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Protein tyrosine phosphatases as potential 
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Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions.  Dysregulation of protein 
tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological 
diseases.  Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery 
efforts to date have brought over two dozen kinase inhibitors to the clinic.  Accordingly, protein tyrosine phosphatases (PTPs) are 
considered next-generation drug targets.  For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent 
studies indicate that it is also a promising target for breast cancer.  SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile 
myelomonocytic leukemia, acute myeloid leukemia, and solid tumors.  In addition, LYP is strongly associated with type 1 diabetes 
and many other autoimmune diseases.  This review summarizes recent findings on several highly recognized PTP family drug targets, 
including PTP1B, Src homology phosphotyrosyl phosphatase 2 (SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas 
associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity 
phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25.  Given that 
there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.
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Introduction
Target-based drug discovery has become the dominant strat-
egy in the pharmaceutical industry[1].  It focuses on a disease-
associated target with the goal of developing molecules 
modulating target activity to provide potential therapeutics 
for disease treatment.  In this process, target identification and 
validation play a pivotal role in the drug discovery project’s 
success.  The number of known drug targets is approximately 
300 for all approved therapeutic drugs, in which a large por-
tion of them belongs to ion channels, G protein coupled recep-
tors, and protein kinases[2].  Protein tyrosine kinases (PTKs) 
are a very important class of oncology drug targets with >20 
small molecule kinase inhibitors already FDA-approved 
for various cancer treatments, and a large number of kinase 
inhibitors are currently under various stages of clinic trials[3].  
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PTKs and protein tyrosine phosphatases (PTPs) reversibly and 
coordinately control cellular protein tyrosine phosphorylation 
levels, which are important for nearly all cellular processes, 
such as growth, differentiation, migration, survival, and apop-
tosis[4].  

In Chinese philosophy, the concept of Yin-Yang is used to 
describe the importance of balance between two seemingly 
opposite or contrary forces in the natural world[5], and protein 
tyrosine phosphorylation and dephosphorylation represent 
exactly such a Yin-Yang relationship.  At the molecular level, 
the extent of tyrosine phosphorylation is precisely balanced by 
the actions of specific PTK(s) and PTP(s), which can either up- 
or downregulate downstream signaling pathways, depending 
on whether the phosphorylation activates or inhibits protein 
function[4].  Aberrant tyrosine phosphorylation resulting from 
the perturbed PTK-PTP balance can cause numerous human 
diseases.  Indeed, excessive tyrosine phosphorylation is a 
hallmark of cancer.  Given the great success of drug discovery 
targeting against PTKs and the fact that proper cellular tyro-
sine phosphorylation levels are controlled by the coordinated 
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activity of kinases and phosphatases, PTPs have been sug-
gested as next generation drug targets[6–8].  PTPs have been 
important topics of research in biomedical science for the past 
two decades, and a number of PTPs have been implicated in 
various human diseases, such as cancer, diabetes, autoim-
mune, and neurological diseases[9–11].  These findings have fur-
ther strengthened the belief that targeting PTPs could be the 
next frontier in drug discovery.

The PTPs constitute a large family of enzymes with 107 
members divided into 4 groups based on their protein 
sequences and functions (Figure 1)[8, 12].  The major group is 
class I PTPs, which includes 99 members, and each member 
shares a conserved active site sequence (H/V)C(X)5R(S/T) 
with the cysteine as the catalytic residue in the dephosphory-
lation reaction.  Class I is further divided into classic tyrosine-
specific PTPs, and tyrosine and serine/threonine dual-specific 
phosphatases (DUSP), with 38 and 61 members, respectively.  
Classical tyrosine-specific PTPs are composed of 17 cytosolic 
PTPs and 21 trans-membrane receptor-like PTPs, and the 
DUSPs are further divided into MKP, Myotubularin, CDC14, 
Slingshot, PTEN, PRL, and atypical DSP subclasses.  Class II 
PTP has only one member, the low molecular weight (LMW) 
PTP, and class III has three members, namely CDC25A, 
CDC25B, and CDC25C.  Class II and class III PTPs also have 
catalytic cysteine residues.  Class IV PTPs have 4 members 
with catalytic aspartic acid residues, which is in contrast to 
Class I, II, and III PTPs.  Class IV PTPs activities also require 
the presence of a metal ion, suggesting they have unique evo-
lution origins[13].

Given the large number of PTPs, a summary of potential 
drug targets is highly important and will serve as a road map 
for drug discovery efforts targeting PTPs.  Although reviews 

on similar topics are available[7, 14], they were published more 
than ten years ago, during which significant research advances 
have been made.  Thus, this perspective aims to provide 
an updated view on this subject and a summary of recent 
research findings.  We will cover well recognized and vali-
dated PTP targets in the field, including PTP1B, SHP2, LYP, 
CD45, FAP-1, STEP, MKP-1, PRL, LMWPTP, CDC25 (Figure 
2), with a focus on their implications in human diseases.

PTP1B in diabetes and cancer
PTP1B, encoded by the PTPN1 gene, is a ubiquitously 
expressed classical non-receptor PTP with 435 amino acids[15].  

It has an N-terminal catalytic domain, two proline-rich 
sequences, and a C-terminal hydrophobic region (Figure 2).  
Biochemical and genetic studies have indicated that PTP1B 
is a key negative regulator of insulin and leptin signaling 
pathways (Figure 3A), which are important regulators of 
body weight, glucose homeostasis, and energy expenditure[16].  
PTP1B downregulates insulin signaling by directly dephos-
phorylating insulin receptor (IR) and insulin receptor sub-
strates (IRS)[17, 18], while it regulates leptin signaling by dephos-
phorylating activated JAK2 and STAT3[19, 20].  PTP1B antibodies 
and small molecule inhibitors have been shown to increase 
insulin-stimulated IR, IRS and STAT3 phosphorylation[21, 22], 
suggesting that PTP1B inhibition could sensitize insulin and 
leptin signaling pathways.  Importantly, PTPN1-deficient mice 
exhibit enhanced insulin sensitivity and leptin hypersensitiv-
ity and have lower blood glucose and basal insulin levels.  
These mice were also more resistant to high-fat diet-induced 
weight gain[23, 24].  

Decreased insulin sensitivity is a hallmark of type 2 diabe-
tes, which accounts for 90% of diabetes cases.  In this regard, 

Figure 1.  Human PTP classification.  The gene encoding individual PTPs is shown in parenthesis after the PTP name.  PTPs discussed in this review are 
highlighted in italic and bold font.
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PTP1B has been considered a novel drug target for type 2 dia-
betes and obesity.  Many pharmaceutical companies, includ-
ing Abbott, Novo Nordisk, AstraZeneca, Eli Lilly, Merck, 
Novartis, Incyte, Wyeth, and ISIS, have shown strong interest 
in PTP1B[25, 26].  The combined efforts in developing PTP1B 
inhibitors have generated at least 4 drug candidates in clinical 
trials, including ertiprotafib, ISIS 113715, ISIS-PTP1BRx, and 
trodusquemine (Figure 4A)[26].  Notably, ISIS 113715 has been 
shown to improve glucose regulation and reduce LDL levels 
in type 2 diabetes patients in a phase 2 clinical trial.  The more 
potent candidate ISIS-PTP1BRx will replace ISIS 113715 for fur-
ther development, which aims to help patients whose disease 
is inadequately controlled by insulin and who are unrespon-
sive to existing oral drugs.  

Given its function in dephosphorylation of receptor tyro-
sine kinases, which are known to induce oncogenic signalling, 
PTP1B has also been regarded as a potential tumor suppressor.  
However, recent studies have revealed that PTP1B can pro-
mote tumorigenesis[27].  For example, PTP1B has been shown 
to activate c-Src in breast cancer cell lines by dephosphorylat-
ing its negative regulatory residue Y530[28] (Figure 3A).  PTP1B 
can also activate the Ras-Raf-ERK oncogenic signaling path-
way, most likely by dephosphorylating the scaffold protein 
p62Dok, which binds and activates p120RasGAP[29] (Figure 
3A).  Moreover, PTP1B overexpression has been recorded in 
72% of 29 human breast cancer samples examined, in compari-
son to healthy controls[30].  Its overexpression was detected in 
all stages of tumor development, and it correlated with ERBB2 
overexpression, a frequently amplified receptor tyrosine 
kinase in breast cancer.

To understand the interplay between PTP1B and ERBB2 
and to define PTP1B’s role in breast cancer tumorigenesis, 

mice expressing an activated ERBB2 gene were crossed with 
PTPN1-null mice[31, 32].  Compared to control mice, PTPN1-null 
mice had a significant delay in tumor onset and a decreased 
rate of lung metastasis.  Delayed tumor onset and decreased 
metastasis were also observed after treatment with a small 
molecule PTP1B inhibitor.  Although the mechanism under-
lying PTP1B deletion or inhibition in tumor development 
remains unclear, these data indicate that PTP1B is function-
ally linked to ERBB2 and plays a positive role in breast cancer 
tumorigenesis.  Recently, PTP1B overexpression was reported 
in colorectal cancer tissues, and its expression correlated with 
tumor differentiation, tumor invasion, lymph node metastasis, 
and TNM stage, which suggest that PTP1B may also play a 
positive role in colorectal cancer[33].  Therefore, PTP1B inhibi-
tion may be a novel strategy to treat these major human can-
cers.

SHP2 in cancer 
The Src homology-2 (SH2) domain-containing phosphatase 
2 (SHP2) encoded by the PTPN11 gene is a 593 amino acid 
classical non-receptor PTP.  It has two tandem N-terminal 
SH2 domains (N-SH2, C-SH2), a catalytic PTP domain, a 
C-terminal tail with two tyrosine phosphorylation sites (Y542 
and Y580) and a proline-rich region (Figure 2)[34, 35].  SHP2’s 
N-SH2 domain blocks access of SHP2’s substrates by bind-
ing to its active site pocket at resting state[36].  However, upon 
growth factor or cytokine stimulation, the N-SH2 domain 
preferentially binds to tyrosine-phosphorylated proteins, such 
as receptor tyrosine kinase or scaffold proteins, to open up 
the phosphatase active site for catalysis.  SHP2 is a positive 
regulator of the growth factor-mediated Ras-Raf-ERK path-
way, and its phosphatase activity is essential for Ras-Raf-ERK 

Figure 2.  The schematic PTP structure discussed in this review.  
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pathway activation[35].  Several presumptive mechanisms have 
been proposed for its positive effect on ERK activation (Fig-
ure 3B), as follows: SHP2 could dephosphorylate the RasGAP 
binding site on RTK and/or Gab1 to prolong Ras activation[37]; 
it could also dephosphorylate CSK binding sites on Paxillin 
to sequentially activate Src and Ras[38]; SHP2 may mediate the 
dephosphorylation of the negative Ras regulator Sprouty to 
activate the Ras-ERK signaling pathway[39, 40]; finally, SHP2 
could act as an adapter in Grb2/SOS complex recruitment, 
leading to Ras activation [41].  Moreover, SHP2 has been found 
to regulate PI3K-AKT, a well recognized oncogenic pathway, 
and SHP2 can regulate it in a ligand- and cell-dependent man-
ner[42, 43].  In addition, SHP2 has been indicated in JAK/STAT, 
JNK, and NF-κB signaling, which also have strong associations 
with various human cancers[44].

Clinical studies have shown that SHP2 mutations broadly 
exist in patients with Noonan Syndrome (NS), juvenile myelo-
monocytic leukemia (JMML), acute myelogenous leukemia 
(AML) and solid tumors[35, 44–46].  Not surprisingly, many muta-
tions lie between the N-SH2 and PTP domain, disrupting their 
intramolecular interactions[44] and leading to constitutive SHP2 
activation.  Specifically, SHP2 germ-line mutations are present 
in 50% of NS patients, and SHP2 somatic mutations are pres-
ent in 35% of sporadic JMML patients.  The high incidence of 
SHP2 mutations indicate that it is likely a causative gene in 
these two diseases.  Indeed, the SHP2 D61G mutation in mice 
phenocopies human NS, exhibiting characteristics such as 
smaller body size, serious cardiac defects, and reduced skull 
length[47].  Mice expressing JMML-linked SHP2 mutations 
(D61Y, D61G) exhibit myeloproliferative disorders similar to 

Figure 3.  The physiological/pathological signal pathways involving PTP1B (A), SHP2 (B), LYP and CD45 (C), FAP-1 (D), and STEP (E).  Arrow represents 
positive regulation.  T-bar represents dephosphorylation if it points to a phosphate group or specific pY, otherwise it represents negative regulation.  
Dashed lines in panel (D) represent binding interaction.  See the text for regulation details.
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those observed in JMML patients, including myeloid expan-
sion, increased myeloid precursors, and granulocyte and mac-
rophage tissue infiltration[48].  Human JMML characteristics 
include myeloid colony growth without exogenous cytokine 
stimulation and bone marrow cell hypersensitivity to gran-
ulocyte-macrophage colony stimulating factor (GM-CSF)[49].  
Expression of JMML mutations D61Y and E76K in mouse bone 
marrow-derived hematopoietic progenitor cells promotes cell 
cycle progression in the presence of low level GM-CSF and 
cell survival in minimal media conditions[50, 51], supporting a 
positive role for SHP2 in promoting JMML.  It was observed 
that pharmacological SHP2 inhibitors (eg, II-B08[52], crypto-
tanshinone[53], and #220-324[54] in Figure 4B) blocked the pro-
liferation of patient-derived bone marrow low density mono-
nuclear cells[52], mouse myeloid progenitor cells, and leukemic 
cells[53, 54] expressing the SHP2-activating mutation E76K.  In 
addition, SHP2 phosphatase activity is required for oncogenic 
KIT-induced myeloid cell growth and survival, and genetic 
deletion or pharmacological inhibition of SHP2 can inhibit 
myeloid cell growth.  SHP2 inhibitor alone or in combination 
with a PI3K inhibitor can prolong the survival of transplanted 
mice[55].  

A recent report has shown that SHP2 positively regulates 
HER2-positive and triple negative breast cancers, and SHP2 

knockdown in MCF10A human breast epithelial cells blocks 
HER2/3-induced tumor cell invasion in a 3-D cell culture 
model[56].  Treatment with SHP2 shRNAmiRs can eradicate 
tumor-initiating cells and block tumor growth and metasta-
sis in relevant xenograft mouse models[56].  Moreover, in the 
epidermal growth factor receptor (EGFR) inhibition-resistant 
lung cancer cell line H1975, SHP2 is required for EGF-stimu-
lated ERK1/2 phosphorylation and cell proliferation.  Addi-
tionally, SHP2 knockdown or inhibition is sufficient to reduce 
ERK1/2 activation and block cell growth.  This SHP2 inhibitor 
(II-B08) also has remarkable anti-tumor activity in xenograft 
mice[57].  Taken together, these data suggest that SHP2 is a bona 
fide proto-oncogene and that targeting SHP2 is a promising 
strategy for various cancer treatments, including AML, JMML, 
breast cancer, and lung cancer.

LYP in autoimmune disease
The PTPN22-encoded lymphoid-specific phosphatase (LYP) 
is a classical 807 amino acid non-receptor PTP[58].  It has an 
N-terminal catalytic domain and a C-terminal region with 4 
proline-rich motifs (P1-P4) (Figure 2).  LYP protein expres-
sion is restricted to hematopoietic tissues such as thymocytes 
and mature B cells and T cells.  LYP is a strong T cell receptor 
(TCR) signaling inhibitor, which mediates important immune 

Figure 4.  The structure of PTP1B (A), SHP2 (B), and LYP (C) inhibitors mentioned in this review.
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responses[59–61].  As shown in Figure 3C, LYP dephosphory-
lates tyrosine residues in the activation loop of the Src family 
kinases LCK (Y394) and FYN (Y420), and ZAP70 (Y493), which 
contributes to TCR signaling activation[62, 63].  LYP can also 
bind C-terminal Src kinase (CSK) through its proline rich P1 
region and CSK’s SH3 domain[64–66].  The LYP-CSK association 
might promote LYP’s function in inhibiting T cell activation, 
as CSK can phosphorylate negative regulatory tyrosine resi-
dues in LCK (Y505) and FYN (Y531)[62, 63].  LYP-null mice have 
elevated memory T cell activation and sustained TCR-induced 
phosphorylation of LCK (Y394) and ZAP70, although naive 
T cell functions remain normal[67].  These mice also spontane-
ously develop germinal centers with increased serum antibody 
levels.  These results are consistent with cellular studies and 
suggest that LYP negatively regulates T cell development and 
function.

Importantly, a single-nucleotide polymorphism (SNP) 
(C1858T) in the PTPN22 gene is associated with type 1 diabe-
tes (T1D) in many populations[60, 61, 68, 69].  Autoimmune diseases 
are caused by abnormal immune responses against normal 
organs or tissues.  In this case, T1D is the result of an autoim-
mune response of cytotoxic CD8 and CD4 positive T cells 
targeting insulin-producing β-cells.  The C1858T LYP SNP has 
also been linked to other autoimmune diseases, such as rheu-
matoid arthritis[70, 71], Graves disease[72, 73], myasthenia gravis[74], 
and systemic lupus erythematosus[75], suggesting that LYP is a 
general susceptibility gene in both systemic and organ-specific 
autoimmune diseases.  

The C1858T SNP in the PTPN22 gene encodes a mutant 
R620 LYP enzyme, which is 1.5 times more active than wild-
type enzyme[76].  The mutation falls within the P1 proline-rich 
region, which disrupts the interaction between the P1 region 
and the SH3 domain, severely impairing LYP-CSK complex 
formation[64–66, 76].  Interestingly, the R620W mutant more effec-
tively inhibits T cell signaling compared to wild-type LYP in 
human T cells and Jurkat T cells[76], which is contradictory to 
earlier notions that LYP cooperates with CSK to downregulate 
TCR signaling[62, 63].  However, recent studies demonstrated 
that LYP forms a complex with CSK in resting T cells; upon 
TCR stimulation, LYP dissociates from CSK, resulting in 
increased LYP partition to lipid rafts, where it dephosphory-
lates substrates such as LCK and ZAP70 to downregulate TCR 
signaling[77].  In contrast, the R620W mutant cannot bind CSK 
and is therefore recruited to lipid rafts in the resting state.  
This uncontrolled TCR downregulation produces a gain-of-
function phenotype and causes various human autoimmune 
diseases[77].  PTPN22 knock-in mice have been generated to 
express the analogous R619 W mutation[78, 79].  As the mice age, 
they exhibit effector T cell expansion and transitional, ger-
minal center, and B cell expansion, resulting in autoantibody 
development and systemic autoimmunity.  These mice dem-
onstrate the relevance of the LYP C1858T SNP in the increased 
risk of autoimmune diseases.  Moreover, LYP pharmacological 
inhibitors (eg, LVT-1[77], Comp 4[80], and Comp 8b[82] in Figure 
4C) are very effective in promoting T cell activation[77, 80] and 
enhancing LYP-mediated signaling in thymocytes and bone 

marrow-derived mast cells[81, 82].  In a passive systemic anaphy-
laxis mouse model, LYP inhibitors reduce calcium-mediated 
transcription and degranulation in mast cells and block ana-
phylaxis, highlighting the great therapeutic potential of LYP 
inhibitors in autoimmune disease treatment[82].

CD45 in autoimmune disease and cancer
CD45 was studied decades ago as a cell surface glyco-
protein[83, 84].  After the identification of mammalian PTP1B, 
sequence comparison indicated that CD45 has two tandem 
PTP domains in its cytosolic tail.  CD45 was then classified as 
a class I receptor-like PTP[85].  CD45 is encoded by PTPRC and 
has a molecular weight between 170 and 220 kDa with a highly 
glycosylated extracellular region, a single transmembrane 
domain, and two PTP domains D1 and D2 (Figure 2).  The D1 
PTP domain is catalytically active, but its activity requires the 
presence of the inactive D2 domain[86].  Many CD45 isoforms 
are generated by alternative splicing, and they primarily dif-
fer in their extracellular regions[87].  CD45 is expressed in the 
hematopoietic lineage such as T and B cells, and it is estimated 
to occupy up to 10% of total cell surface area, indicating its 
abundance in these cells[88].  

CD45 plays a critical role in T cell receptor and B cell recep-
tor signaling, and Src family kinase LCK and LYN are well-
characterized CD45 substrates in T cells and B cells, respec-
tively[89–91].  LCK’s kinase activity is required for TCR signal-
ing, and it phosphorylates the TCR complex and activates 
ZAP70 to initiate a T cell activation cascade (Figure 3C).  CD45 
dephosphorylates the LCK Y505 residue, which negatively 
regulates LCK activity when phosphorylated, to positively 
regulate T cell activation.  This is consistent with cellular stud-
ies in which CD45-deficient cells have increased levels of LCK 
Y505 phosphorylation[92–94].  CD45-null mice have T cell defects 
that can be rescued by an LCK Y505F mutant[95].  Interest-
ingly, LCK is hyperphosphorylated at site Y394 in CD45 defi-
cient cells[89, 96, 97], which is a positive regulatory residue and 
enhances LCK kinase activity when phosphorylated.  These 
data suggest that CD45 can also downregulate LCK activity.  
It has been suggested that Y505 phosphorylation affects T 
cell signaling at low CD45 levels, while its effect is counter-
balanced by Y394 phosphorylation at higher CD45 levels[98].  
Similarly, CD45 regulates LYN in B cells where it dephosphor-
ylates the negative regulatory Y508 residue and the positive 
regulatory Y397 residue, thus controlling LYN kinase activ-
ity[99–101].  B cell development and B cell signaling responses are 
reduced in CD45-null mice upon ligation, including altered 
proportion of B cell subsets.  Other reported CD45 substrates 
include FYN and JAK in T cells[94, 102], HCK and LYN in macro-
phages[103], and LYN, HCK and FYN in dendritic cells[104].

Given its important role in immune signaling pathways, 
CD45 has been linked to many autoimmune diseases[105].  For 
example, a SNP in CD45’s exon 4 causes a C77G mutation 
and is associated with increased incidence of multiple scle-
rosis[106–108], HIV[109], autoimmune hepatitis[110], and systemic 
sclerosis[111].  The C77G mutation disrupts an exonic splicing 
silencer, which results in high molecular weight CD45 iso-
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form expression (eg, CD45RA, which has higher CD45 activ-
ity in cells due to decreased ability to form homodimers)[112].  
Another SNP in exon 4 causes the C59A mutation and has also 
been reported to interfere with splicing in several multiple 
sclerosis multiplex family members, which results in CD45RA 
expression in memory T cells[113].  In contrast, a SNP in exon 6 
causes the A138G mutation and has a protective effect in hepa-
titis B infection and autoimmune Graves’ thyroiditis.  This SNP 
promotes exon skipping, which results in increased expression 
of the low molecular weight isoform CD45RO[114, 115].  In addi-
tion, the E613R mutation in mouse CD45 is thought to disrupt 
homodimer formation to cause aberrant CD45 activity, and its 
expression produces a phenotype characterized by lympho-
proliferative syndrome and autoimmune diseases[116].  These 
genetic studies indicate a dose-response curve between CD45 
and human autoimmune diseases, suggesting that CD45 is a 
good drug target for autoimmune disease treatment.

CD45 is broadly expressed and has been used in antibody-
mediated therapy against hematopoietic malignancies[117].  
Earlier studies have demonstrated that a CD45 antibody 
killed CD45-positive leukemic cells via antibody-dependent 
and host-cell-mediated cytotoxicity.  However, a more gen-
eral strategy is CD45-based radioimmunotherapy in which 
the CD45 antibody is conjugated to a radioactive agent, such 
that a high dose of radiation is specifically delivered to hema-
topoietic tissue.  In a pilot study[118], 131I-coupled anti-CD45 
was assessed in 44 patients with high-risk acute leukemia or 
myelodysplasia for marrow transplantation.  Seven out of 
25 treated patients with acute myeloid leukemia/myelodys-
plastic syndrome survived disease-free for 15 to 89 months 
(median, 65 months) post-transplantation.  More recently, 
211At-coupled anti-CD45 treatment prior to hematopoietic stem 
cell transplantation improved the median survival of leuke-
mic mice in a dose-dependent fashion, and 211At-coupled anti-
CD45 faithfully localized to the marrow and spleen with mini-
mal toxicity[119].  In addition, leukemia mouse models treated 
with anti-CD45 antibody-streptavidin conjugate and subse-
quent administration of 213Bi- or 90Y-DOTA-biotin conjugate, 
survived leukemia-free for more than 100 days with minimal 
toxicity[120].  These data suggest that anti-CD45-based radioim-
munotherapy is a highly effective approach for hematopoietic 
malignancy treatment.

FAP-1 in cancer
PTPN13-encoded Fas-associated phosphatase 1 (FAP-1, also 
named PTP1E, PTP-BAS and PTPL1) is a 2485 amino acid clas-
sical non-receptor PTP[121–123].  It contains a KIND domain, a 
FERM domain, five PDZ domains, and a PTP catalytic domain 
(Figure 2).  The FERM domain binds to phosphatidylinosi-
tol 4,5-biphosphate, which targets FAP-1 to juxtamembrane 
regions[124], PDZ domains are responsible for protein-protein 
interactions[125], but the KIND domain has not been well-stud-
ied.  The structure of FAP-1’s catalytic domain is very similar 
to PTP1B in overall folding[126, 127].

One of the most important discoveries regarding FAP-1 is 
that it interacts with the cytosolic portion of the FAS recep-

tor[128], a tumor necrosis factor (TNF) receptor or death recep-
tor whose activation leads to cell apoptosis, and negatively 
regulates FAS-initiated apoptosis (Figure 3D).  Studies have 
shown that FAS receptor’s C-terminal tripeptide Serine-Leu-
cine-Valine (SLV) sequence is sufficient to bind FAP-1’s sec-
ond PDZ domain[129, 130], and by doing so, FAP-1 inhibits FAS 
receptor export to the cell surface[131].  FAP-1 can also bind the 
p75NTR intracellular domain, another TNF receptor family 
member, through the second PDZ domain, and negatively reg-
ulate p75NTR-mediated NF-κB suppression and pro-apoptotic 
signaling[132] (Figure 3D).  In addition, FAP-1 binds the very 
C-terminus of the tumor suppressor Adenomatous Polyposis 
Coli (APC) through its second PDZ domain, and APC is a 
β-catenin-associated scaffold[133].  Thus, FAP-1 may indirectly 
modulate β-catenin tyrosine phosphorylation and regulate cell 
adhesion, migration, and division (Figure 3D).  Other reported 
FAP-1 binding partners include IκBα, RhoGAP1, EphrinB1, 
and TRPM2[125].  IκBα is the only FAP-1 binding protein that is 
also dephosphorylated by FAP-1, suggesting that it is a puta-
tive FAP-1 substrate[134, 135].  IκBα tyrosine phosphorylation 
is a key element in NF-κB activation; therefore, FAP-1 may 
regulate NF-κB activation.  FAP-1 specifically dephosphory-
lates IRS-1 and blocks insulin-like growth factor-induced 
PI3K/AKT signaling pathway[136].  In addition, FAP-1 interacts 
with and dephosphorylates HER2 and inhibits growth factor-
induced HER2 signaling[137].  FAP-1-deficient mice are gener-
ally healthy but have increased T cell activity such as cytokine 
elaboration and improved host defense against K pneumonia 
lung infection, as evidenced by the 35-fold less living bacteria 
in their lungs compared to wild-type controls[138].  Independent 
knockout studies have shown that FAP-1-null mice develop 
normally but have a mild deficiency in motor neuron repair, 
and significantly reduced retinal glial numbers in cultures 
from lens-lesioned knockout mice compared to wild-type con-
trols[139, 140].

Because FAP-1 negatively regulates FAS-initiated cell apop-
tosis, it has been suggested to positively regulate tumorigen-
esis.  FAP-1 inhibits FAS-mediated apoptosis in pancreatic 
adenocarcinoma[141, 142] and melanoma[131], and FAP-1 and 
FAS expression highly correlate with cell survival in ovarian 
cancer[143], colon cancer[144], head/neck cancer[145], hepatocel-
lular carcinoma and hepatoblastoma [146, 147].  Ewing’s Sarcoma 
family of tumors (ESFT) is characterized by the formation of 
chimeric fusion protein EWS-FLI1, which is an oncogenic tran-
scriptional factor that promotes tumorigenesis[148].  FAP-1 has 
been identified as a EWS-FLI1 oncogenic fusion protein tran-
scriptional target[149].  FAP-1 is highly expressed in ESFT cells 
and patient tumor samples and is required for ESFT trans-
formed phenotype maintenance[150–152].  Reduction of FAP-1 in 
ESFT cells significantly reduces monolayer and soft-agar cell 
growth and increased sensitivity to etoposide-induced apop-
tosis[149].  

Studies have shown that FAP-1 expression is increased in 
SW480 colon carcinoma cells after treatment with the chemo-
therapeutic agent oxaliplatin.  siRNA knockdown of FAP-1 
reduces cell proliferation and promotes oxaliplatin-induced 
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cell apoptosis, suggesting that FAP-1 inhibition increases 
oxaliplatin efficacy in colon carcinoma treatment[153].  Tumor 
progression shares many characteristics with epithelial-to-
mesenchymal transition (EMT), and cells undergoing EMT are 
more resistant to apoptosis[154].  The miR-200 family of miR-
NAs is a fundamental marker and powerful regulator of EMT, 
as it maintains the epithelial phenotype by suppressing EMT-
inducing transcription factor ZEB1 and ZEB2 expression[155].  
miR-200 family members are frequently downregulated during 
early malignant transformation but are subsequently upregu-
lated in advanced stages in several human cancers[156].  FAP-1 
has been identified as a miR-200c target, and it is responsible 
for the reduced sensitivity to FAS-mediated apoptosis in cells 
in miR-200-inhibited cells, providing a mechanism by which 
cancer cells with reduced miR-200 expression are less sensitive 
to FAS-mediated apoptosis[157] 

In contrast, there is also evidence that FAP-1 may be a tumor 
suppressor.  For example, reduced PTPN13 mRNA expres-
sion by promoter hypermethylation or allelic loss has been 
observed in gastric and hepatocellular carcinomas[158, 159], and 
FAP-1 knockdown enhances PLC5 cell proliferation[159].  In a 
large-scale mutational PTP analysis in colorectal cancers, 19 
PTPN13 mutations were identified, and 7 of them were in the 
PTP domain, which may impair FAP-1’s catalytic activity[160].  
Nevertheless, with 8 domains, FAP-1 is among the largest 
intracellular PTPs, suggesting that it has multiple functions 
and may play positive or negative roles in a context-dependent 
manner.  Thus, FAP-1 is a promising chemotherapy target for 
irradiation-resistant cancer.

STEP in neurological diseases and disorders 
Striatal-enriched protein tyrosine phosphatase (STEP) is 
encoded by PTPN5 and is a classical and brain-specific PTP, 
with two alternative spliced isoforms (STEP46 and STEP61).  
STEP46 is cytoplasmic, while STEP61 localizes to the post-
synaptic density and endoplasmic reticulum[161–163].  STEP has 
a phosphatase domain similar to all other PTPs and a kinase 
interaction motif (KIM), which is also present in HePTP and 
PTP-SL (Figure 2).  The KIM domain allows STEP to interact 
with MAPKs, such as ERK and p38, and STEP dephosphory-
lates tyrosine residues in their activation loops to reduce ERK 
and p38 activation.  ERK activity is significantly higher in the 
striatum, CA2 region of the hippocampus, and central and lat-
eral nuclei of the amygdala in STEP-null mice.  Cultured neu-
rons from STEP-knockout mice have increased ERK phosphor-
ylation upon synaptic stimulation compared to neurons from 
wild-type controls[164].  The p38α·STEP complex structure has 
been solved by NMR and small-angle X-ray scattering data, 
providing a molecular basis of STEP recognition of p38α[165].  
Notably, ERK is a very important player in synaptic and neu-
ronal plasticity and is an essential component in signaling 
pathways that regulate behavioral memory formation[166], and 
p38α has been implicated in the neurological disorder patho-
genesis[167, 168].  

STEP can mediate DHPG (dihydroxyphenylglycine)-induced 
AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid receptor) internalization (Figure 3E), a central process in 
synaptic plasticity.  DHPG stimulation significantly increases 
STEP protein expression, which is likely responsible for GluR2 
(an AMPAR member) dephosphorylation and internalization.  
STEP-inactive mutants abolish AMPAR internalization[169].  
In STEP knockout mice, GluR1 and GluR2 baseline synaptic 
expression is increased compared to wild-type littermates, and 
DHPG-stimulated GluR1 and GluR2 internalization is also 
abolished in these mice[169].  STEP can also regulate NMDAR 
(N-methyl-D-aspartate receptor) (Figure 3E), a glutamate 
receptor involved in synaptic plasticity and memory function.  
STEP blocks NMDAR exocytosis by dephosphorylating and 
inactivating Y420 of FYN kinase[170].  FYN positively regulates 
NMDAR exocytosis to neuronal surfaces by phosphorylating 
Y1472 in NR2B[171].  Alternatively, STEP can promote clathrin-
dependent NMDAR endocytosis by directly dephosphorylat-
ing Y1472 of NR2B[172, 173].

STEP has been linked to many neurological diseases and 
disorders, including Alzheimer’s disease (AD), Hunting-
ton’s disease (HD), schizophrenia, fragile X syndrome (FXS), 
hypoxic-ischemic brain injury, depression, and alcohol use 
disorders[174].  For example, STEP protein level and activity 
are upregulated in the prefrontal cortex of AD patients and in 
the cortex of an AD mouse model.  Interestingly, Aβ-enriched 
medium was sufficient to increase STEP expression and to 
decrease NR1 and NR2B surface expression in wild-type 
cultured cortical neurons and cortical slices, but not in STEP 
knockout cultures.  These data indicate that STEP is required 
for Aβ-induced NMDAR endocytosis[173, 175].  Schizophrenia is 
a mental disorder with behavioral and cognitive deficits par-
tially due to the disruption of glutamatergic signaling.  Schizo-
phrenia patients have significantly higher STEP expression in 
the postmortem anterior cingulated cortex and dorsolateral 
prefrontal cortex, and similar observations have been made 
in mice treated with the psychotomimetics MK-801 and phen-
cyclidine (PCP)[176].  In contrast, STEP knockout mice are less 
sensitive to acute and chronic PCP administration in terms of 
their locomotor and cognitive effects[176].  Furthermore, several 
typical and atypical antipsychotic medications for schizophre-
nia treatment can act through STEP, as antipsychotic treatment 
of mice induces protein kinase A-mediated STEP61 phosphory-
lation and inactivation and increased GluN1/GluN2B receptor 
surface expression[176].  

It has been suggested that STEP proteasome degradation is 
blocked in both AD and schizophrenia, leading to STEP accu-
mulation and glutamate receptor internalization, and further 
contributing to AD and schizophrenia pathogenesis[173, 176].  
Alcohol is known to cause cognitive impairment and memory 
and learning disruption in alcohol abuse disorders, likely 
through hippocampal NMDAR inhibition.  Interestingly, STEP 
mediates alcohol’s inhibitory effects on neuronal NMDAR 
function.  This is further supported by STEP knockout stud-
ies in which alcohol-induced NMDAR function and fear-
conditioned responses were not observed.  However, STEP 
re-introduction into neuronal cultures and slices restored eth-
anol-induced biochemical and electrophysiological deficits[177].  
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Taken together, STEP is a potential novel drug target for the 
treatment of AD, schizophrenia, alcoholism and addiction, 
among other neurological diseases and disorders.

MKP-1 in cancer and neurological disorders 
Mitogen-activated protein kinase phosphatases (MKPs) are a 
group of 11 dual-specificity protein phosphatases.  All MKP 
members are structurally similar with a PTP domain at the 
C-terminus, a KIM domain for MAPK recognition, and an 
N-terminal sequence for subcellular localization (Figure 2).  As 
their name implies, MKPs interact with and dephosphorylate 
pThr and pTyr in MAPK’s activation loop, including ERK, 
JNK, and p38, to downregulate MAPK activity[178].  MKP-1 
was the first identified family member with 367 amino acids, 
and it is an immediate early gene[179, 180].  It is ubiquitously 
expressed, but is expressed most highly in the heart, lungs 
and liver[179].  Its N-terminal LXXLL sequence allows exclusive 
MKP-1 nuclear localization[181].  MKP-1 preferentially dephos-
phorylates p38 and JNK and to a lesser extent, ERK (Figure 
5A)[180, 182–184].  Interestingly, MAPK activation can induce 
MKP-1 transcription upon growth factor stimulation or stress, 
creating a negative feedback regulation loop between MAPK 
and MKP-1[185].  In addition, MKP-1-null mice are viable, fertile 
and have no phenotypic or histologic abnormalities[186].  

MKP-1 is well studied in human cancers because of its direct 
association with MAPK, which is a key regulator of cell prolif-
eration, differentiation, survival, and apoptosis[187, 188].  MKP-1 
overexpression has been detected in many cancers, including 
colon, prostate, bladder, ovarian, breast, and NSCLC[189–194].  
In prostate cancer, MKP-1 expression is inversely correlated 
with JNK activity and apoptotic marker expression[190, 192], and 

MKP-1 overexpression is associated with resistance to FAS-
induced apoptosis in the prostate cancer cell line DU145[195].  
In breast cancer cells, MKP-1 overexpression protects against 
chemotherapy-induced apoptosis, including doxorubicin, 
mechlorethamine, and paclitaxel.  In contrast, siRNA knock-
down of MKP-1 sensitizes cells to chemotherapy-initiated 
apoptosis by increasing JNK activity[196].  Proteasome inhibi-
tion induces MKP-1 expression by decreasing JNK activity.  
MKP-1 knockdown also increases cell sensitivity to protea-
some inhibitors[197].  In a clinical study with 96 patients, MKP-1 
overexpression correlates with likelihood of relapse compared 
to patients with normal MKP-1 levels[198].  In addition, MKP-1 
is strongly expressed in NSCLC tumor tissues and the H-460 
and H-23 cell lines.  siRNA knockdown of MKP-1 resulted in a 
ten-fold increase in cisplatin sensitivity[199].  Moreover, tumors 
induced by MKP-1 siRNA H-460 grow slower in xenograft 
mouse models and show increased cisplatin susceptibility 
compared to parental cell control tumors[199].  These results 
suggest that MKP-1 is an important cancer target that may 
increase the effects of chemotherapy.

MAPK is associated with memory and learning, neuronal 
plasticity and development[200].  As a MAPK regulator, MKP-1 
may thus play important roles in many brain functions.  MKP1 
is a transcriptional c-Jun target, and MKP-1 antagonizes JNK-
dependent apoptosis in sympathetic neurons[201].  MKP-1 
overexpression blocks JNK-mediated c-Jun phosphorylation 
and subsequent sympathetic neuron apoptosis, while MKP-1 
knockdown enhances nerve growth factor (NGF) withdrawal-
induced death.  Loss of MKP-1 results in decreased numbers 
of superior cervical ganglion neurons at P1 during develop-
mental sympathetic neuron death[201].  These results suggest 
that MKP-1 is part of a negative feedback loop to modulate 
MLK-JNK-c-Jun signaling.  Neurotrophin brain-derived neu-
rotrophic factor (BDNF) can induce MKP-1 expression to regu-
late outgrowth and activity-dependent remodeling of axonal 
arbors in vivo, which causes spatiotemporal JNK dephos-
phorylation and its substrates and contribute to microtubule 
destabilization[202].  Neurons from MKP-1 knockout mice can-
not produce BDNF-induced axon branches.  Because axonal 
arbor formation and maturation is strongly associated with 
increased synaptic connectivity and are positively regulated 
by BDNF, MKP-1 may play an important role in synaptogen-
esis.  Furthermore, MKP-1 dysregulation may have deleterious 
effects on learning and memory, which depend on plastic-
ity[203].  

MKP-1 is also a key factor in major depressive disorder 
(MDD) pathophysiology[204].  In rat and mouse models, hip-
pocampal MKP-1 expression increases upon stress or viral-
mediated gene transfer, leading to depressive behaviors.  
Chronic treatment with antidepressants normalizes stress-
induced MKP-1 expression and depressive behaviors[204].  It 
was observed that MKP-1 knockout mice are more resistant 
to stress compared to wild-type littermates, and this effect 
is mediated by increased ERK activity, consistent with stud-
ies that MEK-ERK signaling is essential for antidepressant 
responses[204].  Moreover, MKP-1 expression is significantly 

Figure 5.  The physiological/pathological signal pathways involving 
MKP-1 (A) and PRL1/2/3 (B).  Arrow represents positive regulation.  T-bar 
represents dephosphorylation if it points to a phosphate group or specific 
pY, otherwise it represents negative regulation.  See the text for regulation 
details.
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increased in postmortem hippocampal tissues from 21 indi-
viduals with depression compared to samples from 18 healthy 
age, gender, tissue pH and postmortem interval-matched con-
trols, indicating a direct clinical association between MKP-1 
overexpression and depression[204].  Thus, MKP-1 may also be 
a novel and promising drug target for the treatment of depres-
sion and other mood disorders.

PRLs in cancer
PRLs (phosphates of regenerating liver) are a subclass of 
dual specific phosphatases with 3 similar members, PRL1, 
PRL2 and PRL3[205].  PRLs have an N-terminal PTP catalytic 
domain, a C-terminal polybasic region, and a prenylation 
CAAX sequence (Figure 2), which is a unique feature to this 
subclass and is responsible for PRL plasma or intracellular 
membrane localization[206, 207].  Given their similarities, PRLs 
act redundantly in many biological functions (Figure 5B).  For 
example, both PRL1 and PRL3 regulate focal adhesion contact 
though Src activation, although PRL1 does so by enhancing 
Y419 phosphorylation in the kinase activation loop[208], while 
PRL3 downregulates the negative Src regulator CSK, leading 
to a decrease in Y530 autoinhibitory Src phosphorylation[209].  
PRL2 targets p130CAS signaling to regulate Src-independent 
focal adhesion contact[210].  PRL1 and PRL3 can downregulate 
the p53 tumor suppressor by stabilizing MDM2 and increas-
ing PIRH2 transcription[211, 212], whereas PRL2 regulation of p53 
has not been elucidated.  In addition, PRL1 and PRL3 can both 
activate and promote matrix metalloproteinase (MMP) expres-
sion, extracellular secreted proteins with important roles 
in tumor metastasis.  PRL1 upregulates MMP2 and MMP9 
through Src and ERK activation[213], whereas PRL3 upregulates 
MMP2 and MMP7, but not MMP9, via integrin β1 and ERK 
pathways[214].

Given their role in regulating p53 and MMPs, PRLs 
may play important roles in human cancer pathophysi-
ology[205, 215, 216].  For example, PRL1 is overexpressed in lung 
and pancreatic cancer cell lines with increased invasive prop-
erties, which are reversed by PRL1 knockdown[208, 213, 217, 218].  
PRL2 is overexpressed in pancreatic, breast and lung cancer, 
as well as pediatric AML.  PRL2 expression levels are associ-
ated with tumor progression and poor prognosis[210, 217, 219, 220].  
In addition, PRL3 overexpression is widely found in cancers, 
including colon, breast, gastric, oral, cervix, and ovarian carci-
nomas, multiple myelomas and AML[215, 221].  In colon cancer, 
PRL3 overexpression positively correlates to poor progno-
sis and liver metastasis[222].  Studies have shown that stable 
PRL3 expression increases cell motility and invasiveness and 
induces tumor formation and metastasis in mouse models[223].  
In contrast, PRL3 siRNA knockdown blocks cell motility and 
metastasis, suggesting that PRL3 is a potential cancer treat-
ment target[224, 225].  PRL3 can upregulate PDGFR, Eph, and 
integrin receptor, as shown in a proteomic analysis of PRL3-
overexpressing HEK293 cells.  

Phosphoproteomic data support the intracellular activation 
of an extensive signaling network normally governed by extra-
cellular ligand-activated transmembrane growth factor, cyto-

kine, and integrin receptors in PRL3-overexpressing cells[226].  
Similarly, PRL3 induces EGFR hyperactivation and its down-
stream signaling pathways in multiple human cancers, con-
tributing to cell growth, migration and tumorigenicity.  PRL3-
overexpressing cancer cells are highly sensitive to oncogenic 
EGFR signaling, as they are sensitive to EGFR inhibiting treat-
ment[227].  More recent studies of genetically modified mouse 
models demonstrate that PRL2 is required for several devel-
opmental processes (placenta, spermatogenesis, hematopoietic 
stem cell self-renewal) and reveal a novel mechanistic connec-
tion between PRL2 and PTEN[228–230].  Given the strong cancer 
susceptibility to subtle variations in PTEN levels, PRL2’s abil-
ity to repress PTEN expression qualifies it as an oncogene and 
a novel target for anti-cancer agents.  Taken together, PRLs are 
of great therapeutic importance as clinical predictive biomark-
ers for personalized medicine and novel drug targets for high 
metastatic potential cancers.

LMWPTP in cancer and diabetes
Low molecular weight protein tyrosine phosphatase (LMW-
PTP) has a single catalytic domain (Figure 2) with an approxi-
mate molecular weight of 18 kDa.  It is the sole class II PTP 
member, and its overall sequence and 3D structures are dif-
ferent from the aforementioned higher molecular weight 
PTPs, with the exception of the conserved PTP signature motif 
(P-loop).  LMWPTP is well conserved across many prokary-
otic and eukaryotic species, suggesting that it may play fun-
damental roles throughout evolution[231].  There are 4 human 
LMWPTP isoforms, and 2 are catalytically active, namely IF1 
and IF2 (or LMWPTP-A and LMWPTP-B)[232, 233].  These two 
isoforms have very high sequence and structure similarity, 
and the minor difference exists in a flexible loop flanking the 
active site, which is thought to determine their physiological 
substrate specificity[234].  Our knowledge of human LMWPTPs 
is primarily from the study of IF1.  

LMWPTP regulates many receptor tyrosine kinase and 
growth factor-induced signaling pathways, which control 
cell growth, differentiation and adhesion (Figure 6A).  For 
example, phosphorylated PDGF receptor is a well-known 
LMWPTP substrate dephosphorylated on Y857 in its β sub-
unit[235–237], which is a regulatory residue for PDGF receptor 
kinase activity.  LMWPTP also dephosphorylates Src kinase 
and STAT family transcription factors, and block their PDGF 
receptor-induced activation[238–240].  In addition, LMWPTP can 
dephosphorylate and inactivate FAK[241] and p190RhoGAP[242], 
which are involved in cell-extracellular matrix adhesion.  
More importantly, EphA2 is a preferred LMWPTP substrate 
in tumor cells[243–245].  EphA2 is a receptor tyrosine kinase over-
expressed in many human cancers, especially in aggressive 
and metastatic types[243].  In contrast to PDGF receptor, EphA2 
phosphorylation inhibits cell growth and migration, while its 
dephosphorylation induces oncogenic characteristics[246, 247].  
LMWPTP overexpression in epithelial cells induces colony 
formation in soft agar and promotes neoplastic transforma-
tion[243].  LMWPTP-transfected NIH3T3 fibroblasts can induce 
larger fibrosarcomas in nude mice with higher proliferation 
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activity and greatly dephosphorylated EphA2 compared to 
mock-transfected controls.  The opposite was true in dominant 
negative/inactive LMWPTP-transfected cells[244].  Because 
LMWPTP is overexpressed in many tumor types, LWMPTP 
and EphA2 may form an oncogenic axis to promote tumor ini-
tiation, progression and metastasis.

LMWPTP is also a key negative regulator of insulin signal-
ing through tyrosine dephosphorylation of the insulin recep-
tor (IR) β subunits [248].  A study from Eli Lilly demonstrated 
that decreased LMWPTP expression by a specific antisense 
oligonucleotide (ASO) increases IR, PI3K, and AKT phosphor-
ylation, thus sensitizing insulin signaling[249].  ASO treatment 
resulted in decreased plasma insulin, glucose, triglyceride and 
cholesterol levels, with improved glucose and insulin toler-
ance in mice[249].  Interestingly, LMWPTP inhibition primarily 
affects liver and adipose tissues, in contrast to PTP1B, which 
regulates insulin signaling in liver and skeletal muscle.  These 
data suggest that PTP1B and LMWPTP have different tissue 
specificity in insulin signaling regulation[249].  Epidemiological 
studies have indicated that LMWPTP levels positively associ-
ate with serum glucose and triglyceride concentrations, and 
the highest LMWPTP levels have been recorded in diabetic 
and aged patients[250].  In addition, clinical studies have dem-
onstrated that genotypes with elevated LMWPTP IF1 isoforms 
have the highest diabetic retinopathy incidence, a common but 
severe diabetic complication[251].  These findings indicate that 
LMWPTP is also a novel type 2 diabetes drug target.  

CDC25 in cancer
The CDC25 phosphatases are dual-specificity phosphatases 
comprised of 3 members, CDC25A, CDC25B, and CDC25C, 
encoded by genes on 3 different chromosomes[252–255].  
CDC25A, CDC25B, and CDC25C have 423 to 566 amino acids 
with a conserved C-terminal PTP catalytic domain and a non-
conserved N-terminal regulatory domain for various post-
translational modifications, including phosphorylation, ubiq-
uitination, proline isomerization, and 14-3-3 sequestration[256].  
The CDC25 family plays critical roles in cell cycle control by 
dephosphorylating negative regulatory residues of cyclin-
dependent kinases (CDKs) (Figure 6B), which are important 
elements of cell cycle progression[257].  Specifically, CDC25A 
plays a significant role in the G1-S transition by activating the 
cyclin A and cyclin E-CDK2 complexes[258–260]; CDC25B par-
tially activates the centrosomal cyclin B-CDK1 complex during 
the G2 to mitosis transition, and nuclear CDC25C further acti-
vates the complex during mitosis[261–263].  

Dysregulated cell cycle control is a hallmark of cancer cells 
to gain a growth advantage.  Thus, the CDC25 family has 
gained much attention as potential cancer drug targets[256, 264].  
Studies have shown that CDC25 causes cell cycle deregulation 
and consequent cell genome instability, which contributes to 
cancer initiation and progression.  For instance, CDC25A and 
CDC25B can transform normal mouse embryonic fibroblasts 
into oncogenic foci in soft agar and tumors in nude mice with 
oncogenic Ras or loss of RB1[265].  CDC25B expression enhances 
mammary epithelial cell proliferation and induces precocious 
alveolar hyperplasia[266], and further increases tumor onset sus-
ceptibility upon carcinogen exposure (9,10-dimethyl-1, 2-benz-
anthracene, DMBA)[267].  CDC25A, CDC25B, and CDC25C 
have been found to be overexpressed in a number of human 
cancers, including breast, colon, gastric, lung, colorectal, pan-
creatic, neuroblastoma, head and neck, and non Hodgkin’s 
lymphoma[264], and their overexpression occurs at all stages 
of tumorigenesis, suggesting that they may play critical roles 
throughout tumor development.  Various small molecule 
CDC25 inhibitors have been developed and possess anti-
cancer properties.  For example, the IPSEN research laboratory 
developed BN82685 to inhibit CDC25A, B, C with IC50 values 
of 250, 250, and 170 nmol/L, respectively[268].  This compound 
blocks proliferation across a large panel of human cells, as 
well as tumor growth in xenograft mice with the pancreas car-
cinoma cell line Mia PaCa-2[268].  Therefore, the CDC25 family 
of phosphatases represent novel and attractive cancer targets.

Strategies to modulate PTP activity
There are several ways to modulate PTP activity, and the 
most popular strategy is to design active site directed and 
non-hydrolyzable pTyr mimetic-based small molecules.  This 
technique has successfully produced potent inhibitors against 
several PTPs[7, 25].  However, the major challenges of this 
strategy are specificity due to conserved PTP structure, and 
cell permeability due to the positively charged PTP active sites.  
The cell permeability and inhibitor specificity are important 

Figure 6.  The physiological/pathological signal pathways involving 
LMWPTP (A) and CDC25 (B).  Arrow represents positive regulation.  T-bar 
represents dephosphorylation if it points to a phosphate group or specific 
pY, otherwise it represents negative regulation.  See the text for regulation 
details.
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considerations in PTP-based drug discovery because PTP 
domains are cytosolic and many PTPs may function as tumor 
suppressors and should not be inadvertently targeted.  The 
recent discovery of cell permeable pTyr mimetic salicylic 
acid-based inhibitors have achieved appreciable success in 
addressing these challenges[269].  

Targeting allosteric PTP1B sites is a good strategy in the 
development of high specificity and cell permeability inhibi-
tors[270].  Allosteric inhibitors are not required to have multiple 
negative charges and therefore may possess more favorable 
pharmacological properties.  However, it still seems difficult 
to improve their potency, as allosteric sites are not as well-
defined as the active site.  

Another strategy is to develop mechanism-based inhibitors, 
which inactivate the PTP catalytic cysteine residue through 
oxidation or other modifications.  This strategy has been 
employed in quinone-based CDC25 inhibitors[11].  However, 
quinone compounds may induce reactive oxygen species, 
which may inactivate various redox-sensitive enzymes and 
cause in vivo toxicity[271, 272].  Although they seemingly possess 
great activities against PTPs in vitro, they are not appealing for 
drug development.  Irreversible and selective kinase inhibi-
tor development has generated renewed interest in covalent 
enzyme inhibitors[273, 274].  This can be achieved by building a 
Michael acceptor into a known competitive and specific inhibi-
tor, which then forms a covalent bond with an adjacent cys-
teine residue.  Thus, it will be interesting to employ a similar 
approach to develop irreversible and specific PTP inhibitors.  
Unlike quinone-based PTP inhibitors, these irreversible inhibi-
tors would not target all redox-sensitive enzymes in cells.  

In addition, ASOs against PTP1B and LMWPTP have been 
reported[249, 275, 276].  Because they are ~20-mer oligonucleotides 
that target PTP mRNA, they are highly specific.  PTP1B and 
LMWPTP ASOs have been reported to increase insulin sensi-
tivity, reduce body glucose level, and control weight gain in 
animal studies and clinical trials, indicating their therapeutic 
potential.  siRNAs may be an alternative approach in targeting 
PTPs through similar mechanisms.  Nevertheless, challenges 
include low target delivery efficiency and safety of long-term 
consumption.

Concluding remarks
Protein-tyrosine phosphorylation dysregulation is a major 
cause of various human diseases, and great success has been 
achieved in PTK target drug discovery[3].  PTPs represent 
promising next generation drug targets for decades to come.  
For instance, PTP1B and LMWPTP are well-known negative 
regulators of the insulin signaling pathway and are excellent 
drug targets for type 2 diabetes and insulin resistance.  SHP2, 
PRLs, LMWPTP, CDC25, CD45, FAP-1, and MKP-1 play posi-
tive roles in tumorigenesis by distinct mechanisms, and they 
can be targeted to combat a number of human cancers or to 
sensitize cancer chemotherapy or radiation therapy.  LYP 
and CD45 are exciting drug targets for autoimmune diseases, 
such as type 1 diabetes, rheumatoid arthritis, and systemic 

lupus erythematosus.  As a brain-restricted PTP, STEP is an 
emerging target for neurological disease and disorder treat-
ment, such as Alzheimer’s disease, Huntington’s disease, 
schizophrenia, and alcohol abuse.  In addition, MKP-1 may be 
relevant in depression and may be a novel target for this com-
mon and debilitating neurological illnesses.  

Although there is growing recognition of PTPs as promis-
ing therapeutic targets, there are no commercialized PTP 
inhibitors despite extensive pharmaceutical industry efforts.  
The reasons for this lack of success in PTP-based drug discov-
ery are both historical and technological.  Historically, PTP 
research and development has run approximately 10 years 
behind PTK research because PTKs were discovered earlier 
and because PTPs have been erroneously viewed as exclusive 
negative regulators of hyperactive pathways in disease.  Prior 
to the Human Genome Project, it was commonly believed that 
PTPs constituted a small group of ‘housekeeping’ enzymes 
with functions too broad and conserved to be selectively ther-
apeutically inhibited.  It is now known that there are actually 
more PTPs (107) than PTKs (90), and accordingly, many PTPs 
have unique and non-redundant functions in health and dis-
ease, making them attractive drug targets.

Unfortunately, PTPs present several key challenges to 
traditional drug development.  The PTP active site is highly 
conserved, so it is not trivial to produce compounds that can 
selectively inhibit single PTPs.  This is an issue common to 
most target families that act upon common substrate motifs 
(such as pTyr for PTPs or ATP for kinases) and has been over-
come in the kinase field by high throughput screening and 
structure-based drug design.  A more serious issue in PTP-
based drug discovery is that the PTP active site is highly posi-
tively charged and contains a conserved catalytic cysteine resi-
due.  Thus, high-throughput screening of large compound col-
lections usually leads to initial hits that are strongly negatively 
charged or contain oxidizing groups that irreversibly react 
with the catalytic cysteine.  Heavily charged molecules do not 
readily cross cell membranes and cannot be made into drugs 
in their native form, and chemically-reactive compounds (eg, 
quinones) have poor safety and selectivity profiles, making 
them unappealing drug candidates.  Despite these challenges, 
a new, focused, pragmatic approach to PTP inhibitor drug 
discovery and development is required.  Recent studies using 
fragment-based and structure-guided approaches to target 
the PTP active site and adjacent less-conserved pockets dem-
onstrate that it is feasible to obtain PTP inhibitors with high 
affinity, selectivity, and excellent in vivo efficacy in animal 
models of oncology, diabetes/obesity, autoimmunity, and 
tuberculosis[277].  Further work will advance the lead genera-
tion paradigm and create a ‘PTP-based drug discovery plat-
form’ that will ultimately broadly impact drug development 
of tomorrow.

Acknowledgements
This work was supported in part by National Institutes of 
Health Grants CA69202 and CA126937.



1239

www.chinaphar.com
He RJ et al

Acta Pharmacologica Sinica

npg

References
1 Sams-Dodd F.  Target-based drug discovery: is something wrong? 

Drug Discov Today 2005; 2: 139–47.
2 Overington JP, Al-Lazikani B, Hopkins AL.  Opinion–How many drug 

targets are there?  Nat Rev Drug Discov 2006; 12: 993–6.
3 Cohen P, Alessi DR.  Kinase drug discovery - what's next in the field? 

ACS Chem Biol 2013; 1: 96–104.
4 Hunter T.  Protein-kinases and phosphatases — the yin and yang of 

protein-phosphorylation and signaling.  Cell 1995; 2: 225–36.
5 Deng Y, Deng H, Zhu SL, Xu P, Shi ZY, Shan BL. Nature with Math 

Physics Yin Yang.  J Math Med 1999; 1: 48–9.
6 Tonks NK, Neel BG.  Combinatorial control of the specificity of protein 

tyrosine phosphatases.  Curr Opin Cell Biol 2001; 2: 182–95.
7 Bialy L, Waldmann H.  Inhibitors of protein tyrosine phosphatases: 

next-generation drugs?  Angew Chem Int Edit 2005; 25: 3814–39.
8 Tonks NK.  Protein tyrosine phosphatases: from genes, to function, to 

disease.  Nat Rev Mol Cell Biol 2006; 11: 833–46.
9 Julien SG, Dube N, Hardy S, Tremblay ML.  Inside the human cancer 

tyrosine phosphatome.  Nat Rev Cancer 2011; 1: 35–49.
10 Tonks NK.  Protein tyrosine phosphatases — from housekeeping 

enzymes to master regulators of signal transduction.  FEBS J 2013; 2: 
346–78.

11 He R, Zhang ZY. Current status of PTP-based therapeutics.  In: Neel 
BG, Tonks NK, editors.  Protein tyrosine phosphatases in cancer.  
New York: Cancer Research at Springer; 2014.  in press.

12 Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, et al.  
Protein tyrosine phosphatases in the human genome.  Cell 2004; 6: 
699–711.

13 Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, et al.  Eya 
protein phosphatase activity regulates Six1-Dach-Eya transcriptional 
effects in mammalian organogenesis.  Nature 2003; 6964: 247–54.

14 van Huijsduijnen RH, Bombrun A, Swinnen D.  Selecting protein 
tyrosine phosphatases as drug targets.  Drug Discov Today 2002; 19: 
1013–9.

15 Tonks NK, Diltz CD, Fischer EH.  Purification of the major protein-
tyrosine-phosphatases of human-placenta.  J Biol Chem 1988; 14: 
6722–30.

16 Zhang ZY, Lee SY.  PTP1B inhibitors as potential therapeutics in the 
treatment of type 2 diabetes and obesity.  Expert Opin Investig Drugs 
2003; 2: 223–33.

17 Bandyopadhyay D, Kusari A, Kenner KA, Liu F, Chernoff J, Gustafson 
TA, et al.  Protein-tyrosine phosphatase 1B complexes with the insulin 
receptor in vivo and is tyrosine-phosphorylated in the presence of 
insulin.  J Biol Chem 1997; 3: 1639–45.

18 Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M.  Tyrosine 
dephosphorylation and deactivation of insulin receptor substrate-1 
by protein-tyrosine phosphatase 1B — Possible facilitation by the 
formation of a ternary complex with the GRB2 adaptor protein.  J Biol 
Chem 2000; 6: 4283–9.

19 Kaszubska W, Falls HD, Schaefer VG, Haasch D, Frost L, Hessler P, 
et al.  Protein tyrosine phosphatase 1B negatively regulates leptin 
signaling in a hypothalamic cell line.  Mol Cell Endocrinol 2002; 1-2: 
109–18.

20 Lund IK, Hansen JA, Andersen HS, Moller NPH, Billestrup N.  
Mechanism of protein tyrosine phosphatase 1B-mediated inhibition 
of leptin signalling.  J Mol Endocrinol 2005; 2: 339–51.

21 Ahmad F, Li PM, Meyerovitch J, Goldstein BJ.  Osmotic loading of 
neutralizing antibodies demonstrates a role for protein-tyrosine-
phosphatase 1b in negative regulation of the insulin action pathway.  
J Biol Chem 1995; 35: 20503–8.

22 Zhang S, Zhang ZY.  PTP1B as a drug target: recent developments in 

PTP1B inhibitor discovery.  Drug Discov Today 2007; 9–10: 373–81.
23 Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, 

et al.  Increased insulin sensitivity and obesity resistance in mice 
lacking the protein tyrosine phosphatase-1B gene. Science 1999; 
5407: 1544–8.

24 Haj FG, Zabolotny JM, Kim YB, Kahn BB, Neel BG. Liver-specific 
protein-tyrosine phosphatase 1B (PTP1B) re-expression alters 
glucose homeostasis of PTP1B–/– mice. J Biol Chem 2005; 15: 
15038–46.

25 Combs AP.  Recent advances in the discovery of competitive protein 
tyrosine phosphatase 1B inhibitors for the treatment of diabetes, 
obesity, and cancer. J Med Chem 2010; 6: 2333–44.

26 He R, Zeng LF, He Y, Zhang ZY.  Recent advances in PTP1B inhibitor 
development for the treatment of type-2 diabetes and obesity. In: 
Jones RM, editor. New therapeutic strategies for type 2 diabetes: 
small molecule approaches.  London: Royal Society of Chemistry; 
2012.  p 142–76.

27 Lessard L, Stuible M, Tremblay ML. The two faces of PTP1B in cancer.  
Biochim Biophys Acta 2010; 1804: 613–9.

28 Bjorge JD, Pang A, Fujita DJ. Identification of protein-tyrosine 
phosphatase 1B as the major tyrosine phosphatase activity capable 
of dephosphorylating and activating c-Src in several human breast 
cancer cell lines. J Biol Chem 2000; 52: 41439–46.

29 Dube N, Cheng A, Tremblay ML.  The role of protein tyrosine 
phosphatase 1B in Ras signaling.  Proc Natl Acad Sci U S A 2004; 7: 
1834–9.

30 Wiener JR, Kerns BJ, Harvey EL, Conaway MR, Iglehart JD, Berchuck 
A, et al.  Overexpression of the protein tyrosine phosphatase PTP1B 
in human breast cancer: association with p185c-erbB-2 protein 
expression.  J Natl Cancer Inst 1994; 5: 372–8.

31 Bentires-Alj M, Neel BG.  Protein-tyrosine phosphatase 1B is required 
for HER2/Neu-induced breast cancer.  Cancer Res 2007; 6: 2420–4.

32 Julien SG, Dube N, Read M, Penney J, Paquet M, Han YX, et al.  
Protein tyrosine phosphatase 1B deficiency or inhibition delays 
ErbB2-induced mammary tumorigenesis and protects from lung 
metastasis.  Nat Genet 2007; 3: 338–46.

33 Chen QT, Li Y, Li Z, Zhao Q, Fan LQ.  Overexpression of PTP1B in 
human colorectal cancer and its association with tumor progression 
and prognosis.  J Mol Histol 2014; 2: 153–9.

34 Freeman RM, Plutzky J, Neel BG.  Identification of a human src 
homology 2-containing protein-tyrosine-phosphatase–a putative 
homolog of drosophila corkscrew.  Proc Natl Acad Sci U S A 1992; 
23: 11239–43.

35 Neel BG, Gu HH, Pao L.  The 'Shp'ing news: SH2 domain-containing 
tyrosine phosphatases in cell signaling.  Trends Biochem Sci 2003; 6: 
284–93.

36 Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE.  Crystal 
structure of the tyrosine phosphatase SHP-2.  Cell 1998; 4: 441–50.

37 Klinghoffer RA, Kazlauskas A.  Identification of a putative syp 
substrate, the pdgf-beta receptor.  J Biol Chem 1995; 38: 22208–17.

38 Ren Y, Meng SS, Mei L, Zhao ZJ, Jove R, Wu J.  Roles of Gab1 and 
SHP2 in paxillin tyrosine dephosphorylation and Src activation in 
response to epidermal growth factor.  J Biol Chem 2004; 9: 8497–
505.

39 Hanafusa H, Torii S, Yasunaga T, Matsumoto K, Nishida E.  Shp2, an 
SH2-containing protein-tyrosine phosphatase, positively regulates 
receptor tyrosine kinase signaling by dephosphorylating and 
inactivating the inhibitor sprouty.  J Biol Chem 2004; 22: 22992–5.

40 Jarvis LA, Toering SJ, Simon MA, Krasnow MA, Smith-Bolton RK.  
Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine 
phosphatases.  Development 2006; 6: 1133–42.



1240

www.nature.com/aps
He RJ et al

Acta Pharmacologica Sinica

npg

41 Li W, Nishimura R, Kashishian A, Batzer AG, Kim WJH, Cooper JA, et 
al.  A new function for a phosphotyrosine phosphatase - linking grb2-
sos to a receptor tyrosine kinase.  Mol Cell Biol 1994; 1: 509–17.

42 Zhang SQ, Tsiaras WG, Araki T, Wen GY, Minichiello L, Klein R, et 
al.  Receptor-specific regulation of phosphatidylinositol 3'-kinase 
activation by the protein tyrosine phosphatase Shp2.  Mol Cell Biol 
2002; 12: 4062–72.

43 Mattoon DR, Lamothe B, Lax I, Schlessinger J.  The docking protein 
Gab1 is the primary mediator of EGF-stimulated activation of the PI-
3K/Akt cell survival pathway.  BMC Biol 2004; 2: 24.

44 Chan G, Kalaitzidis D, Neel BG.  The tyrosine phosphatase Shp2 
(PTPN11) in cancer.  Cancer Metastasis Rev 2008; 2: 179–92.

45 Chan RJ, Feng GS.  PTPN11 is the first identified proto-oncogene that 
encodes a tyrosine phosphatase.  Blood 2007; 3: 862–7.

46 Miyamoto D, Miyamoto M, Takahashi A, Yomogita Y, Higashi H, 
Kondo S, et al.  Isolation of a distinct class of gain-of-function SHP-
2 mutants with oncogenic RAS-like transforming activity from solid 
tumors.  Oncogene 2008; 25: 3508–15.

47 Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL, et 
al.  Mouse model of Noonan syndrome reveals cell type- and gene 
dosage-dependent effects of Ptpn11 mutation.  Nat Med 2004; 8: 
849–57.

48 Chan G, Kalaitzidis D, Usenko T, Kutok JL, Yang WT, Mohi MG, et al.  
Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via 
cell-autonomous effects on multiple stages of hematopoiesis.  Blood 
2009; 18: 4414–24.

49 Emanuel PD, Shannon KM, Castleberry RP.  Juvenile myelomonocytic 
leukemia: molecular understanding and prospects for therapy.  Mol 
Med Today 1996; 11: 468–75.

50 Chan RJ, Leedy MB, Munugalavadla V, Voorhorst CS, Li YJ, Yu MG, 
et al.  Human somatic PTPN11 mutations induce hematopoietic-cell 
hypersensitivity to granulocyte-macrophage colony-stimulating factor.  
Blood 2005; 9: 3737–42.

51 Yang ZY, Li YP, Yin FQ, Chan RJ.  Activating PTPN11 mutants promote 
hematopoietic progenitor cell-cycle progression and survival.  Exp 
Hematol 2008; 10: 1285–96.

52 Zhang X, He YT, Liu SJ, Yu ZH, Jiang ZX, Yang ZY, et al.  Salicylic acid 
based small molecule inhibitor for the oncogenic Src homology-2 
domain containing protein tyrosine phosphatase-2 (SHP2).  J Med 
Chem 2010; 6: 2482–93.

53 Liu W, Yu B, Xu G, Xu WR, Loh ML, Tang LD, et al.  Identification 
of cryptotanshinone as an inhibitor of oncogenic protein tyrosine 
phosphatase SHP2 (PTPN11).  J Med Chem 2013; 18: 7212–21.

54 Yu B, Liu W, Yu WM, Loh ML, Alter S, Guvench O, et al.  Targeting 
protein tyrosine phosphatase SHP2 for the treatment of PTPN11-
associated malignancies.  Mol Cancer Ther 2013; 9: 1738–48.

55 Mali RS, Ma PL, Zeng LF, Martin H, Ramdas B, He YT, et al.  Role 
of SHP2 phosphatase in KIT-induced transformation: identification 
of SHP2 as a druggable target in diseases involving oncogenic KIT.  
Blood 2012; 13: 2669–78.

56 Aceto N, Sausgruber N, Brinkhaus H, Gaidatzis D, Martiny-Baron 
G, Mazzarol G, et al.  Tyrosine phosphatase SHP2 promotes breast 
cancer progression and maintains tumor-initiating cells via activation 
of key transcription factors and a positive feedback signaling loop.  
Nat Med 2012; 4: 529–37.

57 Xu J, Zeng LF, Shen WH, Turchi JJ, Zhang ZY.  Targeting SHP2 for 
EGFR inhibitor resistant non-small cell lung carcinoma.  Biochem 
Biophys Res Commun 2013; 4: 586–90.

58 Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM.  Cloning and 
characterization of a lymphoid-specific, inducible human protein 
tyrosine phosphatase, Lyp.  Blood 1999; 6: 2013–24.

59 Mustelin T, Vang T, Bottini N.  Protein tyrosine phosphatases and the 
immune response.  Nat Rev Immunol 2005; 1: 43–57.

60 Vang T, Miletic AV, Arimura Y, Tautz L, Rickert RC, Mustelin T.  Protein 
tyrosine phosphatases in autoimmunity.  Annu Rev Immunol Palo 
Alto: Annual Reviews; 2008.  p 29–55.

61 Fousteri G, Liossis SNC, Battaglia M.  Roles of the protein tyrosine 
phosphatase PTPN22 in immunity and autoimmunity.  Clin Immunol 
2013; 3: 556–65.

62 Cloutier JF, Veillette A.  Cooperative inhibition of T-cell antigen 
receptor signaling by a complex between a kinase and a phos-
phatase.  J Exp Med 1999; 1: 111–21.

63 Gjorloff-Wingren A, Saxena M, Williams S, Hammi D, Mustelin T.  
Characterization of TCR-induced receptor-proximal signaling events 
negatively regulated by the protein tyrosine phosphatase PEP.  Eur J 
Immunol 1999; 12: 3845–54.

64 Cloutier JF, Veillette A.  Association of inhibitory tyrosine protein 
kinase p50csk with protein tyrosine phosphatase PEP in T cells and 
other hemopoietic cells.  EMBO J 1996; 18: 4909–18.

65 Gregorieff A, Cloutier JF, Veillette A.  Sequence requirements for 
association of protein-tyrosine phosphatase PEP with the Src 
homology 3 domain of inhibitory tyrosine protein kinase p50(csk).  J 
Biol Chem 1998; 21: 13217–22.

66 Ghose R, Shekhtman A, Goger MJ, Ji H, Cowburn D.  A novel, specific 
interaction involving the Csk SH3 domain and its natural ligand.  Nat 
Struct Biol 2001; 11: 998–1004.

67 Hasegawa K, Martin F, Huang GM, Tumas D, Diehl L, Chan AC.  PEST 
domain-enriched tyrosine phosphatase (PEP) regulation of effector/
memory T cells.  Science 2004; 5658: 685–9.

68 Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani 
M, et al.  A functional variant of lymphoid tyrosine phosphatase is 
associated with type I diabetes.  Nat Genet 2004; 4: 337–8.

69 Pei Z, Chen X, Sun C, Du H, Wei H, Song W, et al.  A novel single 
nucleotide polymorphism in the protein tyrosine phosphatase N22 
gene (PTPN22) is associated with type 1 diabetes in a Chinese 
population.  Diabet Med 2014; 2: 219–26.

70 Begovich AB, Carlton VEH, Honigberg LA, Schrodi SJ, Chokkalingam 
AP, Alexander HC, et al.  A missense single-nucleotide polymorphism 
in a gene encoding a protein tyrosine phosphatase (PTPN22) is 
associated with rheumatoid arthritis.  Am J Hum Genet 2004; 2: 
330–7.

71 Lee AT, Li W, Liew A, Bombardier C, Weisman M, Massarotti EM, et 
al.  The PTPN22 R620W polymorphism associates with RF positive 
rheumatoid arthritis in a dose-dependent manner but not with HLA-
SE status.  Genes Immun 2005; 2: 129–33.

72 Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson 
JMM, et al.  Replication of an association between the lymphoid 
tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, 
and evidence for its role as a general autoimmunity locus.  Diabetes 
2004; 11: 3020–3.

73 Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson 
PT, et al.  The codon 620 tryptophan allele of the lymphoid tyrosine 
phosphatase (LYP) gene is a major determinant of Graves' disease.  J 
Clin Endocrinol Metab 2004; 11: 5862–5.

74 Vandiedonck C, Capdevielle C, Giraud M, Krumeich S, Jais JP, Eymard 
B, et al.  Association of the PTPN22*R620W polymorphism with 
autoimmune myasthenia gravis.  Ann Neurol 2006; 2: 404–7.

75 Kyogoku C, Langefeld CD, Ortmann WA, Lee A, Selby S, Carlton VEH, 
et al.  Genetic association of the R620W polymorphism of protein 
tyrosine phosphatase PTPN22 with human SLE.  Am J Hum Genet 
2004; 3: 504–7.

76 Vang T, Congia M, Macis MD, Musumeci L, Orru V, Zavattari P, et al.  



1241

www.chinaphar.com
He RJ et al

Acta Pharmacologica Sinica

npg

Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-
function variant.  Nat Genet 2005; 12: 1317–9.

77 Vang T, Liu WH, Delacroix L, Wu SD, Vasile S, Dahl R, et al.  LYP 
inhibits T-cell activation when dissociated from CSK.  Nat Chem Biol 
2012; 5: 437–46.

78 Zhang JY, Zahir N, Jiang QH, Miliotis H, Heyraud S, Meng XW, et 
al.  The autoimmune disease-associated PTPN22 variant promotes 
calpain-mediated Lyp/Pep degradation associated with lymphocyte 
and dendritic cell hyperresponsiveness.  Nat Genet 2011; 9: 902–
U122.

79 Dai XZ, James RG, Habib T, Singh S, Jackson S, Khim S, et al.  A 
disease-associated PTPN22 variant promotes systemic autoimmunity 
in murine models.  J Clin Invest 2013; 5: 2024–36.

80 Stanford SM, Krishnamurthy D, Falk MD, Messina R, Debnath B, Li 
S, et al.  Discovery of a novel series of inhibitors of lymphoid tyrosine 
phosphatase with activity in human T cells.  J Med Chem 2011; 6: 
1640–54.

81 Krishnamurthy D, Karver MR, Fiorillo E, Orru V, Stanford SM, Bottini N, 
et al.  Gold(I)-mediated inhibition of protein tyrosine phosphatases: A 
detailed in vitro and cellular study.  J Med Chem 2008; 15: 4790–5.

82 He YT, Liu SJ, Menon A, Stanford S, Oppong E, Gunawan AM, et al.  
A potent and selective small-molecule inhibitor for the lymphoid-
specific tyrosine phosphatase (LYP), a target associated with 
autoimmune diseases.  J Med Chem 2013; 12: 4990–5008.

83 Andersson LC, Karhi KK, Gahmberg CG, Rodt H.  Molecular 
identification of T cell-specific antigens on human T lymphocytes and 
thymocytes.  Eur J Immunol 1980; 5: 359–62.

84 Omary MB, Trowbridge IS, Battifora HA.  Human homologue of murine 
T200 glycoprotein.  J Exp Med 1980; 4: 842–52.

85 Hermiston ML, Xu Z, Weiss A.  CD45: A critical regulator of signaling 
thresholds in immune cells.  Annu Rev Immunol 2003; 21: 107–37.

86 Desai DM, Sap J, Silvennoinen O, Schlessinger J, Weiss A.  The 
catalytic activity of the cd45 membrane-proximal phosphatase 
domain is required for TCR signaling and regulation.  EMBO J 1994; 
17: 4002–10.

87 Trowbridge IS, Thomas ML.  CD45 — an emerging role as a protein-
tyrosine-phosphatase required for lymphocyte-activation and 
development.  Annu Rev Immunol 1994; 12: 85–116.

88 Thomas ML.  The leukocyte common antigen family.  Annu Rev 
Immunol 1989; 7: 339–69.

89 Ashwell JD, D’Oro U.  CD45 and Src-family kinases: and now for 
something completely different.  Immunol Today 1999; 9: 412–6.

90 Thomas ML, Brown EJ.  Positive and negative regulation of Src-family 
membrane kinases by CD45.  Immunol Today 1999; 9: 406–11.

91 Alexander DR.  The CD45 tyrosine phosphatase: a positive and 
negative regulator of immune cell function.  Semin Immunol 2000; 4: 
349–59.

92 McFarland EDC, Hurley TR, Pingel JT, Sefton BM, Shaw A, Thomas 
ML.  Correlation between src family member regulation by the 
protein-tyrosine-phosphatase cd45 and transmembrane signaling 
through the T-cell receptor.  Proc Natl Acad Sci U S A 1993; 4: 1402–
6.

93 Sieh M, Bolen JB, Weiss A.  CD45 specifically modulates binding 
of Lck to a phosphopeptide encompassing the negative regulatory 
tyrosine of LCK.  EMBO J 1993; 1: 315–21.

94 Stone JD, Conroy LA, Byth KF, Hederer RA, Howlett S, Takemoto Y, 
et al.  Aberrant TCR-mediated signaling in CD45-null thymocytes 
involves dysfunctional regulation of Lck, Fyn, TCR-zeta and ZAP-70.  J 
Immunol 1997; 12: 5773–82.

95 Seavitt JR, White LS, Murphy KM, Loh DY, Perlmutter RM, Thomas 
ML.  Expression of the p56(lck) Y505F mutation in CD45-deficient 

mice rescues thymocyte development.  Mol Cell Biol 1999; 6: 4200–
8.

96 Burns CM, Sakaguchi K, Appella E, Ashwell JD.  CD45 regulation of 
tyrosine phosphorylation and enzyme-activity of src family kinases.  J 
Biol Chem 1994; 18: 13594–600.

97 D’Oro U, Ashwell JD.  Cutting edge: The CD45 tyrosine phosphatase 
is an inhibitor of Lck activity in thymocytes.  J Immunol 1999; 4: 
1879–83.

98 McNeill L, Salmond RJ, Cooper JC, Carret CK, Cassady-Cain RL, 
Roche-Molina M, et al.  The differential regulation of lck kinase 
phosphorylation sites by CD45 is critical for T cell receptor signaling 
responses.  Immunity 2007; 3: 425–37.

99 Katagiri T, Ogimoto M, Hasegawa K, Mizuno K, Yakura H.  Selective 
regulation of lyn tyrosine kinase by CD45 in immature B-cells.  J Biol 
Chem 1995; 47: 27987–90.

100 Yanagi S, Sugawara H, Kurosaki M, Sabe H, Yamamura H, Kurosaki T.  
CD45 modulates phosphorylation of both autophosphorylation and 
negative regulatory tyrosines of Lyn in B cells.  J Biol Chem 1996; 48: 
30487–92.

101 Katagiri T, Ogimoto M, Hasegawa K, Arimura Y, Mitomo K, Okada M, 
et al.  CD45 negatively regulates Lyn activity by dephosphorylating 
both positive and negative regulatory tyrosine residues in immature 
B cells.  J Immunol 1999; 3: 1321–6.

102 Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead 
G, et al.  CD45 is a JAK phosphatase and negatively regulates 
cytokine receptor signalling.  Nature 2001; 6818: 349–54.

103 Roach T, Slater S, Koval M, White L, McFarland EC, Okumura M, et al.  
CD45 regulates Src family member kinase activity associated with 
macrophage integrin-mediated adhesion.  Curr Biol 1997; 6: 408–17.

104 Trop S, Charron J, Arguin C, Hugo P.  Thymic selection generates 
T cells expressing self-reactive TCRs in the absence of CD45.  J 
Immunol 2000; 6: 3073–9.

105 Tchilian EZ, Beverley PCL.  Altered CD45 expression and disease.  
Trends Immunol 2006; 3: 146–53.

106 Jacobsen M, Schweer D, Ziegler A, Gaber R, Schock S, Schwinzer R, 
et al.  A point mutation in PTPRC is associated with the development 
of multiple sclerosis.  Nat Genet 2000; 4: 495–9.

107 Ballerini C, Rosati E, Salvetti M, Ristori G, Cannoni S, Biagioli T, et al.  
Protein tyrosine phosphatase receptor-type C exon 4 gene mutation 
distribution in an Italian multiple sclerosis population.  Neurosci Lett 
2002; 3: 325–7.

108 Vyshkina T, Leist TP, Shugart YY, Kalman B.  CD45 (PTPRC) as a 
candidate gene in multiple sclerosis.  Mult Scler 2004; 6: 614–7.

109 Tchilian EZ, Wallace DL, Dawes R, Imami N, Burton C, Gotch F, et al.  
A point mutation in CD45 may be associated with an increased risk 
of HIV-1 infection.  AIDS 2001; 14: 1892–4.

110 Vogel A, Strassburg CP, Manns MP.  77 C/G mutation in the tyrosine 
phosphatase CD45 gene and autoimmune hepatitis: evidence for a 
genetic link.  Genes Immun 2003; 1: 79–81.

111 Schwinzer R, Witte T, Hundrieser J, Ehlers S, Momot T, Hunzelmann 
N, et al.  Enhanced frequency of a PTPRC (CD45) exon A mutation 
(77C→G) in systemic sclerosis.  Genes Immun 2003; 2: 168–9.

112 Lynch KW, Weiss A.  A CD45 polymorphism associated with multiple 
sclerosis disrupts an exonic splicing silencer.  J Biol Chem 2001; 26: 
24341–7.

113 Jacobsen M, Hoffmann S, Cepok S, Stei S, Ziegler A, Sommer N, et 
al.  A novel mutation in PTPRC interferes with splicing and alters the 
structure of the human CD45 molecule.  Immunogenetics 2002; 3: 
158–63.

114 Stanton T, Boxall S, Hirai K, Dawes R, Tonks S, Yasui T, et al.  A high-
frequency polymorphism in exon 6 of the CD45 tyrosine phosphatase 



1242

www.nature.com/aps
He RJ et al

Acta Pharmacologica Sinica

npg

gene (PTPRC) resulting in altered isoform expression.  Proc Natl Acad 
Sci U S A 2003; 10: 5997–6002.

115 Boxall S, Stanton T, Hirai K, Ward V, Yasui T, Tahara H, et al.  Disease 
associations and altered immune function in CD45 138G variant 
carriers.  Hum Mol Genet 2004; 20: 2377–84.

116 Majeti R, Xu Z, Parslow TG, Olson JL, Daikh DI, Killeen N, et al.  An 
inactivating point mutation in the inhibitory wedge of CD45 causes 
lymphoproliferation and autoimmunity.  Cell 2000; 7: 1059–70.

117 Nemecek ER, Matthews DC.  Antibody-based therapy of human 
leukemia.  Curr Opin Hematol 2002; 4: 316–21.

118 Matthews DC, Appelbaum FR, Eary JF, Fisher DR, Durack LD, 
Hui TE, et al .  Phase I study of 131I-anti-CD45 antibody plus 
cyclophosphamide and total body irradiation for advanced acute 
leukemia and myelodysplastic syndrome.  Blood 1999; 4: 1237–47.

119 Orozco JJ, Back T, Kenoyer A, Balkin ER, Hamlin DK, Wilbur DS, et 
al.  Anti-CD45 radioimmunotherapy using At-211 with bone marrow 
transplantation prolongs survival in a disseminated murine leukemia 
model.  Blood 2013; 18: 3759–67.

120 Pagel JM, Kenoyer AL, Back T, Hamlin DK, Wilbur DS, Fisher DR, et 
al.  Anti-CD45 pretargeted radioimmunotherapy using bismuth-213: 
high rates of complete remission and long-term survival in a mouse 
myeloid leukemia xenograft model.  Blood 2011; 3: 703–11.

121 Banville D, Ahmad S, Stocco R, Shen SH.  A novel protein-tyrosine 
phosphatase with homology to both the cytoskeletal proteins of the 
band 4.1 family and junction-associated guanylate kinases.  J Biol 
Chem 1994; 35: 22320–7.

122 Maekawa K, Imagawa N, Nagamatsu M, Harada S.  Molecular-cloning 
of a novel protein-tyrosine-phosphatase containing a membrane-
binding domain and GLGF repeats.  FEBS Lett 1994; 2: 200–6.

123 Saras J, Claessonwelsh L, Heldin CH, Gonez LJ.  Cloning and 
characterization of ptpl1, a protein-tyrosine-phosphatase with 
similarities to cytoskeletal-associated proteins.  J Biol Chem 1994; 
39: 24082–9.

124 Bompard G, Martin M, Roy C, Vignon F, Freiss G.  Membrane targeting 
of protein tyrosine phosphatase PTPL1 through its FERM domain via 
binding to phosphatidylinositol 4,5-biphosphate.  J Cell Sci 2003; 12: 
2519–30.

125 Abaan OD, Toretsky JA. PTPL1: a large phosphatase with a split 
personality.  Cancer Metastasis Rev 2008; 2: 205–14.

126 Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen 
OH, et al.  Structural and evolutionary relationships among protein 
tyrosine phosphatase domains.  Mol Cell Biol 2001; 21: 7117–36.

127 Villa F, Deak M, Bloomberg GB, Alessi DR, van Aalten DMF.  Crystal 
structure of the PTPL1/FAP-1 human tyrosine phosphatase mutated 
in colorectal cancer — Evidence for a second phosphotyrosine 
substrate recognition pocket.  J Biol Chem 2005; 9: 8180–7.

128 Sato T, Irie S, Kitada S, Reed JC.  FAP-1–a protein-tyrosine-
phosphatase that associates with FAS.  Science 1995; 5209: 411–5.

129 Saras J, Engstrom U, Gonez LJ, Heldin CH.  Characterization of 
the interactions between PDZ domains of the protein-tyrosine 
phosphatase PTPL1 and the carboxyl-terminal tail of Fas.  J Biol 
Chem 1997; 34: 20979–81.

130 Yanagisawa J, Takahashi M, Kanki H, Yano-Yanagisawa H, Tazunoki 
T, Sawa E, et al.  The molecular interaction of Fas and FAP-1 - A 
tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-
induced apoptosis.  J Biol Chem 1997; 13: 8539–45.

131 Ivanov VN, Bergami PL, Maulit G, Sato TA, Sassoon D, Ronai Z.  FAP-
1 association with Fas (Apo-1) inhibits Fas expression on the cell 
surface.  Mol Cell Biol 2003; 10: 3623–35.

132 Irie S, Hachiya T, Rabizadeh S, Maruyama W, Mukai J, Li Y, et al.  
Functional interaction of Fas-associated phosphatase-1 (FAP-1) 

with p75(NTR) and their effect on NF-kappa B activation.  FEBS Lett 
1999; 2: 191–8.

133 Erdmann KS, Kuhlmann J, Lessmann V, Herrmann L, Eulenburg 
V, Muller O, et al.  The adenomatous polyposis coli-protein (APC) 
interacts with the protein tyrosine phosphatase PTP-BL via an 
alternatively spliced PDZ domain.  Oncogene 2000; 34: 3894–901.

134 Maekawa K, Imagawa N, Naito A, Harada S, Yoshie O, Takagi 
S.  Association of protein-tyrosine phosphatase PTP-BAS with the 
transcription-factor-inhibitory protein I kappa-B alpha through 
interaction between the PDZ1 domain and ankyrin repeats.  Biochem 
J 1999; 337: 179–84.

135 Nakai Y, Irie S, Sato TA.  Identification of I kappa B alpha as a 
substrate of Fas-associated phosphatase-1.  Eur J Biochem 2000; 
24: 7170-5.

136 Dromard M, Bompard G, Glondu-Lassis M, Puech C, Chalbos D, Freiss 
G.  The putative tumor suppressor gene PTPN13/PTPL1 induces 
apoptosis through insulin receptor substrate-1 dephosphorylation.  
Cancer Res 2007; 14: 6806–13.

137 Zhu JH, Chen R, Yi W, Cantin GT, Fearns C, Yang Y, et al.  Protein 
tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 
malignant signaling.  Oncogene 2008; 18: 2525–31.

138 Nakahira M, Tanaka T, Robson BE, Mizgerd JP, Grusby MJ.  Regulation 
of signal transducer and activator of transcription signaling by the 
tyrosine phosphatase PTP-BL.  Immunity 2007; 2: 163–76.

139 Wansink DG, Peters W, Schaafsma I, Sutmuller RPM, Oerlemans 
F, Adema GJ, et al.  Mild impairment of motor nerve repair in mice 
lacking PTP-BL tyrosine phosphatase activity.  Physiol Genomics 
2004; 1: 50–60.

140 Lorber B, Hendriks W, Van der Zee C, Berry M, Logan A.  Effects of 
LAR and PTP-BL phosphatase deficiency on adult mouse retinal cells 
activated by lens injury.  Eur J Neurosci 2005; 9: 2375–83.

141 Ungefroren H, Voss M, Jansen M, Roeder C, Henne-Bruns D, Kremer 
B, et al.  Human pancreatic adenocarcinomas express Fas and Fas 
ligand yet are resistant to Fas-mediated apoptosis.  Cancer Res 
1998; 8: 1741–9.

142 Ungefroren H, Kruse ML, Trauzold A, Roeschmann S, Roeder C, Arlt 
A, et al.  FAP-1 in pancreatic cancer cells: functional and mechanistic 
studies on its inhibitory role in CD95-mediated apoptosis.  J Cell Sci 
2001; 15: 2735–46.

143 Meinhold-Heerlein I, Stenner-Liewen F, Liewen H, Kitada S, Krajewska 
M, Krajewski S, et al.  Expression and potential role of Fas-associated 
phosphatase-1 in ovarian cancer.  Am J Pathol 2001; 4: 1335–44.

144 Yao H, Song E, Chen J, Hamar P.  Expression of FAP-1 by human colon 
adenocarcinoma: implication for resistance against Fas-mediated 
apoptosis in cancer.  Br J Cancer 2004; 9: 1718–25.

145 Wieckowski E, Atarashi Y, Stanson J, Sato TA, Whiteside TL.  FAP-1-
mediated activation of NF-kappa B induces resistance of head and 
neck cancer to Fas-induced apoptosis.  J Cell Biochem 2007; 1: 
16–28.

146 Lee SH, Shin MS, Lee JY, Park WS, Kim SY, Jang JJ, et al.  In vivo 
expression of soluble Fas and Fap-1: Possible mechanisms of Fas 
resistance in human hepatoblastomas.  J Pathol 1999; 2: 207–12.

147 Lee SH, Shin MS, Lee HS, Bae JH, Lee HK, Kim HS, et al.  Expression 
of Fas and Fas-related molecules in human hepatocellular 
carcinoma.  Hum Pathol 2001; 3: 250–6.

148 Uren A, Toretsky JA.  Ewing’s sarcoma oncoprotein EWS-FLI1: the 
perfect target without a therapeutic agent.  Future Oncol 2005; 4: 
521–8.

149 Abaan OD, Levenson A, Khan O, Furth PA, Uren A, Toretsky JA.  PTPL1 
is a direct transcriptional target of EWS-FLI1 and modulates Ewing's 
sarcoma tumorigenesis.  Oncogene 2005; 16: 2715–22.



1243

www.chinaphar.com
He RJ et al

Acta Pharmacologica Sinica

npg

150 Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, et 
al.  Classification and diagnostic prediction of cancers using gene 
expression profiling and artificial neural networks.  Nat Med 2001; 6: 
673–9.

151 Lessnick SL, Dacwag CS, Golub TR.  The Ewing’s sarcoma onco-
protein EWS/FLI induces a p53-dependent growth arrest in primary 
human fibroblasts.  Cancer Cell 2002; 4: 393–401.

152 Baer C, Nees M, Breit S, Selle B, Kulozik AE, Schaefer KL, et al.  
Profiling and functional annotation of MRNA gene expression in 
pediatric rhabdomyosarcoma and Ewing's sarcoma.  Int J Cancer 
2004; 5: 687–94.

153 Xiao ZY, Wu W, Eagleton N, Chen HQ, Shao J, Teng H, et al.  Silencing 
Fas-associated phosphatase 1 expression enhances efficiency 
of chemotherapy for colon carcinoma with oxaliplatin.  World J 
Gastroenterol 2010; 1: 112–8.

154 Savagner P.  Leaving the neighborhood: molecular mechanisms 
involved during epithelial-mesenchymal transition.  Bioessays 2001; 
10: 912–23.

155 Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al.  
The mir-200 family and mir-205 regulate epithelial to mesenchymal 
transition by targeting ZEB1 and SIP1.  Nat Cell Biol 2008; 5: 593–
601.

156 Peter ME.  Let-7 and miR-200 microRNAs Guardians against 
pluripotency and cancer progression.  Cell Cycle 2009; 6: 843–52.

157 Schickel R, Park SM, Murmann AE, Peter ME.  mir-200c regulates 
induction of apoptosis through CD95 by targeting FAP-1.  Mol Cell 
2010; 6: 908–15.

158 Ying J, Li H, Cui Y, Wong AHY, Langford C, Tao Q.  Epigenetic disruption 
of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in 
multiple lymphomas and carcinomas through hypermethylation of a 
common bidirectional promoter.  Leukemia 2006; 6: 1173–5.

159 Yeh SH, Wu DC, Tsai CY, Kuo TJ, Yu WC, Chang YS, et al.  Genetic 
characterization of Fas-associated phosphatase-1 as a putative 
tumor suppressor gene on chromosome 4q21.3 in hepatocellular 
carcinoma.  Clin Cancer Res 2006; 4: 1097–108.

160 Wang ZH, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, et 
al.  Mutational analysis of the tyrosine phosphatome in colorectal 
cancers.  Science 2004; 5674: 1164–6.

161 Lombroso PJ, Murdoch G, Lerner M.  Molecular characterization of a 
protein-tyrosine-phosphatase enriched in striatum.  Proc Natl Acad 
Sci U S A 1991; 16: 7242–6.

162 Lombroso PJ, Naegele JR, Sharma E, Lerner M.  A protein-tyrosine-
phosphatase expressed within dopaminoceptive neurons of the 
basal ganglia and related structures.  J Neurosci 1993; 7: 3064–74.

163 Bult A, Zhao F, Dirkx R, Raghunathan A, Solimena M, Lombroso PJ.  
STEP: A family of brain-enriched PTPs.  Alternative splicing produces 
transmembrane, cytosolic and truncated isoforms.  Eur J Cell Biol 
1997; 4: 337–44.

164 Venkitaramani DV, Paul S, Zhang YF, Kurup P, Ding L, Tressler L, et al.  
Knockout of striatal enriched protein tyrosine phosphatase in mice 
results in increased ERK1/2 phosphorylation.  Synapse 2009; 1: 
69–81.

165 Francis DM, Kumar GS, Koveal D, Tortajada A, Page R, Peti W.  The 
differential regulation of p38alpha by the neuronal kinase interaction 
motif protein tyrosine phosphatases, a detailed molecular study.  
Structure 2013; 9: 1612–23.

166 Sweatt JD.  Mitogen-activated protein kinases in synaptic plasticity 
and memory.  Curr Opin Neurobiol 2004; 3: 311–7.

167 Cuenda A, Rousseau S.  P38 MAP-Kinases pathway regulation, 
function and role in human diseases.  Biochim Biophys Acta-Mol Cell 
Res 2007; 8: 1358–75.

168 Borders AS, de Almeida L, Van Eldik LJ, Watterson DM.  The p38alpha 
mitogen-activated protein kinase as a central nervous system drug 
discovery target.  BMC Neurosci 2008; 9 Suppl 2: S12.

169 Zhang Y, Venkitaramani DV, Gladding CM, Zhang YF, Kurup P, Molnar 
E, et al.  The tyrosine phosphatase STEP mediates AMPA receptor 
endocytosis after metabotropic glutamate receptor stimulation.  J 
Neurosci 2008; 42: 10561–6.

170 Nguyen TH, Liu J, Lombroso PJ.  Striatal enriched phosphatase 61 
dephosphorylates Fyn at phosphotyrosine 420.  J Biol Chem 2002; 
27: 24274–9.

171 Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba 
K, et al.  Characterization of Fyn-mediated tyrosine phosphorylation 
sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate 
receptor.  J Biol Chem 2001; 1: 693–9.

172 Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, et al.  
Regulation of NMDA receptor trafficking by amyloid-beta.  Nat 
Neurosci 2005; 8: 1051–8.

173 Kurup P, Zhang Y, Xu J, Venkitaramani DV, Haroutunian V, Greengard 
P, et al.  Abeta-mediated NMDA receptor endocytosis in Alzheimer's 
disease involves ubiquitination of the tyrosine phosphatase STEP61.  
J Neurosci 2010; 17: 5948–57.

174 Goebel-Goody SM, Baum M, Paspalas CD, Fernandez SM, Carty 
NC, Kurup P, et al.  Therapeutic implications for striatal-enriched 
protein tyrosine phosphatase (STEP) in neuropsychiatric disorders.  
Pharmacol Rev 2012; 1: 65–87.

175 Kurup P, Zhang YF, Venkitaramani DV, Xu JA, Lombroso PJ.  The role 
of STEP in Alzheimer's disease.  Channels 2010; 5: 347–50.

176 Carty NC, Xu J, Kurup P, Brouillette J, Goebel-Goody SM, Austin DR, 
et al.  The tyrosine phosphatase STEP: implications in schizophrenia 
and the molecular mechanism underlying antipsychotic medications.  
Transl Psychiatr 2012; 2: e137.

177 Hicklin TR, Wu PH, Radcliffe RA, Freund RK, Goebel-Goody SM, 
Correa PR, et al.  Alcohol inhibition of the NMDA receptor function, 
long-term potentiation, and fear learning requires striatal-enriched 
protein tyrosine phosphatase.  Proc Natl Acad Sci U S A 2011; 16: 
6650–5.

178 Theodosiou A, Ashworth A.  MAP kinase phosphatases.  Genome Biol 
2002; 3: REVIEWS3009.

179 Charles CH, Abler AS, Lau LF.  cDNA sequence of a growth factor-
inducible immediate early gene and characterization of its encoded 
protein.  Oncogene 1992; 1: 187–90.

180 Sun H, Charles CH, Lau LF, Tonks NK.  MKP-1 (3CH134), an 
immediate early gene product, is a dual specificity phosphatase that 
dephosphorylates map kinase in vivo.  Cell 1993; 3: 487–93.

181 Wu JJ, Zhang L, Bennett AM.  The noncatalytic amino terminus of 
mitogen-activated protein kinase phosphatase 1 directs nuclear 
targeting and serum response element transcriptional regulation.  
Mol Cell Biol 2005; 11: 4792–803.

182 Guan KL, Butch E.  Isolation and characterization of a novel dual 
specific phosphatase, hvh2, which selectively dephosphorylates the 
mitogen-activated protein-kinase.  J Biol Chem 1995; 13: 7197–203.

183 Franklin CC, Kraft AS.  Conditional expression of the mitogen-
activated protein kinase (MAPK) phosphatase MKP-1 preferentially 
inhibits p38 MAPK and stress-activated protein kinase in U937 cells.  
J Biol Chem 1997; 27: 16917–23.

184 Chi HB, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennettt AM, et al.  
Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK 
phosphatase 1 (MKP-1) in innate immune responses.  Proc Natl Acad 
Sci U S A 2006; 7: 2274–9.

185 Kondoh K, Nishida E.  Regulation of MAP kinases by MAP kinase 
phosphatases.  Biochim Biophys Acta-Mol Cell Res 2007; 8: 1227–



1244

www.nature.com/aps
He RJ et al

Acta Pharmacologica Sinica

npg

37.
186 Dorfman K, Carrasco D, Gruda M, Ryan C, Lira SA, Bravo R.  

Disruption of the erp/mkp-1 gene does not affect mouse develop-
ment: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts.  
Oncogene 1996; 5: 925–31.

187 Keyse SM.  Dual-specificity MAP kinase phosphatases (MKPs) and 
cancer.  Cancer Metastasis Rev 2008; 2: 253–61.

188 Lawan A, Shi H, Gatzke F, Bennett AM.  Diversity and specificity of the 
mitogen-activated protein kinase phosphatase-1 functions.  Cell Mol 
Life Sci 2013; 2: 223–37.

189 Loda M, Capodieci P, Mishra R, Yao H, Corless C, Grigioni W, et al.  
Expression of mitogen-activated protein kinase phosphatase-1 in the 
early phases of human epithelial carcinogenesis.  Am J Pathol 1996; 
5: 1553–64.

190 Magi-Galluzzi C, Mishra R, Fiorentino M, Montironi R, Yao H, 
Capodieci P, et al.  Mitogen-activated protein kinase phosphatase 
1 is overexpressed in prostate cancers and is inversely related to 
apoptosis.  Lab Invest 1997; 1: 37–51.

191 Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, 
et al.  Gene expression profiles in normal and cancer cells.  Science 
1997; 5316: 1268–72.

192 Magi-Galluzzi C, Montironi R, Cangi MG, Wishnow K, Loda M.  
Mitogen-activated protein kinases and apoptosis in PIN.  Virchows 
Arch Int J Pathol 1998; 5: 407–13.

193 Denkert C, Schmitt WD, Berger S, Reles A, Pest S, Siegert A, et 
al.  Expression of mitogen-activated protein kinase phosphatase-1 
(MKP-1) in primary human ovarian carcinoma.  Int J Cancer 2002; 5: 
507–13.

194 Vicent S, Garayoa M, Lopez-Picazo JM, Lozano MD, Toledo G, 
Thunnissen F, et al.  Mitogen-activated protein kinase phosphatase-1 
is overexpressed in non-small cell lung cancer and is an independent 
predictor of outcome in patients.  Clin Cancer Res 2004; 11: 3639–
49.

195 Srikanth S, Franklin CC, Duke RC, Kraft AS.  Human DU145 prostate 
cancer cells overexpressing mitogen-activated protein kinase 
phosphatase-1 are resistant to Fas ligand-induced mitochondrial 
perturbations and cellular apoptosis.  Mol Cell Biochem 1999; 1–2: 
169–78.

196 Small GW, Shi YY, Higgins LS, Orlowski RZ.  Mitogen-activated 
protein kinase phosphatase-1 is a mediator of breast cancer 
chemoresistance.  Cancer Res 2007; 9: 4459–66.

197 Small GW, Shi YY, Edmund NA, Somasundaram S, Moore DT, Orlowski 
RZ.  Evidence that mitogen-activated protein kinase phosphatase-1 
induction by proteasome inhibitors plays an antiapoptotic role.  Mol 
Pharmacol 2004; 6: 1478–90.

198 Rojo F, Gonzalez-Navarrete I, Bragado R, Dalmases A, Menendez 
S, Cortes-Sempere M, et al.  Mitogen-activated protein kinase 
phosphatase-1 in human breast cancer independently predicts 
prognosis and is repressed by doxorubicin.  Clin Cancer Res 2009; 
10: 3530–9.

199 Chattopadhyay S, Machado-Pinilla R, Manguan-Garcia C, Belda-
Iniesta C, Moratilla C, Cejas P, et al.  MKP1/CL100 controls tumor 
growth and sensitivity to cisplatin in non-small-cell lung cancer.  
Oncogene 2006; 23: 3335–45.

200 Valjent E, Caboche J, Vanhoutte P.  Mitogen-activated protein kinase/
extracellular signal-regulated kinase induced gene regulation in brain 
— A molecular substrate for learning and memory?  Mol Neurobiol 
2001; 2-3: 83–99.

201 Kristiansen M, Hughes R, Patel P, Jacques TS, Clark AR, Ham 
J.  Mkp1 is a c-jun target gene that antagonizes jnk-dependent 
apoptosis in sympathetic neurons.  J Neurosci 2010; 32: 10820–32.

202 Jeanneteau F, Deinhardt K.  Fine-tuning MAPK signaling in the brain: 
The role of MKP-1.  Commun Integr Biol 2011; 3: 281–3.

203 Jeanneteau F, Deinhardt K, Miyoshi G, Bennett AM, Chao MV.  The 
MAP kinase phosphatase MKP-1 regulates BDNF-induced axon 
branching.  Nat Neurosci 2010; 11: 1373–79.

204 Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen 
AA, et al.  A negative regulator of MAP kinase causes depressive 
behavior.  Nat Med 2010; 11: 1328–32.

205 Stephens BJ, Han HY, Gokhale V, Von Hoff DD.  PRL phosphatases 
as potential molecular targets in cancer.  Mol Cancer Ther 2005; 11: 
1653–61.

206 Zeng Q, Si XN, Horstmann H, Xu Y, Hong WJ, Pallen CJ.  Prenylation-
dependent association of protein-tyrosine phosphatases PRL-1, -2, 
and -3 with the plasma membrane and the early endosome.  J Biol 
Chem 2000; 28: 21444–52.

207 Sun JP, Wang WQ, Yang H, Liu SJ, Liang F, Fedorov AA, et al.  Structure 
and biochemical properties of PRL-1, a phosphatase implicated in 
cell growth, differentiation, and tumor invasion.  Biochemistry 2005; 
36: 12009–21.

208 Achiwa H, Lazo JS.  PRL-1 tyrosine phosphatase regulates c-Src 
levels, adherence, and invasion in human lung cancer cells.  Cancer 
Res 2007; 2: 643–50.

209 Liang FB, Liang J, Wang WQ, Sun AP, Udho E, Zhang ZY.  PRL3 
promotes cell invasion and proliferation by down-regulation of Csk 
leading to Src activation.  J Biol Chem 2007; 8: 5413–9.

210 Wang Y, Lazo JS.  Metastasis-associated phosphatase PRL-2 
regulates tumor cell migration and invasion.  Oncogene 2012; 7: 
818–27.

211 Min SH, Kim DM, Heo YS, Kim YI, Kim HM, Kim J, et al.  New p53 
target, phosphatase of regenerating liver 1 (PRL-1) downregulates 
p53.  Oncogene 2009; 4: 545–54.

212 Min SH, Kim DM, Heo YS, Kim HM, Kim IC, Yoo OJ.  Downregulation 
of p53 by phosphatase of regenerating liver 3 is mediated by MDM2 
and PIRH2.  Life Sci 2010; 1-2: 66–72.

213 Luo Y, Liang FB, Zhang ZY.  PRL1 promotes cell migration and 
invasion by increasing MMP2 and MMP9 expression through Src and 
ERK1/2 pathways.  Biochemistry 2009; 8: 1838–46.

214 Peng L, Xing X, Li W, Qu L, Meng L, Lian S, et al.  PRL-3 promotes the 
motility, invasion, and metastasis of LoVo colon cancer cells through 
PRL-3-integrin beta1-ERK1/2 and-MMP2 signaling.  Mol Cancer 
2009; 8: 110.

215 Bessette DC, Qiu DX, Pallen CJ.  PRL PTPs: mediators and markers of 
cancer progression.  Cancer Metastasis Rev 2008; 2: 231–52.

216 Campbell AM, Zhang ZY.  Phosphatase of regenerating liver: a novel 
target for cancer therapy.  Expert Opin Ther Targets 2014; 5: 555–
69.

217 Stephens B, Han HY, Hostetter G, Demeure MJ, Von Hoff DD.  Small 
interfering RNA-mediated knockdown of PRL phosphatases results in 
altered Akt phosphorylation and reduced clonogenicity of pancreatic 
cancer cells.  Mol Cancer Ther 2008; 1: 202–10.

218 Nakashima M, Lazo JS.  Phosphatase of regenerating liver-1 
promotes cell migration and invasion and regulates filamentous actin 
dynamics.  J Pharmacol Exp Ther 2010; 2: 627–33.

219 Yagi T, Morimoto A, Eguchi M, Hibi S, Sako M, Ishii E, et al.  Identifica-
tion of a gene expression signature associated with pediatric AML 
prognosis.  Blood 2003; 5: 1849–56.

220 Hardy S, Wong NN, Muller WJ, Park M, Tremblay ML.  Overexpression 
of the protein tyrosine phosphatase PRL-2 correlates with breast 
tumor formation and progression.  Cancer Res 2010; 21: 8959–67.

221 Rios P, Li X, Kohn M.  Molecular mechanisms of the PRL phos-
phatases.  FEBS J 2013; 2: 505–24.



1245

www.chinaphar.com
He RJ et al

Acta Pharmacologica Sinica

npg

222 Peng LR, Ning JY, Meng L, Shou CC.  The association of the expres-
sion level of protein tyrosine phosphatase PRL-3 protein with liver 
metastasis and prognosis of patients with colorectal cancer.  J 
Cancer Res Clin Oncol 2004; 9: 521–6.

223 Zeng Q, Dong JM, Guo K, Li J, Tan HX, Koh V, et al.  PRL-3 and PRL-1 
promote cell migration, invasion, and metastasis.  Cancer Res 2003; 
11: 2716–22.

224 Kato H, Semba S, Miskad UA, Seo Y, Kasuga M, Yokozaki H.  
High expression of PRL-3 promotes cancer cell motility and liver 
metastasis in human colorectal cancer: a predictive molecular 
marker of metachronous liver and lung metastases.  Clin Cancer Res 
2004; 21: 7318–28.

225 Rouleau C, Roy A, St Martin T, Dufault MR, Boutin P, Liu DP, et 
al.  Protein tyrosine phosphatase PRL-3 in malignant cells and 
endothelial cells: expression and function.  Mol Cancer Ther 2006; 2: 
219–29.

226 Walls CD, Iliuk A, Bai YP, Wang M, Tao WA, Zhang ZY.  Phosphatase of 
regenerating liver 3 (PRL3) provokes a tyrosine phosphoproteome to 
drive prometastatic signal transduction.  Mol Cell Proteomics 2013; 
12: 3759–77.

227 Al-aidaroos AQO, Yuen HF, Guo K, Zhang SD, Chung TH, Chng WJ, 
et al.  Metastasis-associated PRL-3 induces EGFR activation and 
addiction in cancer cells.  J Clin Invest 2013; 8: 3459–71.

228 Dong YS, Zhang LJ, Zhang S, Bai YP, Chen HY, Sun XX, et al.  Phos-
phatase of regenerating liver 2 (PRL2) is essential for placental 
develop ment by down-regulating PTEN (phosphatase and tensin 
homologue deleted on chromosome 10) and activating AKT protein.  
J Biol Chem 2012; 38: 32172–79.

229 Dong YS, Zhang LJ, Bai YP, Zhou HM, Campbell AM, Chen HY, et al.  
Phos phatase of regenerating liver 2 (PRL2) deficiency impairs kit 
signaling and spermatogenesis.  J Biol Chem 2014; 6: 3799–810.

230 Kobayashi M, Bai Y, Dong Y, Yu H, Chen S, Gao R, et al.  PRL2/
PTP4A2 phosphatase is important for hematopoietic stem cell self-
renewal.  Stem Cells 2014; 32: 1956–67.

231 Ramponi G, Stefani M.  Structural, catalytic, and functional properties 
of low M-r phosphotyrosine protein phosphatases.  Evidence of a long 
evolutionary history.  Int J Biochem Cell Biol 1997; 2: 279–92.

232 Dissing J, Johnsen AH, Sensabaugh GF.  Human red-cell acid-
phosphatase (ACP1) — the amino-acid-sequence of the 2 isozymes 
BF and BS encoded by the acp1-star-b allele.  J Biol Chem 1991; 31: 
20619–25.

233 Wo YYP, McCormack AL, Shabanowitz J, Hunt DF, Davis JP, Mitchell 
GL, et al.  Sequencing, cloning, and expression of human red cell-
type acid-phosphatase, a cytoplasmic phosphotyrosyl protein 
phosphatase.  J Biol Chem 1992; 15: 10856–65.

234 Zhang M, Stauffacher CV, Lin DY, Van Etten RL.  Crystal structure 
of a human low molecular weight phosphotyrosyl phosphatase —
Implications for substrate specificity.  J Biol Chem 1998; 34: 21714–
20.

235 Chiarugi P, Cirri P, Raugei G, Camici G, Dolfi F, Berti A, et al.  PDGF 
receptor as a specific in vivo target for low m(r) phosphotyrosine 
protein phosphatase.  FEBS Lett 1995; 1: 49–53.

236 Chiarugi P, Cirri P, Raugei G, Manao G, Taddei L, Ramponi G.  Low 
M(r) phosphotyrosine protein phosphatase interacts with the PDGF 
receptor directly via its catalytic site.  Biochem Biophys Res Commun 
1996; 1: 21–5.

237 Chiarugi P, Cirri P, Taddei ML, Giannoni E, Fiaschi T, Buricchi F, et al.  
Insight into the role of low molecular weight phosphotyrosine phos-
phatase (LAM-PTP) on platelet-derived growth factor receptor (PDGF-r) 
signaling — LMW-PTP controls PDGF-r kinase activity through TYR-
857 dephosphorylation.  J Biol Chem 2002; 40: 37331–8.

238 Chiarugi P, Cirri P, Marra F, Raugei G, Fiaschi T, Camici G, et al.  The 
Src and signal transducers and activators of transcription pathways 
as specific targets for low molecular weight phosphotyrosine-protein 
phosphatase in platelet-derived growth factor signaling.  J Biol Chem 
1998; 12: 6776–85.

239 Zambuzzi WF, Granjeiro JM, Parikh K, Yuvaraj S, Peppelenbosch 
MP, Ferreira CV.  Modulation of Src activity by Low molecular weight 
protein tyrosine phosphatase during osteoblast differentiation.  Cell 
Physiol Biochem 2008; 5-6: 497–506.

240 Rigacci S, Guidotti V, Parri M, Berti A.  Modulation of STAT5 interac-
tion with LMW-PTP during early megakaryocyte differentiation.  
Biochemistry 2008; 6: 1482–9.

241 Rigacci S, Rovida E, Dello Sbarba P, Berti A.  Low Mr phosphotyrosine 
protein phosphatase associates and dephosphorylates p125 focal 
adhesion kinase, interfering with cell motility and spreading.  J Biol 
Chem 2002; 44: 41631–6.

242 Chiarugi P, Cirri P, Taddei L, Giannoni E, Camici G, Manao G, et 
al.  The low M(r) protein-tyrosine phosphatase is involved in Rho-
mediated cytoskeleton rearrangement after integrin and platelet-
derived growth factor stimulation.  J Biol Chem 2000; 7: 4640–6.

243 Kikawa KD, Vidale DR, Van Etten RL, Kinch MS.  Regulation of the 
EphA2 kinase by the low molecular weight tyrosine phosphatase 
induces transformation.  J Biol Chem 2002; 42: 39274–9.

244 Chiarugi P, Taddei ML, Schiavone N, Papucci L, Giannoni E, Fiaschi 
T, et al.  LMW-PTP is a positive regulator of tumor onset and growth.  
Oncogene 2004; 22: 3905–14.

245 Parri M, Buricchi F, Taddei ML, Giannoni E, Raugei G, Ramponi G, et 
al.  EphrinA1 repulsive response is regulated by an EphA2 tyrosine 
phosphatase.  J Biol Chem 2005; 40: 34008–18.

246 Zantek ND, Azimi M, Fedor-Chaiken M, Wang BC, Brackenbury R, 
Kinch MS.  E-cadherin regulates the function of the EphA2 receptor 
tyrosine kinase.  Cell Growth Differ 1999; 9: 629–38.

247 Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS.  EphA2 
overexpression causes tumorigenesis of mammary epithelial cells.  
Cancer Res 2001; 5: 2301–6.

248 Chiarugi P, Cirri P, Marra F, Raugei G, Camici G, Manao G, et al.  LMW-
PTP is a negative regulator of insulin-mediated mitotic and metabolic 
signalling.  Biochem Biophys Res Commun 1997; 2: 676–82.

249 Pandey SK, Yu XX, Watts LM, Michael MD, Sloop KW, Rivard AR, et 
al.  Reduction of low molecular weight protein-tyrosine phosphatase 
expression improves hyperglycemia and insulin sensitivity in obese 
mice.  J Biol Chem 2007; 19: 14291–9.

250 Bottini N, MacMurray J, Peters W, Rostamkhani M, Comings DE.  
Association of the acid phosphatase (ACP1) gene with triglyceride 
levels in obese women.  Mol Genet Metab 2002; 3: 226–9.

251 Bottini N, Bottini E, Gloria-Bottini F, Mustelin T.  Low-molecular-weight 
protein tyrosine phosphatase and human disease: in search of 
biochemical mechanisms.  Arch Immunol Ther Exp (Warsz) 2002; 2: 
95–104.

252 Sadhu K, Reed SI, Richardson H, Russell P.  Human homolog of 
fission yeast CDC25 mitotic inducer is predominantly expressed in 
G2.  Proc Natl Acad Sci U S A 1990; 13: 5139–43.

253 Galaktionov K, Beach D.  Specific activation of CDC25 tyrosine 
phosphatases by B-type cyclins — evidence for multiple roles of 
mitotic cyclins.  Cell 1991; 6: 1181–94.

254 Nagata A, Igarashi M, Jinno S, Suto K, Okayama H.  An additional 
homolog of the fission yeast CDC25+ gene occurs in humans and is 
highly expressed in some cancer-cells.  New Biol 1991; 10: 959–68.

255 Lyon MA, Ducruet AP, Wipf P, Lazo JS.  Dual-specificity phosphatases 
as targets for antineoplastic agents.  Nat Rev Drug Discov 2002; 12: 
961–76.



1246

www.nature.com/aps
He RJ et al

Acta Pharmacologica Sinica

npg

256 Kristjansdottir K, Rudolph J.  Cdc25 phosphatases and cancer.  
Chem Biol 2004; 8: 1043–51.

257 Karisson-Rosenthal C, Millar JBA.  Cdc25: mechanisms of checkpoint 
inhibition and recovery.  Trends Cell Biol 2006; 6: 285–92.

258 Hoffmann I, Draetta G, Karsenti E.  Activation of the phosphatase-
activity of human CDC25A by a CDK2 cyclin-E dependent phos-
phoryla tion at the G(1)/S transition.  EMBO J 1994; 18: 4302–10.

259 Jinno S, Suto K, Nagata A, Igarashi M, Kanaoka Y, Nojima H, et al.  
CDC25A is a novel phosphatase functioning early in the cell-cycle.  
EMBO J 1994; 7: 1549–56.

260 Blomberg I, Hoffmann I.  Ectopic expression of Cdc25A accelerates 
the G(1)/S transition and leads to premature activation of cyclin E- 
and cyclin A-dependent kinases.  Mol Cell Biol 1999; 9: 6183–94.

261 Gabrielli BG, DeSouza CPC, Tonks ID, Clark JM, Hayward NK, Ellem 
KAO. Cytoplasmic accumulation of cdc25B phosphatase in mitosis 
triggers centrosomal microtubule nucleation in HeLa cells.  J Cell Sci 
1996; 109: 1081–93.

262 De Souza CPC, Ellem KAO, Gabrielli BG.  Centrosomal and cyto-
plasmic cdc2/cyclin B1 activation precedes nuclear mitotic events.  
Exp Cell Res 2000; 1: 11–21.

263 Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK.  
Cdc25B cooperates with Cdc25A to induce mitosis but has a unique 
role in activating cyclin B1-Cdk1 at the centrosome.  J Cell Biol 2005; 
1: 35–45.

264 Boutros R, Lobjois V, Ducommun B.  CDC25 phosphatases in cancer 
cells: key players?  Good targets?  Nat Rev Cancer 2007; 7: 495–
507.

265 Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M, et 
al.  CDC25 phosphatases as potential human oncogenes.  Science 
1995; 5230: 1575–7.

266 Ma ZQ, Chua SS, DeMayo FJ, Tsai SY.  Induction of mammary gland 
hyperplasia in transgenic mice over-expressing human Cdc25B.  
Oncogene 1999; 32: 4564–76.

267 Yao Y, Slosberg ED, Wang L, Hibshoosh H, Zhang YJ, Xing WQ, et al.  
Increased susceptibility to carcinogen-induced mammary tumors in 
MMTV-Cdc25B transgenic mice.  Oncogene 1999; 37: 5159–66.

268 Brezak MC, Quaranta M, Contour-Galcera MO, Lavergne O, 
Mondesert O, Auvray P, et al.  Inhibition of human tumor cell growth 
in vivo by an orally bioavailable inhibitor of CDC25 phosphatases.  
Mol Cancer Ther 2005; 9: 1378–87.

269 He YT, Zeng LF, Yu ZH, He RJ, Liu SJ, Zhang ZY.  Bicyclic benzofuran 
and indole-based salicylic acids as protein tyrosine phosphatase 
inhibitors.  Biorg Med Chem 2012; 6: 1940–6.

270 Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, Shen W, et al.  
Allosteric inhibition of protein tyrosine phosphatase 1B.  Nat Struct 
Mol Biol 2004; 8: 730–7.

271 Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ.  Role of 
quinones in toxicology.  Chem Res Toxicol 2000; 3: 135–60.

272 Monks TJ, Jones DC.  The metabolism and toxicity of quinones, 
quino nimines, quinone methides, and quinone-thioethers.  Curr Drug 
Metab 2002; 4: 425–38.

273 Barf T, Kaptein A.  Irreversible protein kinase inhibitors: balancing the 
benefits and risks. J Med Chem 2012; 14: 6243–62.

274 Sanderson K.  Irreversible kinase inhibitors gain traction.  Nat Rev 
Drug Discov 2013; 9: 649–51.

275 Rondinone CM, Trevillyan JM, Clampit J, Gum RJ, Berg C, Kroeger P, 
et al.  Protein tyrosine phosphatase 1B reduction regulates adiposity 
and expression of genes involved in lipogenesis.  Diabetes 2002; 8: 
2405–11.

276 Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE, Waring 
JF, et al.  PTP1B antisense oligonucleotide lowers PTP1B protein, 
normalizes blood glucose, and improves insulin sensitivity in diabetic 
mice.  Proc Natl Acad Sci U S A 2002; 17: 11357–62.

277 He R, Zeng LF, He Y, Zhang S, Zhang ZY.  Small molecule tools for 
functional interrogation of protein tyrosine phosphatases.  FEBS J 
2013; 280: 731–50.




