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Abstract

Nerve growth factor (NGF) is an important mediator in the initiation of the inflammatory response

and NGF via activation of the p75 neurotrophin receptor (p75NTR) and downstream

sphingomyelin signaling leads to significant enhancement of the excitability of small diameter

sensory neurons. Because of the interaction between sphingomyelin and cholesterol in creating

membrane liquid-ordered domains known as membrane or lipid rafts, we examined whether

neuronal NGF-induced sensitization via p75NTR was dependent on the integrity of membrane

rafts. Here, we demonstrate that the capacity of NGF to enhance the excitability of sensory

neurons may result from the interaction of p75NTR with its downstream signaling partner(s) in

membrane rafts. Two agents known to disrupt membrane rafts, edelfosine and methyl-β-

cyclodextrin (MβCD), block the increase in excitability produced by NGF. In contrast, treatment

with MβCD containing saturated amounts of cholesterol does not alter the capacity of NGF to

augment excitability. In addition, adding back MβCD with cholesterol restored the NGF-induced

sensitization in previously cholesterol-depleted neurons, suggesting that cholesterol and the

structural integrity of rafts are key in promoting NGF-mediated sensitization. Using established

protocols to isolate detergent-resistant membranes, both p75NTR and the neuronal membrane raft

marker, flotillin, localize to raft fractions. These results suggest that downstream signaling

partners interacting with p75NTR in sensory neurons are associated with membrane raft signaling

platforms.
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The fluid mosaic model of the plasma membrane (Singer and Nicholson 1972) proposed that

proteins freely diffused in the lipid bilayer. However, membrane proteins may interact

within microdomains wherein lateral mobility is restricted by packing of specific membrane

lipids. These specialized complexes, referred to as membrane or lipid rafts, are domains of

cholesterol and sphingolipids with long, mostly saturated acyl chains, which are packed

tightly together to form a liquid-ordered phase that is scattered among a liquid-disordered

matrix composed of unsaturated glycerolipids (Brown and London 1998, 2000; Simons and

Toomre 2000; Hancock 2006; Shaw 2006; Jacobson et al., 2007; Simons and Gerl 2010).

Membrane proteins associate differently between the liquid-ordered and –disordered

domains allowing for dynamic inclusion/exclusion of proteins into or from liquid-ordered

domains. When the membrane is solubilized with a detergent, the liquid-ordered structures

give rise to detergent-resistant membrane domains that are enhanced in cholesterol,

sphingolipids, and integral membrane proteins that can be enriched using density gradient

centrifugation (Shogomori and Brown 2003). A variety of proteins are known to be

associated with membrane rafts, and for many their activity depends on this association.

Preferential inclusion or exclusion of proteins in these domains promotes interactions which

can regulate intracellular signaling events spatially via localized compartments which can

then modulate their temporal interaction. Thus, membrane rafts are important in protein

sorting and serve as platforms that coordinate signal transduction with intracellular targets

(Golub et al., 2004; Kiyokawa et al., 2005; Harding and Hancock 2008; Lingwood and

Simons 2010).

Sphingomyelins and ceramides are key membrane lipids that give rise to liquid-ordered

membrane domains (Brown and London 2000). These rafts form scaffolding platforms

where signaling molecules can be in close association and thereby facilitate transduction.

Activation of the p75 neurotrophin receptor (p75NTR) leads to stimulation of the

sphingomyelin signaling cascade with a consequent liberation of ceramide (Dobrowsky et

al., 1994). Previous studies indicated that p75NTR can associate with membrane rafts (Wu et

al., 1997; Bilderback et al., 1997). In addition, our previous work demonstrated that NGF

via activation of p75NTR and a neutral sphingomyelinase, significantly enhanced the

excitability of small diameter sensory neurons through the modulation of a tetrodotoxin-

resistant sodium current and an outward potassium current(s) (Zhang et al., 2002; 2008;

2012; Zhang and Nicol 2004). In recent studies examining the downstream signaling

pathways activated by p75NTR (Zhang et al., 2012), use of the inhibitor, edelfosine, hinted

that this pathway may involve membrane rafts. Taken together, these results raise the

question as to whether the enhanced excitability mediated by NGF and activation of p75NTR

depends on the integrity of membrane rafts in the neuronal membrane.

Experimental Procedures

Isolation and maintenance of adult rat sensory neurons

Sensory neurons were isolated from young adult male Sprague-Dawley rats (100–150 g)

using procedures developed by Lindsay (1998) with slight modifications (Chi and Nicol

2007). Briefly, the young rats were killed by placing them in a chamber filled with CO2. The

dorsal root ganglia (DRGs) were collected in a culture dish filled with sterilized Puck’s
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solution. The ganglia were transferred to a conical tube with F-12 media containing papain

(10 U/ml) and incubated for 15 min at 37° C, followed by incubation with 1 mg/ml

collagenase IA and 2.5 mg/ml dispase for 25 min at 37° C. The suspension was centrifuged

for 60 s (1000 × g) after which the enzyme-containing supernatant was removed. The pellet

was resuspended in F-12 media supplemented with nerve growth factor (30 ng/ml) (Harlan

Bioproducts, Indianapolis, IN) and 10% heat-inactivated horse serum (Gibco #26050-088).

Cells were mechanically dissociated with fire-polished pipettes. Isolated cells were plated

onto plastic coverslips previously coated with poly-D-lysine (100 μg/ml) and laminin (5 μg/

ml). Isolated cells were maintained in culture at 37°C and 3% CO2 for 18–24 hrs before

electrophysiological recordings were obtained. All procedures were approved by the Animal

Use and Care Committee of Indiana University School of Medicine.

Electrophysiology

Recordings were made using the whole-cell patch-clamp technique (Zhang et al., 2012;

Hamill et al., 1981). Briefly, a cover slip with sensory neurons was placed in a recording

chamber where neurons were bathed in normal Ringers solution of the following

composition (in mM): 140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES and 10 glucose, pH

at 7.4 with NaOH. Recording pipettes were pulled from capillary glass tubing (Model

G85165T-4, Warner Instruments, Hamden, CT) and typically had resistances of 2–5 MΩ

when filled with the following solution (in mM): 140 KCl, 5 MgCl2, 4 ATP, 0.3 GTP, 2.5

CaCl2, 5 EGTA (calculated free Ca2+ concentration of ~100 nM), and 10 HEPES, at pH 7.3

with KOH. Whole-cell voltages were recorded with an Axopatch 200B amplifier (Molecular

Devices, Sunnyvale, CA). The whole-cell recording configuration was established in normal

Ringers solution. The data were acquired and analyzed using pCLAMP 6.04 or pCLAMP

9.0 (Molecular Devices). All drugs were applied by external superfusion of the recording

chamber using a VC-8 bath perfusion system (Warner Instruments, Hamden, CT). To assess

excitability in the current-clamp experiments, neurons were held at their resting potentials

(range between −45 to −65 mV) and ramps of depolarizing currents (1 s in duration) were

used to evoke 2–4 action potentials (APs) under control conditions. The same ramp was then

used throughout the recording period for each individual neuron. The current clamp traces

were filtered at 5 kHz and sampled at 1 kHz. At the end of each recording, the neuron was

exposed to 400 nM capsaicin for approximately 30 s. This neurotoxin was used to

distinguish capsaicin-sensitive sensory neurons as these neurons are believed to transmit

nociceptive information (Holzer 1991). However, the correlation between a neuron being a

nociceptor and having capsaicin sensitivity is not absolute. Some nociceptive neurons are

insensitive to capsaicin and some capsaicin-sensitive neurons are not nociceptors (see

Petruska et al., 2000). Therefore this agent was used to define a population of small-

diameter sensory neurons that could serve a nociceptive function. The results reported in the

electrophysiological recordings were obtained from only capsaicin-sensitive neurons. All

experiments were performed at room temperature (~23° C).

Detergent-free Membrane Raft Isolation

Membrane rafts were prepared as described previously (Macdonald and Pike 2005). Briefly,

cells were washed, scraped into base buffer (20 mM Tris-HCL pH 7.8, 250 mM sucrose, 1

mM CaCl2, 1 mM MgCl2) and pelleted by centrifugation at 250xg for 5 min. The cells were
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resuspended in 1 ml base buffers supplemented with protease inhibitors (PMSF,

benzamidine-HCl, calpain I, calpain II, leupeptin, pepstatin A, aprotinin) and homogenized

using 20 strokes of a 2 ml dounce homogenizer. The lysed cells were then centrifuged at

1,000xg for 10 min. The supernatant was collected and transferred to a 5 ml ultracentrifuge

tube (Sorvall) and mixed with an equal volume of 50% Optiprep® density gradient medium

(Sigma-Aldrich, St. Louis, MO) diluted in base buffer. A 20-0% Optiprep® gradient was

gently layered on the lysate using a Gilson Minipuls 3 gradient maker. The membrane rafts

were separated by a 52,000xg 90 min centrifugation at 4°C in a Sorvall Discovery M150 SE

ultracentrifuge using a Sorvall S52ST-0065 swinging bucket rotor. Following the spin, 12

separate 412 μl fractions were collected beginning at the top of the gradient and descending

downward through the gradient.

Cholesterol Assay

The cholesterol content of fractions was assessed using the fluorometric Amplex Red®

reagent cholesterol assay kit (Invitrogen) as per the manufacturer’s instructions. Briefly, a

50 μl aliquot of each fraction was combined with 50 μl working reagent as described in the

kit into separate wells of a 96 well plate. Following a 30 min incubation at 37°C in the dark,

the fluorescence of each well was measured using a 1 second exposure Victor V3 Plate

fluorescent plate reader using detection parameters at an excitation of 485 nm and emission

of 535 nm. The cholesterol assay was calibrated by using cholesterol standards ranging from

0 to 20 μM (0, 0.5, 1, 2.5, 5, 10, and 20). The relation between the fluorescence reading and

cholesterol concentration was fitted by a linear regression line having an R2 value of 0.996

(Origin 8.6).

Western Blot Analysis

This was performed as described previously (Khanna et al., 2001). Briefly, aliquots of

fractions from membrane raft isolations were separated on 4–12% sulfate-polyacrylamide

gel (SDS-PAGE) and electrophoretically transferred to a PVDF membrane. The membranes

were blocked 1 hr to overnight at 4°C in 5% dry milk diluted in 0.5% bovine serum

albumin. After incubation of membranes with polyclonal antibodies against flotillin-1

(1:1000 dilution, Cell Signaling Technology, Danvers, MA) or p75NTR (1:400 dilution,

Pierce Biotechnology, Rockford, IL), the blots were washed five times for five minutes in

Tris-buffered saline with Tween-20 (TBST). The membranes were then incubated with

secondary HRP goat anti-rabbit or anti-mouse antibodies diluted in blocking buffer at a

dilution of 1:8000–1:10,000 for 1 hr. The blots were washed extensively in TBST and

probed with Enhanced Chemiluminescence Western blotting substrate (Thermo Scientific)

before exposure to photographic film. Blots were exposed for a range of durations to ensure

the generation of a print in which the film was not saturated. Films were then scanned,

digitized, and quantified using Un-Scan-It gel V6.1 scanning software (Silk Scientific Inc.,

Orem, UT), limiting the analysis to the linear range.

MβCD-cholesterol solution

A stock solution of 10 mM MβCD (Sigma-Aldrich) was made in normal Ringers solution.

The protocol previously described in Christian et al., (1997) and Levitan et al., (2000) was

used to prepare the MβCD-saturated cholesterol solution. Briefly, a stock solution of
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cholesterol (5 mg/ml) was prepared in a choloform:methanol (1:1, vol:vol) solution in a

glass vessel. The solvent was evaporated using a gentle stream of N2 gas, leaving a dried

film on the bottom. The MβCD-Ringers solution at 1 mM MβCD was added and sonicated;

this solution was then slowly shaken overnight at 37° C. This solution of 1 mM MβCD-

saturated cholesterol Ringers was then used to treat isolated sensory neurons.

Data analysis

Data are presented as the means ± s.e.m. Statistical differences between the control

recordings and those obtained under various treatment conditions were determined by using

either an ANOVA or repeated-measures (RM) ANOVA whenever appropriate. When a

significant difference was obtained, post hoc analyses were performed using a Holm-Sidak

all pairwise test. If the data set failed the normality test, a Kruskal-Wallis analysis of

variance on ranks was performed using a Dunn’s all pairwise test. Values of P<0.05 were

judged to be statistically significant.

Chemicals

Edelfosine was purchased from EMD Bioscience (San Diego, CA). Tissue culture supplies

were purchased from Fisher (Pittsburgh, PA). All other chemicals were obtained from

Sigma-Aldrich Chemical Corp. (St. Louis, MO). For the electrophysiology experiments,

capsaicin and edelfosine were dissolved in 1-methyl-2-pyrrolidinone (MPL, HPLC grade).

These stock solutions were then diluted with Ringers solution to yield the appropriate

concentration. The vehicle, MPL, was typically used at 1000–5000 fold dilutions; we

demonstrated previously that the vehicle 1-methyl-2-pyrrolidinone has no effect on AP

firing or the activation of either the tetrodotoxin-resistant sodium current or the voltage-

dependent potassium current (Zhang et al., 2002).

Results

Increased excitability produced by NGF is blocked by edelfosine

As part of our studies investigating the downstream signaling pathways activated by NGF

via p75NTR, we found that the phospholipase C inhibitors U73122 and neomycin were

without effect (Zhang et al., 2012). In a separate series of studies to corroborate these

previous observations obtained with U73122 and neomycin, we used another putative

phospholipase C inhibitor, edelfosine (ET-18-OCH3). Surprisingly, pretreatment of sensory

neurons with edelfosine blocked the increase in excitability produced by NGF. As shown in

Fig. 1, treatment with 100 ng/ml NGF produced an increase in the number of action

potentials (APs) evoked by a ramp of depolarizing current. Under control conditions the

ramp evoked 3 APs (panel A) whereas after a 6 min exposure to NGF the number of APs

increased to 9 (panel B). Panel C summarizes the sensitization produced by NGF wherein

after a 6 min exposure to NGF, the number of evoked APs was significantly increased to 7.8

± 1.2 compared to a control value of 2.8 ± 0.2 APs (P<0.001, RM ANOVA, n=5); the AP

values recorded at 6, 10, and 20 min were not different. Associated with the increased AP

firing, NGF produced a significant time-dependent depolarization of the neuronal resting

membrane potential wherein the control value of −55.1 ± 0.2 mV increased to −49.8 ±1.0,

−47.6 ± 1.2, −46.4 ± 1.2, and −44.1 ± 0.7 after exposure to NGF for 2, 6, 10, and 20 min,
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respectively (P<0.001 for all values compared to control, RM ANOVA, n=5, data not

shown). In contrast, pretreatment with 10 μM edelfosine for 30 min completely suppressed

the sensitization of AP firing produced by NGF (panel C). The average AP value obtained

for NGF in the presence of edelfosine was not different from the control values (3.3 ± 0.4

APs for control vs. 3.7 ± 0.5 APs after 20 min NGF, P=0.28 RM ANOVA, n=7). In

addition, after edelfosine treatment, NGF failed to depolarize the resting membrane potential

(−52.1 ± 1.7 mV for control vs. −49.7 ± 2.1 mV after 20 min NGF, P=0.06 RM ANOVA,

n=7, data not shown). These results raise the question as to why edelfosine blocked the

actions of NGF while U73122 or neomycin was ineffective. In addition to acting as a

phospholipase C inhibitor, edelfosine has other actions. In its capacity as an anti-cancer

chemotherapeutic agent, edelfosine interacts with membrane rafts causing their disruption.

In fact, edelfosine has a high affinity for cholesterol and prior disruption of membrane rafts

by methyl-β-cyclodextrin (MβCD), a cholesterol chelating agent prevents the capacity of

edelfosine to induce apoptosis (van der Luit et al., 2002; Zaremberg et al., 2005; Ausili et

al., 2008; Mollinedo et al., 2010). These results suggest that the enhanced excitability

produced by NGF may involve membrane rafts.

Increased excitability produced by NGF is blocked by MβCD

Because of the cholesterol dependency for structural stability of membrane rafts, compounds

that extract cholesterol from the membrane, such as MβCD (Brown and London 2000;

Zidovetzki and Levitan 2007), have been widely used to disrupt these domains and thereby

establish functional roles of membrane rafts. To test the possibility that edelfosine acts by

disrupting the organization of membrane rafts, isolated sensory neurons were pretreated with

10 mM MβCD for 30 min and then exposed to NGF. As shown in Fig. 2A, MβCD

completely blocked the ability of NGF to increase the number of APs. In addition, treatment

with MβCD prevented the NGF-induced depolarization of the resting membrane potential

(control −54.1 ± 1.4 mV vs. NGF 20 min −53.2 ± 1.5 mV, P=0.32 RM ANOVA, n=6, data

not shown). It is possible that MβCD disrupts NGF-mediated signaling pathways

independently of its capacity to chelate cholesterol. To test this idea, sensory neurons were

treated with either 1 mM MβCD Ringers solution alone or 1 mM MβCD Ringers solution

with saturating levels of cholesterol for 60 min. Similar to the 30 min treatment, a 60 min

treatment with 1 mM MβCD blocked the enhanced excitability (both increased AP firing

and membrane depolarization) produced by NGF (see Fig. 2B). In contrast, a 60 min

pretreatment with 1 mM MβCD and saturating concentrations of cholesterol did not affect

the ability of NGF to augment AP firing wherein a significant increase in AP firing was

observed after only a 2 min exposure to NGF. Under the MβCD + saturated cholesterol

condition, NGF significantly depolarized the membrane potential from a control value of

−54.8 ±1.9 mV to −47.2 ± 2.1 mV after 10 min NGF (P<0.001 RM ANOVA, n=8). To

further demonstrate that membrane cholesterol was a key component to the sensitization

produced by NGF, sensory neurons were pretreated with 10 mM MβCD for 30 min prior to

recording. After attaining the whole-cell configuration, neurons were exposed to a Ringers

solution containing 10 mM MβCD and 100 ng/ml NGF. Over a 10 min exposure to MβCD

and NGF, eight sensory neurons did not exhibit an increase in the number of evoked APs

(see Fig. 2C). These neurons were then treated with Ringers solution containing 10 mM

MβCD + 100 ng/ml NGF + saturating cholesterol wherein after only 6 min, there was a
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significant increase in the number of APs that was maintained for the 20 min recording

period. These results indicate that returning cholesterol to the neuronal membrane is a

critical factor in the capacity of NGF to enhance the excitability of these neurons. We

believe that the suppression produced by MβCD does not result from non-specific

membrane effects such as changes in membrane fluidity since in the absence of NGF there

were no changes in the resting membrane potential. In addition, previous studies

demonstrated that 1 mM MβCD for 10 min significantly depleted cholesterol without

compromising membrane stability (Zidovetzki and Levitan 2007) and 10 mM MβCD for 30

min did not affect the membrane resistance of isolated trigeminal neurons (Gnanasekaran et

al., 2011). Taken together, these results suggest that the enhanced excitability produced by

NGF may involve the interaction of p75NTR and/or its downstream signaling partners in a

membrane raft domain.

p75NTR is found in the membrane raft fractions

Additional studies were performed to determine whether p75NTR was detected in density

fractions obtained from isolated sensory neurons. The representative Western blot shown in

Fig. 3 demonstrates that p75NTR was found in both the raft (fractions 6–8) and non-raft

(fractions 9–12) membrane density fractions. In addition, fractions 6–8 contained the

established membrane raft marker, flotillin (Bickel et al., 1997; Lang et al., 1998). To

corroborate the idea that elevated levels of cholesterol were associated with the raft-

containing density fractions 6–8, the cholesterol content of the 12 density fractions was

determined. As shown in Fig. 4A, there were two peaks of cholesterol content, one

associated with fractions 5–8 and the other with fractions 9–12. Treatment with 10 mM

MβCD for 30 min at 37°C reduced the concentration of cholesterol detected in fractions 5–

11 obtained from isolated sensory neurons (Fig. 4A). The ability of MβCD to deplete

sensory neurons of their cholesterol was concentration-dependent with 10 mM significantly

reducing the content of fractions 6–8 by about 35% (see Fig. 4B). Thus, these results

indicate that MβCD effectively lowers cholesterol in sensory neurons.

Discussion

In this report, we demonstrate that NGF enhanced the capacity of small diameter sensory

neurons to fire APs and that this may result from the interaction of p75NTR with its

downstream signaling partner(s) in membrane liquid-ordered domains known as membrane

rafts. Two established agents known to modify membrane cholesterol levels and therefore

disrupt membrane rafts, edelfosine and MβCD, blocked the increased excitability produced

by NGF. When sensory neurons were treated with MβCD containing saturated amounts of

cholesterol, the capacity of NGF to augment AP firing was quickly restored to levels that we

previously observed under normal recording conditions (Zhang et al., 2002, 2006; 2012),

suggesting that the loss of cholesterol from the neuronal membrane and consequently

disruption of raft structural integrity could be key in promoting the sensitization produced by

NGF. The relatively rapid recovery for the NGF-induced enhancement of AP firing with the

re-addition of MβCD + cholsterol is consistent with previous reports. In A431 cells, a human

epithelial carcinoma cell line, cholesterol depletion with 5 mM MβCD completely

suppressed the bradykinin-induced turnover of phosphatidylinositol within 10 min;
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application of MβCD with cholesterol fully restored this bradykinin turnover within 20 min

of application (Pike and Miller 1998). The binding of stromal cell-derived factor 1α (a

ligand for CXCR4) was restored within 10 min after adding back βCD + cholesterol to T

cells that had been previously treated with βCD to deplete cholesterol (Nguyen and Taub

2002). Similarly, treatment with 10 mM MβCD significantly decreased the amplitude of the

excitatory post-synaptic potential recorded from crayfish muscle, which was completely

recovered after only 10 min of adding back 10 mM MβCD + cholesterol (Zamir and

Charlton 2006). In addition, using established protocols to isolate raft and non-raft

membranes, p75NTR as well as the neuronal marker for membrane rafts, flotillin, were

localized to these raft fractions. Therefore, our results clearly demonstrate that the NGF-

mediated enhancement of sensory neuron excitability requires the presence of membrane

cholesterol. Although these observations are not definitive for a causal role of membrane

raft domains, they do suggest that rafts may play an important role in the interaction of

p75NTR with its downstream effector molecules.

In support of the idea regarding the raft dependence of p75NTR signaling, previous studies

have found that p75NTR can be localized to membrane raft fractions. Early studies using

synaptic plasma membranes isolated from rat forebrain, NIH-3T3, or PC12 cells

demonstrated that the highest levels of p75NTR were detected in the low-density fractions

that were associated with the membrane raft resident proteins caveolin (3T3 cells) or

caveolin-like membrane fractions (PC12 cells) although lower levels of p75NTR were also

observed in the higher-density or detergent soluble fractions (Wu et al., 1997; Bilderback et

al., 1997; Huang et al., 1999). These results are consistent with our observations wherein

p75NTR was detected in both the low-density (fractions 6–8) and the higher density fractions

(9–12). In PC12 cells, treatment with NGF (2 nM for 1 hr) did not alter the levels of p75NTR

expressed in the raft fractions (Huang et al., 1999), however in mouse cerebellar granule

neurons, which express p75NTR and not TrkA, exposure to 200 ng/ml NGF for 10 min

increased the levels of p75NTR by about two fold that were found in the insoluble raft

fractions (Higuchi et al., 2003), suggesting that the ability of NGF to translocate p75NTR

into or out of rafts may depend on the model system.

Little is known about the interaction of p75NTR and its downstream signaling partners that

may occur in the raft domain. Membrane rafts are known to contain increased levels of

sphingomyelin (Brown and Rose 1992; Brown and London 1998; Paratcha and Ibanez

2002). In rat T9 glioblastoma cells, NGF (100 ng/ml) exposure resulted in the hydrolysis of

membrane sphingomyelin with the consequent generation of ceramide (Dobrowsky et al.,

1994). Interestingly, treatment of PC12 cells with NGF reduced the levels of sphingomyelin

only in the low-density raft fractions, suggesting that p75NTR was associated or interacted

with the sphingomyelinase within a membrane raft domain (Bilderback et al., 1997). Similar

changes in sphingomyelin and ceramide levels were reported in human fibroblasts after

treatment with IL-1β (Liu and Anderson 1995). In addition, the activity of PI3K, a key

molecule in many signaling cascades, appears to critically depend upon its localization to

membrane rafts where its capacity to phosphorylate Akt requires membrane cholesterol

(Zhuang et al., 2002; Peres et al., 2003; Arcaro et al., 2007). Consistent with these

observations, we found that inhibition of neutral sphingomyelinase (Zhang et al., 2002) or

PI3K blocked the capacity of NGF to enhance the excitability of small diameter sensory
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neurons (Zhang et al., 2012). These results raise two important questions as to whether

downstream signaling partners associated with p75NTR in sensory neurons are localized to

raft signaling platforms and also whether NGF alters the distribution of p75NTR and/or

downstream effectors into or out of raft platforms. These questions are clearly important

areas for future investigations.

In addition, modulation of the activity of different ion channels has been associated with

their localization to membrane raft domains, which could then potentially regulate neuronal

excitability. The potassium channels Kv2.1 and Kv1.5 were detected in the low-density raft

fractions when expressed in Ltk mouse cells (Martens et al., 2000; 2001; 2004). The activity

of these potassium channels was linked to their association with membrane rafts where

cholesterol depletion resulted in hyperpolarizing shifts in their activation curves (Kv1.5) and

their steady-state inactivation relations (Kv2.1 and Kv1.5)(Martens et al., 2000; 2001). The

rapidly inactivating potassium channels Kv1.4 and Kv4.2 have also been detected in the raft

fractions isolated from rat hippocampal neurons (Wong and Schlichter 2004). The current

conducted by the inward rectifying potassium channel Kir2 is regulated by the levels of

membrane cholesterol such that MβCD treatment leads to enhanced current amplitudes

(Romanenko et al., 2002, 2004). Similarly, Kv1.3 in both human and Jurkat T-lymphocytes

is associated with membrane rafts wherein the levels of membrane cholesterol inversely

regulate the current amplitudes (Hajdu et al., 2003; Bock et al., 2003). In addition, the

formation of ceramide-enriched domains lead to inhibition of these currents (Bock et al.,

2003). More recently, the tetrodotoxin-resistant sodium channel Nav1.8 was localized to

both the insoluble and soluble fractions obtained from sensory neurons isolated from the

dorsal root ganglia (Pristera et al., 2012). Although the amplitude of the TTX-resistant

sodium current was not altered by 10 mM MβCD, the number of sensory neurons responsive

(measured as an increase in Fluo-4 fluorescence) to mechanical stimulation of the membrane

with a small glass probe (tip diameter 1 μm) was reduced by about 50% (Pristera et al.,

2012). In support of the idea that p75NTR and its activation of downstream signaling plays a

key role in enhancing the excitability of sensory neurons, we previously demonstrated that

both NGF and brain derived neurotrophic factor augmented the tetrodotoxin-resistant

sodium current and suppressed a voltage-dependent potassium current(s) (Zhang et al.,

2002; 2008; 2012). Whether the activity of these ion channels is modulated directly within

the raft domain is presently unknown.

In addition to voltage-dependent channels, ligand-gated channels such as P2X3 can be

localized to flotillin-associated fractions obtained from rat cerebellar granule neurons and

DRG sensory neurons using a detergent-free isolation procedure (Vacca et al., 2004). The

currents conducted by P2X3 and P2X1 were both significantly reduced after treatment with

10 mM MβCD in isolated trigeminal neurons (Gnanasekaran et al., 2001) and smooth

muscle cells (Vial and Evans 2005), respectively. Importantly, 10 mM MβCD did not alter

the membrane resistance of trigeminal neurons (Gnanasekaran et al., 2001). In contrast,

MβCD had no effect on P2X3 currents obtained from isolated DRG sensory neurons

although both the membrane clustering of TRPV1 and the capsaicin-activated currents were

significantly reduced by 1 or 10 mM MβCD (Liu et al., 2006). It is unclear why the

sensitivities of P2X3 to MβCD are different in trigeminal vs. DRG neurons. Taken together,

these results indicate that the ion channels regulating neuronal excitability could be localized
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to membrane rafts and that their association with different membrane components can

directly affect their activity.

Conclusion

NGF plays a key role in the initiation of the inflammatory response. The levels of NGF are

significantly elevated in the skin after blister formation or in pleural exudates after exposure

to carrageenan (Weskamp and Otten, 1987). Upon activation, a number of immuno-

competent cells release NGF (Ehrhard et al., 1993; Leon et al., 1994; Thacker et al., 2007).

Associated with the inflammatory response is the activation of small diameter sensory

neurons which, in turn, contributes to increased sensitivity, vasodilatation, and plasma

extravasation. NGF is known to heighten the nociceptive sensitivity (Lewin et al., 1993,

Woolf et al., 1995) as well as enhance the excitability of small diameter sensory neurons

(Shu and Mendell 1999; Zhang et al., 2002). Our present results indicate that the signaling

cascades regulating the heightened sensitivity of sensory neurons may occur in membrane

raft domains. Important future studies will begin to identify and establish the protein-protein

interactions that are critical in p75NTR-mediated regulation of neuronal excitability and

which occur inside or outside membrane raft signaling domains.
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Highlights

• NGF via its interaction with p75NTR augments the capacity of small diameter

sensory neurons to fire action potentials

• We examined the idea that the interaction of p75NTR with its downstream

signaling partner(s) may occur in membrane domains known as lipid rafts.

• Two raft disrupting agents, edelfosine and MβCD, blocked the increased

excitability produced by NGF whereas adding back cholesterol in the presence

of MβCD restored the sensitization produced by NGF.

• Isolation of raft and non-raft membranes demonstrated that p75NTR as well as

the neuronal marker for membrane rafts, flotillin, were localized to raft fractions

• These results indicate that the loss of cholesterol from the neuronal membrane

and disruption of raft structural integrity was key in promoting NGF-induced

sensitization
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Figure 1.
Edelfosine blocks the enhanced action potential firing produced by NGF. Panel A shows a

representative recording of AP firing evoked by the ramp of depolarizing current where this

neuron fired 3 APs and had a resting membrane potential of −53.2 mV. Panel B shows that

after a 6 min exposure to 100 ng/ml NGF, this neuron now fired 9 APs and was depolarized

to −42.4 mV. Panel C summarizes the sensitization produced by NGF as recorded from 5

neurons. In parallel sets of neurons, pretreatment with 10 μM edelfosine (ET-18) blocked the

ability of NGF to augment excitability (n=7, P=0.28 vs. ET-18 control, RM ANOVA).

Asterisks represent a significant difference vs. control (P<0.001 vs. untreated control, RM

ANOVA, Holm-Sidak test).
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Figure 2.
MβCD inhibits NGF-induced sensitization. Panel A shows that a 30 min pretreatment with

10 mM MβCD blocks the capacity of 100 ng/ml NGF to augment AP firing (n=6, P=0.71

RM ANOVA). Panel B summarizes the effects of 1 mM MβCD and 1 mM MβCD + a

saturating concentration of cholesterol on NGF-induced sensitization of AP firing.

Treatment with 1 mM MβCD for 60 min blocked the sensitization produced by 100 ng/ml

NGF (n=3, P=0.72 RM ANOVA). Treatment with 1 mM MβCD with saturating cholesterol

did not alter the increase in AP firing produced by 100 ng/ml NGF (n=8). Asterisks

represent P<0.001 vs. control (RM ANOVA, Holm-Sidak test). Panel C demonstrates that a

30 min pretreatment with 10 mM MβCD prevents the increase in AP firing produced by 100

ng/ml NGF. After a 10 min exposure to MβCD + NGF, the superfusate was changed to one

containing MβCD + NGF + saturating cholesterol. After only 6 min exposure, there was a

significant increase in AP firing compared to the 10 min time point for MβCD + NGF. The

number of neurons was 8 for the MβCD control, MβCD + NGF at 2 and 10 min, and MβCD

+ NGF + cholesterol at 2 and 6 min; 7 for MβCD + NGF at 6 min and MβCD + NGF +

cholesterol at 10 min; 4 for MβCD + NGF + cholesterol at 15 and 20 min. Asterisks

represent P<0.001 vs. MβCD + NGF 10 min (ANOVA, Holm-Sidak test).
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Figure 3.
p75NTR is detected in raft and non-raft membrane fractions. The top panel illustrates a

representative Western blot showing that p75NTR is detected in density fractions 6–12. The

bottom panel demonstrates that the protein flotillin, a marker for neuronal membrane rafts, is

detected in fractions 6–8 and represents the raft fractions.
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Figure 4.
MβCD depletes cholesterol from isolated sensory neurons. Panel A shows that exposure of

isolated sensory neurons to 10 mM MβCD for 1 hr at 37° C reduces the cholesterol

concentration in density fractions 4–12. Panel B summarizes the concentration-dependent

effects of MβCD on the levels of cholesterol in isolated sensory neurons. Incubations were

for 30 min at 37° C; n=4 for control and 10 mM MβCD, n= 3 for 1 mM MβCD. Asterisk

represents P<0.05 ANOVA.
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