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Myeloid-derived suppressor cells (MDSCs) were recently found to accumulate in the lungs during Pneumocystis pneumonia
(PcP). Adoptive transfer of these cells caused lung damage in recipient mice, suggesting that MDSC accumulation is a mecha-
nism of pathogenesis in PcP. In this study, the phagocytic activity of alveolar macrophages (AMs) was found to decrease by 40%
when they were incubated with MDSCs from Pneumocystis-infected mice compared to those incubated with Gr-1� cells from the
bone marrow of uninfected mice. The expression of the PU.1 gene in AMs incubated with MDSCs also was decreased. This PU.1
downregulation was due mainly to decreased histone 3 acetylation and increased DNA methylation caused by MDSCs. MDSCs
were found to express high levels of PD-L1, and alveolar macrophages (AMs) were found to express high levels of PD-1 during
PcP. Furthermore, PD-1 expression in AMs from uninfected mice was increased by 18-fold when they were incubated with
MDSCs compared to those incubated with Gr-1� cells from the bone marrow of uninfected mice. The adverse effects of MDSCs
on AMs were diminished when the MDSCs were pretreated with anti-PD-L1 antibody, suggesting that MDSCs disable AMs
through PD-1/PD-L1 ligation during PcP.

Pneumocystis pneumonia (PcP) is an opportunistic disease in
immunocompromised patients. Although alveolar macro-

phages (AMs) play an important role in the clearance of microor-
ganisms in the lungs, they are defective in phagocytosis (1, 2), and
their number is decreased during PcP (3–8). A cause of this AM
number decrease is increased apoptosis due to elevated levels of
intracellular polyamines (9, 10). The causes for AM dysfunction
during PcP are not clear; one possible cause is downregulation of
the transcription factor PU.1 (11), as it regulates the expression of
many macrophage receptors (11–15). The mechanism of PU.1
downregulation is unknown.

We have recently found that myeloid-derived suppressor cells
(MDSCs) accumulate in the lungs during PcP (16), and that adop-
tive transfer of MDSCs from mice with PcP causes lung damage in
the recipient mice (16). MDSCs are a heterogeneous population of
bone marrow-derived myeloid progenitor cells and immature
myeloid cells. In health, these cells quickly differentiate into ma-
ture granulocytes, macrophages, or dendritic cells. This differen-
tiation is blocked in certain conditions, such as cancer, various
infectious diseases, sepsis, trauma, and some autoimmune dis-
eases (17). MDSCs have the morphology of monocytes or granu-
locytes; thus, they are classified as monocytic and granulocytic
MDSCs. In mice, MDSCs coexpress Gr-1 and CD11b (�M-integ-
rin) (18). In humans, MDSCs are HLA-DR� or HLA-DRlow and
CD11b�, CD33�, or CD15� (19). MDSCs are immunosuppres-
sive and have been shown to suppress the functions of NK cells, T
cells, and B cells (20, 21). The suppressive activity of MDSCs ap-
pears to be inversely related to the expression of the programmed
death 1 protein (PD-1), as MDSCs from PD-1�/� mice are more
immunosuppressive than those from wild-type mice (20).

PD-1 (CD279) is a coinhibitory molecule. As with CTLA-4
(cytotoxic T-lymphocyte-associated protein 4) and BTLA (B- and
T-lymphocyte attenuator), a major function of PD-1 is to prevent
the activated T cells from becoming overzealous, leading to ad-
verse inflammatory responses and organ damage (22–24). PD-1 is
a membrane protein of the CD28 family. It is expressed on the
surfaces of many immune cells, including CD4� T cells, CD8� T

cells, NK T cells, B cells, and monocytes (22, 24, 25). Its ligand
PD-L1 (CD274), also called B7 homolog 1 (B7-H1), is a type I
transmembrane protein and is constitutively expressed on T cells,
B cells, macrophages, and dendritic cells (22, 24, 25).

During persistent antigen exposure, antigen-specific CD8� T
cells may lose their effector functions, such as proliferation and
cytokine production; this phenomenon is referred to as CD8�

T-cell exhaustion (26). The PD-1/PD-L1 signaling pathway plays
a major role in the generation of exhausted CD8� T cells in nu-
merous settings, including cancer and chronic viral infections of
human immunodeficiency virus (HIV), hepatitis C virus (HCV),
hepatitis B virus (HBV), lymphocytic choriomeningitis virus
(LCMV), and simian immunodeficiency virus (SIV) (27–33). The
PD-1/PD-L1 signaling pathway also is involved in immune toler-
ance, as PD-1�/� knockout leads to autoimmune encephalomy-
elitis, lupus-like syndrome (34), or dilated cardiomyopathy in
mice (35–37). One intronic single-nucleotide polymorphism of
the PD-1 gene is correlated with the development of systemic lu-
pus erythematosus in Europeans and Mexicans (38). The PD-1/
PD-L1 signaling pathway also modulates the function of regula-
tory T cells (Treg), as blockade of the PD-1/PD-L1 pathway
abrogates Treg-mediated immune tolerance in mice (39, 40).

Although the suppressive effects of MDSCs on T cells have
been studied extensively, it is unknown whether MDSCs have any
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adverse effects on macrophages. Since MDSCs express PD-L1 (17,
41, 42) and macrophages have been shown to express PD-1 (43–
47), we tested the hypothesis that MDSCs interact with AMs
through PD-1/PD-L1 ligation, causing PU.1 downregulation and
defects in phagocytosis during PcP.

MATERIALS AND METHODS
Animal model of PcP. C57BL/6 mice were obtained from Harlan (India-
napolis, IN). All animals used in this study were female, 18 to 20 g in
weight. The study was approved by the Indiana University Animal Care
and Use Committee and carried out under the supervision of veterinari-
ans. Immunosuppression of mice was achieved by intraperitoneal injec-
tion of 0.3 mg anti-CD4 (L3T4) monoclonal antibody (MAb; clone
GK1.5; Harlan, Indianapolis, IN) to each mouse once a week to deplete
CD4� cells until the mice were sacrificed. One week after the initial injec-
tion, each mouse was transtracheally instilled with 2 � 106 Pneumocystis
murina organisms in 20 �l sterile phosphate-buffered saline (PBS). The
Pneumocystis organisms used as the inoculum were obtained from heavily
infected mouse lungs and isolated as previously described (8). Tetracy-
cline (0.73 g/liter) was added to the drinking water to prevent bacterial
infections in mice.

Isolation of AMs. After being anesthetized by intramuscular injection
of 30 �l ketamine cocktail (ketamine hydrochloride, 80 mg/ml;
acepromazine, 1.76 mg/ml; atropine, 0.38 �g/ml), each Pneumocystis-
infected mouse was lavaged with sterile saline (1 ml at a time) through an
intratracheal catheter until a total of 10 ml lavage fluid was recovered, as
described previously (8). The bronchoalveolar lavage (BAL) fluid was
centrifuged at 300 � g for 10 min to pellet cells. The cells in each pellet
were resuspended in 1 ml PBS containing 0.5% bovine serum albumin
(BSA). CD11c� AMs were isolated from mice that had been infected with
Pneumocystis for 5 weeks, as the number of these cells is dramatically
decreased afterward (unpublished observation). These cells were sepa-
rated from total BAL fluid cells using biotin-anti-mouse CD11c antibody
(117303; BioLegend) and anti-biotin magnetic microbeads (130-090-485;
Miltenyi Biotech). To ensure the purity of the AM preparation, this iso-
lation procedure was repeated twice.

Isolation and confirmation of MDSCs. MDSCs from the BAL fluids
of Pneumocystis-infected mice and the bone marrow of immunosup-
pressed, uninfected mice were isolated using the myeloid-derived sup-
pressor cell isolation kit (Miltenyi Biotec, Auburn, CA), which contains
anti-Gr-1 antibody-conjugated, magnetically activated cell sorting
(MACS) microbeads, as described previously (16). To ensure that the
isolated MDSCs were not contaminated with Pneumocystis organisms,
this isolation procedure was repeated twice. The cells isolated from bone
marrow were mainly Gr-1� cells (referred to as Gr1BM cells here), as
there were few MDSCs in bone marrow. The identity of the isolated
MDSCs (CD11b�, Gr-1�) was confirmed by microscopy, flow cytometry,
and T-cell proliferation inhibition assay as described previously (16).

Coculture of AMs with MDSCs. A total of 1 � 105 AMs isolated from
healthy, uninfected mice were incubated with 5 � 105 MDSCs isolated
from mice that had been infected with Pneumocystis for 5 weeks overnight
at 37°C and 5% CO2 in 0.6 ml of RPMI 1640 medium containing 10% fetal
bovine serum (FBS) and 10 ng/ml of mouse granulocyte-macrophage
colony-stimulating factor (GM-CSF; Invitrogen), which is required to
maintain the viability of MDSCs in culture (18). Since GM-CSF regulates
the expression of dectin-1 (48), it also is essential for the phagocytic ac-
tivity of AMs. The 5:1 MDSC-to-AM ratio was determined empirically. As
a negative control, an aliquot of the same AMs was incubated with a 5-fold
excess of Gr1BM cells from uninfected, immunosuppressed mice. The
isolated Gr1BM cells were maintained in the same culture medium as that
for MDSCs. Gr1BM cells were used as the negative control, because they
are precursors of MDSCs. Although MDSCs from the lungs of uninfected
mice would be the most appropriate cells for negative controls, few or
none of such cells exist in these mice. To block PD-1/PD-L1 signaling,
MDSCs were incubated with anti-mouse PD-L1 (2 �g/ml; 124301; Bio-

Legend) antibody at 37°C for 2 h before the overnight coculture with AMs.
As the negative control, MDSCs were treated with rat IgG2b (400601;
BioLegend).

Phagocytosis assay. After an overnight coculture with AMs, MDSCs
were removed using anti-Gr-1 antibody-conjugated magnetic mi-
crobeads and a MACS separation column (Miltenyi Biotec, Auburn, CA).
AMs in the flowthrough fraction were pelleted by centrifugation and then
resuspended in 50 �l of RPMI 1640 medium containing 10% FBS and 20
�g of fluorescein-conjugated zymosan A beads. The mixture was placed
on a coverslip and incubated at 37°C in a moisture chamber for 1 h. After
washing off nonadherent cells and free zymosan beads, one drop of Pro-
Long Gold antifade reagent containing 4=,6-diamidino-2-phenylindole
(DAPI) (Invitrogen) was added to the coverslip that was then placed on a
slide. Fluorescent zymosan beads, instead of Pneumocystis organisms,
were used as the substrate for phagocytosis assays, because the defect in
AM phagocytosis during PcP is a general one and is not specific to Pneu-
mocystis organisms (49). Since the major component of zymosan beads is
�-glucan, they resemble the cyst form of Pneumocystis. In addition, zymo-
san beads are commonly used as the substrate for phagocytosis assays
(50–52). Each sample first was examined under a fluorescence micro-
scope, and the number of zymosan beads phagocytosed by a total of 100
AMs was determined by confocal microscopy. The cells were examined at
multiple focal planes to distinguish the zymosan beads that were phago-
cytosed from those that attached on the surface of AMs.

RNA isolation and real-time PCR. Total RNA was isolated from AMs
using TRIzol reagent (Invitrogen) and reverse transcribed into cDNA using
the iScript kit (Bio-Rad). For AMs that were coincubated with MDSCs or
Gr1BM cells, these cells were removed using anti-Gr-1 antibody-conjugated
magnetic microbeads and a MACS separation column (Miltenyi Biotec, Au-
burn, CA) before RNA isolation. SYBR green-based real-time quantitative
PCR (qPCR) was performed using the following primers: 5=-CCTGCTTCA
CCACCTTCTTGA-3= and 5=-TGTGTCCGTCGTGGATCTGA-3= for glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH), 5=-TCTTGCCGTAGTT
GCGCAG-3= and 5=-GCATCTGGTGGGTGGACAA-3= for PU.1, 5=-GCCC
TAGCTGTCTTCTGCTC-3= and 5=-TCCTTCAGAGTGTCGTCCTTG-3=
for PD-1, and 5=-TATGGTGGTGCCGACTACAA-3= and 5=-TGGCTCCCA
GAATTACCAAG-3= for PD-L1. The GAPDH cDNA was coamplified in each
reaction to serve as the internal control, and fold change in PU.1, PD-1, or
PD-L1 expression was calculated using the equation 2���CT, where CT is
threshold cycle.

ChIP. A total of 5 � 105 of AMs were incubated with 2.5 � 106 MDSCs
or Gr1BM cells as described above. After removal of MDSCs or Gr1BM
cells using anti-Gr-1 antibody-conjugated magnetic microbeads and a
MACS separation column (Miltenyi Biotec, Auburn, CA), AMs were
treated with 0.1% formaldehyde in RPMI 1640 medium containing 10%
FBS for 10 min at room temperature to cross-link histone proteins to
DNA. The fixation was quenched by adding a 1/10 volume of 1.25 M
glycine and incubating for 5 min. Cells were pelleted by centrifugation at
300 � g for 10 min at 4°C and then lysed in 100 �l lysis buffer (50 mM
Tris-HCl, pH 8.0, 10 mM EDTA, and 1% SDS). Each cell lysate was di-
luted by adding 400 �l 1� PBS and sonicated at 30-s intervals for 8 cycles
(sonic dismembrator model 300; Fisher). After sonication, insoluble cell
debris was removed by centrifugation at 11,000 � g for 10 min at 4°C. The
supernatant of each sample was diluted with equal volumes of 2� radio-
immunoprecipitation assay (RIPA) buffer (1.8% NaCl, 20 mM Tris, pH
7.6, 0.2% SDS, 0.2% Triton X-100, 0.2% deoxycholate, and 10 mM
EDTA) and divided into four aliquots to perform chromatin immunopre-
cipitation (ChIP).

One of these 4 aliquots was used as the input control in which no
antibody was added. The other 3 aliquots were incubated with 0.5 �g of
anti-H3K4me3 (ab8580; Abcam), 2 �g of anti-H3Ac (06-599; Millipore),
or 2 �g of anti-H3K27me3 (07-449; Millipore) at 4°C with continuous
rotation for 2 h. Protein A-agarose beads (10 �l) then were added to
precipitate the antibody-bound chromatin. Each precipitate was dis-
solved in 50 �l of distilled H2O and digested with proteinase K (20 �g),
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followed by phenol-chloroform extraction to purify DNA. The purified
DNA was precipitated with isopropanol and then dissolved in 50 �l of
water. Real-time PCR was performed to amplify the promoter region of
PU.1 and both the 3= and 5= sides of its upstream regulatory element
(3=URE and 5=URE, respectively), which is located approximately 14 kb
upstream from the PU.1 transcription start site (53). The SYBR green PCR
master mix (TaKaRa) and the following primers were used for the PCR
assays: 5=-GGGAGGCAGAGCACACATG-3= and 5=-GTTTCCACATCG
GCAGCAG-3= for 3=URE, 5=-GCCCAGGCTAGGGAAGTTTG-3= and
5=-GAGAGCAGAGCACTTCATGGCTA-3= for 5=URE, and 5=-GTAGC
GCAAGAGATTTATGCAAAC-3= and 5=-GCACAAGTTCCTGATTTTA
TCGAA-3= for the promoter region. Each PCR was performed in tripli-
cate, and 1% of input DNA was analyzed in a manner identical to that for
the control.

The average CT value of each ChIP reaction was used to calculate percent
input using the equation 100 � 2(adjusted input CT � ChIP CT) (http://www
.invitrogen.com/site/us/en/home/Products-and-Services/Applications
/epigenetics-noncoding-rna-research/Chromatin-Remodeling/Chromatin-
Immunoprecipitation-ChIP/chip-analysis.html), where adjusted input CT

(adjusted to 100%) was calculated as the raw input CT minus 6.664 (i.e., log2

of 100). Data were presented as the ratio of percent input of ChIP with anti-
H3K4me3 (activating modification) to that of ChIP with anti-H3K27me3
(suppressing modification) and ChIP with anti-H3Ac (activating modifica-
tion) to that of ChIP with anti-H3K27me3 (suppressing modification).

DNA methylation assay. The EpiTect II DNA methylation enzyme kit
(335452; Qiagen) was used to assess CpG methylation of the PU.1 gene.
Genomic DNA was isolated from AMs incubated with Gr1BM cells or
MDSCs using the DNeasy blood and tissue kit (69504; Qiagen). Each
DNA sample was divided into 4 aliquots (62.5 ng each) that then were
subjected to mock (no enzyme), methylation-sensitive (MSRE), methyla-
tion-dependent (MDRE), and double (MSRE and MDRE) restriction en-
donuclease digestion according to the instructions of the kit. The enzyme
reaction mixtures were mixed directly with qPCR master mix and the
primer pair 5=-GTAGCGCAAGAGATTTATGCAAAC-3= and 5=-GCAC
AAGTTCCTGATTTTATCGAA-3= to amplify a region (100 bp) of the
PU.1 promoter. The resulting CT values were entered into the data anal-
ysis spreadsheet of the kit, which automatically calculated the relative
amount of methylated and unmethylated DNA.

Flow cytometry. Fluorescent anti-mouse antibodies, including fluo-
rescein isothiocyanate (FITC)-Gr-1 (108405), phycoerythrin (PE)-
CD11b (101207), PE-PD-1 (109103), PE-PD-L1 (124307), and Alexa
Fluor 647-CD11c (117314), were purchased from BioLegend (San Diego,
CA). After an incubation in 100 �l of 1� PBS containing 0.5% bovine
serum albumin for 1 h, AMs, MDSCs, and control Gr1BM cells were
stained with appropriate antibodies on ice for 1 h and then examined with
a BD FACSCalibur flow cytometer (BD Biosciences) as described previ-

ously (16). Separate sets of cells were stained with PE-labeled IgG isotype
antibody (400607; BioLegend) to control for background fluorescence.
The flow cytometry data generated were analyzed with FlowJo software
(Tree Star, Ashland, OR).

Western blot analysis. Proteins were separated by 10% SDS-PAGE
and then transferred to a polyvinylidene difluoride (PVDF) membrane
(Immobilon-P; EMD Millipore). The membrane was blocked in TBST
(20 mM Tris-HCl, 500 mM NaCl, 0.05% Tween 20, pH 7.5) containing
5% BSA. Subsequently, the membrane was probed with anti-mouse PD-1
(Sigma-Aldrich) and anti-mouse GAPDH (BioLegend) antibody in TBST
containing 5% BSA. The binding of the primary antibodies was detected
with horseradish peroxidase (HRP)-conjugated secondary antibody
(Santa Cruz Biotechnology). After washing, the membrane was incubated
with the Amersham ECL Advance Western blotting detection reagent (GE
Healthcare).

Statistics. Data are expressed as means 	 standard deviations. An
unpaired two-tailed Student’s t test was used to evaluate the difference in
data from two different samples, including the following: phagocytosis of
AMs incubated with MDSCs versus those incubated with Gr1BM cells;
levels of PU.1 expression, histone modification, or DNA methylation in
AMs incubated with MDSCs versus levels in those incubated with Gr1BM
cells; PD-L1 expression in MDSCs versus that in Gr1BM cells; levels of
PD-1 expression in AMs incubated with MDSCs versus levels in those
incubated with Gr1BM cells; and levels of suppression of AM phagocyto-
sis or PU.1 expression in AMs by the MDSCs pretreated with anti-PD-L1
versus levels for those pretreated with control IgG. The difference was
considered significant if the P value was 
0.05.

RESULTS
AMs incubated with MDSCs became defective in phagocytosis.
To investigate the effect of MDSCs on the phagocytic activity of
AMs, AMs from uninfected mice were cocultured with MDSCs
and then assayed for their phagocytic activity. The purity of the
AM preparation was examined by microscopy, and all cells on the
slides were found to have the typical macrophage morphology
(Fig. 1). AMs were incubated with MDSCs from mice that had
been infected with Pneumocystis for 5 weeks or with control
Gr1BM cells at a ratio of 5:1 (5 � 105 MDSCs or Gr1BM to 1 � 105

AMs) overnight and analyzed for their ability to phagocytose zy-
mosan beads. Results of confocal microscopy showed that AMs
incubated with MDSCs phagocytized an average of 4.1 	 1.2 zy-
mosan beads per cell, and that those incubated with Gr1BM cells
phagocytized an average of 6.6 	 0.8 zymosan beads per cell.
These results indicated a 40% decrease in the phagocytic activity of

FIG 1 Purity of isolated AMs. AMs were isolated from BAL fluids of immunosuppressed, uninfected mice (AMs/L3T4) and Pneumocystis-infected mice
(AMs/PcP) using biotin-anti-mouse CD11c antibody and anti-biotin magnetic microbeads. An aliquot of the purified cells was cytospun on a slide; the cells were
stained with Giemsa stain and examined by microscopy.
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AMs when they were incubated with MDSCs from Pneumocystis-
infected mice compared to those incubated with Gr1BM cells (P �
0.038) (Fig. 2A to C).

PU.1 expression was decreased in AMs incubated with
MDSCs. Since PU.1 positively regulates the expression of many
macrophage receptors, we hypothesized that the defect in phago-
cytosis of AMs incubated with MDSCs was due to PU.1 down-
regulation. To test this hypothesis, AMs incubated overnight with
MDSCs from Pneumocystis-infected mice or Gr1BM cells were
assessed for PU.1 expression. PU.1 expression in AMs that were
not incubated with either MDSCs or Gr1BM cells was determined
to serve as a control. Total RNA was isolated from the AMs and
analyzed by PU.1 real-time RT-PCR (qRT-PCR) in triplicate. The
PU.1 expression in AMs incubated with Gr1BM and in
AMs incubated with MDSCs were 1.25-fold 	 0.19-fold and
0.36-fold 	 0.04-fold, respectively, relative to that in AMs
without coincubation with either Gr1BM cells or MDSCs (P �
0.0014) (Fig. 3). This result indicated that coincubation with
MDSCs caused a downregulation in PU.1 expression in AMs by
approximately 70%.

MDSCs affected PU.1 expression in AMs at the epigenetic
level. Experiments were performed to test the hypothesis that
PU.1 downregulation in AMs incubated with MDSCs was due to
epigenetic changes. ChIP assays were performed to examine his-
tone modifications on the PU.1 gene. AMs incubated overnight
with MDSCs from Pneumocystis-infected mice or control Gr1BM
cells from uninfected mice were examined. As seen in Fig. 4, the
ratios of percent input of H3K4me3 to that of H3K27me3 of the
3=URE, 5=URE, and promoter of PU.1 in AMs incubated with
Gr-1� cells were 1.9, 1.4, and 1.4, respectively, and those of AMs
incubated with MDSCs were 1.2, 1.35, and 1.2, respectively. The
difference in the methylation of H3K4 and H3K27 in the 3=URE
between AMs incubated with MDSCs and those incubated with
Gr1BM cells was statistically significant (P � 0.045) (Fig. 4). A
profound decrease in H3Ac in AMs incubated with MDSCs was
observed compared to that in AMs incubated with Gr1BM cells.
The ratios of the percent input of H3Ac to that of H3K27me3 of
the 3=URE, 5=URE, and promoter of PU.1 in AMs incubated with
Gr1BM cells were 1.7, 2.1, and 3.0, respectively, and those of AMs
incubated with MDSCs were 0.4, 0.8, and 1.5, respectively (Fig. 4).
Therefore, incubation of AMs with MDSCs caused a 76, 62, and
50% decrease in H3Ac in the 3=URE (P � 0.032), 5=URE (P �
0.019), and promoter (P � 0.004) of PU.1, respectively, compared
to levels of those incubated with Gr-1� cells. Results of DNA
methylation assays showed that CpG methylation of the PU.1 gene
was 77.3% 	 1.73% in AMs incubated with Gr1BM cells but was
91.9% 	 0.9% in those incubated with MDSCs (Fig. 5).

PD-1 expression was increased in AMs from PcP mice. To
determine whether the PD-1/PD-L1 pathway is activated in AMs
during PcP, the expression of PD-1 in AMs was examined. Real-
time RT-PCR was performed on RNA isolated from AMs of mice
infected for 5 weeks. RNA from the AMs of immunosuppressed,
uninfected mice was analyzed in an identical manner to serve as
the control. The PD-1 expression in AMs (AMs/PcP) from Pneu-
mocystis-infected mice was found to be 105-fold higher than in
those (AMs/L3T4) from immunosuppressed, uninfected mice
(P � 0.007) (Fig. 6A). To confirm this result, PD-1 expression on
the surface of AMs from uninfected and infected mice was exam-
ined by flow cytometry using antibodies against PD-1 and CD11c
(Fig. 6B); the latter is a marker of AMs (54). Western blotting with

FIG 2 Reduced phagocytic activity in AMs incubated with MDSCs. AMs
cocultured with control Gr1BM cells (A) or MDSCs (B) overnight were incu-
bated with fluorescein-conjugated zymosan beads for 1 h. The nuclei of AMs
were counterstained with DAPI. (C) The number of zymosan beads phagocy-
tosed by AMs incubated with MDSCs or Gr1BM cells were counted under a
confocal microscope. Data are presented as means 	 SD from three indepen-
dent experiments.
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anti-PD-1 antibody also was performed to further confirm PD-1
overexpression in AMs (Fig. 6C). Results showed that AMs from
Pneumocystis-infected mice had a higher level of PD-1 expression
than immunosuppressed, uninfected mice.

MDSCs from PcP mice expressed high levels of PD-L1. Real-
time RT-PCR was performed to determine PD-L1 mRNA levels in
MDSCs from mice infected with Pneumocystis for 5 weeks. PD-L1
mRNA in Gr1BM cells from the bone marrow of immunosup-
pressed, uninfected mice was analyzed in an identical manner to
serve as the control. PD-L1 expression in MDSCs was found to be
62-fold higher than that in Gr1BM cells from uninfected mice
(P � 0.0055) (Fig. 7A). This result was consistent with those of
flow cytometry, which also showed a higher level of PD-L1 expres-
sion on the surface of MDSCs from Pneumocystis-infected mice
than on that of Gr-1� cells from uninfected mice (Fig. 7B).

PD-1 expression was increased in AMs incubated with
MDSCs. To explore the possibility that PD-1 expression in AMs is

caused by MDSCs, PD-1 mRNA levels in AMs cocultured with
MDSCs or control Gr1BM cells overnight were measured by real-
time RT-PCR. PD-1 expression levels in AMs incubated with
Gr1BM and in those incubated with MDSCs were 1.15-fold 	
0.1-fold and 18.33-fold 	 2.55-fold, respectively, of that in AMs
without coincubation with either type of cell (P � 0.007). This
result indicated an 18-fold increase in PD-1 mRNA levels when
AMs were incubated with MDSCs compared to those incubated
with Gr1BM cells (Fig. 8A). This result was confirmed by flow
cytometry, which showed that AMs incubated with MDSCs had
increased PD-1 expression on the cell surface compared with that
of AMs incubated with control Gr1BM cells (Fig. 8B).

Blockade of PD-1 signaling with anti-PD-L1 antibody abol-
ished the adverse effects of MDSCs on AMs. To investigate
whether the PD-1/PD-L1 signaling pathway played a role in the

FIG 3 Decreased PU.1 expression in AMs incubated with MDSCs. AMs from
uninfected mice were cocultured with MDSCs or Gr1BM cells at a ratio of 1:5
for 16 h in a 37°C incubator with 5% CO2. After removing MDSCs and Gr1BM
cells with anti-Gr-1 antibody-conjugated magnetic microbeads, total RNA of
AMs was isolated, and PU.1 mRNA levels were determined by real-time PCR.
The level of PU.1 expression in AMs that were not incubated with MDSCs or
Gr1BM cells was set as 1, and that in AMs incubated with either type of cell was
compared to it. Data are presented as means 	 SD from three independent
experiments.

FIG 4 Increased histone deacetylation of PU.1 gene in AMs incubated with MDSCs. AMs from uninfected mice were incubated with MDSCs or Gr1BM cells
overnight. After removing MDSCs and Gr1BM cells with anti-Gr-1 antibody-conjugated magnetic microbeads, the AMs were treated with 0.1% formaldehyde
to cross-link histone proteins to DNA, lysed, and sonicated to generated chromatin fragments. Chromatin immunoprecipitation was performed using anti-
H3K4me3, anti-H3ac, and anti-H3K27me3 antibodies in separate reactions. DNA in the precipitated chromatin was isolated and used as the template for
real-time PCR to amplify the 3=URE, 5=URE, and promoter regions of the PU.1 gene. The CT values obtained were used to determine the ratios of percent input
of H3K4me3 to H3K27me3 and H3Ac to H3K27me3. Data are presented as means 	 SD from three independent experiments.

FIG 5 Increased DNA methylation of PU.1 promoter in AMs incubated with
MDSCs. AMs from uninfected mice were incubated with MDSCs or Gr1BM
cells overnight. After removing MDSCs and Gr1BM, AM genomic DNA was
isolated and assessed for CpG methylation by digestion with methylation-
dependent and methylation-sensitive restriction enzymes using the EpiTect
methyl II enzyme kit (Qiagen). Real-time PCR then was performed to amplify
a 100-bp region of the PU.1 promoter. The resulting CT values were entered
into the data analysis spreadsheet of the kit to calculate the relative amount of
methylated DNA in each sample. Data are presented as means 	 SD from three
independent experiments.
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inhibitory effect of MDSCs on AMs, MDSCs were treated with
anti-PD-L1 antibody or control IgG for 2 h before they were in-
cubated with AMs overnight. The AMs then were analyzed for
their PU.1 mRNA levels and ability to phagocytose zymosan
beads. As shown in Fig. 9A, PU.1 expression levels in AMs cocul-
tured with MDSCs that were pretreated with anti-PD-L1 antibody
or control IgG were 1-fold 	 0.25-fold and 0.41-fold 	 0.16-fold,
respectively, relative to that of AMs without coincubation with
MDSCs (P � 0.016). This result indicated that blockade of PD-1/
PD-L1 signaling reduced the suppressive effect of MDSCs on PU.1
expression in AMs. In addition, pretreatment of MDSCs with an-
ti-PD-L1 antibody reduced their ability to inhibit the phagocytic

FIG 6 Increased PD-1 expression in AMs from PcP mice. AMs (AMs/PcP)
were isolated from PcP mice at 5 weeks post-Pneumocystis infection. Control
AMs (AMs/L3T4) were from uninfected mice immunosuppressed by weekly
injection of anti-CD4 (L3T4) antibody. (A) Total RNA was isolated from AMs,
and PD-1 gene expression was determined by real-time RT-PCR. The average
PD-1 expression level in AMs/L3T4 was set as 1, and that in AMs/PcP was
compared to it. Data are presented as means 	 SD from three independent
experiments. (B) The AMs were examined by flow cytometry using anti-
CD11c (Alexa Flour 647 conjugated), rat IgG isotype control (phycoerythrin
[PE] conjugated), and anti-PD-1 (phycoerythrin conjugated) antibodies. The
result shown is representative of three independent experiments. (C) PD-1
expression in AMs from PcP mice was further confirmed by Western blotting
using anti-PD-1 antibody. The expression of GAPDH was examined similarly
as a loading control.

FIG 7 Increased PD-L1 expression in MDSCs from PcP mice. MDSCs
(MDSCs/PcP) were isolated from PcP mice at 5 weeks post-Pneumocystis in-
fection. Control Gr1BM cells were isolated from uninfected mice immuno-
suppressed by weekly injection of anti-CD4 (L3T4) antibody. (A) Total RNA
was isolated from the cells, and PD-L1 gene expression was determined by
real-time RT-PCR. The average PD-L1 expression level in Gr1BM cells was set
as 1, and that in MDSCs was compared to it. Data are presented as means 	 SD
from three independent experiments. (B) The cells were examined by flow
cytometry using anti-Gr-1 and anti-PD-L1 antibodies. The result shown is
representative of three independent experiments.
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function of AMs. Results of confocal microscopy showed that
AMs incubated with these MDSCs phagocytosed an average of 7.2
zymosan beads per cell, whereas those incubated with MDSCs
pretreated with control IgG phagocytosed an average of 4.7 zymo-
san beads per cell (P � 0.0009) (Fig. 9B).

DISCUSSION

AMs are defective in phagocytosis during PcP, but the mecha-
nisms of this defect are largely unknown. We have recently found
that MDSCs accumulate in the lungs during PcP. In this study, we
found that AMs from normal mice became defective in phagocy-
tosis when they were incubated with MDSCs from Pneumocystis-
infected mice (Fig. 2), suggesting that MDSCs in Pneumocystis-
infected lungs can inhibit the phagocytic activity of AMs. We also
found that AMs incubated with these MDSCs had a 60% decrease
in PU.1 expression compared with those incubated with Gr1BM
cells from uninfected mice (Fig. 3). This result is consistent with
our previous finding that PU.1 expression in AMs is downregu-
lated during PcP (11). Since PU.1 regulates the expression of many
macrophage receptors (11–15), it is conceivable that PU.1 down-
regulation renders AMs defective in phagocytosis. We also have
shown that MDSCs caused PU.1 downregulation in AMs by de-
creasing histone 3 acetylation (Fig. 4) and increasing CpG meth-
ylation (Fig. 5).

In this study, we used biotin-conjugated anti-CD11c antibody

and anti-biotin magnetic microbeads to isolate AMs from BAL
fluids. Microscopic examination of the isolated cells showed that
all of the cells examined had a morphology characteristic of mac-
rophages (Fig. 1), indicating that the great majority of the isolated
CD11c� cells were AMs. This result is consistent with a previous
report that greater than 95% of myeloid-derived cells in BAL flu-
ids from normal mice are AMs (55). Since the phagocytosis assay
was performed by microscopy, the presence of other non-AM
CD11c� cells (e.g., monocytes or dendritic cells), if any, would not
affect the assay. For the investigation of the effect of MDSCs on
PU.1 expression in AMs, the presence of these non-AM CD11c�

cells also would not affect the results, because AM is the predom-
inate type of cells that express PU.1 (56).

Results of this study also revealed that AMs upregulated their
PD-1 expression when they were cocultured with MDSCs (Fig. 8).
Since MDSCs expressed PD-L1 (Fig. 7), this result suggests that
MDSCs interact with AMs through PD-1/PD-L1 ligation. Sup-
porting this possibility is the finding that pretreatment of MDSCs
from Pneumocystis-infected mice with anti-PD-L1 antibody abro-
gated their ability to downregulate PU.1 expression and to disable
the phagocytic function of AMs (Fig. 9). It remains to be investi-
gated whether PD-1/PD-L1 signaling directly causes epigenetic
alterations of the PU.1 gene. However, it has been shown that
PD-1 downregulates the expression of Skp2, which is the substrate
recognition component of ubiquitin ligase (57), by recruiting his-
tone deacetylase 3 (HDAC3), pro-interleukin-16 (pro-IL-16), and
GABP�1 to inactivate the Skp2 promoter; this Skp2 downregula-
tion results in the suppression of T cell activation (58). It is likely
that PD-1/PD-L1 signaling causes PU.1 downregulation by re-
cruiting a histone deacetylase to cause the deacetylation of the
PU.1 gene observed in this study.

PD-1 is known to inhibit the phosphorylation of STAT-1, lead-
ing to decreased production of IL-12 in monocytes and macro-
phages (59). Since IL-12 mediates Th1 activation, PD-1 upregula-
tion in these cells may cause defects in adaptive immunity. PD-1
expression also is increased in peritoneal macrophages of mice
with sepsis and is correlated with diminished activity of the mac-
rophages to clear bacteria (43). In a dog model of visceral leish-
maniasis, PD-1 expression is shown to cause the exhaustion of
both CD8� and CD4� T cells, as evidenced by their loss of anti-
gen-specific proliferation and gamma interferon (IFN-�) produc-
tion, and to impair the phagocytic function of macrophages (60).
PD-1 overexpression in T cells is considered a mechanism of im-
mune evasion by a number of microorganisms, such as Helicobac-
ter pylori, Schistosoma mansoni, Mycobacterium tuberculosis, My-
cobacterium leprae, LCMV, HIV, and HCV (28, 29, 61–66). Our
finding of PD-1 overexpression in AMs during PcP adds Pneumo-
cystis to the list of organisms that use PD-1 expression to disable
host defense mechanisms.

Since PD-1 is immunosuppressive, decreasing its levels could
be therapeutic. In an SIV model, monoclonal antibody (EH12-
1540) against PD-1 was shown to increase the number of virus-
specific CD8� T cells and reduce viral load (67). Treatment of M.
tuberculosis-specific IFN-�-producing T cells in vitro with anti-
PD-1 antibody has been shown to prevent them from undergoing
apoptosis, and the number of PD-1� T cells in patients are de-
creased with effective tuberculosis therapy (68). Similarly, treat-
ment of lymphocytes from sepsis patients with anti-PD-1 or anti-
PD-L1 antibodies prevents their apoptosis and increases their
production of IL-2 and IFN-� (69). Since PD-1 expression also

FIG 8 Increased PD-1 expression in AMs incubated with MDSDs. AMs iso-
lated from uninfected mice were cocultured with MDSCs or Gr1BM cells at a
ratio of 1:5 for 16 h in a 37°C incubator with 5% CO2. (A) After removing
MDSCs and Gr1BM cells with anti-Gr-1 antibody-conjugated magnetic mi-
crobeads, total RNA was isolated from AMs of each group. PD-1 gene expres-
sion was determined by real-time RT-PCR. The level of AMs/Gr1BM was set as
1, and that in AMs/MDSCs was compared to it. Data are presented as means 	
SD from three independent experiments. (B) AMs incubated with MDSCs or
Gr1BM cells were analyzed for surface PD-1 expression by flow cytometry.
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impairs immune responses to cancer, a number of clinical trials
are in progress using PD-1 MAb, such as BMS-936558 and
MK3475, as a supplemental treatment for hematologic malignan-
cies, melanoma, renal cell carcinoma, colorectal cancer, and non-
small-cell lung cancer (70). Anti-PD-L1 antibody also has been
used to block the interaction between PD-1 and PD-L1, enhanc-
ing CD8� T-cell responses to HIV-1, HSV-1, LCMV, HCV, respi-
ratory syncytial virus, and SIV infections (27, 29, 67, 71–73).

Our discovery of increased PD-1 expression in AMs during
PcP provide additional means for the treatment of PcP by block-
ing the PD-1/PD-L1 signaling pathway with antibodies as de-
scribed above or suppressing PD-1 expression. PD-1 expression is
activated by NFATc1 (nuclear factor of activated T cells c1), AP-1,
NF-B, and Notch (25, 74, 75). Therefore, inactivation of these
transcription factors would reduce PD-1 expression. For example,
blocking the Notch signaling pathway with DAPT {N-[N-(3,5-dif-
luorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester} leads to
the inhibition of PD-1 expression (74). Similarly, inhibition of
NFATc1 with the calcineurin inhibitor cyclosporine reduces PD-1

expression (75). PD-1 expression in T cells can be induced by
cytokines, such as IL-2, IL-7, IL-15, and IL-21, Toll-like receptor
(TLR) signaling, and interferons (76), and is suppressed by T-bet
and Blimp-1 (77, 78). Blimp-1 acts by inhibiting NFATc1 produc-
tion and competing with it for binding to a control region in the
PD-1 promoter (77).

Some microbial components can induce PD-1 or PD-L1 expres-
sion. For example, the HCV core protein induces PD-1 expression in
T cells and monocytes (45, 79). Lipopolysaccharide (LPS) and HIV-1
virions can induce PD-L1 expression in neutrophils (80). PD-1 is
induced to express at higher levels by inflammation, as evidenced by
the finding that TLR-3 stimulation causes PD-L1 upregulation in
dendritic cells, leading to decreased CD4� T-cell proliferation (81).
The activation of TLR-4, TLR-7, and TLR-8 induces PD-L1 expres-
sion in neutrophils (80). Our previous finding that TLR-2 mediates
inflammatory responses during PcP (82) suggests that PD-1 expres-
sion in AMs during PcP is a result of TLR-2 activation. Pneumocystis
components that can trigger TLR-2 responses have not been iden-
tified. We speculate that Pneumocystis �-glucan plays such a role.

FIG 9 Loss of suppressive effect of MDSCs pretreated with anti-PD-L1 antibody on AMs. A total of 1 � 105 AMs were cocultured with 5 � 105 MDSCs that were
treated with anti-PD-L1 antibody or control IgG. (A) After 16 h of incubation, AMs were isolated, and the PU.1 mRNA levels were determined by real-time
RT-PCR. Data are presented as means 	 SD from three independent experiments. The level of PU.1 expression in AMs that were not incubated with MDSCs or
Gr1BM cells was set as 1, and that in AMs incubated with MDSCs that were pretreated with or without anti-PD-L1 antibody was compared to it. (B) Phagocytosis
was assayed, and the number of zymosan beads phagocytosed by AMs incubated with MDSCs pretreated with anti-PD-L1 antibody or control IgG was counted
under a confocal microscope.
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Based on results of this study, we hypothesize the following. Dur-
ing Pneumocystis infection, Pneumocystis components such as
�-glucan interact with TLR-2, triggering inflammatory responses
and leading to the accumulation of MDSCs. These MDSCs inter-
act with AMs through PD-1/PD-L1 ligation, causing suppressive
histone modification and DNA methylation on the PU.1 gene and,
as a result, PU.1 downregulation. Thus, the expression of various
macrophage receptors is decreased, and AMs become defective in
phagocytosis. We also hypothesize that MDSCs use the same
mechanism to interact with monocytes, leading to PU.1 down-
regulation and inhibition of their differentiation into alveolar
macrophages. Therefore, the number of AMs is decreased dur-
ing PcP.
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