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Abstract
Detecting protein-RNA interactions is challenging both experimentally and computationally
because RNAs are large in number, diverse in cellular location and function, and flexible in
structure. As a result, many RNA-binding proteins (RBPs) remain to be identified. Here, a
template-based, function-prediction technique SPOT-Seq for RBPs is applied to human proteome
and its result is validated by a recent proteomic experimental discovery of 860 mRNA binding
proteins (mRBPs). The coverage (or sensitivity) is 42.6% for 1,217 known RBPs annotated in the
Gene Ontology (GO) and 43.6% for 860 newly discovered human mRBPs. Consistent sensitivity
indicates the robust performance of SPOT-seq for predicting RBPs. More importantly, SPOT-seq
detects 2,418 novel RBPs in human proteome, 291 of which were validated by the newly
discovered mRBP set. Among 291 validated novel RBPs, 61 are not homologous to any known
RBPs. Successful validation of predicted novel RBPs permits us to further analysis of their
phenotypic roles in disease pathways. The dataset of 2418 predicted novel RBPs along with
confidence levels and complex structures is available at http://sparks-lab.org for experimental
confirmations and hypothesis generation.
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Introduction
A comprehensive understanding of cellular processes requires identification of RNA-
binding proteins (RBP) as well as their ligands. Identification of RBPs is of significant
interest because numerous studies have shown that they are key factors associated with
cellular processes such as cell cycle checkpoints and genomic stability, and mutations in
RBPs are linked to human diseases, including cancer 1. Recent global analysis indicates that
transcripts are not only large in number, but also diverse in localization and function in
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cells 2-4. This implies that underlying post-transcriptional networks are likely larger and
more complex than either transcriptional networks or protein-protein interaction networks 5.
However, experimental determination of RNA-binding by every protein is inefficient and
impractical, as well as technically challenging and expensive. Attempts at high-throughput
biochemical approaches for identifying RBPs progress slowly and are fraught with
inaccuracy 5-7. Thus, computational methods have become a critical component for function
annotation and analysis of RBPs 8-16.

Recently, we have developed a template-based technique called SPOT-Seq (RNA) that
makes sequence-based prediction of RBPs 16. In this method, a query sequence is first
threaded onto protein template structures of protein-RNA complexes by the fold recognition
technique called SPARKS X 17. The template library contains 1,164 known protein-RNA
complex structures on both domain and protein chain levels (95% sequence identity or less).
If one of the templates has a good match (according to Z-score) to the query, the structure
for the query is predicted and a model complex structure between the predicted structure and
the RNA from the template is built. The model complex structure is then employed to
predict affinity for protein-RNA-binding using a knowledge-based energy function 15. If the
binding affinity is higher than a threshold, an RBP is predicted. The method achieves a
precision of 84% and sensitivity of 47% for a test set of 215 RBPs and 5,765 nonbinding
proteins. The precision and sensitivity of SPOT-Seq are more than 10% higher than PSI-
BLAST, which uses a sequence-to-profile homology search technique 18. More importantly,
unlike some computational methods, SPOT-Seq (RNA) can distinguish DNA-binding from
RNA binding (zero false positives) when applied to 250 DNA binding proteins.

Here, we made a large-scale prediction of RBPs in human proteome using SPOT-Seq and
recovered 42.6% for annotated RBPs in human proteome. These predictions, when
compared to recently discovered 860 messenger RNA binding proteins in human HeLa
cells19, yielded a consistent sensitivity of 43.6%. More than 2000 novel RBPs are predicted
in which 291 proteins are validated by the recently discovered messenger RNA binding
proteins. We further showed that some of these novel RBPs are involved in various disease
pathways.

Materials and Methods
Fold-recognition and binding-affinity based prediction by SPOT-Seq

SPOT-Seq combines fold recognition and binding affinity prediction for RBP prediction 16.
Each target sequence is aligned to the structures in a template library of 1,164 non-redundant
protein-RNA complex structures (95% sequence identity cutoff) by employing the fold
recognition method SPARKS X 17. If the Z-score of the fold recognition is greater than 8.04,
a model complex structure between the target protein and template RNA is built by
replacing template protein sequence with target protein sequence based on the sequence-to-
structure alignment generated from SPARKS X. The model complex structure is then
employed to estimate binding affinity according to a statistical energy function based on the
distance-scaled finite ideal-gas reference state 20 that was extended to protein-RNA
interaction (DRNA) 15. If the predicted threshold is lower than -0.57, the target protein is
predicted as RNA-binding and its complex structure model serves as the basis for the high-
resolution prediction of RNA-binding function. The energy and Z-score thresholds (-0.57
and 8.04 respectively) were obtained by optimizing the Matthews correlation coefficient
(MCC) based on the leave-homolog-out cross validation with a dataset of 216 RBPs and
5765 non-RNA-binding proteins16. We chose to optimize MCC values because MCC is a
balanced measure of sensitivity and precision for a training database with an unbalanced
number of RNA-binding and non-binding proteins.
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Results
Application of SPOT-Seq to human proteome

The human genome dataset from the Uniprot database contains 20,270 unique proteins 21.
The annotations of these genes were obtained from the GO database 22. We defined an RBP
as one whose annotation contains any of the keywords (“RNA binding”, “ribosomal”,
“ribonuclease”, or “ribonucleoprotein”). For proteins with keywords “RNA polymerase”, we
limited to 17 specific GO terms as RBPs (see Table I). This definition leads to 1,217 (6%)
proteins annotated as RBPs, while 15,595 proteins are annotated with other functions and
3,458 are unannotated (unknown function). Table I lists the number of proteins found
according to the keywords used. Although this definition of RBP is subject to annotation
errors/omissions and choices of keywords, it provides a useful reference for analyzing our
predicted RBPs.

Application of SPOT-Seq to human proteome identified 2,937 proteins as RNA-binding
after removing those proteins whose predicted structures have overlap with predicted
transmembrane regions by THUMBUP 23. This filter is necessary because our method based
on protein-RNA complex structures cannot predict the structures of transmembrane proteins.
Among 2,937 predicted RBPs, 519 proteins were annotated as RNA-binding and belong to
one of the keyword classes shown in Table I. In addition, 1,848 proteins were annotated
with functions other than RNA-binding and 570 proteins lack annotations. Fig. 1 shows a
bar diagram that indicates the number of predicted RBPs in annotated RBPs, non-RBPs
annotated with other function, and proteins with unknown function. The result reveals
sensitivity (or coverage) of 42.6% (519/1,217). This sensitivity is consistent with results
from our benchmark study 16 despite the latter being based on proteins whose structures
were solved in complex with RNA. We noted that the sensitivity strongly depends on
specific categories of RBPs. The sensitivity is the highest at 56% for the proteins annotated
with the keyword of “RNA binding” and the lowest at 13% with the keyword of “RNA
polymerase” as shown in Table I.

Table II lists the top ten templates employed for all predicted RBPs for human proteome.
The 60S ribosomal protein L3 encoded by the RPL3 gene (chain C in pdb structure 3o58), is
responsible for predicting 1181 proteins with 61 annotated as RNA binding. Four other 60S
ribosomal proteins are also in the top-ten list. The unexpected popularity of L3 as a template
leads us to examine the accuracy associated with these predictions. SPOT-seq was tested by
215 RBPs and 5,765 non-RBPs 16. Among these proteins, 11 binding proteins and 15 non-
binding targets employed protein chains contained in structure 3o58 as templates. The
Matthews correlation coefficient (MCC) for the use of 3o58 chains as templates is 0.64,
similar to the overall MCC value of 0.62 when all templates are employed. Thus, the
performance for prediction based on 3o58 chains is consistent with the overall performance.

Newly predicted human RBPs have the same non-RNA-binding functions as known RBPs
1,848 predicted novel RBPs were annotated with functions other than RNA-binding. That is,
these proteins perform a moonlighting role of RNA-binding. We investigated novel and
existing moonlighting RBPs based on their shared molecular functions. In Table III, we
tabulate number of proteins and GO terms in molecular function that are unique or shared
between predicted and annotated RBPs. More than 90% of predicted novel RBPs [91%, 226/
(226+21) for proteins with root annotations only and 98%, 1,238/(1,238+26) for proteins
with leaf annotations] shared GO IDs with annotated RBPs. In other words, almost all
functions of these predicted moonlighting RBPs are associated with known RBPs. We noted
that the entire human proteome has 1,411 leaf GO IDs and annotated RBPs have 288 leaf
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GO IDs. That is, 20% of all leaf GO IDs associated with RBPs indicate the extensive
association of RBPs with other biological functions.

To illustrate shared functions between predicted and annotated RBPs, we showed four
clusters of predicted and annotated RBPs with four GO IDs in Fig. 2. Each GO ID not only
contains both predicted and annotated RBPs but also connects with each other through
proteins having multiple GO IDs. Top 10 GO IDs (excluding RNA-binding functions)
enriched with moonlighting RBPs are listed in Table IV. Many of these 10 GO IDs are
associated with transcription regulatory activity, suggesting DNA-binding activity. For
example, zinc-ion-binding has an odd ratio of 1.06 enriched with annotated RBPs (fraction
of annotated RBPs in a given GO ID in all annotated RBPs versus fraction of all proteins in
a given GO ID in all proteins). This odd ratio increases to 1.82 with predicted novel RBPs.
Indeed, we found that 350 out of 1,217 annotated RBPs (29%) are also annotated as DNA-
binding proteins according to GO annotations. Similarly, 22% (114/519) of predicted and
annotated RBPs and 39% (728/1848) of predicted novel moonlighting RBPs are DNA-
binding proteins. Thus, a significant fraction of proteins likely interact with DNA and RNA
at the same time. It is worth to mention that SPOT-Seq has 100% success rate in
discriminating RNA from DNA-binding proteins.16

Validation of predicted novel RBPs by proteomic studies of human HeLa cells
Sharing GO IDs between annotated and predicted RBPs supports but does not validate
predicted novel RBPs. Direct validation of our predicted RBPs is made possible by a recent
proteomic experiment that detected mRNA-binding proteins of HeLa cells 19. In this study,
mRNA-binding proteins (mRBPs) in living HeLa cells were crosslinked by UV irradiation,
captured by oligo(dT) magnetic beads after cell lysis, and identified by high resolution nano-
LC-MS/MS. They identified 860 mRBPs in which 375 were predicted as RBPs by SPOT-
Seq. That is, the sensitivity for this dataset is 43.6%, close to 42.6% sensitivity for all GO
annotated RBPs. Similar sensitivity despite significantly different datasets confirms the
overall accuracy of SPOT-Seq.

The 860 mRBPs contain many novel RBPs. Using the same GO definition for RBPs as in
the human proteome, 746 proteins were novel RBPs in which 291 were predicted as RBPs
by SPOT-Seq. Thus, SPOT-Seq has a 39% sensitivity for identification of novel RBPs, close
to the sensitivity for all RBPs (42.6%). In these 291 predicted and validated mRNA-binding
proteins, the most frequently used templates were chains in PDB ID 3o58 (87 times). This
validates the use of 3o58 as a template for predicting RBPs. Moreover, the majority of 291
predicted novel proteins (70%, 203/291) employed a template protein with mRNA binding
function.

Castello et al. (2012) also defined a more stringent subset of “previously unknown” RBPs by
excluding proteins that were previously experimentally validated, inferable by homology,
and/or with a GO annotation containing “RNA” (not just RNA binding). This stringent set of
“previously unknown” RBPs contains 315 proteins, 61 of which (19%) are predicted novel
RBPs by SPOT-Seq. This large overlap demonstrates the ability of SPOT-Seq to go beyond
homology-based inference to uncover novel RBPs.

Disease pathways associated with predicted RBPs
Validation of predicted novel RBPs provides incentive for analyzing their relevance to
disease using known disease pathways of Kyoto Encyclopedia of Genes and Genomes
(KEGG) database 24. The KEGG database classified diseases into 11 types: cancer, immune
system diseases, nervous system diseases, cardiovascular diseases, digestive diseases,
urinary and reproductive diseases, musculoskeletal and skin diseases, respiratory diseases,
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congenital disorder of metabolism, and other congenital disorders. These diseases
correspond to 176 pathways and 4602 proteins. Among these, 337 are annotated RBPs. 151
(44.8%) of the annotated RBPs are predicted by SPOT-Seq, consistent with the overall
sensitivity of 42.6%. In addition to recover known RBPs, SPOT-Seq also predicted 284
novel RBPs. The overall fraction of RBPs, both predicted and annotated, in all proteins
involved in disease pathways is about 13%, slightly lower than 18% for all proteins in the
human genome. Table V lists the number of annotated and predicted RBPs for the 11
disease pathways. These newly predicted RBPs in disease pathways should be useful for
understanding disease mechanisms and generating new hypotheses for experimental testing.

For example, there are 6 diseases such as Charcot-Marie-Tooth disease, progressive
myoclonic epilepsy, and pontocerebellar hypoplasia involving in the aminoacyl-tRNA
biosynthesis pathway. Eleven annotated RBPs are involved in this pathway, and seven of
them were also predicted as RBPs by SPOT-seq. In addition, SPOT-Seq discovered 18 novel
RBPs. Most of the predicted novel RBPs (13/18=72%) employed templates that bind with
tRNA. Predicted binding with tRNA provide additional supports for our predicted novel
RBPs.

Discussion
In this study, a new method for RBP prediction based on known RBP complex structures
was applied to human genome. The method uncovered 2,418 proteins that were not
previously annotated as RBPs in the GO database. About half of these predicted novel RBPs
were annotated as ORFs that lack GO annotations of molecular functions (908), or have only
GO root ID (247). Importantly, 284 of these predicted novel RBPs are linked to disease
pathways (Table V). Partial validation of this prediction tool includes 12% of these
predicted novel proteins (291) that have been identified in a recently study to bind mRNAs
in living HeLa cells 19. The consistent sensitivity (42.6% for annotated RBPs in human
genome and 43.6% for mRBPs in HeLa Cells) demonstrates the robustness of SPOTseq in
making highly accurate prediction of RBPs.

Among all predicted RBPs, 80.5% have unknown functions or are annotated with functions
other than RNA binding. This suggests that many more RBPs exist than those that are
currently annotated. If we combine predicted RBPs with annotated RBPs and assume that
majority of predicted and annotated RBPs are true, these RBPs would consist of 18%
[(1,848+570+1,217)/20,270] of all genes. With the sensitivity of SPOT-Seq being about
43%, the actual number of RBPs is likely to exceed 18% even if when errors were taken into
account. The potentially large number of RBPs highlights the scope and significance of the
protein-RNA interaction network.

Most of the RBPs predicted here have functions other than RNA-binding. This so-call
moonlighting capability of RBPs is consistent with experimental screens of yeast and human
proteins. It was found that novel RBPs uncovered in screens often have enzymatic activities
as well as RNA-binding architectures 19. Thus, RBPs that moonlight in other functions is
likely to be more common than previously appreciated. In particular, 39% of predicted
moonlighting proteins are related to DNA-binding. This is not caused by inability of SPOT-
seq to distinguish RNA- from DNA-binding. In fact, the application of SPOT-seq to 250
DNA-binding proteins did not yield any false positive prediction of RBPs 16. Thus, many
proteins can interact with both RNA and DNA.

To prevent potential false positive prediction, we have excluded those predicted RBPs that
are transmembrane proteins. This is because our template proteins are all globular proteins.
Current implementation, however, requires a separate prediction of transmembrane proteins
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and manual comparison. In a future version, we hope to incorporate a transmembrane filter
directly inside of SPOT-seq. However, excluding predicted transmemrane regions could
lead to removal of some true positive predictions because the accuracy for prediction of
transmembrane proteins is 88%23. We employed the transmembrane filter in order to further
improve the precision of our RBP prediction at a minor cost of fewer predictions.

A surprising result from our template-based technique is that many predicted RBPs
employed the templates from 60 S ribosomal proteins, especially L3 (PDB ID 3o58). This is
true for both predicted novel and annotated RBPs. We are confident about these predictions
because our benchmark test indicates the accuracy of prediction based on 3o58 is the same
as that based on other templates. More importantly, 87 novel RBPs based on 3o58 templates
are validated as mRNA-binding proteins 19. The popularity of L3 and other ribosomal
protein in predicting RBPs may have its origin in ribosomal proteins being ancient in the
tree of life and the potential amplification of genes associated with translation.

To demonstrate the significance of predicted novel RBPs, we employ the serine-protein
kinase ATM as an example. ATM was matched to the complex structure between pre-
microRNA and chain A of PDB structure 3a6p (exportin-5) by SPOT-Seq despite that the e-
value given by PSI-BLAST is 100 (i.e. no homology-inferred function between ATM and
exportin-5). Serine-protein kinase ATM is known for DNA-damage induced protein
phosphorylation26 and DNA binding27. There is no direct experimental evidence for its
binding with RNA. However, a recent paper by Zhang et al28 found that the ATM kinase is
involved in enhancing binding between KH-type splicing regulatory protein (KSRP) and
pre-microRNA. The ATM kinase was also found to regulate the interaction between mRNA
and HuR29 and nuclear export of pre-microRNA30. Thus, the match between the predicted
ATM structure with the binding region of pre-miRNA-binding exportin-5 is likely more
than a simple coincidence.

One caveat of the SPOT-seq method is its reliance on known protein-RNA complex
structures as templates for predicting complex structures. That is, if no matching template is
found, the query protein will be predicted as non-RNA-binding proteins. An ab initio
structure prediction technique to make structure prediction was not employed because the
accuracy of predicted structures by template-free techniques is not yet reliable 31. The
limited number of available templates of protein-RNA complex structures contributes to the
sensitivity of our prediction to be approximately 40%. That is, there are a significant number
of false negatives. In addition to limited number of templates, inaccurately predicted binding
regions due to rigid-body assumption in structural modeling could lead to steric clashes that
prevent prediction of high binding affinity and thus lead to a false-negative prediction.

In future, as more protein-RNA complex structures are solved, SPOT-Seq should improve
the recovery of known RBPs and uncovering novel ones. Furthermore, it should be possible
to increase the sensitivity of SPOT-seq by combing it with other sequence- and structure-
based approaches 8-15. These analyses are in progress, but the ability to double the number
of annotated RBPs with SPOT-Seq should generate hypotheses that will impact protein
structure/function with relevance to human disease pathways.
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Figure 1.
A bar diagram for annotated RBPs, proteins with functions other than RNA-binding, and
proteins with unknown function. All three categories contain predicted RBPs in significant
fractions (in red) as shown.
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Figure 2.
The connection between proteins with four GO terms (GO:0030528, GO:0008270, GO:
0001883 and GO:0000287, in yellow) that are shared by annotated but not predicted (Grey);
predicted and annotated (Blue), and predicted and novel (Red) RBPs. Each node represents a
protein. One protein can connect to one or more GO terms. This diagram is to illustrate that
predicted and annotated RBPs associated with same non-RNA-binding functions
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Table I

The number of annotated RBPs according to keywords, compared to the number of those proteins that are
predicted as RNA-binding by threading protein sequences onto known protein-RNA complex structures and
calculating sequence-structure matching and protein-RNA binding affinity scores(SPOT-seq).

Keywords Number of Proteins Sensitivity/ Coverage(%)

Annotated Predicted

RNA binding 722 402 56%

ribosomal 68 37 54%

ribonucleoprotein 240 52 22%

ribonuclease 67 12 18%

RNA polymerase 120 16 13%

Total 1,217 519 43%

GO IDs in RNA polymerase with RNA-binding function. GO:0000428: DNA-directed RNA polymerase complex; GO:0003899: DNA-directed
RNA polymerase activity; GO:0003968:RNA-directed RNA polymerase activity; GO:0005665:DNA-directed RNA polymerase II; GO:0005666:
DNA-directed RNA polymerase III; GO:0005736:DNA-directed RNA polymerase I complex; GO:0006368:RNA elongation from RNA
polymerase II promoter; GO:0006369: termination of RNA polymerase II transcription; GO: 0016591:DNA-directed RNA polymerase II;
GO0030880 RNA polymerase complex;GO:0031379:RNA-directed RNA polymerase complex;GO:0031380:nuclear RNA directed RNA
polymerase complex;GO:0034062:RNA polymerase activity;GO:0042789:mRNA transcription from RNA polymerase II promoter ;GO:
0042795:snRNA transcription from RNA polymerase II promoter;GO:0042796:snRNA transcription from RNA polymerase III promoter; GO:
0042797:tRNA transcription from RNA polymerase III promoter.
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Table II

Top 10 Templates employed for all predicted human RPPs.

PDB ID Gene Name Protein Name # Proteins(#Annotated) # Nonredudant

3o58C RPL3 60S ribosomal protein L3 1181(61) 835

1hvuA gag-pol Gag-Pol polyprotein 223(12) 177

3o58E RPL5 60S ribosomal protein L5 180(10) 150

3ciyB Tlr3 Tol l-like receptor 3 149(2) 54

3o58F RPL6A 60S ribosomal protein L6A 123(6) 114

3ivkB Fab light chain 112(0) 17

3a6pA XPO5 Exportin-5 98(5) 91

3o58b RPL32 60S ribosomal protein L32 90(5) 82

3o58T RPL21A 60S ribosomal protein L21A 95(8) 60

1cvjA PABPC1 Polyadenylate-binding protein 1 58(50) 41

The last letter in PDB ID is the chain ID. # Nonredudant is the number of proteins that are 30% sequence identity or lower among each other.
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