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Abstract
Objectives—To review neuroimaging research concerning cancer- and treatment-related
changes in brain structure and function, clinical perspectives, and future directions.

Data Sources—Peer-reviewed literature

Conclusion—Cancer and chemotherapy are associated with cerebral structural and functional
alterations in breast cancer patients which may persist for years; many of these changes are
correlated with cognitive complaints or performance. In other cancers there is some evidence that
metabolism is altered by cancer, but more research is needed.

Implications for Nursing Practice—Understanding the role of neuroimaging is important to
identify the basis of cognitive changes associated with cancer and cancer treatment.
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Multiple neuroimaging techniques have been applied in studies of cancer- and chemotherapy
treatment-related cognitive dysfunction, with promising results. Magnetic resonance
imaging (MRI) most commonly is employed. MRI uses radio frequencies to manipulate
magnetization of various types of nuclei in the body, with the resulting signatures used to
produce detailed 2- or 3-dimensional images.1,2 This technology has been adapted to
measure a number of different factors, including brain gray matter (GM), white matter
(WM), and neural activity using functional MRI (fMRI). WM structure and directional
diffusion, or ‘fractional anisotropy’ (FA), is measured through diffusion tensor imaging
(DTI) of magnetized cerebral water flow.3,4 Brain activation is obtained using magnetized
hemoglobin to observe oxygenated blood flow; increased blood flow to active areas is
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measured during tasks, and fMRI has been reliably correlated with neural activity.5-7 Proton
MR spectroscopy (1H-MRS) also uses magnetic resonance technology to measure levels of
brain metabolites and neurochemical changes.8 MRI techniques have the advantage of being
non-invasive and do not require ionizing radiation, permitting multiple measurements and
longitudinal studies. Positron emission tomography (PET) is another technique that has been
employed to measure brain activity and metabolism using an injected radioactive tracer
coupled to a bioactive molecule; two common tracers which will be discussed are [O-15],
which measures blood flow, and [F-18] Fluorodeoxyglucose (FDG), which measures
metabolism.9-11 These techniques can be used to investigate neurophysiological changes and
may help explain the mechanisms of cognitive dysfunction in cancer patients.

The purpose of this research brief is to review the current literature on neuroimaging studies
of cancer and chemotherapy-induced cerebral alterations, and to provide perspective on the
state of research and future directions. Our primary goal is to review and synthesize the
evidence regarding the impact of non-central nervous system cancer and related treatment
on brain structure and function. Treatments administered for cancers in the central nervous
system (CNS) and lymphatic systems operate under different parameters and goals and are
beyond the scope of this review.12 Findings from imaging studies have the potential to
identify causal mechanisms and possible therapeutic directions for cancer and treatment-
related cognitive dysfunction.

Overview of Findings
We reviewed 35 neuroimaging studies. The overwhelming majority of the work in this area
has been focused on breast cancer (BC) patients, with 27 BC studies13-40 and only eight
studies in other cancers.41-48 In the BC studies, we noted that 18 studies were focused on
survivors,14-17,19-21,23-30,38-40 three were pre-treatment cancer studies,18,36,37 and six were
longitudinal studies in which women were followed pre- and post-treatment.13,22,31-34 These
studies are grouped by methodology and information is provided regarding authors, cohorts,
methods, and results in Tables 1-3. The majority of non-BC studies (see Table 4) were
focused on the association of metabolism with psychological factors or cancer. In summary,
research to date has been focused on the cognitive effects of BC treatment, likely due to the
large pool of survivors with cognitive concerns.35,40,49,50 This brief provides an overview
including all types of neuroimaging studies on multiple types of cancer.

Breast Cancer Survivor Studies
Neuroimaging studies began with a focus on survivors treated with chemotherapy. Initial
findings on this topic presented in 2003 indicated that chemotherapy treatment was
associated with structural changes in gray matter (GM), white matter (WM) loss, and
abnormal regional cerebral metabolism measured by PET.40,51,52 The focus of these BC
studies (Table 1) was on patients treated with chemotherapy (C+). All studies included a C+
category, and 15 included healthy controls (HC).14-17,19,23-30,38,40 However, only seven
studies included untreated survivors (C−), so the findings are limited since in most studies
differentiation between changes caused by treatment or cancer was not
possible.20,21,23,26,28,38,39

The major endpoints of these studies were cerebral structural and activation changes. GM
and WM damage consistently were reported in survivors except for Yoshikawa et al. This
discrepancy may be explained by unique cohort characteristics such as ethnicity, since the
majority of studies were conducted with Caucasian patients and this study only included
Japanese individuals.39 Authors of three studies reported association of these changes with
increased cognitive complaints or decreased neuropsychological test performance.16,19,23

Results from all six functional studies demonstrated activation or metabolic changes in
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survivors.19,21,24,27,28,38 The direction of activation change seems to be task-dependent. In
two studies activation change was found to be correlated with increased cognitive
complaints.19,28 Importantly, in two studies de Ruiter et al. found treatment-related
cognitive alterations almost a decade after treatment, accompanied by lower
neuropsychological test performance and increased cognitive complaints.20,21 Koppelmans
et al. conducted two studies with a very large survivor cohort over 20 years post-treatment.
Findings included decreased brain volume, GM, and decreased WM integrity with
increasing time since treatment, supporting the idea that BC, treatment, or both are
responsible for long-term possibly deleterious cognitive changes.29,30 Results from all but
one of these studies support the association of chemotherapy treatment with some measure
of cognitive structural or function alteration which could lead to cognitive dysfunction. The
majority of these findings are accompanied by neuropsychological testing deficits, increased
self-reported cognitive complaints, or both, indicating the functional relevance of these
measures. However, more work is needed to discern which measures are specific to
treatment and which to cancer.

Pre-Chemotherapy Breast Cancer Studies
Prompted by the need to discriminate between effects of BC and treatment, three imaging
studies were designed specifically to examine the influence of BC on cognition.18,36,37 BC
patients were examined before treatment and compared to HC with fMRI during
neuropsychological tasks. Activation decrease was observed for patients during response
inhibition and working memory tasks, while activation increase was observed during a
visuospatial task. Interestingly, two studies by Scherling et al. were performed in the same
cohort using different tasks and found evidence that activation increase or decrease may be
dependent on the type of task. These activation changes were not associated with test
performance changes, suggesting that they may be compensatory.36,37 This lack of
association suggests that while BC does appear to influence cognitive activation, the effects
may vary depending on the cognitive process being assessed. Activation also may be a more
sensitive measure of change than test performance.

Longitudinal Breast Cancer Treatment Studies
The existing longitudinal studies particularly are helpful in differentiating cancer and
chemotherapy effects, especially as four of the six studies reviewed included C- and
HC.22,31-34 Pre-treatment measures for all patients also allow discrimination of cancer and
chemotherapy effects over time. Results of all six studies demonstrated some cerebral
changes in cancer patients compared to controls, and results of the five studies with C−
controls indicated that some of these changes are specifically attributable to chemotherapy,
while others appear to occur in cancer patients regardless of treatment. These findings
suggest that while cancer patients experience cognitive alterations, chemotherapy may have
independent effects. Thus C+ patients may experience increased alterations compared to C−
patients, and may be at increased risk for cognitive sequelae. Two studies were designed to
investigate effects of cancer and chemotherapy more than four months post-treatment with C
+, C−, and HC groups. Findings included independent cancer and treatment-related
activation and GM changes post-treatment.33,34 At one year post-treatment, some activation
changes still were observed in C+ and C−, and GM decrease was not fully recovered in C+
patients, indicating that structural and functional changes can persist for significant periods
of time.

Non-BC Studies
As stated previously, there is a dearth of research on this topic in non-BC cancers.
Additionally, of the eight studies found, three studies were focused on the correlation of
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metabolism with psychological factors instead of cognitive factors.41-48 However, these
studies are still informative given that depression and cognitive complaints previously have
been linked.53 These findings provide indirect evidence for association of brain metabolism
with cognitive complaints. Interestingly, results of a study in a lung cancer cohort indicated
that patients had increased metabolism pre-treatment, suggesting that cancer may have a
transitory metabolic effect on the brain in lung cancer.47 Results from another study of lung
cancer indicated that patients had altered neurochemistry pre-treatment, further supporting
the hypothesis that lung cancer may alter cerebral activity.48

Six studies were conducted in a mixed cancer population. All were limited by the
assumption that the cancer types included in the studies affect the brain in a similar manner,
which may not be true.41-46 Only one study was designed to investigate the effect of
chemotherapy treatment on metabolism. Decreased metabolism in C+ patients was found,
demonstrating that other cancer populations do experience treatment changes.45 Three
studies in mixed cohorts of treated and untreated cancer patients found decreased
metabolism associated with cancer, supporting the possibility of cancer-induced cerebral
alterations in non-BC patients.44-46 However, in seven of the eight studies only FDG-PET
imaging was used. Clearly, more research is needed to investigate other imaging types in
these populations. Future work also should include longitudinal studies with C+, C−, and
HC groups to identify cancer and chemotherapy-specific changes, and should control for
cancer type, or focus on one cancer.

Clinical Implications and Future Research
Oncology nurses and other healthcare providers should understand the role neuroimaging
can play in identifying cognitive changes associated with cancer and cancer treatment, as
well as the impact of these changes on social relationships, everyday functioning and work
ability.54 Directions for future neuroimaging research are: (1) to elucidate cancer and
treatment-related changes in more diverse cohorts; (2) to utilize a range of imaging
methodologies, as most studies to date have been focused solely on MRI and fMRI; and (3)
to utilize neuroimaging in interventional cognitive research to establish efficacy as well as
elucidate therapeutic mechanisms of action.

Conclusion
Results from neuroimaging studies in BC cohorts have provided solid evidence supporting a
variety of cerebral structural and functional alterations associated with cancer and
chemotherapy treatment. Evidence from BC survivors suggests that some of these changes
persist for years. Little imaging research has been conducted in other cancer types; however,
preliminary studies support cancer-related cerebral metabolic changes. More research is
needed to clarify the individual roles of cancer and treatment-related changes, especially in
non-BC populations.
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Table 1

Breast Cancer Survivor Neuroimaging Studies

Study Cohort PCI
a Method Results

Saykin et al.40
12 C+

b
, 12 H

>5Y sMRI C+: ↓ WM and GM

Yoshikawa et al.39 44 C+, 31 C− >3Y sMRI, NP C+: No treatment associations

Ferguson et al.24 1 C+, 1 H 22M s/fMRI, NP, SR C+: ↑ SR, WM damage, WMem activation

Silverman et al.38 16 C+, 5 C−, 13 H 5-10Y O-15 & FDG PET,
NP

C+: altered CBF during memory task;
resting metabolism correlated with task
performance

Inagaki et al.26 1Y: 51 C+, 54 C−, 55 H; 3Y: 73
C+, 59 C−, 37 H

1Y and 3Y sMRI, NP 1Y C+: ↓ GM and WM vs. C−, not vs. H.
3Y C+: no treatment association with GM/
WM

Abraham et al.15 10 C+, 9 H 22M DTI, NP C+: ↓ PS, FA

Kesler et al.27 14 C+, 14 H >6M fMRI C+: activation ↓ encoding, ↑ recall in VDM
task

Kesler et al.28 25 C+, 19 C−, 18 H 5Y fMRI, NP, SR C+ & C−: ↓ activation for EF task
C+: ↑ SR complaints, NP errors, ↓ PS, ↓
activation correlated with SR, disease
severity

de Ruiter et al.21 19 C+, 15 C− >9Y fMRI, NP HD C+: ↓ activation for EF and EMem
tasks, NP

Deprez et al.23 17 C+, 10 C−, 18 H 2-4M DTI, NP, SR C+: ↓ FA, ↑ MD vs. C− and H; FA
correlated with attention, PS, SR

Bergouignan et al.16 16 C+, 21 H 18-36M sMRI, NP C+: ↓ GM, ↓ NP; GM correlated with NP

Kesler et al.14 42 C+, 35 H 4.8Y sMRI, INF, NP C+: ↓ GM, NP, ↑ INF; ↓ GM correlated with
INF

Koppelmans et al.29 184 C+, 368 H 21Y sMRI C+: ↓ TBV, GM

Koppelmans et al.30 187C+, 374 H 21Y DTI C+: WM integrity correlated with time since
treatment; no change vs. H

Hosseini et al.25 37 C+, 38 H 4.5Y sMRI C+: ↓ GM connectivity, organization,
integration

Bruno et al.17 34 C+, 27 H 5.35Y fMRI, SR C+: ↑ SR, ↓ global cluster, nodal degree,
hubs

de Ruiter et al.20 17 HD C+, 15 C− >9Y DTI, sMRI, NP, SR C+: ↑ SR, ↓ NP, GM, focal FA; ↑ MD
correlated with ↓ neural markers

Conroy et al.19 24 C+, 23 H 3-10Y s/fMRI, NP, SR,
Comet

C+: ↓ GM, WMem activation, NP; GM
correlated with PCI, NP, activation
correlated with PCI, SR, OD

PCI=post-chemotherapy interval, C+=survivors treated with chemotherapy, C−=survivors not treated with chemotherapy, H=healthy controls,
Y=year, M=month, HD=high dose, sMRI=structural MRI, fMRI=functional MRI, DTI=diffusion tensor imaging, FDG-PET=[F-18]
Fluorodeoxyglucose positron emission tomography, Comet=assay of oxidative DNA damage, oxidative DNA damage=OD,
NP=neuropsychological testing, SR=self-report cognitive complaints assessment, ↓=decrease, ↑=increase, GM=gray matter, WM=white matter,
WMem=working memory, CBF=cerebral blood flow, PS=processing speed, FA=fractional anisotropy, MD=mean diffusivity, VDM=verbal
declarative memory task, EF=executive function, EMem=episodic memory, TBV=total brain volume

a
When one number is listed, this is the average length of time post-treatment

b
10 breast cancer, 2 lymphoma survivors
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Table 2

Pre-Chemotherapy Breast Cancer Neuroimaging Studies

Study Cohort Method Results

Cimprich et al.18 10 PC, 9 H fMRI PC: ↓ speed, accuracy for verbal WMem task, ↑ activation

Scherling et al.36 23 PC, 23 H fMRI PC: ↑ activation during VS task, ↓ reaction time, errors

Scherling et al.37 23 PC, 23 H fMRI PC: ↓ activation during RI task, no performance change

PC=cancer patients who have not yet received chemotherapy, H=healthy controls, fMRI=functional MRI, ↓=decrease, ↑=increase,
WMem=working memory, VS=visuospatial, RI=response inhibition
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Table 3

Longitudinal Breast Cancer Neuroimaging Studies

Study Cohort Measures Method Results

McDonald et al.32 17 C+, 12 C−, 18 H BL, 1M, 1Y sMRI C+ & C−: ↓ GM from BL to 1M
C+: some changes persist at 1Y

McDonald et al.33 16 C+, 12 C−, 15 H BL, 1M, 1Y fMRI C+&C−: ↑ frontal, ↓ left parietal BL WMem
activation, 1M ↓ frontal activation, 1Y partial
recovery
C+: ↑ frontal activation at BL, 1M, 1Y

McDonald et al.34 27 C+, 28 C−, 24 H BL, 1M sMRI, SR C+: ↓ GM at 1M; ↑ SR correlated with ↓ GM

Ganz et al.13 49 C+, 44 C− 8.7MD, 14.7MD, 20.7MD SR, NP, FDG-
PET, INF

C+: 8.7MD ↑ SR, ↑ INF, INF correlated to
inferior frontal metabolism; longitudinal ↓ INF
correlated to ↑ SR

Deprez et al.22 34 C+, 16 C−, 19 H BL, 3-4M DTI, NP C+: ↓ NP at 1M vs. BL; NP correlated with ↓ FA

Lopez Zunini et al.31 21 C+, 21 H BL, 1M fMRI, NP C+: ↓ VMem activation at BL, 1M vs. BL

C+=survivors treated with chemotherapy, C−=survivors not treated with chemotherapy, H=healthy controls, BL=baseline (pre-chemotherapy),
M=month post-treatment, MD=month post-diagnosis, Y=year post-treatment, sMRI=structural MRI, fMRI=functional MRI, SR=self-report
cognitive assessment, FDG-PET=[F-18] Fluorodeoxyglucose positron emission tomography, INF=inflammatory markers, DTI=diffusion tensor
imaging, NP=neuropsychological testing, ↓=decrease, ↑=increase, GM=gray matter, WMem=working memory, FA=fractional anisotropy,
VMem=verbal memory
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Table 4

Non-CNS, Non-Breast Cancer Neuroimaging Studies

Study Cancer Cohort Design Method Results

Tashiro et al.46 Various 19 PC, 17 H Cross-section FDG-PET Cancer: ↓ metabolism

Tashiro et al.44 Various 1 PC, 19 C+/−, 10 H Cross-section FDG-PET, SR Cancer: ↓ metabolism

Tashiro et al.45 Various 2 PC, 7 C+, 12 C−, 10 H Cross-section FDG-PET, SR Cancer: ↓ metabolism; metabolism
correlated with depression
C+: ↓ posterior metabolism

Tashiro et al.42 Various 4 PC, 3 C−, 1 C+ Cross-section FDG-PET, NKA, SR Cancer: Metabolism, NKA, and
anxiety correlated

Tashiro et al.43 Various 11 C−, 5 C+ Cross-section FDG-PET, SR Cancer: Metabolism correlated with
social desirability

Kumano et al.41 Various 6 C+, 13 C− Longitudinal FDG-PET, SR Cancer: BL metabolism associated
with depression change over time

Golan et al.47 lung 18 PC, 8CS, 11 L PC cross-section FDG-PET PC: ↑ metabolism

Benveniste et al.48 lung 17 PC, 15 H PC cross-section 1H-MRS PC: ↓ Neural markers

PC=cancer patients who have not yet received chemotherapy, C+=cancer patients treated with chemotherapy, C−=cancer patients not treated with
chemotherapy, H=healthy controls, CS=cancer survivors, L=individuals with benign lesions, FDG-PET=[F-18] Fluorodeoxyglucose positron
emission tomography, SR=self-reported cognitive/psychological measures, NKA = natural killer cell activity, ↓=decrease, ↑=increase, BL =
baseline, Cancer=individuals with cancer, regardless of treatment status or time
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