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Alcoholism is a serious public health concern that is characterized by the development

of tolerance to alcohol’s effects, increased consumption, loss of control over drinking

and the development of physical dependence. This cycle is often times punctuated

by periods of abstinence, craving and relapse. The development of tolerance and

the expression of withdrawal effects, which manifest as dependence, have been

to a great extent attributed to neuroadaptations within the mesocorticolimbic and

extended amygdala systems. Alcohol affects various neurotransmitter systems in the

brain including the adrenergic, cholinergic, dopaminergic, GABAergic, glutamatergic,

peptidergic, and serotonergic systems. Due to the myriad of neurotransmitter and

neuromodulator systems affected by alcohol, the efficacies of current pharmacotherapies

targeting alcohol dependence are limited. Importantly, research findings of changes in

glutamatergic neurotransmission induced by alcohol self- or experimenter-administration

have resulted in a focus on therapies targeting glutamatergic receptors and normalization

of glutamatergic neurotransmission. Glutamatergic receptors implicated in the effects

of ethanol include the ionotropic glutamate receptors (AMPA, Kainate, and NMDA)

and some metabotropic glutamate receptors. Regarding glutamatergic homeostasis,

ceftriaxone, MS-153, and GPI-1046, which upregulate glutamate transporter 1 (GLT1)

expression in mesocorticolimbic brain regions, reduce alcohol intake in genetic animal

models of alcoholism. Given the hyperglutamatergic/hyperexcitable state of the central

nervous system induced by chronic alcohol abuse and withdrawal, the evidence thus

far indicates that a restoration of glutamatergic concentrations and activity within the

mesocorticolimbic system and extended amygdala as well as multiple memory systems

holds great promise for the treatment of alcohol dependence.
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Introduction

A direct link has been established between chronic alcohol consumption and at least 50 different
diseases and disorders (Reed et al., 1996; Rehm et al., 2003). Moreover, alcohol use disorders
(AUDs) are the third leading cause of preventable death, affecting over 18 million adults and
resulting in over 100,000 deaths in the U.S. annually (Grant et al., 2004; Mokdad et al., 2004;
Johnson, 2010). Economically, AUDs and their associated effects cost society approximately 200
billion dollars or more each year (Harwood et al., 1999). The pattern of drinking and total
volume consumed per unit time are important characteristics for diagnosing AUDs and for
developing treatment strategies as well as determining epidemiological antecedents and disease
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trajectory (Heather et al., 1993; Lancaster, 1994; Zucker, 1995;
Shield et al., 2013). These characterizations have led to clas-
sifications, typologies and/or drinking profiles for alcoholics
(Cloninger, 1987; Babor et al., 1992; Epstein et al., 1995; Lesch
and Walter, 1996; Conrod et al., 2000). In addition, it appears
that the pharmacological efficacy of some treatments for AUDs
is influenced by the phenotypic and/or genotypic characteristics
associated with these typologies (Epstein et al., 1995; Johnson
et al., 2003; Cherpitel et al., 2004; Dundon et al., 2004; Johnson,
2004, 2010).

The fact that people from similar environments often differ
in their pattern and frequency of alcohol use as well as the well-
documented familial incidence of alcoholism underscores the
substantial role of genetics in the development and expression
of AUDs (Cotton, 1979; Cloninger, 1987; Enoch and Goldman,
2001).

In general, AUDs define a chronic, progressive, relapsing dis-
order that advances in stages from experimentation to depen-
dence (Volkow and Li, 2005; Heilig and Egli, 2006; Koob and
Le Moal, 2008; Koob, 2009; Spanagel, 2009; Jupp and Lawrence,
2010; Koob and Volkow, 2010). The disease progresses from
rewarding, euphoric and positive-reinforcement aspects (e.g.,
motor and autonomic activation as well as facilitating pro-social
behavior) that drive the disease-process in the early stages to the
dysphoric and associated negative-reinforcement aspects (e.g.,
removal of withdrawal-associated effects) of chronic alcohol use
that drive the process in later stages. And, while the end-point
is the same, the progression for each individual is often dif-
ferent and nonlinear in nature (i.e., individuals will return to
earlier stages of the disease cycle with varying frequency and
intensity). The change in primacy from positive reinforcement
to negative reinforcement across the addiction cycle follows
neuroplastic changes in central reward neurocircuitry (e.g., the
mesocorticolimbic and extended amygdala systems) induced by
chronic alcohol abuse. In the normal functioning brain, a bal-
ance (i.e., homeostasis) exists between excitatory and inhibitory
neurotransmission. Acute alcohol consumption disturbs this
equilibrium by enhancing inhibitory and attenuating excitatory
neurotransmission (e.g., Roberto et al., 2003; Basavarajappa et al.,
2008; Leriche et al., 2008). However, following long term alcohol
consumption, the brain compensates for the depressant effects of
alcohol to maintain homeostasis between inhibitory (e.g., GABA)
and excitatory (e.g., glutamate) neurotransmission by increas-
ing excitatory activity and reducing inhibitory activity (e.g., Nam
et al., 2012; Koob, 2013; Tabakoff and Hoffman, 2013). These
changes occur in a number of brain regions within the meso-
corticolimbic and extended amygdala reward circuits. And, these
brain regions display heavy glutamatergic innervation as shown
in Figure 1, which describes some of these glutamatergic projec-
tions and is adapted from a number of studies (Aston-Jones et al.,
2009; Bonci and Borgland, 2009; Carlezon and Thomas, 2009;
Haydon et al., 2009; Kalivas et al., 2009; O’dell, 2009; Renthal
and Nestler, 2009; Russo et al., 2009; Taylor et al., 2009; Vez-
ina and Leyton, 2009; Volkow et al., 2009, 2010; Wheeler and
Carelli, 2009; Kenny, 2011; Luscher and Malenka, 2011; Potenza
et al., 2011; Sulzer, 2011; Kash, 2012; Bass et al., 2013; Cham-
bers, 2013; Cui et al., 2013; Jennings et al., 2013; Volkow and

Baler, 2013). In this review, we have focused on alcohol-induced
changes in glutamate uptake, the role of glutamate transporters in
the development of alcohol dependence, and current and promis-
ing glutamate-associated pharmacotherapies for the treatment of
alcohol dependence.

The Mesocorticolimbic System, Extended
Amygdala and Glutamatergic
Neurotransmission

The primary glutamatergic projections, associated with addic-
tion include the mesocorticolimbic dopamine system and the
extended amygdala as well brain regions mediating learning and
memory (Figure 1). The mesocorticolimbic system is a primary
neurocircuit mediating reward and reinforcement salience that
is most often, but not always, associated with a positive valence
(Tzschentke, 2000; Wise, 2005; Robinson and Berridge, 2008;
Brooks and Berns, 2013; Volman et al., 2013). Regarding the dual
valence-processing of rewarding/reinforcing stimuli within the
mesocorticolimbic system and extended amygdala, it has been
shown that activation of the glutamatergic projections from the
amygdala through the bed nucleus of the stria terminalis to the
ventral tegmental area (VTA) results in aversive and anxiogenic
behaviors, whereas activation of the GABAergic parallel pro-
jections results in appetitive and anxiolytic behaviors (Jennings
et al., 2013). Interestingly, this dissociation between glutamater-
gic activity and aversion vs. GABAergic activity and reward is
also true for similar parallel projections from the VTA to the
lateral habenula (Stamatakis et al., 2013; Root et al., 2014). There-
fore, from a purely neurochemical perspective within these neu-
rocircuits, it is not surprising that the use of ethanol during
the experimentation and early stages of abuse is positively rein-
forcing and rewarding, given that the acute actions of ethanol
are to inhibit glutamatergic activity and potentiate GABAergic
activity. During early stages of drug/alcohol abuse positive rein-
forcement drives continued usage, such that the individual con-
sumes or self-administers the drug or alcohol for the pleasant
and euphoric effects they induce. Positive reinforcement is medi-
ated, for the most part, by the mesocorticolimbic dopamine sys-
tem, which is controlled to a great extent by glutamatergic activ-
ity. Similarly, given that the chronic actions of ethanol are to
inhibit GABAergic activity and potentiate glutamatergic activ-
ity, and a consequent increase in dopaminergic activity within
the VTA, accumbens (acb), and prefrontal cortex (PFC), it results
in an aversive state especially under conditions of withdrawal. It
also recruits increased glutamatergic and corticotrophin releas-
ing factor anxiogenic activity in the amygdala/extended amyg-
dala. Combined, these latter effects elicit continued alcohol and
drug usage in an attempt to delay/block/reverse the onset of
withdrawal/aversion-associated symptoms.

Early stages of alcohol/drug dependence are also marked by
increased glutamatergic activity within the extended amygdala
and the presence of neuroplastic changes in the mesocorticol-
imbic system. Dependence is associated with the development
of tolerance and attendant decreases, as a result of neuroplas-
tic changes, in positive reinforcement (e.g., mesocorticolimbic
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FIGURE 1 | Diagram of glutamatergic neurocircuits within the

mesocorticolimbic system (blue hexagonals and associated arrows),

extended amygdala (red rectangles and associated arrows) as well

as related memory (green circles and associated arrows) and limbic

structures involved in the development of alcohol/drug dependence.

The early experimentation/intoxication stage of alcohol/drug abuse is marked

by neuroplastic changes in the mesocorticolimbic system. Later, the

extended amygdala plays an increasingly greater role, relative to the

mesocorticolimbic system (although these systems interact as seen in this

Figure), in mediating continued alcohol/drug usage despite physical,

emotional, social and/or economic consequences. In later stages of alcohol

dependence, most of the neuroplastic changes to the mesocorticolimbic and

extended amygdala systems attributed to repeated cycles of alcohol/drug

abuse—withdrawal—and relapse have already occurred. While associative

learning, contextual conditioning, and habit formation have been occurring

throughout the addiction cycle, highlighted are these multiple memory

systems (that interact and often overlap) which experience a substantial

increase in glutamatergic activity-mediated neuroplastic changes. Basic

descriptors of the memory processes mediated by the hippocampus and

caudate-putamen, as well as the stages of relapse they influence, are also

indicated. ACB, Nucleus Accumbens; AMYG, Amygdala; BNST, Bed

Nucleus of the Stria Terminalis; CPU, Caudate Putamen; CTX, Cortex; HIPP,

Hippocampus; MDTN, Medial Dorsal Thalamic Nucleus; ML, Mesolimbic;

mPFC, Medial Prefrontal Cortex; VTA, Ventral Tegmental Area.

dopaminergic activity). Dependence is also associated with
withdrawal, which is correlated with a number of symptoms
linked to increased glutamatergic/excitatory neuronal activ-
ity and decreased GABAergic/inhibitory neuronal activity. The
extended amygdala mediates, at least in part, withdrawal symp-
toms related to anxiety and irritability as well as accompany-
ing heightened physiological and autonomic responses. These
heightened responses are mediated not only by increased gluta-
matergic (as opposed to GABAergic) activity but also increased
anxiogenic peptidergic activity [i.e., corticotrophin releasing fac-
tor (CRF) as opposed to anxiolytic neuropeptide Y (NPY) activ-
ity] within the extended amygdala, particularly the AMYG and
BNST (Roberto et al., 2012). However, progression through these
stages of the addiction cycle is not linear in nature. Rather, there
are substantial individual differences in the number and duration
of instances where an individual’s usage pattern returns to that
seen in a previous stage of the addiction cycle.

During late stages of dependence, the neuroplastic changes in
the mesocorticolimbic system are retained and the neuroplastic
changes of the extended amygdala become more pronounced.
As highlighted in Figure 1, multiple memory systems (See
White, 1996, White, and associated commentaries, for an early

review) are also recruited in these neurocircuits with substantial
glutamatergic activity. Neuroplastic changes within different
memory systems strengthen the behavioral manifestations seen
in late stage dependence. Given that alcohol and drug addic-
tion are often characterized as compulsive behaviors, it has been
repeatedly postulated, albeit with different terminology, that the
caudate-putamen, which mediates habit formation and memory,
tends to predominate as a memory circuit in late stage depen-
dence (Koob and Volkow, 2010; Volkow et al., 2010; Everitt and
Robbins, 2013; Richard et al., 2013; Zorrilla and Koob, 2013;Wise
and Koob, 2014).

Prominent among these behaviors in later stages of depen-
dence is the ubiquitous phenomenon of relapse (Chiauzzi, 1991;
Weiss et al., 2001; Barrick and Connors, 2002; Jaffe, 2002).
Relapse takes place during withdrawal, which distinguishes it
from continued usage in the absence of withdrawal. Relapse
is often precipitated by some form of cue-reactivity, which
would require contextual processing by the hippocampus as well
as autonomic activity modulated by the amygdala and medial
PFC. This autonomic/physiological activity can be modulated
by all of the brain regions ascribed, in the Figure 1, to the
mesocorticolimbic system and extended amygdala. The desire
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to remove associated aversive symptoms/stimuli, or to re-live
memories of a previous positive experience, with the former
tending to predominate over the latter, leads to drug/alcohol
seeking and taking with the recruitment of both habit- and
cognitive-memory circuits, again with the former predominating
over the latter in late stage dependence.

Glutamatergic Neurotransmission:
Interactions with Alcohol

Themajor excitatory central neurotransmitter, glutamate, acts on
two broad categories of receptors, ionotropic and metabotropic.
The ionotropic receptors are ligand-gated ion channels and are
further classified into N-methyl-D-aspartate (NMDA), alpha-
amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)
and Kainate receptors based on their sensitivity to respective ago-
nists (Nakanishi, 1992). The metabotropic receptors (mGluR)
are G-protein coupled receptors divided into eight mGluR sub-
types, having multiple splice variants (Pin and Duvoisin, 1995).
As indicated in Section TheMesocorticolimbic System, Extended
Amygdala and Glutamatergic Neurotransmission, ethanol expo-
sure alters the central glutamatergic activity and these changes
vary depending on the extent of ethanol abuse.

Chronic ethanol exposure (Rossetti and Carboni, 1995; Dah-
chour and De Witte, 1999, 2000; Melendez et al., 2005; Kapasova
and Szumlinski, 2008; Ding et al., 2012), for instance, has been
shown to elevate extracellular levels of glutamate inmesocorticol-
imbic brain areas. Moreover, the effects of ethanol consumption
onNMDA- andmGlu-R as well as Homer (a glutamatergic recep-
tor scaffolding protein) subunit expression in the extended amyg-
dala and Acb core are also influenced by the length of ethanol-
withdrawal (Obara et al., 2009). Intracellularly, ethanol inhibits,
non-competitively, the NMDAR-mediated calcium influx in the
cortex, Acb, amygdala, hippocampus, and VTA (Nie et al., 1994;
Wirkner et al., 2000; Roberto et al., 2004; Stobbs et al., 2004;
Zhu et al., 2007). Additionally, ethanol’s effects on NMDA recep-
tor activity are followed by phosphorylation and internaliza-
tion of NR2 subunits (Suvarna et al., 2005). Ethanol was also
found to inhibit NMDA-induced increases in cyclic guanosine
monophosphate activity (Hoffman et al., 1989). Furthermore,
studies have shown that alcohol withdrawal is associated with
increased excitatory amino acid transmission, leading tomanifes-
tation of symptoms such as seizures, which can be blocked using
NMDA receptor antagonists (Danysz et al., 1992; Snell et al.,
1996; Malinowska et al., 1999; Narita et al., 2000; Bienkowski
et al., 2001; Nelson et al., 2005).

Glutamate activity at mGluR5, a post-synaptic metabotropic
glutamate receptor, has been shown to regulate self-
administration of alcohol in rats (Besheer et al., 2008). Similarly,
antagonists of mGluR5 are also found to be beneficial in pre-
venting alcohol relapse in a genetic animal model of alcoholism
(Schroeder et al., 2005). Thus, pharmacological blockade or very
low levels ofmGluR2mRNA is associated with increased alcohol
consumption by alcohol preferring as well as alcohol non-
preferring rats (Li et al., 2010; Holmes et al., 2013; Meinhardt
et al., 2013; Zhou et al., 2013). Similarly, post-mortem analysis of
human frontal cortex from alcohol-dependent patients revealed a

decreased expression levels of mGluR2 mRNA (Meinhardt et al.,
2013) further highlighting its involvement in the development
and/or expression of alcohol dependence.

Glutamate Transporters: Role in Glutamate
Homeostasis

Glutamate transporters are membrane-bound protein pumps
found on both neuronal and glial membranes; these transporters
regulate glutamate uptake. Increased extracellular glutamate may
cause calcium homeostasis dysfunction, increased nitric oxide
production, activation of proteases, increased cytotoxic tran-
scription factor levels, and increased free radicals that may sub-
sequently lead to neuronal death (For review, see Wang and Qin,
2010). There are two types of glutamate transporters that regu-
late extracellular glutamate level: sodium dependent excitatory
amino acid transporters (EAATs) and vesicular glutamate trans-
porters (VGLUTs). In addition, there exists a cysteine-glutamate
antiporter that regulates the exchange of cysteine and glutamate
at the synapse (Bridges et al., 2012).

Excitatory Amino Acid Transporters
EAATs are present in both presynaptic neurons and glial cells and
are responsible for modulating glutamate homeostasis (Kanai
et al., 1995; Danbolt, 2001). Glutamate is co-transported along
with three sodium ions and one proton followed by efflux of
one potassium ion (Zerangue and Kavanaugh, 1996). Five sub-
types of EAATs have been identified in human and rodent brains.
The first three subtypes that were identified in rat/rabbit models
are called glutamate/aspartate transporter (GLAST) (Storck et al.,
1992), GLT1 (Pines et al., 1992), and excitatory amino acid carrier
type 1 (EAAC1) (Kanai and Hediger, 1992); their human coun-
terparts are termed EAAT1, EAAT2, and EAAT3, respectively
(Arriza et al., 1994). The other two subtypes were identified in
both rodents and humans and named as EAAT4 (Fairman et al.,
1995) and EAAT5 (Arriza et al., 1997). The five EAAT subtypes
have been found to share 50–60% sequence homology (Seal and
Amara, 1999). The localization of these five EAAT subtypes has
been studied in detail and described elsewhere (Gegelashvili and
Schousboe, 1998; Danbolt, 2001).

Vesicular Glutamate Transporters
VGLUTs are responsible for the uptake and sequestration of glu-
tamate into presynaptic vesicles for storage. The uptake is driven
by a proton-dependent electrochemical gradient that exists across
the vesicle membrane and depends on the potential gradient
created by a vacuolar-type ATPase (Edwards, 2007). Three iso-
forms of VGLUTs have been identified in the mammalian central
nervous system (CNS): VGLUT1, VGLUT2, and VGLUT3 (El
Mestikawy et al., 2011). These transporters belong to the type 1
phosphate transporter family. VGLUT1 is expressed in the cor-
tex, hippocampus, and thalamus while VGLUT2 is found in the
neocortex, olfactory bulb, dentate gyrus, and subiculum; also,
co-expression of VGLUT1 and VGLUT2 has been observed in
the hippocampus (Herzog et al., 2006). VGLUT1 is suggested to
be expressed at synapses associated with low release rates and
long-term potentiation, while VGLUT2 is expressed at synapses
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with high release rates and long-term potentiation (Fremeau
et al., 2001), with others suggesting VGLUT2 is also associated
with synapses displaying long-term depression (Kaneko and
Fujiyama, 2002). Alternatively, VGLUT3 was identified in neu-
ronal somato-dendrites and glia distributed sparsely throughout
the brain. The expression of VGLUTs is believed to be on the
extra-presynaptic terminal, suggesting a probable role in mod-
ulation of glutamate signaling via endocytosis (Fremeau et al.,
2002), although some work has suggested a role for VGLUTs in
glutamatergic exocytosis as well (Bellocchio et al., 1998; Fremeau
et al., 2004; Seal and Edwards, 2006).

Cysteine–Glutamate Antiporter
Cysteine–glutamate antiporter is a plasma membrane-bound,
Na+-independent, anionic amino acid transporter that
exchanges extracellular cysteine for intracellular glutamate
and serves as a source of non-vesicular glutamate release
(Danbolt, 2001). It exists as two separate proteins: the light
chain cysteine/glutamate exchanger (xCT) that is unique to the
cysteine-glutamate antiporter, and the heavy chain 4F2 that is
common to many amino acid transporters (Sato et al., 1999).
Similar to EAATs, this antiporter is distributed on cells through-
out the body and preferentially on glia in the brain (Bridges et al.,
2012). Furthermore, it provides tone to mGluRs and cysteine
for glutathione synthesis, thereby antagonizing oxidative stress.
Given glutamate’s role in excitotoxicity, it is not surprising that
cysteine-glutamate exchange is thought to play a prominent role
in regulating extracellular glutamate levels (Murphy et al., 1989;
Bridges et al., 2012).

Studies have shown that a reduction in the cysteine/glutamate
exchange increased susceptibility to relapse-seeking behavior
(Baker et al., 2003). Also, restoration of the antiporter activity
through intracranial perfusion of cysteine or systemic adminis-
tration of N-acetyl cysteine was shown to decrease cocaine seek-
ing in rat models (Baker et al., 2003). Another study showed
that ceftriaxone treatment restored both GLT1 and xCT lev-
els, which in turn inhibited relapse to cocaine-seeking behav-
ior (Sari et al., 2009; Knackstedt et al., 2010). Similarly, we
have recently demonstrated chronic alcohol consumption in
male alcohol-preferring P rats (a genetic animal model of alco-
holism) to be associated with a significant decrease in expres-
sion of xCT in Acb and PFC (Alhaddad et al., 2014a). Overall,
the cysteine-glutamate antiporter is known to play an important
role in maintaining glutamate homeostasis under normal and
various pathological conditions (For review, see Bridges et al.,
2012).

Role of Glutamate Reuptake in Alcohol
Dependence
Glutamate-mediated excitotoxicity is implicated in trauma,
ischemia and several other neurodegenerative disorders (Sat-
tler and Tymianski, 2001). Glial sodium dependent transporters,
GLAST (EAAT1) and GLT1 (EAAT2), in particular GLT1, are
responsible for at least 90% of extracellular glutamate removal
(For review, see Anderson and Swanson, 2000). Impaired glu-
tamate uptake due to dysfunction or downregulation of EAAT2
results in several neurological disorders, including Amyotrophic
Lateral Sclerosis (ALS), Alzheimer’s disease, epilepsy, ischemia

and hepatic encephalopathy (Maragakis and Rothstein, 2006).
Importantly, we have previously demonstrated that chronic
exposure to alcohol results in significant down-regulation of
GLT1 expression in the Acb and/or PFC in P rats (Sari and
Sreemantula, 2012; Sari et al., 2013).

Furthermore, studies have demonstrated a significant
reduction in the levels of EAAT1 and EAAT2 in the basolateral
amygdala in postmortem human alcoholic brains as compared
to non-alcoholic individuals (Kryger and Wilce, 2010). Acute
exposure to alcohol has been found to inhibit glutamatergic
neurotransmission. However, chronic exposure to alcohol may
elevate glutamate levels, which can lead to withdrawal-associated
effects of alcohol deprivation and exposure subject’s seeking
alcohol-associated negative reinforcement to remove the same
(Valenzuela, 1997). Additionally, a reduction in the expression
of GLAST level and an increase in GLAST mRNA were found
in post-mortem human PFC samples of alcoholics, which might
be due to a compensatory mechanism induced by chronic
alcohol abuse/dependence (Flatscher-Bader and Wilce, 2008).
Furthermore, an increase in VGLUT2 expression in the Acb shell
was observed, while VGLUT1 remained unchanged, following
chronic alcohol exposure and subsequent deprivation from
alcohol (Zhou et al., 2006).

Importantly, GLT1 is currently considered a molecular target
for the attenuation of alcohol dependence since it regulates the
majority of extracellular glutamate uptake (Rao and Sari, 2012).
Previous studies have identified several beta-lactam antibiotics as
potent modulators (i.e., elevation) of GLT1 expression (Rothstein
et al., 2005). Based on its favorable pharmacokinetic properties,
ceftriaxone (a third-generation cephalosporin) was chosen for
further study in in vitromodels of ischemic injury and motoneu-
ron degeneration and in vivo animal models of ALS (Rothstein
et al., 2005). Furthermore, screening of several FDA-approved
compounds using a luciferase reporter assay on human astroglial
cells identified harmine, a beta-carboline alkaloid, as a potent
EAAT2 promoter. Further testing in cell cultures and ALS ani-
mal models demonstrated that harmine effectively increased both
GLT1 protein and glutamate transporter activity (Li et al., 2011).
Thus, harmine may prove efficacious in the treatment of alcohol
dependence.

Current Pharmacotherapy Targeting
Glutamate Neurotransmission for Alcohol
Dependence

Current available therapeutics for alcohol dependence target sev-
eral different systems due to the non-specific nature of alcohol’s
action in the brain. In general, the available FDA-approved ther-
apies for alcohol dependence work by blunting the rewarding
effects (naltrexone) of ethanol, creating an aversion (disulfiram)
toward ethanol or restoring the homeostatic balance between
inhibitory and excitatory neurotransmission in the CNS (acam-
prosate). Ideally, drugs targeting the mesocorticolimbic reward
pathway and counteracting chronic ethanol exposure-induced
adaptations would present a feasible pharmacological solution.

Acamprosate is a synthetic GABA analog, FDA-approved
drug for the prevention of alcohol relapse. It was suggested to
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be a functional NMDA antagonist, thereby countering chronic
alcohol exposure-induced increases in glutamate concentrations
and the subsequent precipitation of a hyperglutamatergic state,
which occur during alcohol withdrawal episodes (Dahchour
et al., 1998). Acamprosate treatment has also been shown to
affect GABAergic neurotransmission by inhibiting presynaptic
GABAB receptors (Berton et al., 1998). Studies have suggested
that acamprosate treatment is mildly effective or ineffective in
multi-center clinical trials (Anton et al., 2006; Mason et al., 2006).
However, further analysis has suggested that, apart from being a
well-tolerated drug, acamprosate treatment is associated with sig-
nificant positive effects on rates of abstinence among both sexes
(Mason and Lehert, 2012).

Topiramate, an FDA approved anti-epileptic drug, has shown
promising results in attenuating alcohol consumption due to
its modulation of glutamatergic neurotransmission. Topiramate
has been demonstrated to inhibit the AMPA and kainate gluta-
mate receptors (Skradski andWhite, 2000; Gryder and Rogawski,
2003).While topiramate treatment was associated with decreased
ethanol intake in several animal studies (Hargreaves and Mcgre-
gor, 2007; Nguyen et al., 2007; Breslin et al., 2010), the drug
treatment was not associated with changes in ethanol condi-
tioned place preference (Gremel et al., 2006). In addition, top-
iramate has been shown to be effective in reducing alcohol
intake and preventing relapse in human subjects (Baltieri et al.,
2008; Florez et al., 2008). Other anticonvulsants [e.g., gabapentin
(another synthetic GABA analog altering GABAergic, gluta-
matergic and adrenergic activity with some efficacy for treating
cannabis dependence; Howland, 2013) or valproate] have also
been evaluated; with a meta-analysis suggesting anticonvulsants,
which generally modulate glutamatergic, GABAergic and possi-
bly other excitatory or inhibitory neuronal activity, have modest
but significant efficacy in the treatment of alcohol dependence
(Pani et al., 2014).

GLT1 Upregulators: Potential Targets for
the Treatment of Alcohol Dependence

Ceftriaxone
Ceftriaxone is a third-generation, semi-synthetic cephalosporin
with a broad spectrum of activity against Gram-positive and
Gram-negative aerobic, and a few anaerobic, bacteria. Ceftriax-
one can be administered either intravenously or intramuscularly
and has been successfully used in the treatment of meningitis;
urinary tract infections; lower respiratory tract infections; skin,
soft tissue, bone, and joint infections; and bacteremia/septicemia
(Richards et al., 1984). In addition to its GLT1 modulating effect
(Rothstein et al., 2005), ceftriaxone has been studied exten-
sively for its neuroprotective activity. In an animal model of
stroke, ceftriaxone treatment was associated with a significant
reduction in acute stroke mortality and improved neurologi-
cal performance (Thone-Reineke et al., 2008). Additionally, a
ceftriaxone-mediated increase in GLT1 expression in the spinal
cord was found to be beneficial in treating opioid-induced para-
doxical pain and neuropathic pain (Ramos et al., 2010). Cef-
triaxone has been studied extensively for its potential role in

treating ethanol dependence (for review see Rao and Sari, 2012).
We have previously reported that ceftriaxone treatment admin-
istered intraperitoneally (i.p.) in P rats attenuated ethanol con-
sumption during five consecutive daily doses of the treatment
(Sari et al., 2011). Importantly, attenuation of ethanol con-
sumption following ceftriaxone treatment was associated with
upregulation of GLT1 expression levels in the mesocorticolim-
bic pathway, including the Acb and PFC. Additionally, ceftriax-
one administered i.p. was found effective in attenuating ethanol
withdrawal and relapse-like drinking behaviors (Qrunfleh et al.,
2013; Abulseoud et al., 2014). Furthermore, apart from modulat-
ing GLT1 expression, we have demonstrated upregulation of xCT
expression as an additional mechanism of ceftriaxone-induced
normalization of glutamatergic homeostasis in the Acb and PFC
(Alhaddad et al., 2014a; Rao and Sari, 2014b). Ceftriaxone was
also effective in attenuating ethanol consumption in P rats sub-
jected to a long-term ethanol drinking paradigm (Rao and Sari,
2014a). Furthermore, our recent findings have demonstrated that
ceftriaxone-induced GLT1 upregulation is associated with activa-
tion of AKT and NF-kB signaling pathways in the Acb and PFC
of P rats (Rao et al., 2015).

GPI-1046
GPI-1046, 3-(3-pyridyl)-1-propyl (2S)-1-(3,3-dimethyl-1,2-
dioxopentyl)-2-pyrrolidinedinecarboxylate, is a synthetic
non-immunosuppressive ligand of FK506 binding protein-12
(Steiner et al., 1997b). FK506 was found to promote neuronal
survival. Thus, a series of non-immune suppressive ligands of
FKBP-12 were synthesized, including GPI-1046, the prototype
for these non-immunosuppressive ligands. GPI-1046 was shown
to be effective in neurodegenerative animal models (Steiner et al.,
1997a). Along with neuroprotective properties, GPI-1046 was
also found to possess anti-retroviral activity and was effective
in inhibiting HIV replication (Steiner et al., 2007). Interest-
ingly, GPI-1046 was found to have an upregulatory effect on
GLT1 expression both in vitro and in vivo (Ganel et al., 2006).
Importantly, we recently reported that GPI-1046 treatment (i.p.)
upregulated GLT1 protein expression in the PFC and Acb and
concomitantly reduced alcohol intake in male P rats (Sari and
Sreemantula, 2012). Further, studies are warranted to reveal the
molecular mechanism involved in GPI-1046 mediated changes
in GLT1 expression.

MS-153
We have recently reported that a synthetic compound, (R)-(–)-
5-methyl-1-nicotinoyl-2-pyrazoline (MS-153) reduced alcohol
intake in male P rats (Alhaddad et al., 2014b). This reduction
in alcohol intake was associated in part with upregulation
of GLT1 expression in the Acb. This compound, in addi-
tion to GLT1 upregulation, was shown to activate p-Akt and
NF-kB pathways; these signaling pathways were previously
suggested to be involved in GLT1 upregulation. In addition,
MS-153 mediated changes in GLT1 expression were also exam-
ined in the amygdala and hippocampus of P rats (Aal-Aaboda
et al., 2015). While ethanol consumption significantly down-
regulated expression of xCT and GLT1, MS-153 treatment nor-
malized expression of these glutamate transporters in both the
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amygdala and hippocampus of P rats compared to vehicle control
animals.

Conclusion and Closing Thoughts

Alcohol consumption affects a number of neurotransmitters
and neuromodulators in the CNS, including dopamine, sero-
tonin and GABA. Pertinent to the present paper, the neuro-
transmitter glutamate has been shown to be critical in the
development and expression of alcohol dependence. In par-
ticular, changes in glutamatergic activity are often associated
with neuroplastic changes in CNS circuitry (Bliss et al., 2014).
These changes occur in brain structures mediating reward,
reinforcement, learning and memory (for reviews on some
of these changes see White, 1996). In general, based on
the existing literature, chronic alcohol and other drugs of

abuse result in a pronounced increase in glutamatergic activity
within these neuronal circuits. Therefore, any pharmacologi-
cal treatments that can reverse this hyperglutamatergic state
hold great promise in the treatment of alcohol, and possi-
bly illicit drug, dependence. It is noteworthy that compounds
that physically and/or functionally upregulate glutamate trans-
porters, in particular GLT1, are ideal candidates for further
exploration.
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