide with some pre-clinical 
findings in our laboratory. We performed experiments to investigate 
whether rats selectively bred for high alcohol preference also 
would display greater caffeine intake, relative to their progenitor 
stock. Alcohol-preferring (P) rats satisfy the criteria proposed for 
animal models of alcoholism, including consuming alcohol for its 
pharmacological effects and exhibiting signs of alcohol dependence 
and tolerance [53,54]. The genetically selected P rat shares some of the 
characteristics of FHP individuals, including early onset of excessive 
alcohol intake, lower sensitivity to the high-dose effects of alcohol and 
greater sensitivity to the behavioral and autonomic stimulating effects 
of low-dose alcohol, compared with NP (FHN) and outbred Wistar 
rats [55,56]. These rats exhibit neural and behavioral differences, as 
compared to nonpreferring NP counterparts and non-selected rats 

[57,58], such as performance of binge-like alcohol drinking behaviors 
[59-61]. P rats obtain pharmacologically relevant blood alcohol levels 
under several alcohol access conditions [57,59,61,62], and evidence 
supports the use of these animals to model human binge drinking [63].

Also similar to human alcoholics, P rats and other rodent 
models of alcoholism exhibit a greater general preference for some 
rewarding stimuli, such as illicit drugs, including nicotine [64] and 
3,4-methylenedioxymethamphetamine (ecstasy [65], sucrose, and 
novelty, relative to non-preferring and non-selected rodent lines [e.g., 
66-68]. Previous studies have reported that subjects selectively bred 
for high alcohol intake exhibit greater behavioral and neurochemical 
responses to psychostimulants compared to low alcohol drinking or 
non-selected lines. Hyyatiä and Sinclair [69] reported that high alcohol-
preferring Alko Alcohol (AA) rats consume more cocaine orally than do 
their alcohol non-preferring Alko, non-Alcohol (ANA) counterparts. 
Similarly, AA and Wistar rats behaviorally selected for high alcohol 
consumption exhibit increased conditioned place preference for 
cocaine [70,71], compared to their low drinking counterparts. Further, 
greater increases in cocaine-induced extracellular DA release in striatal 
compartments have been reported in Sardinian alcohol-preferring (sP) 
and AA rats, compared to alcohol non-preferring subjects [72,73]. 
Taken in conjunction with findings that high alcohol-preferring 
rat lines exhibit differential consumption of and neurobehavioral 
responses to other drugs of abuse beyond alcohol, such as cocaine and 
nicotine, compared to nonpreferring and nonselected counterparts, it 
is likely that these animals also could provide a useful model to examine 
caffeine intake. 

Regarding the association of a genetic background for high alcohol 
preference with caffeine intake, we assessed female P rats and outbred 
Wistar rats for free-choice 24-hr intake of multiple concentrations 
(0.3 and 1.0 mg/ml) of caffeine and water over a 7-week period. These 
concentrations were selected from those used in a previous caffeine 
intake study [74]. From the human perspective, these concentrations 
amount to the difference between a 16-oz. serving of coffee from 
McDonald’s® or Starbucks®, respectively [75]. We hypothesized that P 
rats would consume more total caffeine per day, vs. Wistar rats, and 
that the greatest differences would occur at the 1.0 mg/ml caffeine 
concentration. 

At no time in the course of this study did either P or Wistar groups 
exhibit a preference for caffeine solution over water. It has been shown 
previously that a period of forced access to caffeine is needed to observe 
caffeine preference over water [76]. The results indicated that P rats 
consumed more total caffeine (mg/kg) per 24-hr period than Wistar 
rats, such that consumption levels were approximately 10.5 vs. 6.5 mg/
kg/24 hr, respectively (Figure 1). Clinically, reports indicate that non-
dependent humans consume about 4-5 mg caffeine/70 g body weight. 
In contrast to our a priori hypothesis, the majority of this difference was 
associated with the lower (0.3 mg/ml) caffeine concentration, whereas 
intake of the higher (1.0 mg/ml) concentration was approximately 
equal in the two rat lines. One possible explanation for this finding 
is that intake of the higher concentration may have been limited by 
its flavor profile in both rat lines. In contrast, the two rat lines may 
have exhibited differential intake of the lower caffeine concentration 
due to the pharmacological properties of the compounds. Similar line 
differences for concentration-dependent differences in response to 
alcohol have been reported previously [77]. Overall, P rats consumed 
more caffeine than did outbred Wistar rats. This difference suggests that 
genetic selection for high alcohol preference also may have generated 
a propensity for elevated caffeine intake. These findings may provide 
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additional validity for the use of the P animal model of alcoholism to 
examine ethanol co-abuse with other substances. Furthermore, this 
study provides basic research support for clinical findings indicating 
an association between alcohol and caffeine intake, which may be 
mediated by common reward neurocircuitry.

Caffeinated Alcoholic Beverages
The introduction of Red Bull® energy drink in the United States 

in 1997 sparked a surge in consumption of “energy drinks,” as well 
as energy drinks mixed with alcohol [78]. These products essentially 
combine purported performance-enhancing ingredients (e.g., guarana, 
taurine, ginseng, green tea extract, and/or B-complex vitamins) with 
high doses of caffeine (55 to 505 mg/serving) [78]. In comparison, 12-
oz cans of Coca-Cola and Mountain Dew soft drinks contain 34 and 
54 mg caffeine, respectively [79,80]. As a parallel to binge alcohol-
drinking, approximately one-third of 12-24 year-olds consume 
energy drinks on a regular basis [81]. A reported decline in soft drink 
consumers between 2003 and 2008 likely reflects, in part, a doubling in 
the number of energy drink consumers during that same time frame 
[82]. 

As indicated above, an alarming trend is the addition of alcohol 
to these energy drinks. In general, marketing strategies for energy 
drinks have targeted young males [78], a group which also exhibits the 
greatest prevalence and frequency of alcohol binge drinking [83]. This 
is particularly of concern due to the lack of available information that 
addresses whether a history of heavy caffeine intake affects alcohol-
related pharmacology and toxicology. With the wide acceptance 
of energy drinks, more and more drinking establishments and 
manufacturers have increased the caffeine content of their alcoholic 
beverages. The growing availability of high-caffeine energy drinks 
and pre-caffeinated alcoholic drinks has translated into high levels of 
caffeine and ethanol co-consumption. Young drinkers are the target 
market for many of these cocktails [84] and have contributed to their 
popularity [85]. Particularly concerning is that caffeinated alcoholic 

beverages may initiate earlier and more extreme caffeine and alcohol 
intake in younger populations. A 2006 web-based survey of ten colleges 
in North Carolina found that 24% of students who reported alcohol 
intake in the prior month had mixed alcohol with an energy drink 
[86]. Another sample of U.S. college students indicated that nearly 
half of survey respondents had consumed alcohol mixed with energy 
drink [84]. In Brazil, more than three-quarters of survey participants 
reported regular consumption of energy drinks mixed with alcohol 
[87], whereas in Turkey, the incidence in college students has been 
reported at 40% [88].

The popularity of these beverages has encouraged researchers 
to question what motivates their consumption. A standardized 
assessment of the impact of expectancies on motivation to consume 
these beverages indicated that caffeine was believed to enhance alcohol-
related intoxication, a factor also associated with increased intake of 
the mixtures [89]. Caffeine and energy drinks have been reported to 
reduce ethanol-induced sedation or perception of sedation in humans 
and animals [87,90-92], although these findings have been mixed [93]. 
Consumption of caffeinated alcoholic beverages also increases reports 
of happiness and euphoria, behavioral disinhibition, and physical 
vigor, relative to alcohol alone [87,94].

However, just as individuals who consume large amounts of alcohol 
often underestimate how much alcohol affects them [95], increasing 
evidence indicates this may be compounded when these individuals 
consume caffeinated alcoholic beverages. Despite indications that 
young consumers of these drinks do not discount the risks of alcohol-
related negative consequences when caffeine is co-consumed [89], some 
evidence in the U.S. and Canada indicates that adding caffeine to alcohol 
actually may increase these risks. Several reports indicate that caffeine 
co-administration increases alcohol intake and hazardous alcohol 
drinking [86,94,96,97]. Co-consumption of energy drinks and alcohol 
has been reported to triple the likelihood of binge alcohol drinking, 
relative to drinking alcohol alone [96]. O’Brien et al. [86] found that 
students who mixed alcohol and caffeine reported more heavy alcohol 
drinking episodes and twice as many episodes of weekly intoxication. 
A recent self-report study found that high-frequency energy drink 
consumers (>1/week) were heavier alcohol drinkers, drank alcohol 
more often, had greater risk for alcohol-related problems, and exhibited 
a higher risk of meeting DSM-IV criteria for alcohol dependence, 
relative to those with low or no energy drink consumption [97], but 
see comment by Skeen and Glenn [98]. Several reports indicate that 
consumers of caffeinated alcoholic beverages engage in more violent 
and risky behaviors, and experience more negative consequences, 
compared to those drinking alcohol alone. Particularly concerning 
are reports that consumers of caffeinated alcoholic beverages evidence 
more assaults (as perpetrators or victims), automobile incidents, and 
planned and actual alcohol-impaired driving episodes, relative to those 
drinking alcohol alone [86,99-101]. These negative consequences are 
particularly evident in adolescent populations [102].

It has been postulated that caffeine reduces perceived ethanol 
intoxication with little or no change to the cognitive impairing 
effects of ethanol [103,104], although this decrease may be task-
dependent [105,106]. Expectations also could be involved in these 
findings. Evidence indicates that psychomotor tolerance to ethanol is 
increased in humans with a prior history of combining caffeine and 
ethanol, compared to individuals who have experienced either drug 
alone [107]. Moreover, this tolerance likely is, in part, an unconscious 
cognitive construct. Fillmore et al. [107] reported that informing 
subjects that caffeine would interfere with ethanol-induced sedation 
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Figure 1: Daily caffeine intake for female Wistar (light gray bar) and P 
(dark gray bar) rats given 24-hour continuous access to multiple caffeine 
concentrations (0.3, and 1.0 mg/ml), with food and water available ad lib (n 
= 12/line).The total amount reflects the sum of daily intake of 0.3 and 1.0 mg/
ml caffeine. *, indicates p < 0.05 vs. Wistar; +, indicates p < 0.05 vs. 0.3 mg/ml 
caffeine concentration.
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diminished caffeine’s ability to do so, and Fillmore [108] suggested 
that the expectation that caffeine would interfere with ethanol-induced 
sedation could trigger compensatory physiological mechanisms to 
maintain the disruptive influence of ethanol. These results emphasize 
the role of cognitive processes in the physiological response to ethanol 
in human subjects.

With regard to motor functioning, Marczinski and Fillmore [109] 
and Marczinski et al. [110] presented evidence that caffeine attenuates 
ethanol-induced motor skill disturbances. in a cued go/no go task, 
consuming an energy drink along with ethanol was reported to improve 
reaction time for identifying and providing a keyboard response for 
a “go” visual target (i.e. a green rectangle), but failed to attenuate 
ethanol-induced reductions in inhibitory control, in response to a “no-
go” target (i.e. a blue rectangle) [109,110]. 

Marczinski et al. [111] recently reported that the co-administration 
of the energy drink Red Bull® with alcohol did not alter the ethanol-
induced impairment on objective measures such as dual-task 
information and motor coordination but reduced perceptions of mental 
fatigue and enhanced feelings of stimulation compared to alcohol alone. 
These results may suggest that the combination of ethanol with caffeine 
could lead to inaccurate perceptions of performance abilities [111]. This 
finding is particularly disturbing in light of the increased propensity 
to engage in alcohol-impaired driving following caffeinated alcohol 
intake, relative to alcohol alone [96,101], as well as findings which 
indicate that caffeine does not attenuate alcohol-related impairment in 
simulated driving or sustained attention/reaction time [112]. Overall, 
caffeine likely exerts stimulatory effects to counter ethanol’s sedative 
properties, but does not alter ethanol-induced behavioral disinhibition, 
which could contribute to increased risk-taking during impaired 
driving. Similarly, Ferreira et al. [87] reported that subjective reports 
of physiological states and behavioral abilities following consumption 
of Red Bull® energy drink and 37.5% v/v vodka co-administration 
did not correspond to objective behavioral measures of intoxication. 
Participants in this study reported reduced headache, weakness, dry 
mouth, and motor impairment following the co-administration 
of an energy drink and alcohol. However, measurements of motor 
coordination and visual reaction time indicated no differences between 
individuals consuming alcohol with or without the addition of the 
energy drink [87]. 

While some behavioral data have been used to conclude that 
caffeinated alcohol is pharmacologically differentiable from alcohol 
alone, existing behavioral support for this stance is correlational These 
reports could be overlooking intervening variables that link caffeinated 
alcoholic beverage intake with high levels of alcohol consumption, such 
as high sensation-seeking personality [32] or age. It also is noteworthy 
that many studies that report detrimental effects of mixing alcohol and 
caffeine were reported in the U.S. or Canada, and could reflect social 
or cultural norms. As indicated above, a survey of young adults in 
Brazil and Turkey found 75% vs. 40% engaged in caffeinated alcohol 
beverage consumption, respectively [87,88]. Recent reports from The 
Netherlands and Australia suggest that energy drink consumption 
actually reduces alcohol drinking [113] and/or negative alcohol-related 
consequences [94,113]. Thus, it currently is unclear whether caffeine’s 
apparent exacerbation of heavy alcohol drinking reflects a physiological 
effect or a loading of social and demographic risk factors such as race, 
age, gender, culture, religion, and involvement in the college Greek 
community, which can influence the propensity to consume large 
amounts of caffeinated alcoholic beverages [86]. Regardless of whether 
caffeine-facilitated elevations in alcohol intake are social or biological 

phenomena, the long-term consequences of this behavior are cause for 
concern [22].

Besides the growing concern from the scientific research detailing 
risks associated with consumption of caffeinated alcoholic beverages 
reports of several deaths and hospitalizations following consumption 
of this drug combination have increased the focus on the potential 
dangers. In response to evidence that caffeinated alcohol intake may be 
harmful, the FDA proclaimed caffeine to be an “unsafe food additive” 
when combined with alcohol [22]. The primary explanation for this 
characterization was due to caffeine’s ability to mask some indicators 
of alcohol intoxication, without exhibiting clear effects on alcohol 
metabolism [22,114]. Warning letters from the FDA to 4 caffeinated 
alcoholic beverage manufacturers questioned the safety of caffeinated 
alcoholic beverages, and prompted several distributors to withdraw 
their products from the market [22]. However, it is unclear what impact 
this move will have on caffeinated alcohol intake in general, as reports 
suggest that the majority of these beverages are mixed by consumers, 
rather than being caffeinated prior to retail sale [89]. Further, an overall 
dearth in the body of research investigating the neurobehavioral 
effects of caffeinated alcoholic beverages weakened this warning and 
precluded a definitive statement regarding the relative safety of these 
mixtures. 

Findings that alcoholics and individuals with increased vulnerability 
for developing AUDs also consume more caffeine confirm a need to 
investigate whether alcohol and caffeine co-consumption increases 
alcohol intake and/or increases the likelihood of developing AUDs 
(e.g. [97]). Young people, in particular, have exhibited an attraction 
for consuming caffeinated alcoholic beverages, and often engage in 
binge drinking this combination. An extensive literature highlights the 
deleterious effects, both peripherally and centrally, of binge alcohol-
drinking [86]. Given that the addition of caffeine to alcoholic beverages 
appears to exacerbate binge-drinking, it is absolutely necessary that 
research into the acute and long-term effects of this combination be 
undertaken immediately. Following our previous findings that P 
rats consume more caffeine than do Wistar rats (Figure 1), as well as 
existing research detailing differences in ethanol intake between the 
two rat lines [58], our laboratory sought to examine levels of caffeinated 
ethanol intake in a controlled basic research environment. To that end, 
female P rats were assessed for intake of a caffeinated alcoholic solution, 
or one of its component ingredients: water, 0.3 mg/ml caffeine, or 15% 
ethanol over a 14-day 1-hr/day scheduled access period. In line with 
our a priori hypotheses, the results indicated that caffeinated ethanol 
intake was significantly greater than intake of water, caffeine, or ethanol 
alone (Figure 2). In addition, only the rats consuming caffeinated 
ethanol evidenced progressive increases in alcohol intake over the 14-
day access period, which may signal a transition from casual drinking 
behaviors to dependence (data not shown). These findings may exhibit 
sub-additive or synergistic interactions of the two compounds, which 
may alter their rewarding or behavioral properties. However, without 
further investigation, it is unclear what neurobehavioral alterations 
are reflected by the increased intake of the combined compounds. In 
addition, these experiments were performed in female rats; however, 
sex-specific differences in self-administration are an important 
consideration. Future directions should look toward repeating these 
experiments in males to ascertain whether they would consume similar 
amounts of the solutions.

Overall, the findings indicate that caffeine elevates ethanol intake 
and, conversely, ethanol increases caffeine intake, even in the absence 
of human cultural biases. Generalized increases in activity due to the 
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activating effects of caffeine and/or ethanol [115-119] could contribute 
to the increase in alcohol intake when caffeine is co-consumed. 
Elevations in drinking as a result of locomotor stimulation may support 
the common assumption that caffeine attenuates or masks the sedating 
effects of alcohol [91], which may enable individuals to consume more 
caffeinated alcohol drinks over a longer period of time [120]. 

Some animal research supports findings that caffeine attenuates 
the behavioral sedation associated with ethanol. El Yacoubi et al. [121] 
reported that 25 mg/kg caffeine decreased the duration of ethanol-
induced loss of righting reflex in mice. Ferreira and colleagues [92] 
presented evidence that caffeinated energy drinks attenuate the 
locomotor-depressing effects of ethanol, such that 10.71 ml/kg Red 
Bull® significantly decreased the sedating effects of 2.5 g/kg ethanol in 
Swiss mice. It is possible that combined mechanisms of caffeine and 
alcohol are involved in these findings. For example, caffeine can inhibit 
benzodiazepine binding to GABAA receptors [122]. This is especially 
noteworthy/concerning because benzodiazepines are commonly used 
during alcohol detoxification [123], despite their high abuse/co-abuse 
potential [124]. These effects result primarily from caffeine blockade of 
adenosine receptors on striatal GABA neurons [119]. Blockade of VTA 
GABAA receptor activation previously was posited to increase ethanol 
intake by reversing the drug’s GABA-mediated sedative-hypnotic 
effects [125]. 

In line with this research, Sudakov et al. [126] reported that chronic 
caffeine drinking increases sensitivity to the locomotor stimulating 
properties of ethanol, particularly in ethanol-insensitive subjects. As 
motor stimulation previously has been associated with low-dose ethanol 
preference and reinforcement [118], this suggestion may indicate that 
caffeine facilitates ethanol drinking by increasing sensitivity to reward-
inducing psychomotor effects associated with ethanol intake.

Pharmacokinetic Interactions of Alcohol and Caffeine
The possibility that caffeine increases alcohol intake due to 

changes in ethanol’s pharmacokinetic properties has prompted several 
laboratories, including our own, to pursue this line of research. Caffeine 
increases metabolic rate, both in active and sedentary individuals [127]. 
It is plausible that the thermogenic or diuretic properties of caffeine 
[127-129] could facilitate ethanol elimination through increases in 
transdermal evaporation or water and sodium excretion. However, 
according to Ferreira et al. [87,92] and Kunin et al. [130], caffeine 
exposure does not alter ethanol pharmacokinetics in humans or 
rodents to a significant degree.

Ferreira et al. [87] reported that the addition of Red Bull® energy 
drink did not alter breath alcohol concentration levels or alcohol 
elimination rates associated with 0.6 or 1.0 g/kg 37.5% v/v vodka, over 
a 150-min time course. Similarly, intragastric administration of a Red 
Bull®/vodka mixture did not reduce 30-min BALs in mice [92]. Kunin 
et al. [130] reported similar findings using male Wistar rats. These 
researchers [130] reported that caffeine pretreatment (i.p.) delivered 30 
min prior to systemic ethanol injections (i.p.) did not alter BALs at 15 
or 30 min following alcohol exposure [130].

Our laboratory has observed similar outcomes to those presented 
by Kunin et al. [130] and Ferreira et al. [87,92] with regard to peak 
ethanol levels. We utilized subcutaneous microdialysis [131] to assess 
the ability of caffeine to alter alcohol pharmacokinetics in female P rats. 
The time-course of interstitial ethanol levels was assessed, beginning 
immediately after acute exposure to 1 mg/kg caffeine dissolved in 0.5 
g/kg 15% w/v ethanol, or 30 mg/kg caffeine dissolved in 2.0 g/kg 15% 
w/v ethanol, or equivalent doses of 15% w/v ethanol alone. In line with 
previous evidence, we hypothesized that co-administration of caffeine 
would not alter the BALs of P rats. In support of this hypothesis, peak 
ethanol levels were not altered by caffeine co-administration. However, 
we did observe some evidence that caffeine increases ethanol clearance 
at low doses (1 mg/kg caffeine; 0.5 g/kg ethanol; Table 1). Due to 
methodological differences, it is impossible to make direct comparisons 
with the results presented by Ferreira et al. [87], who did not observe 
caffeine-induced differences in ethanol clearance. Furthermore, this 
effect was not present with the higher dose combination, indicating 
that this alteration was low-dose specific. The apparent lack of effects 
at higher alcohol and caffeine doses does not support extrapolation 
of these data to explain some of the behavioral differences that have 
been reported following heavy consumption of caffeinated alcoholic 
beverages. In contrast, these data likely support previous reports that 
exclude differences in ethanol-related pharmacokinetics as a potential 
explanation for caffeine’s ability to alter the effects of ethanol.

With the exception of assessing alcohol levels, few studies 
deliver a concentrated effort to identify the neural and physiological 
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Figure 2: Average daily fluid intake (ml/kg) over 2 weeks of 1-hour/day limited 
access drinking sessions by adult female P rats (n = 18-30/group). * indicates 
p < 0.05 vs. water; + indicates p < 0.05 vs. 0.3 mg/ml caffeine; # indicates p < 
0.05 vs. 15% v/v ethanol.

Treatment Condition Ethanol Peak Level 
(mg%)

Ethanol Elimination(mg%/
min)

Ethanol   Low 48  ±   5 -0.70 ± 0.05

Ethanol/Caffeine Low 68  ±  6 -0.92 ± 0.14* 

Ethanol   High 235  ±  10 -0.78  ± 0.17

Ethanol/Caffeine High 222 ±  19 -0.68   ± 0.02

Table 1: Peak ethanol levels (mg%) and ethanol elimination rate (mg%/min) in 
female P rats (n = 5-7/group) following acute i.p. exposure to 1 mg/kg caffeine 
dissolved in 0.5 g/kg 15% w/v ethanol (low) , or 30 mg/kg caffeine dissolved in 
2.0 g/kg 15% w/v ethanol (high), or equivalent doses of15% w/v ethanol alone. *, 
indicates p < 0.05 vs. ethanol alone group.
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mechanisms that might underlie purported behavioral and cognitive 
differences between alcohol drinking and caffeinated alcohol drinking. 
To that end, research that examines neural effects of caffeine or ethanol 
individually often is the only available tool to extrapolate the effects of 
these substances when consumed in combination. 

Overlapping Systems Associated with Caffeine and 
Ethanol: Adenosine and Dopamine

Due to the apparent behavioral and genetic interactions of AUDs 
and caffeine intake, an important area of research is to identify neural 
systems that underlie some of these interactions. Both caffeine and 
ethanol affect dopaminergic and adenosinergic neurotransmission, 
which are thought to contribute to their neurobiological and 
reinforcing properties. Figure 3 shows a schematic of dopamine, 
glutamate, and GABA neurotransmission in the MCL system, as well 
as providing selected evidence for the manner in which caffeine and 
ethanol exposure could affect these signals.

Adenosine

Adenosine is a purine neurotransmitter/neuromodulator with 
many (largely inhibitory) central and peripheral sites of action 
mediated through four identified G-protein coupled receptors, A1, 
A2A, A2B, and A3 [132,133]. Adenosine receptors exhibit widespread 

central distribution and modulate the majority of neurotransmitter 
systems, either directly or through indirect modulation of amino acid 
neurotransmitters [134,135]. Adenosine A1- and A3-type receptors 
are cyclic adenosine 5’monophosphate (cAMP)-inhibiting, while A2A- 
and A2B-type receptors are cAMP-stimulating [136]. The majority of 
research involving adenosine receptors has targeted the A1 and A2A 
receptors, which are sufficiently sensitive for activation through tonic 
adenosine signaling. 

A1 receptors are the most densely populated adenosine receptor 
subtype within the central nervous system, and are present in the 
hippocampus, cerebral and cerebellar cortices, hypothalamus, and 
some areas of the thalamus [137,138]. A1 receptors have the highest 
affinity for adenosine binding (70 nM concentration) [139]. They have 
been associated with physiological-behavioral functions, such as sleep, 
arousal, and anxiety [139]. These receptors modulate the actions of 
nearly all other neurotransmitters, including dopamine. 

Adenosine A2 receptors have been subdivided into A2A and A2B 
receptor types. A2A receptors have an adenosine binding affinity of 150 
nM. These receptors are less widespread in the CNS, relative to A1 or 
A2B receptors. A2A receptors primarily are localized in the striatum, 
olfactory tubercle, nucleus accumbens (NAc), and other areas receiving 
significant dopamine innervation [139-141]. A2 receptors are linked 

DA
Glutamate
GABA

mPFC

VTA

NAc
Ventral Tegmental Area

Nucleus Accumbens
Adenosine A1 receptors directly

 Caffeine blocks BDZ-binding site and A1 receptors, reducing
alcohol-induced sedation  [122]

Reduction  in adenosine  transporter  can decrease A1 adenosin
tone and elevated levels of EtOH intake [161]

Caffeine  and EtOH increase extracellular  DA  levels [74,182,  223]

Reduced DA D1 receptor mRNA and NBTi-sensitive adenosine
transporter binding in high-drinking mice [202]
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Figure 3: A representation of possible neurochemical/molecular sites of interaction between ethanol and caffeine. The MCL DA system includes afferent projections 
from DAneurons in the VTA to several projections regions, including the mPFC and NAc.  Neurons of the mPFC are primarily glutamatergic, whereas the majority of 
neurons in the NAc are GABAergic medium spiny neurons.  While evidence for the effects of caffeinated ethanol in this system is limited, it may be hypothesized that 
caffeine enhances EtOH’s effects, increasing DA and glutamate neurotransmission, while disinhibiting release of these transmitters through reductions in NAc GABA 
signaling.  Taken together, co-administration of caffeine and ethanol may increase the rewarding and reinforcing properties associated with either drug alone. Repeated 
experience with this drug combination may initiate neural and/or behavioral adaptations.  This may have important implications for the transition from recreational 
alcohol drinking to alcoholism, particularly in populations that exhibit greater vulnerability or predisposition to develop alcohol use disorders. 
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to adenylyl cyclase stimulation; their primary function is to regulate 
neurotransmitter release [142]. For further reviews on adenosine, see 
[143,144].

Adenosine and caffeine: Caffeine is a relatively nonspecific 
competitive antagonist of adenosine receptors. Adenosine receptors 
indicate that chronic caffeine exposure may reduce the compound’s 
ability to block A1 receptors, due to conformational changes in the 
receptors or endogenous ligand activity [74,145,146]. 

There has been a great deal of inconsistency in reports associated 
with the effects of caffeine intake on adenosine A2A receptors. Some 
reports indicate that caffeine exposure does not have a lasting effect 
on adenosine A2A receptors or their pharmacological modulators [147-
149]. However, others have indicated that chronic caffeine experience 
up-regulates [150,151] or down-regulates [152] A2A receptors. These 
results largely depend on the tested species and the employed caffeine 
exposure procedures. 

Adenosine and ethanol: While the availability of research 
that examines caffeinated alcohol is limited, caffeine’s primary 
pharmacological mechanism of action occurs through direct 
antagonism of adenosine receptors. Therefore, evidence for direct 
interactions of adenosine and ethanol potentially could provide useful 
information regarding interactions of caffeine and ethanol. 

Ethanol drinking has been reported to increase A1 receptor number 
[153], although chronic exposure also might desensitize these receptors 
in a manner similar to caffeine [74,145]. Adenosine neurotransmission 
has been associated with some effects of acute and prolonged ethanol 
exposure, as well as ethanol withdrawal [154,155]. Chronic ethanol 
also increases extracellular CNS adenosine levels with brain region 
specificity [156]. Adenosine A1 receptors have been implicated in 
mediating the anxiolytic and motor impairing effects of ethanol 
[157,158], as well as withdrawal-induced seizures [154].

Ethanol’s effects also are associated with adenosine A2A receptor 
signaling. Adenosine A2A receptors contribute to ethanol-induced motor 
effects. For example, El Yacoubi et al. [121] found that A2A knockout 
mice exhibit a shorter latency to regain righting reflex following acute 
ethanol exposure, relative to wild-type mice. Some pre-clinical research 
indicates that ethanol-induced reinforcement is reduced in subjects 
lacking or having diminished A2A receptor functioning [159,160]. It has 
been reported that systemic administration of 3 and 10 [159] or 10 and 
20 [160] mg/kg doses of the partially selective A2A receptor antagonist 
3,7-dimethyl-1-propargylxanthine (DMPX) dose-dependently reduced 
ethanol-reinforced operant responding. In contrast, a lower (1 mg/kg) 
dose of DMPX has been shown to increase ethanol-reinforced operant 
responding [160]. 

Evidence indicates that sedative and ataxic responses to ethanol also 
are reduced in mice lacking the equilibrative nucleoside transporter 
1 [161]. This transporter is responsible for facilitating adenosine 
diffusion across cellular membranes. Acute ethanol exposure blocks 
these transporters [162-164], increasing extracellular adenosine levels, 
facilitating extracellular adenosine receptor activation, and inducing 
some of ethanol’s sedative-hypnotic effects. In contrast, chronic ethanol 
exposure likely desensitizes these transporters to ethanol blockade and 
contributes to desensitization of adenosine receptors [162-164]. The 
widespread central effects of ethanol and caffeine are not localized to 
adenosine systems only. They are manifested in multiple other neural 
circuits, including the mesocorticolimbic (MCL) dopamine system.

Mesocorticolimbic dopamine system

The MCL dopamine system is comprised of dopamine cell bodies 
in the ventral tegmental area (VTA), and their projections to several 
forebrain areas, including the basolateral amygdala, hippocampus, 
lateral septum, olfactory tubercle, NAc, and the medial prefrontal 
cortex (mPFC). For a review on MCL dopamine activity, see [165].

Exposure to either caffeine or ethanol increases extracellular 
dopamine levels in MCL terminal regions [74,166-169], and stimulates 
feedback to the VTA to terminate dopamine output from this region 
[170-172]. Together, these findings suggest that caffeine and ethanol 
activate both inhibitory and excitatory neurocircuitry within the MCL 
system which may have implications for drug reward and abuse. From 
these and other reports, researchers have proposed that the role of 
adenosine receptors to modulate ethanol or caffeine reward likely is 
related, in part, to interactions with central dopaminergic systems. 

Dopamine and adenosine in the mesocorticolimbic reward 
circuit: Adenosine signaling directly affects dopamine systems. 
Adenosine and dopamine interactions likely play integral roles in 
caffeine reinforcement and psychomotor stimulation. Adenosine A1 
and A2A receptors are found in many dopamine-rich areas of the central 
nervous system, including the MCL dopamine system [162,167,168]. 
Research indicates that adenosine and dopamine receptors form 
functionally interactive, primarily antagonistic heteromeric receptor 
complexes [173-179]. Similarly, caffeine-induced adenosine receptor 
antagonism alters dopamine neurotransmission. Acute high (10 mg/
kg+) caffeine doses increase extracellular NAc dopamine levels [180], 
while lower doses [181] or prolonged exposure [74] have no such effect 
(but see [167]).

Quarta et al. [74] reported that prolonged (14 day) exposure 
to caffeine in the drinking water results in tolerance to the ability of 
caffeine or an A1 antagonist to increase extracellular NAc dopamine 
and glutamate levels [74]. In contrast, Borycz et al. [182] did not find 
that acute treatment with an A1 receptor antagonist altered extracellular 
mPFC dopamine levels. In line with reports from Quarta et al. [74], 
chronic modulation of adenosine receptors may be necessary to 
observe these neuroadaptations in the A1 receptor.

A1 receptors likely block some of the behavioral and neurochemical 
actions of D1 receptors. For example, pharmacological modulation of 
NAc and mPFC A1 receptors alters motor responses to D1 agonists 
and antagonists [183,184], as well as some D1-dependent behaviors 
[175,183]. In line with these findings, activation of A1 receptors 
desensitizes D1 receptors in striatal and limbic regions [178,185]. 
Similarly, adenosine A1 receptor blockade increases dopamine 
neurotransmission [145,177,186,187]. Evidence from cell lines and 
striatal regions indicates that A1 receptors drive the uncoupling of 
dopamine D1 receptors from stimulatory G-proteins and alter the 
conformation and binding affinity of MCL dopamine D1 receptors 
[175,177,185,186], which could account for some of the antagonistic 
influence that A1 receptors exert upon D1 receptors. Quarta et al. [145] 
reported that local perfusion with A1 receptor antagonist CPT (300 uM 
or 1 mM) increases extracellular NAc dopamine levels, although the 
range for CPT-induced alterations of dopamine neurotransmission may 
be concentration- and brain region-specific [182,188]. Overall, these 
findings suggest that A1 receptors play an inhibitory neuromodulatory 
role to diminish functional kinetics associated with dopamine D1 
receptors. These effects likely represent some of the mechanisms 
through which adenosine receptor agonists induce sedation, and 
antagonists, such as caffeine, stimulate behavior [175]. 
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Striatal A2 receptors largely are co-expressed with postsynaptic 
dopamine D2 receptors [189-191]. Research suggests that low density 
A2 receptor populations are sufficient to diminish the binding affinity 
of dense D2 receptor populations [192]. Constitutive populations 
of A2-D2heteromeric complexes have been identified [173,193]. 
Conformational changes resulting from A2 receptor activation are 
transmitted to D2 receptors [194], and may present a mechanism 
through which A2 receptor activation diminishes inhibitory D2 
receptor signaling [179]. Moreover, A2A receptor antagonists decrease 
dopamine tissue levels [195]. Previous studies have reported that a 
single injection of an A2 antagonist can decrease extracellular dopamine 
levels both in vivo and in vitro [145,196]. Similarly, Dassesse et al. 
[197] reported that mutant mice with diminished striatal A2 activity 
exhibit a concomitant decrease in extracellular dopamine levels, while 
mice lacking striatal D2 receptors exhibit impairments in A2 receptor-
mediated functions [197]. In addition, A2A receptor antagonists have 
been reported to counteract the cataleptic and tremor effects associated 
with D2 receptor blockade [195,198]. These effects may be mediated 
through A2A receptor antagonist-induced conformational changes in 
D2 receptors and associated reductions in the binding affinity of D2-
like receptor antagonists. Ultimately, these pharmacological alterations 
may result in desensitization of extracellular dopamine binding to 
excitatory neurons and decrease dopamine-modulated behavioral 
pathologies [195,198]. Taken together, these findings suggest that 
the A2 and D2 receptors interact to regulate adenosine and dopamine 
neurotransmission, as well as their resulting behavioral outputs.

A few initiatives have examined A1-D2 and A2A-D1 receptor 
interactions. Karcz-Kubicha [199] reported that co-activation 
of A1 receptors is necessary for A2A-mediated increases in c-fos 
immunoreactivity  in the mPFC anterior cingulate region [199]. These 
researchers [199] suggest that this permissive role for A1 receptors is 
related to their ability to block tonic dopamine neurotransmission and 
D2 receptor activation. A2A and D1 receptor subtypes are not largely 
co-localized [200]; however, there apparently are some functional and 
behavioral interactions of the two receptor subtypes. For example, 
blockade of A2 receptors has been reported to potentiate the excitatory 
neurotransmission associated with dopamine D1 receptors [201]. 
In addition, A2A and D1 receptor interactions have been reported to 
promote alcohol consumption [202]. However, overall, evidence 
indicates that A2 antagonists have greater ability to block D2 receptor-
mediated effects, relative to those modulated by D1 receptors [193].

Dopamine and ethanol in the mesocorticolimbic reward 
circuit: There is substantial evidence for the involvement of the MCL 
dopamine system in ethanol drinking and reward. For example, 
neuroimaging experiments indicate that alcohol increases striatal 
dopamine neurotransmission in young adult males [203,204]. Similar 
pre-clinical findings have been reported in laboratory rodents. 
Pharmacologically relevant levels of ethanol have been reported to 
increase firing of VTA dopamine neurons [205,206]. In line with this, 
the VTA, NAc, and mPFC have been implicated in operant oral ethanol 
self-administration [207,208]. Rats will self-infuse ethanol directly 
into the VTA [209]. Local, peripheral and oral ethanol exposure 
potentiates extracellular dopamine levels in the NAc, likely leading to 
neuroadaptations in dopamine D2autoreceptor regulation of the circuit 
[169,210-214]. Similarly, naïve rats bred for high alcohol preference 
exhibit lower NAc tissue dopamine levels, compared to their alcohol 
non-preferring counterparts [169,215-217]. These findings suggest that 
differential dopamine neurotransmission in the MCL circuit could 
alter the reinforcing responses to ethanol exposure, and may represent 

a predisposing factor toward high ethanol intake and, by extension, 
possibly could increase the intake of caffeine, as well.

Dopamine and ethanol and adenosine in the mesocorticolimbic 
reward circuit: Adenosine modulation of MCL dopamine 
neurotransmission likely is involved in ethanol consumption. Despite 
the relatively low co-localization of A2A and D1 receptors [200], evidence 
suggests that communication between these networks may be involved 
in alcohol drinking. Short et al. [202] selectively deleted A2A and D1 
receptors from mice to examine the involvement of these receptors 
in ethanol intake. Subjects with dual A2A and D1 receptor knock-out 
significantly reduced their ethanol intake, relative to those with single-
deletion or no alteration in the receptors [218]. In contrast, Naassila et 
al. [219] reported that A2A receptor knock-out alone increases ethanol 
intake (but see, [220]). Differences in these studies may suggest that 
dopamine D1 receptors compensate for absent A2A receptors and may 
implicate both of these receptor types in neural processing associated 
with alcohol drinking.

Yao et al. [162] found that A2 and D2 receptors synergize in the 
presence of ethanol to increase gene transcription via potentiation of 
PKACα translocation to the cell nucleus. These researchers [162] reported 
that ethanol- and dopamine-induced increases in PKACα translocation 
could be blocked by adenosine A1 and A2 receptor antagonists, in a 
manner mediated primarily by A2 receptors [162]. This synergy 
likely sensitizes the system to subsequent ethanol exposure, as well 
as endogenous dopamine D2 receptor signaling [162] and adenosine-
mediated desensitization of Gαs-coupled receptors [164]. With 
prolonged elevation of extracellular adenosine levels (including that 
associated with chronic ethanol drinking [162]), A2 and D2 receptors 
uncouple, such that the inhibitory effects of D2 receptors predominate 
[221]. Chronic ethanol exposure has been reported to desensitize A2A 
receptor response to agonists, as well as reduce the dopamine response 
to A2A antagonism [162]. These reports present one mechanism through 
which A2 receptors may alter gene expression in a D2 receptor dependent 
manner. These effects may be potentiated by ethanol exposure. In 
line with this suggestion, Short et al. [202] reported differences in the 
NAc dopamine and adenosine systems of ethanol-naïve high alcohol-
drinking C57Bl/6J (B6) mice and low alcohol-drinking CD-1 mice, 
which correlated with subsequent measures of ethanol intake. They 
reported decreases in D1 receptor mRNA and increases in D2 receptor 
binding in B6 vs. CD-1 mice. Short et al. [202] also reported that 
nucleoside transporter blocker nitrobenzylthioinosine (NBTI) binding 
was reduced in B6 mice, compared to the CD-1 line. This dysfunction 
would be expected to increase extracellular adenosine concentrations 
[162] and, under chronic conditions, may cause neuroadaptations, 
affecting adenosine receptor activity. These findings in rodent models 
suggest that a predisposition for high alcohol consumption may be 
correlated with decreases in intracellular adenosine transport. 

Conclusions
The negative impact of heavy alcohol use continues to be a public 

health concern. Binge alcohol drinking and early onset of alcohol use, 
in particular, appear to be risk factors for future alcohol dependence. 
Existing evidence suggests that the increased availability of caffeinated 
alcoholic beverages exacerbates both of these predispositions for 
developing alcohol dependence. This underscores the need for 
research examining the interactions of these two substances, on 
cognitive, behavioral, and neuronal/physiological function. The impact 
of caffeinated alcohol consumption has not been characterized fully; 
clinical evidence is mixed regarding whether caffeine increases alcohol 
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intake and negative alcohol-related consequences in young drinkers, 
relative to alcohol alone. As with most substances of abuse, the 
interplay between abuse and factors such as gender, age, culture, social 
strata and religion is complex. However, pre-clinical evidence supports 
the contention that caffeine increases alcohol consumption, and 
animal models may provide new insights into central mechanisms that 
underlie the rewarding and reinforcing properties of this combination. 
The experimental data that we have presented from our laboratory 
were collected in a single genetic model of heavy and binge [60] alcohol 
intake, the P rat, during adulthood. However, future experiments 
should seek to evaluate systematically whether neural and behavioral 
evidence associated with intake of caffeinated alcohol solutions 
generalizes across different genetic populations. Findings from studies 
using different rodent models of alcoholism (e.g. B6 mice, P rats, AA 
rats, sP rats, etc.) and genetic mutant animal models can be expected to 
reveal important information on the central effects of this often abused 
drug combination. Given the increasing consumption of caffeinated 
alcoholic beverages in high-risk populations (e.g. adolescent binge-
drinkers), future research should occur at multiple developmental 
time-points. Knowledge of the neurocircuitry and adaptations that are 
associated with acute and chronic caffeinated alcohol intake, as well as 
their long-range alterations following such consumption, will provide 
useful information regarding the intervention and treatment strategies 
for those who abuse this combination. 
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