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Chin-Chang Ho 

HUMAN EMOTIONS TOWARD STIMULI IN THE UNCANNY VALLEY: 

LADDERING AND INDEX CONSTRUCTION 

 
Human-looking computer interfaces, including humanoid robots and animated 

humans, may elicit in their users eerie feelings. This effect, often called the uncanny 

valley, emphasizes our heightened ability to distinguish between the human and merely 

humanlike using both perceptual and cognitive approaches. Although reactions to 

uncanny characters are captured more accurately with emotional descriptors (e.g., eerie 

and creepy) than with cognitive descriptors (e.g., strange), and although previous studies 

suggest the psychological processes underlying the uncanny valley are more perceptual 

and emotional than cognitive, the deep roots of the concept of humanness imply the 

application of category boundaries and cognitive dissonance in distinguishing among 

robots, androids, and humans. First, laddering interviews (N = 30) revealed firm 

boundaries among participants’ concepts of animated, robotic, and human. Participants 

associated human traits like soul, imperfect, or intended exclusively with humans, and 

they simultaneously devalued the autonomous accomplishments of robots (e.g., simple 

task, limited ability, or controlled). Jerky movement and humanlike appearance were 

associated with robots, even though the presented robotic stimuli were humanlike. The 

facial expressions perceived in robots as improper were perceived in animated characters 

as mismatched. Second, association model testing indicated that the independent 

evaluation based on the developed indices is a viable quantitative technique for the 

laddering interview. Third, from the interviews several candidate items for the eeriness 

index were validated in a large representative survey (N = 1,311). The improved eeriness 
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index is nearly orthogonal to perceived humanness (r = .04). The improved indices 

facilitate plotting relations among rated characters of varying human likeness, enhancing 

perspectives on humanlike robot design and animation creation. 
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1. INTRODUCTION 

1.1 Problem Statement 

Domestic robots (e.g., Roomba, Scooba, and Braava) are decreasing in price and 

becoming increasingly common in households. In 2012, about 3 million service robots 

for personal and domestic purposes were sold, 20% more than in 2011. The value of sales 

was predicted to increase to US$1.2 billion in 2013 (International Federation of Robotics, 

2013). Meanwhile, socially assistive robots have demonstrated their ability to function in 

everyday life, from encouragement in performing rehabilitation exercises to social 

mediation and intimate companionship (Dautenhahn & Werry, 2002; Feil-Seifer, Skinner, 

& Matarić, 2007; Iwamura et al., 2011; Kozima, Nakagawa, & Yasuda, 2005; Kanda, 

Nishio, Ishiguro, & Hagita, 2009; Turkle, 2007; Wada et al., 2005). Android robots are 

simulating the form, motion quality, and contingent interaction of humans with ever more 

realism (Beck-Asano & Ishiguro, 2011; MacDorman et al., 2005; MacDorman & 

Ishiguro, 2006; MacDorman, 2006; Matsui, Minato, MacDorman, & Ishiguro, 2005; 

Sung, Guo, Grinter, & Christensen, 2007). Given the human desire for companionship 

and for nurturing others (Turkle, 2007), which is linked to our biological imperative, it is 

not hard to foresee the widespread use of humanlike robots once certain issues are 

resolved, such as cost of ownership and interaction difficulty. 

Although robots have great potential to enhance daily life, people’s attitudes 

toward robots strongly influence their acceptance of them. For example, negative 

attitudes and anxiety toward robots affects human emotional responses toward them and 

preferred distances to them (Nomura, Shintani, Fuji, & Hokabe, 2007). Human beings are 

highly sensitive to interpersonal responses and humanlike appearance because of 
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evolutionary selection and childhood learning (Rhodes & Zebrowitz, 2001). Only 

humanlike appearance and behavior can elicit fully humanlike communication 

(MacDorman & Ishiguro, 2006). However, Mori (1970/2012) cautioned against making 

robots that look too human because they could appear uncanny.1 Powers, Kiesler, and 

Goetz (2003) showed people expected the performance of a robot to conform to 

expectations created by its appearance. Woods, Dautenhahn, and Schulz (2005) found 

that children and adults agree on the classifications of robot appearance, especially in 

machinelike and humanlike robots. However, children were more limited than adults in 

their ability to infer robot personalities and emotional states. Children might also have 

difficulties in initiating a relationship with robots. When the population includes not only 

children but older adults and people requiring medical care or assistance, designing social 

robots that interact well with these different populations will be a challenge.  

An important issue in creating a design strategy for socially assistive robots and 

other anthropomorphic characters is how to measure human emotions while the 

participants are interacting with them. Without a validated evaluation, robot designers 

and computer animators choose oversimplified methods to evaluate their designs. The 

lack of a validated evaluation reduces the effectiveness of the design principles they 

develop for humanlike robots. 

 

1.2 Past Work that Has Addressed the Problem 

Little work has been done to create and validate measures of human emotion 

during interactions with humanlike robots or computer-generated (CG) characters. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Film critics and computer graphics animators have also expressed such concerns in reference to 
the simulated human characters in films, such as Polar Express (2004) and Final Fantasy: The 
Spirits Within (2001; Butler & Joschko, 2007; Freedman, 2012; Plantec, 2007). 
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Bartneck, Kulić, Croft, and Zoghbi (2009) proposed the Godspeed indices based on such 

concepts as anthropomorphism, animacy, likability, perceived intelligence, and perceived 

safety, but these concepts often overlap. The negative attitude about robots scale (NARS; 

Nomura, Kanda, Suzuki, & Kato, 2004) evaluates the human rather than the human-robot 

interaction (Ho & MacDorman, 2010).  

 

1.3 Questions Unanswered by Past Work 

Robot designers and computer animators worry about their robot and computer 

graphics (CG) characters falling into the uncanny valley as they increase their human 

photorealism. Although designers and animators may debate whether their characters 

look “almost too real,” the phenomenon of the uncanny valley is not yet well researched, 

especially when human emotions are involved. Most prior studies focus only on users’ 

negative emotions or attitudes toward robots. Only a few comprehensive studies 

examined human emotions toward other humanlike entities (Ho & MacDorman, 2010). 

In addition, no validated indices exist for evaluating humanlike objects, which may 

otherwise guide the design of robots or CG characters. Instead, robot designers and 

computer animators routinely choose one of two ways to avoid falling into the uncanny 

valley: pushing realism to the practical limit or using a more abstract appearance. 

However, neither approach can solve the problem effectively, because humans may not 

take seriously a robot with a simplistic appearance, or they may be repulsed by a robot 

that looks human but still possesses subtle nonhuman features. One strategy to overcome 

these obstacles during the design process would be to systematically evaluate humanlike 
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characters and their interactions. Such a goal could be accomplished with a validated 

measure. 

The mechanism of categorization, often found in cognitive psychology may 

provide a foundation for the development of such a measure. Ramey (2005, 2006) 

suggested that the uncanny valley reaction may be caused by objects that lie between 

categories rather than within them. Similar issues in cognitive psychology have been 

examined through categorization (e.g., the McGurk effect 2  in speech; McGurk & 

MacDonald, 1976). Could the discrimination among various humanlike entities be similar 

to the effect in color perception (e.g., the Sapir-Whorf hypothesis3) and between 

phoneme categories? The differences among various robots or among various androids 

might look much smaller than equal-sized differences across the robot–android boundary. 

The differences among humanlike entities show the category boundary is not merely 

quantitative but qualitative (Harnad, 1987). Only a few studies have examined the 

relation between the categories of humanlike objects and the uncanny valley effect 

(Ramey, 2005, 2006). The way we evaluate humanlike objects might be rooted in the 

mechanism of categorization. Therefore, exploring the categorization of robots can help 

us understand how people overestimate or underestimate robots.  

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  This perceptual phenomenon, discovered by Harry McGurk and John MacDonald, demonstrates 
an interaction between hearing and vision in speech perception. It occurs when the auditory 
component of one sound is paired with the visual component of another sound, leading to the 
perception of a third sound. Two common illusions in response to incongruent audiovisual stimuli 
have been observed: fusions (“ba-ba” auditory and “ga-ga” visual produce “da-da”) and 
combinations (“ga-ga” auditory and “ba-ba” visual produce “bga-bga”). It shows that the brain's 
attempt to provide the consciousness with its best guess about the incoming information.  
3	  It known as the linguistic relativity hypothesis, proposes a systematic relationship between the 
grammatical categories of the language a person speaks and how that person both understands the 
world and behaves in it.	  
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1.4 Purpose of the Study 

This study is intended to construct indices that measure the perceptions of 

anthropomorphic characters and to investigate the cognitive boundaries and dissonances 

among human-looking characters. A basic problem in the study of the uncanny valley is 

that the feelings of comfort or eeriness with a humanoid robot or CG character are 

strongly associated with human concepts (Becker-Asano, Ogawa, Nishio, & Ishiguro, 

2010). Therefore, perceptions of human likeness are inevitably correlated with those of 

warmth and attractiveness. The indices of humanness and eeriness developed by Ho and 

MacDorman (2010) were designed to be decorrelated with warmth, and that result was 

confirmed. However, a humanlike appearance can cause users to over-interpret or 

otherwise misunderstand an agent’s ‘intentions’ and actions. To solve this problem, this 

study took two steps. First, the laddering technique, a structured interview for uncovering 

core values, is used to determine the category boundary of an anthropomorphic character 

between human and robot. The terms gathered from the laddering interview as the 

candidates, can improve the indices of attractiveness, humanness, and eeriness. Second, 

the categorized responses will clarify category boundaries among humans, robots, and 

androids. 

 
1.5 Significance of the Study 

Robot designers routinely choose one of two ways to avoid falling into the 

uncanny valley. The first approach, pushing realism to the practical limit, can maximize 

our perception of human likeness in the robot. The second approach, using a more 

abstract appearance, helps eliminate aversion (DiSalvo, Gemperle, Forlizzi, & Kiesler, 

2002). Before determining the guiding principles for a new robot, the designer should be 
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able to consult research to predict which emotions people will likely project onto the 

proposed robot. The trend toward creating robot companions could be jeopardized by a 

failure to take into account the role of appearance on user acceptance. Therefore, it is 

important to provide a framework to establish a comprehensive set of indices for 

humanlike entities. First, this work will improve previously constructed indices (Ho & 

MacDorman, 2010) to evaluate robots, androids, and anthropomorphic computer agents, 

to evaluate the goodness-of-fit of the indices, and to determine whether the indices are 

valid for the target objects. Second, the participant’s categorizations of robot, animated 

character, and human can benefit our understanding of human perception. This work has 

explored how people understand the extent to which categories define humanlike objects. 

Third, the hierarchical value maps from the laddering interview should reveal the 

perceptual category boundaries, and the relation between perceptual attribution and 

human emotion. These improvements will facilitate the design of humanlike characters, 

our understanding of interactions with these characters, and ultimately, our acceptance of 

these characters. 
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2 LITERATURE REVIEW 

2.1 The Uncanny Valley 

One of the critical issues in human–robot interaction (HRI) is the uncanny valley 

(bukimi no tani in Japanese; Dautenhahn, 2007; Fong, Nourbakhsh, & Dautenhahn, 2003; 

Goodrich & Schultz, 2007). In 1970, Masahiro Mori, a Japanese robotics pioneer, 

proposed a hypothetical graph that predicted that the more human a robot looks, the more 

familiar it is to a human, until a tipping point is reached at which subtle nonhuman 

imperfections make the robot seem eerie. This ‘dip’ appears just before total human 

likeness (Mori, 1970/2012; MacDorman & Ishiguro, 2006). Mori cites dead bodies as an 

example of something that inhabits the uncanny valley, and he proposes that the eerie 

feeling associated with human-looking robots concerns the human instinct for self-

preservation. For robot designers and computer animators, the uncanny valley poses an 

inevitable challenge to be overcome.  

The uncanny valley has been examined from an evolutionary perspective 

(MacDorman & Ishiguro, 2006; MacDorman, Green, Ho, & Koch, 2009). Drawing on 

Rozin’s theory, Keysers proposed the phenomenon could be associated with disgust, an 

evolved cognitive mechanism for pathogen avoidance (Curtis, Aunger, & Rabie, 2004; 

MacDorman & Ishiguro, 2006). We are more likely to be infected by the harmful bacteria, 

viruses, and other parasites of species that are closely related to us genetically; hence, we 

are most sensitive to signs of disease in our own species and least sensitive to signs of 

disease in animals that are only distantly related (Curtis, Aunger, & Rabie, 2004). Others 

have also proposed a relation between the uncanny valley and evolutionary aesthetics 

(MacDorman & Ishiguro, 2006). Our ancestors were under selective pressure to mix their 
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genes with the genes of those who could maximize the number and fitness of their 

progeny (MacDorman, Green, Ho, & Koch, 2009; Soler et al., 2003). The selective 

advantage of perceptual sensitivity to indicators of low fertility or a weak immune system 

could be responsible for the evolution of mechanisms underlying feelings of eeriness 

toward human forms that are sufficiently far from biological ideals (Rhodes & Zebrowitz, 

2001). 

 

2.2 Plotting Emotional Responses to Humanlike Characters  

Assuming the uncanny valley proposed by Mori (1970/2012) exists (Figure 1), 

what dependent variables would be appropriate to represent Mori’s graph? Mori referred 

to the dependent axis as shinwakan, a neologism even in Japanese, which has been 

variously translated as familiarity, rapport, and comfort level. Translating shinwakan as 

familiarity forges the link to Jentsch (1906) and Freud’s (1919) seminal essays on the 

uncanny because in German, the language in which these essays were written, the 

uncanny (das Unheimlich) is constructed grammatically as an antonym of familiar (das 

Heimlich). However, translating shinwakan as familiarity is problematic because 

familiarity cannot be equated with rapport or comfort level, and negative familiarity is 

undefined (Bartneck, Kanda, Ishiguro, & Hagita, 2009), given that zero familiarity is 

already total novelty (MacDorman & Ishiguro, 2006). Mori (1970) refers to negative 

shinwakan as bukimi, which translates as eeriness or uncanniness. In addition, prior to Ho 

and MacDorman (2010), no empirical scales have been developed to measure shinwakan 

in humanoid robots or other humanlike characters such as CG characters. Detailed 

questionnaires corresponding to the proposed benchmarks have not been developed and 
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tested empirically to show their reliability. However, the Godspeed questionnaire, 

compiled by Bartneck, Kulić, Croft, and Zoghbi (2009), includes five main concepts in 

human–robot interaction: anthropomorphism, animacy, likeability, perceived intelligence, 

and perceived safety. Although these researchers developed detailed semantic differential 

items for each concept, these indices have not been empirically tested for overall 

reliability and validity. In the study of Ho and MacDorman (2010), these indices are 

evaluated and then used to benchmark progress in developing a new set of indices. 

 

 

Figure 1. The uncanny valley (Mori, 1970/2012) 

 

2.3 Studies on Emotion Similarity 

 Emotion researchers have tried to establish an emotion similarity space to see how 

we think about emotions based on empirical studies. They used statistical techniques to 

plot large sets of similarity judgments. The circular structure of the circumplex figure 

places emotions that are rated more similar closer together and emotions that are rated 

less similar farther apart (Larsen & Diener, 1992; Russell, 1980). In Figure 2, the first 
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dimension is arousal: Emotions involving high arousal can be grouped on one side of the 

circumplex, while those involving low arousal can be grouped on the other side. The 

second dimension is valence, which is orthogonal to arousal: Positive emotions are 

placed on one side, and negative emotions are place on the other side. The contribution of 

categorization showed a core relational theme associated with these emotions. For 

example, aroused represented excited, astonished represented surprised, and calm 

represented peaceful. They were unified by the fact that they are all positive emotions. 

The circumplex derived by Russell assumes these four conditions: (1) all items were 

extracted from just two dimensions; (2) items in each dimension have equal 

communalities; (3) all items are equally distributed in the space of the two dimensions; 

(4) any pair of two dimensions going through the space has equal distances (Acton & 

Revelle, 2000; Russell & Carroll, 1999).  

Although Russell and his colleagues argue that inappropriate measurement masks 

the true bipolar structure of affect, providing additional support based on follow-up 

studies on different populations and cultures (Russell & Ridgeway, 1983; Russell, 

Lewicka, & Niit, 1989), the idea of bipolarity based on psychometric analysis is still 

being challenged (e.g., in neurology, psychopathology, and semantics; Cacioppo & 

Brentson, 1994; Rafaeli & Revelle, 2006; Watson, Wiese, Vaidya & Tellegen, 1999). 

Plutchik (1984) argued that all emotions could vary in arousal or intensity. For example, 

happiness can span from ecstasy to contentment, and anger can span from minor irritation 

to violent rage. Watson and Tellegen (1985) argued that positive and negative valences 

are independent instead of two ends of a common continuum. They reanalyzed some 
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early studies of self-reported moods by factor analysis to show positive and negative 

affects emerge as the first two dimensions with Varimax rotation method. 

 
Figure 1: The circumplex of emotions, remade from Russell (1980) 

 

Altarriba and Bauer (2004) used a comparison between emotion, abstract, and 

concrete words to examine the distinctiveness of emotion concepts. One of their 

interesting results showed that emotion words and abstract words mainly associated with 

words belong to the same type. In the word association experiment, participants could 

more easily recall emotion-related words in later recall as compared with other types of 

words. This result revealed that participants had greater agreements in emotional words 

than abstract and concrete words. It provides support for the use of emotion terms as 

valid instruments in this study.  
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Lane, Chua, and Dolan (1999) used positron emission tomography (PET) to measure 

regional cerebral blood flow while participants viewed neutral, pleasant, and unpleasant 

pictures, particularly in negative ones, which caused activations in the bilateral occipito-

temporal cortex, left para-hippocampus gyrus, left amygdale, and cerebellum. Besides, 

Paradiso et al. (1999) found that pleasant pictures would cause more activity in 

neocortical areas than unpleasant pictures. Other studies showed that both negative and 

positive emotions caused neocortical activations. Northoff et al. (2000) used combined 

functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) 

techniques to determine that negative pictures would cause medial orbitofrontal 

activations and positive pictures would cause lateral oribitofrontal activation. However, 

these results were diverse. Some studies of negative emotions have found distinctive 

patterns of activation—but within the same anatomical region. For example, Philips et al. 

(1997) found with fMRI that perceiving a facial expression of disgust caused anterior 

insula activation. Liotti et al. (2000) found with PET memories of sad events caused 

activations in the right posterior insula, and memories of anxious events caused 

activations in the right ventral insula. 

Prinz (2004) argued all emotions are compound. Some emotions may be intrinsically 

negative such as sadness or fear; some may be intrinsically positive such as joy or 

ecstasy, and some may have variable valance markers, such as surprise or curiosity. In 

some situations, both a negative emotion and a positive emotion were experienced 

concurrently. Some emotions were influenced by the recollection of past events, such as a 

mixture of joy and sadness while reminiscing on the past. Some mixed emotions are more 

dramatic. For instance, people may joyfully cry when reunited with long-lost relatives or 
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when winning the lottery. In addition, Provine (2000) found that jokes in our daily life 

cause only 20 percent of laughter; most of the times we laugh after hearing someone say 

something innocuous. Laugher is much like a social signal, which is constrained by social 

norms. Therefore, laughter and other expressions of happiness may not represent the 

original expressed emotion. This empirical evidence shows that emotions are highly 

mixed and associated with physical interactions and social circumstances.4  

 

2.4 Positive-Negative Affect 

Social psychologists have consistently found warmth and competence to be the 

two universal dimensions of human social cognition, when considering initial social 

perception of positive and negative affect (Fiske et al., 2007). Using a series of semantic 

differentials denoting traits, Asch (1946) found “striking and consistent” differences 

between affects when using “warm” versus “cold” as descriptive terms when social 

psychologists study how personality impressions are formed—as well as “competent” vs 

“incompetent.” The two dimensions discovered by Asch using semantic differentials 

became a starting point for many other researchers, eventually taking the forms we know 

today as warmth (vs. cold) and competence (vs. incompetence). Rosenberg and colleagues 

(1968) built on the work of Asch and also found two primary dimensions when forming 

impressions that they called “social” and “intellectual.” The “social” dimension shares 

many traits with warmth and, in fact, socially desirable words clustered around “warm” 

and socially undesirable words clustered around “cold” when those words were plotted 

on an axis. Though both of these dimensions emerge at the time of first exposure, 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 The section was credited to Ho, C.-C. (2008). Human emotion and the uncanny valley: A GLM, 
MDS, and ISOMAP analysis of robot video ratings (Master’s thesis, Indiana University). 
Retrieved from https://scholarworks.iupui.edu/ 
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previous studies have shown that judgments of warmth are primary, emerging first and 

carrying more weight in affective and behavioral reactions (Fiske et al., 2007). Wojciszke 

and colleagues (1998) found warmth and competency together account for 82% of the 

variance in perceptions of everyday social behaviors. 

Though warmth would appear to be a strong candidate for a measurement of 

immediate affect when first exposed, the original positive-and-negative measurement was 

not designed as semantic differentials. Recently, the warmth measure has been converted 

to semantic differentials and shows high internal reliability (Ho & MacDorman, 2010; 

Mitchell, Ho, Patel, & MacDorman, 2011). Using the bipolar semantic differential format 

to construct the alternative indices can reduce acquiescence bias without lowering 

psychometric quality (Friborg, Martinussen, & Rosenvinge, 2006; Lorr, & Wunderlich, 

1988). Converting a Likert scale for warmth to a semantic differential scale allows 

comparison of the warmth measure to other well-known indices used to measure emotion 

such as the pleasure, arousal, and dominance (PAD) indices of Mehrabian and Russell 

(1974). Semantic differentials associated with warmth also tend to be strong measures of 

closely related kinds of positive affect such as affinity, likability, communality, sociability, 

and comfortability (Fiske et al., 2007; Abele & Wojciszke, 2007; Sproul et al., 1996; 

Wojciszke et al., 2009). As warmth encompasses such a broad range of measures, it is not 

surprising that indices for measuring the independent and dependent axes of Mori’s graph 

all tend to be highly correlated with warmth and with each other. If indices are highly 

correlated with warmth, the positive and negative affect included in these indices might 

dilute their discriminative validity. Such correlation may also affect the orthogonal nature 

of the indices, making it difficult to plot the dependent variable(s) against the 
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independent variable(s), as Mori suggested (Ho & MacDorman, 2010). Therefore, in the 

development of psychological measurement, an inappropriate factor analysis might 

provide an improper model. Two such independent factors can be presented as two halves 

of one bipolar dimension, and vice versa. 

 

2.5 Development of Humanness, Eeriness, and Attractiveness Indices 

The Godspeed questionnaire, proposed by Bartneck, Kulić, Croft, and Zoghbi 

(2009), includes five main concepts in human–robot interaction: anthropomorphism, 

animacy, likeability, perceived intelligence, and perceived safety. They are not 

appropriate to represent their intended concepts because they are strongly correlated with 

each other and with positive and negative affect (Ho & MacDorman, 2010). The reason 

to reduce the influence of positive and negative affect in these indices is to be able to use 

each index independently. In other words, these indices should have the potential to be 

the standard benchmark for evaluating anthropomorphic entities. However, opposing 

semantic differential anchors should be designed to have roughly the same valence. This 

fact can be a challenge because human-related anchors tend to have a more positive 

valence than nonhuman or machine-related anchors. Based on previous studies of the 

uncanny valley, humanness can be an independent construct representing self-awareness, 

human awareness, and autonomy of anthropomorphic characters (Steinfeld et al., 2006); 

eeriness and attractiveness can measure the eeriness and comfort constructs proposed by 

Mori (1970/2012).  

Ho and MacDorman (2010) used confirmatory factor analysis to test the 

Godspeed indices in the evaluation of various anthropomorphic characters. The results of 
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the validity analysis identified several other problems with the Godspeed indices: (1) the 

reliability of Perceived Safety was below the standard .70 cutoff; (2) the inconsistency of 

these indices demand several items be removed from the indices; (3) Animacy, Likeability, 

and Perceived Intelligence were deemed redundant owing to the high correlation among 

these indices. The high correlation indicates the Godspeed indices are measuring the 

same concept instead of their own presented concepts (r varied from .67 to .89 in the 

intercorrelations among Anthropomorphism, Animacy, Likeability, and Perceived 

Intelligence).  

The multidimensionality of indices underlying the semantic differential technique 

is capable of demonstrating the perception of anthropomorphic characters (Gärling, 1976; 

Rosenberg et al., 1968). Indeed, in Ho and MacDorman (2010), attractiveness, eeriness, 

and humanness have high internal reliability in measuring anthropomorphic characters. 

These indices demonstrate a successful application of a bipolar semantic space to assess 

the perceived eeriness and comfort of anthropomorphic characters (Bentler, 1969; Lorr & 

Wunderlich, 1988; Russell, 1979). Several strengths of the empirical indices are shown: 

First, the humanness index that covers self-awareness, human awareness, and autonomy 

can measure human likeness based on appearance. It can also measure human likeness in 

the psychological sense (MacDorman & Cowley, 2006; MacDorman & Kahn, 2007). 

Second, both perceptual and emotional eeriness are relevant. Though correlated, they 

represent different concepts (Ho & MacDorman, 2008). In general, these indices are valid 

instruments for measuring their putative concepts in anthropomorphic characters. 

Even though several advantages are present in the previously developed uncanny 

valley indices (Ho & MacDorman, 2010), the indices failed to distinguish between 
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humanlike robots and animated human characters. The scatterplots of eeriness, 

humanness, and warmth showed two clusters representing two kinds of human-looking 

entities. This is strong evidence against these two categories of anthropomorphic 

characters settling neatly into a continuum of human likeness. At certain boundaries  (e.g., 

robot vs. animation, robot vs. human, or animation vs. human), incremental changes to 

human likeness in appearance (presentation) may produce disproportionately large 

changes in perceived category belonging. The ambiguous characters may lie on the 

cognitive boundaries. These cognitive boundaries may identify the feeling of the uncanny 

valley. 

 

2.6 Cognitive Dissonance 

Cognitive dissonance is the uncomfortable feeling that comes from holding two 

conflicting ideas. The ideas could be elicited by an anthropomorphic stimulus that lies on 

a category boundary—is it human or nonhuman, living or inanimate? Humans facing an 

unexpected stimulus change either their beliefs or behaviors to eliminate the 

inconsistency (Festinger, 1957). The negative feelings of cognitive dissonance are 

produced by competing alternatives regarding the categorization of the unexpected 

stimulus (Gerard & Mathewson, 1966; Joule & Azdia, 2003). This negative arousal might 

be evidence for cognitive dissonance as a cause of the uncanny valley effect 

(MacDorman et al., 2008; MacDorman et al., 2009). Human-looking interfaces could 

undermine current conceptions of personal and human identity. As human-looking 

computer interfaces become more humanlike, people may be challenged to see 

themselves more like machines. However, people may have difficulty in categorizing the 
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concept of the human-looking entity. Cognitive dissonance will result from the mismatch 

between a perceived human-looking computer interface and the already learned 

categories for people or other kinds of machines. Ramey (2005, 2006) stated that the 

uncanny valley is caused when two incongruent categories are joined by a quantitative 

metric that enables changes from one category to the other (e.g., human and robot). For 

instance, an observer may perceive a humanlike entity in the uncanny valley as familiar 

but strange. Unable to perceive whether the entity belongs to human or robot, the 

observer may eventually learn to identify the entity by a third category. However, this 

assumption has not yet been fully tested on adults and has only been measured using 

moderately humanlike robots (Kahn, et al., 2011, 2012; Kahn, Gary, & Shen, 2013). 

Other studies (Plantec, 2007, 2008; Tinwell & Grimshaw, 2009) attempted to use the 

paradox to explain the uncanny valley concerning CG characters in films and games. A 

human face sets up expectations about the associated voice and vice-versa; and the same 

applies for a robot face. In addition, a web experiment that created a mismatch in the 

audio and visual stimuli might also cause cognitive dissonance, which might explain why 

a mismatch has been found to increase eeriness and decrease warmth (Mitchell, Szerszen, 

Lu, Schermerhorn, Scheutz, & MacDorman, 2011). 

However, with respect to the uncanny valley, cognitive dissonance may not result 

in a rationalization that pulls conflicting beliefs into alignment, because the origin of the 

category conflict may be largely perceptual and preconscious. Thus, cognitive dissonance 

might instead lead to an outright rejection of the object. In addition, an objective 

perception of the entity might decrease attributions of secondary emotions (e.g., 

admiration, resentment, love, or melancholy) to the outgroup member (Cortes et al., 
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2005). The incongruity between human and nonhuman entities might trigger the objective 

perception of mind because nonhuman entities are perceived as being less mentally 

capable (Waytz, Gray, Epley, & Wegner, 2010). 

 

2.7 Categorization Theories 

Categorization is a basic cognitive ability that involves the comprehension of a 

different entity and a particular knowledge that includes both actual and potential 

instantiations (Croft & Cruse, 2004). The traditional view of conceptual categories is as 

fixed cognitive entities with stable associations with one or more linguistic expressions. 

However, recently emerging is the dynamic process of concept. It suggests that all 

aspects of conceptual categories are subject to revision. The prototype model of category 

structure (Rosch, 1973, 1978; Rosch & Mervis, 1975) attempts to measure two 

indicators: the goodness of exemplar (GOE) and the degree of membership (DOM). The 

GOE shows the frequency and order of mention, the order of learning, the structure of 

family resemblance, the speed of verification, and the magnitude of priming. The DOM 

includes three characteristics of concept: typicality or representativeness, closeness to an 

ideal, and stereotype. However, some problems of the simple prototype model might 

weaken its validity in practice. For example, it is insensitive to context. The relation 

between the number of features and GOE not only presents the availability of features but 

also reflects the presence of features dependent on the presence and the values of other 

features. In addition, once the participant develops a new category that covers the 

stimulus, the stimulus becomes self-evident, and the observer does not need to think 

about how to explain the stimulus by relating it to preexisting knowledge. At this point, 
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the participant’s categorization process ceases. For example, when observers illustrate the 

categories of good and bad, they are limited in their descriptions of abstract categories. In 

addition, the contrasting category is another drawback for prototype theory. For example, 

observers may use good merely to show the opposite of bad without further explanation 

of the mutually exclusive relation between the terms (Croft & Cruse, 2004). The GOE 

and DOM indicate the difficulties inherent in measuring linguistic categories without a 

specific context. 

 

2.8 Categorical Boundary 

In cognitive science, category is an important concept to help an individual 

determine how to see and act. Some categories are innate—the result of evolutionary 

adaptation. For instance, infants can recognize different human faces (Ludemann & 

Nelson, 1988; Morton & Johnson,1991). In addition, some categories are determined by 

how culture and language subdivide concepts. For instance, certain color terms of various 

languages divide up color spaces differently and even within the same language, the 

usage may vary by social class (e.g., purple was an ecclesiastical color in the Medieval 

Age that was not generally worn by peasants). These inconsistencies indicate that 

categories are not only quantitative but also qualitative. Categorical perception occurs 

when the continuum of the perceptional dimension is judged as a series of discrete 

qualitative regions separated by the boundaries between labeled categories (Harnad, 

1987). The distinguishability between animate and inanimate faces presents evidence for 

the existence of categorical boundaries along an anthropomorphism dimension (Looser & 

Wheatley, 2010). The divergent face pairs would increase the sensitivity of judgment that 
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passes over a tipping point. Human beings rely on facial cues for the categorical 

perception of animacy, especially in the area of the eyes. Furthermore, Kikutani, 

Roberson, and Hanley (2010) examined the learning effect of categorical perception. 

Their experiments indicate that human faces need to be categorized before the categorical 

perception can be established for the continuum between familiar and unfamiliar faces. 

Their experiments refute one assumption of the uncanny valley pertaining to the novelty 

of humanlike objects. Therefore, does the uncanny valley effect appear because of the 

ambiguity of two categories as seen in Figure 3 (e.g., a perceived android being perceived 

and understood with respect to human and robot)? In other words, does the uncanny 

valley effect merely happen to the individuals who cannot call up a new category label 

that can reduce the ambiguity (Ramey, 2006; Uekermann, Herrmann, Wentzel, & 

Landwehr, 2008)? 

 

 

Figure 3. Categorical boundary in the uncanny valley 
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2.9 Card Sorting and Laddering Interview Techniques 

Card sorting is a common method of usability testing to involve users in gathering 

information for a website (Capra, 2005; Dickstein & Mills, 2000; Rugg & McGeorge, 

1997; Zimmerman & Akerelrea, 2002). Participants are asked to organize the content 

from the evaluated website in a way that makes sense to them. Participants review the 

items from the website and then group them into categories. Participants may even help 

label these groups. The strength of card sorting is the ability to build the structure for the 

website, decide the significant features put on the home page, and label the home page 

categories. The technique can ensure the organization of information on the website in a 

way that is logical to other users. Therefore, when applied to the evaluation of humanlike 

entities, this technique can reveal the underlying concepts of participant grouping of 

certain humanlike entities.  

The laddering technique was originally used as a qualitative research technique to 

uncover the underlying reasons for people’s behaviors. It refers to in-depth interviewing 

and analysis methods used to elicit the salient characteristics that customers seek when 

they make a choice to purchase a product (Reynolds & Gutman, 1988). More recently, 

the laddering method has been adapted for examining computer users’ experience. It 

helps designers and researchers understand how well product attributes can facilitate 

personal values for end-users (Subramony, 2002; Zaman & Abeele, 2010). In the past 

decade, the focus in human–computer interaction (HCI) has extended from productivity 

to pleasure (Bødker, 2006). Therefore, the emphasis in usability studies has shifted 

toward users’ subjective needs, referred to as user experience (UX). To analyze the 

usability and sociability of a product in different contexts, the laddering interview can be 
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combined with other techniques, such as the association technique, to understand users’ 

needs comprehensively (Jans & Calvi, 2006). In addition, researchers can use a Web-

based, visual technique for laddering to gather participants’ responses instead of a locally 

administered technique. It quickly helps researchers understand the relation between 

interfaces and their users (Deutsch, Begolli, Lugmayr, & Tscheligi, 2011; Rugg, at el., 

2002; Subramony, 2002). However, no studies have been performed in the area of 

human–robot interaction.  

As foreseen, the laddering technique can reveal the underlying reasons why, for a 

given purpose, users interact with a particular robot over other alternatives. The 

advantages of the laddering method are its ability to show distinctions between subjects, 

to tell the order of priority, and to identify the importance in particular contexts 

(Reynolds and Gutman, 1988). Understanding the relations between a robot’s attributes 

and humans’ emotions can provide human–robot interaction researchers with useful 

information.  

Laddering connects the values of users to their behaviors via a cognitive model of 

means–end chaining (Gutman, 1982). The central concepts of the means–end chain 

model are two linkages: the linkage of values and desired consequences and the linkage 

between consequences and product attributes. The means–end chain model is based on 

two fundamental assumptions about user behavior. First, users perceive and judge 

products as the “means” to achieve a desired “end-state” in a given product-use situation. 

Second, users cope with the overwhelming choices of products by grouping products into 

categories. For example, when the means–end chain model (attribute–consequence–

value) is applied to the concept robot, users might think of categories labeled humanoids 
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and androids. However, they might also produce categories related to their functions and 

types of operation. Users’ categorization may also include such groupings as intelligent 

or automation. The laddering interview technique can be used to examine the “ends,” or 

values, in the means–end chain model that users believe when they interact with the robot. 

Laddering can also identify the categories in which users group the “ends.” In marketing 

studies, laddering interviews consist of two steps: (1) eliciting salient characteristics and 

(2) probing to reveal the means–end structure (Hofstede et al., 1998). First, the 

participants identify attributes that distinguish different choice alternatives in a product 

class. This first phase is used to identify the available competitive set of products or 

services. For example, knowing which emotional responses or attributes that users use to 

infer the presence of desired consequences allows us to more clearly specify attribute 

development. Next, the laddering participants verbalize sequences of attributes, 

consequences, and values, which are referred to as ladders. Continuous probing is 

conducted by repeatedly asking a question such as “Why is that important to you?” 

(Reynolds & Gutman, 1988). This dialogue compels the participants to consider the 

reasons behind their choices or judgments—at least insofar as they are consciously 

accessible. These repetitive and probing questions reveal the means–end structure. For 

example, a robot designer could learn about specific emotional attributes that attract users 

to a robotic product or to the product of a competitor. These attributes can serve as 

indicators for the creation of meaningful association between the choice of a robot and 

the specific value that the user wants to gain. In the end, the responses of the individual 

ladder, or means–end chain, for each participant are aggregated and summarized. 

 



	   25 

2.10 Research Questions 

Several research questions were addressed in this study: What is the relation 

between human categories and the perceptions of various humanlike forms? To what 

extent are these categories rooted in early “perceptual” or later “cognitive” processing? 

How do the categorical boundaries involve the emotional responses measured by the 

proposed indices? 
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3 METHODS 

This study consisted of three phases to improve the attractiveness, humanness, 

and eeriness indices (Ho & MacDorman, 2010). The laddering interview was used to 

explore participants’ concepts behind the categories of human-looking entities in Phase 1. 

The quantitative analysis of the laddering interview provided the item candidates of the 

indices in Phase 2. In Phase 3, a representative survey validated the indices based on the 

suggestions collected from the laddering interview.5 

 

3.1 Participants 

In Phase 1, 30 participants were recruited from a Midwestern university campus 

by email and flyers. Nine (30.0%) were female, 21 (70.0%) were male, and the median 

age was 26. Twelve (40.0%) were informatics majors and 18 (60.0%) were not. (Phase 2 

is part of the analysis of Phase 1’s data.) In Phase 3, the participants of web survey were 

recruited from an email list of randomly selected undergraduate students and recent 

graduates of a nine-campus Midwestern university system. Among the 1311 participants, 

512 (39.1%) were male, 799 (60.9%) were female, 1068 (81.5%) were under 25 years old, 

71 (5.4%) were 26–30, and 172 (13.1%) were over 31. The participants reflected the 

demographics of the university’s undergraduate population. The measurement error range 

was ±2.89% at a 95% confidence level. 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 The IUPUI/Clarian Research Compliance Administration approved this study (EX0903-35B). 
This experiment was supported by an IUPUI Signature Center grant. The laddering interviews 
were conducted from January 2013 to June 2013; the web survey was conducted from March 
2014 to April 2014.   
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3.2 Materials and Procedures 

In Phase 1, each participant viewed 12 video clips presented one at a time in 

random order. There were five video clips of three-dimensional computer animated 

characters, five of robots, and two of real humans (Figure 3). The video clips were 480 

pixels by 360 pixels (a 4:3 aspect ratio). These clips were 15 to 30 seconds in length. 

After these clips were played, the participants were asked to categorize these 12 video 

clips and to group these clips by their categories. In the categorization task, the categories 

identified by the participant should be mutually exclusive. The participants were only 

allowed to assign one character into a unique category at a time. The categories cannot 

overlap. By presenting the pictures of these video clips as visual aids, participants were 

asked, “Which figures would you group together, or separate from others?” The 

participants were allowed to sort the figures into only one category. To increase the 

participants’ recollection, they watched the clips based on their categories again. Then, 

participants completed a laddering interview on the figure featured in each video clip. 

Participants were asked repeatedly, “Why is that important to you?” Participants were 

required to provide at least three laddering responses. After the laddering interview, the 

participants rated on a 3-point scale (not important, moderately important, very 

important) all items of the attractiveness, humanness, and eeriness indices for each 

category the participant provided (Ho & MacDorman, 2010; Vanden Abeele, 1992).  

In Phase 2, the participants’ responses of laddering interview and item evaluation 

were converted into several data matrices for the analyses of hierarchical value map and 

new item candidate.  
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In Phase 3, the video clips and method of presentation were the same as in Phase 

1. Each participant viewed 12 video clips presented one at a time in random order (Figure 

4). Clips were played in a continuous loop while participants answered a survey on the 

figure featured in each clip. This round of the survey consisted of new items based on the 

candidates from Phase 2’s results.  

 

 

Figure 4. Twelve figures were rated by the participants: (1) Doctor Aki Ross and Captain 

Gray Edwards from the film Final Fantasy: The Spirits Within; (2) Billy, the baby from 

“Tin Toy”; (3) unnamed man from “Apology”; (4) Orville Redenbacher; (5) Mary Smith 

from “Heavy Rain: The Casting”; (6) iRobot Roomba 570; (7) JSK Laboratory’s Kotaro; 

(8) Hanson Robotics’ Jules; (9) David Ng’s Animatronic Head; (10) Le Trung’s Aiko; 

(11) Real Man; (12) Real Woman. No. 1 to 5 are animated figures; no. 6 to 10 are robotic 

figures; no. 11 and 12 are human figures.  

 

3.3 Analysis 

In Phase 1, to analyze the categorization procedure, participants’ category 

responses were used to measure the network pattern of category boundaries, such as the 

number of categories, the size of each category, the heterogeneity of the categories, the 



	   29 

centrality of the category, and the dispersion of the category (Everett & Borgatti, 1999, 

2005).  

(1) The number of category: C 

The number of categories was provided by the participant. For example, a 

participant might give two categories—human and robot—to group the figures. A larger 

number of categories meant that the participant had many categories for humanlike 

objects instead of just human vs. robot, or human vs. animation.  

(2) The size of category:  

Where Fi was the number of figures that a participant categorized into a category, 

and Ki was the number of figures that were previously defined by the researcher (e.g., 

Figure no. 1 to no. 5 were computer-animated characters; Figure no. 6 to no. 10 were 

robots; Figure no. 11 and no. 12 were true humans). The size of each category indicated 

how likely the participants were to use these figures to represent the categories. If the size 

of the category was greater, it showed that the participant had broader categories elicited 

by the figure. For example, a participant identified five figures as belonging to the 

category of human, more than the two predefined human figures. This may indicate the 

participant’s category of human was broader.  

(3) Heterogeneity of categories:   

Where F was the number of figures and C was the number of categories given by 

the participant. 

(4) Centrality of categories:  
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Where C was the number of categories and S was the number of the figures 

correctly identified by a participant (e.g., the figure was a robot, and the participant 

identified it as a robot). Centrality indicates how close the category was. The answer 

ranges from 1 (very distance) to 5 (very close). If the centrality of category was larger, it 

showed that the participant associated the figures into the correct categories. 

(5) Dispersion of categories:  

The dispersion of the categories could be described as the relations in the whole 

category network. Dispersion represents the proportion of misidentified relations. To 

estimate this variable, the posited categories of the figures were used (e.g., Figure no. 1 to 

no. 5 were animated; Figure no. 6 to no. 10 were robotic; Figure no. 11 and no. 12 were 

truly human). Based on the correctness of the category task, it presented the dispersion of 

the categories. Where N was the number of figures within the category and Sij was the 

similarity of category between figure i and j (Two figures were the same category = 1 and 

different category = 0). The range of dispersion was from 0 to 1. 

In Phase 2, to analyze the laddering procedure, the taped interviews were 

transcribed. The first step in analyzing laddering data obtained from the research used a 

content analysis technique. Each idiosyncratic concept resulting from the laddering 

responses was categorized into one of three levels of abstraction—attributes, 

consequences, and values—in the means–end structure. Each element of the participants’ 

responses should be included in one of these three categories. A number was assigned to 

each element to facilitate later coding.   
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Figure 5. An example of a hierarchical value map 

 

Therefore, a hierarchical value map (HVM) was constructed from the implication 

matrix as shown in Figure 5. An HVM was developed by connecting all the chains that 

were formed by considering the linkages in the large matrix of relations among elements. 

The HVM was able to show a well-organized summary of information derived in the 

interviews (Reynolds & Gutman, 1988). It provided a guide that showed what linkages of 

connecting values were important to the participant and to specific attributes of the 

product (Gutman, 1977). In addition, it presented the presence of desired consequences 

and attributes that permitted clearer concepts for the construction of a psychological 

index.  

For the measurement purpose, the means-end chain generated a series of 

connected matrices from the HVM as values-by-consequences matrix, consequence-by-

situations matrix, relevant consequences-by-grouping distinctions matrix, and relevant 

consequence-by-product matrix. The advantage of this approach was its ability to keep 

the illustration at a manageable size without becoming tangled in the methodology for 

generating the data (Gutman, 1982). These matrices were used to determine the 

distinctions comprising the chain and the connections between them. 

Psycho-‐social	  Consequence	  

Functional	  Consequence	  

Concrete	  Attribute	  

Condition	   Domestic	  Robot	  

Minimal	  Appearance	  

Lower	  work	  loading	  

Reassurance	  

Reliable	  
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To support index construction, after the laddering interview, participants 

evaluated the importance of each pair of attractiveness, eeriness, and humanness indices 

(Ho & MacDorman, 2010) as the candidates of the attribute (Claeys, Swinnen, & Vanden 

Abeele, 1995). The additional information helped the researcher to estimate the attributes 

gathered from laddering. Therefore, the attribute-consequence matrix (AC-matrix) and 

the consequence-value (CV-matrix) were conceived of as a series of connected matrices 

that could be used for index assessment (Hofstede et al., 1998). For the AC-matrix, the a 

priori attributes (the items of indices) and consequences were listed in the columns and 

rows, respectively, including all combinations of attributes and consequences. For the 

table of the CV-matrix, which included all possible combinations of consequences and 

values, the consequences and values were listed in the columns and rows, respectively. 

Although laddering was not intended to be used with representative samples, combining 

the item associations could uncover the concepts in AC- and CV-linkages.  

To improve index construction, the linkages in AC- and CV-matrices from the 

laddering interview and the linkages in the importance of items were used to assess the 

convergent validity of the laddering interview and indices. With respect to convergent 

validity, the content of the laddering interview and the importance of item sorting were 

identified. The higher frequencies of item sorting also clarified the concepts gathered 

from the laddering interview.  

From the laddering data, a three-way contingency table was generated and 

indexed by the attributes (A), consequences (C), and values (V). Hofstede et al. (1998) 

formulated a saturated model for the testing of the assumption. The probability 𝑃!"# that a 

ladder consisted of attribute (i), consequence (j), and value (k) were expressed as a linear 
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equation in the parameters. The set of parameters consisted of a constant (𝛼), the main 

effects (𝛽!!, 𝛽!! , 𝛽!!), their interactions (𝛾!"!" , 𝛾!"!", 𝛾!"!"), and the error (𝛿!"#!"#).  

𝑃!"# = 𝛼 + 𝛽!! + 𝛽!! + 𝛽!! + 𝛾!"!" + 𝛾!"!" + 𝛾!"!" + 𝛿!"#!"# 

Based on the saturated model, the fitness of the laddering model was evaluated by 

means of the likelihood-ratio test statistic (χ2). The corresponding likelihood-ratio test 

statistic was the chi-square difference test statistic ∆𝑥! = 𝑥!",!"! − 𝑥!",!",!"! . If the test 

was not significant, it meant the attributes and values were conditionally independent. It 

also supported the following analyses of AC- and CV-links in separate matrices.  

Therefore, two saturated models were generated for testing the between-method 

convergent validity: the laddering interview and item evaluation. A new factor T was 

introduced for the measurement technique from which the laddering originates. The first 

was for the laddering interview; the second was for the item importance data. 

𝑃!"#!"# = 𝛼 + 𝛽!! + 𝛽!! + 𝛽!! + 𝛾!"!" + 𝛾!"!" + 𝛾!"!" + 𝛿!"#!"# 

𝑃!"#!"# = 𝛼′+ 𝛽′!! + 𝛽!! + 𝛽′!! + 𝛾!"!" + 𝛾′!"!" + 𝛾!"!" + 𝛿!"#!"# 

In these two models, 𝛽!!and 𝛽′!!represented the difference in the overall frequency 

of the concepts between two measurement techniques. The between-method difference in 

the frequency of occurrence of a specific attribute Ai, consequence Cj, or value Vk was 

taken into account by 𝛾!"!" , 𝛾!"!" , 𝛾′!"!" , and 𝛾!"!" , respectively. The between-method 

difference in the frequency of AiCi -linkages was indicated by 𝛿!"#!"#; the between-method 

difference in the frequency of CjVk-linkages was indicated by 𝛿!"#!"#. Therefore, the terms, 

𝛾!"!" , 𝛾!"!" , 𝛾′!"!" , and 𝛾!"!" , represented the differences in the content of the cognitive 

network, whereas 𝛿!"#!"#  and 𝛿!"#!"#reflected the difference in structure. By using these 
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saturated models, we were able to test the significance of the indices to validate the 

indices for the next phase. 

In Phase 3, internal reliability was used to measure how reliable items were for 

their indices. Exploratory factor analysis, which applied principal components analysis 

with the Promax rotation, was used to verify that the semantic differential items loaded 

on factors corresponding to their named concepts. In addition, artificial–natural in the 

humanness index, reassuring–eerie in the eeriness index, and unattractive–attractive in 

the attractiveness index were chosen as “sanity check” items to verify the indices 

measured the concept after which they were named. Sanity check items had high face 

validity but did not necessarily meet the other criteria, such as being decorrelated with 

interpersonal warmth. If the results of factor analysis varied from the sanity check’s 

dimension and showed low factor loadings, the items should be removed from the index. 

Correlation analysis would show the relation between indices and verify the discriminant 

validity of indices during testing. Confirmatory factor analysis would verify the 

theoretical structure of the new set of uncanny valley indices. Finally, multidimensional 

scaling was used to visualize similarities and dissimilarities among the semantic 

differential items by reducing the dimensionality of the space from higher dimensions to 

lower ones. Internal reliability, exploratory factor analysis, and correlation analysis was 

performed using SPSS, confirmatory factor analysis was performed using LISREL, and 

multidimensional scaling was performed using MATLAB.  
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4. RESULTS 

4.1 Categorization 

First, the summarized results revealed how the participants categorized the variety 

of anthropomorphic entities (Table 1). Although this study did not prevent the 

participants from categorizing all anthropomorphic characters into a single category, all 

of the participants proposed using at least two categories during the task. Of the 30 

participants, more than half (54%) offered at least 4 categories (M=4.38) for the 12 

characters, which is more than the three nominal categories of animations, robots, and 

humans. The categories mentioned most often were Human, Robot, Animation, Machine, 

Woman, Man, and Android. It showed that the participants would likely use more detailed 

categories to classify all of the anthropomorphic characters they saw. The participants 

were not satisfied with using broader terms, such as robot, for identification and wanted 

to use more specific terms like “advanced robot,” “utility robot,” and so on. Even though 

the participants had various identified categories, only a few used “humanlike robot” or 

“android” specifically.  

Participants had quite different responses when identifying the specific category. 

For the animations, the participants only associated an average of 3.00 entities with the 

category of animation, which originally included 5 entities. Compared with the 

animations, the participants associated an average of 4.12 entities with the category of 

robot, which originally included 5 entities. Surprisingly, the participants associated an 

average of 2.88 entities with the category of human, which originally included 2 human 

entities. The results indicated that the participants would likely to group the animated 

characters into different categories (e.g., cartoon like, 3D computer-generated), a 
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consistent category of robots, and a broader category of humans. In other words, a 

realistic looking animated entity, or a sufficiently interactive robot, was likely to be 

categorized the same as human beings. 

Considering the heterogeneity of categories, participants contributed an average 

of 7.33 categories for each entity. It indicated the participants had different thoughts on 

the entity they saw. Participants contributed an average of 6.2 categories for each 

animation entity, 9.6 categories for each robot entity, and only 4.5 categories for each 

human entity. This indicates the participants assigned many categories to the robots, 

perhaps because of their diversity in appearance or features, but used fewer categories on 

the humans. For the centrality of categories, the results were similar. Centrality was 

greatest for the human category (M = 4.58) and lower for the animation category (M = 

3.16) and the robot category (M = 3.44). It indicated that the human category was the 

most robust. For the dispersion of categories, the average was .39. It indicated that the 

participants’ categorizations were moderately loose identified relations. Unlike the 

categories of animation (M = .41) and robot (M = .49), the human category yielded only 

an average of .26 in category dispersion. This indicates the human category was unique 

from other categories.     

 

Table 1. The most identified categories  

Human (16) Robot (15) Animation (14) Machine (5) 

Woman (3) Man (3) Android (3) Half human Half Robot (2) 

Utility Robot (2) 3D Character (2) Cartoon (2) Advance Robot (2) 

Prototype (2) Humanlike Robot (2) Machine Part (2) Robot Machine (2) 

Digital Creation (2) Dummy (2) Japanese Doll (2) Advertisement (2) 

Note. The value of each category represents the number mentioned by the participants. 
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Laddering responses were categorized into three kinds of comments: pro, neutral, 

and con, which was an efficient technique to measure their prevalence (Table 2). A pro 

comment meant that the participant’s response valence was positive. A neutral comment 

meant that the participant’s response was purely descriptive without valence. A con 

comment meant that the response’s valence was negative.  

For the animations, the average percentage of con was more than those of neutral 

and pro. Surprisingly, opinions of the animations became more bimodal as the interviews 

progressed. Although the percentage of pro comments was steady, the percentage of 

neutral decreased from 60.0% at the level of attribute to 27.5% at the level of value; the 

percentage of con increased from 37.5% at the level of attribute to 70.0% at the level of 

value. 

For the robots, the comments kept steady from the level of attribute to the level of 

consequence. At the levels of attribute and consequence, the majority of comments were 

neutral. However, at the level of value, comments separated into pro, neutral, and con.  

For the humans, the participants left only a small percentage of cons across the 

three levels. It indicated the participants viewed the category of human in a positive light. 

Especially in the value of human, 77.8% of comments were positive. It indicates that the 

participants inevitably linked the category of human with the concept of good. The results 

for the human category were the opposite of the animation category.  

However, the participants viewed the androids differently from the others. At the 

level of attribute, the majority of comments about androids were pro (75.0%). Realistic 

appearance was described in the affirmative. However, at the levels of consequence and 
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value, the comments became more polarized. Half the comments about androids were 

positive, and the other half were negative. 

 

Table 2. Pros, neutrals, and cons by different level of means-end 

  Pro Neutral Con 

Animation     

 Attribute 2.5% 60.0% 37.5% 

 Consequence 2.5% 45.0% 52.5% 

 Value 2.5% 27.5% 70.0% 

Robot     

 Attribute 15.9% 58.7% 25.4% 

 Consequence 12.7% 60.4% 27.0% 

 Value 28.6% 36.5% 34.9% 

Human     

 Attribute 38.9% 58.3% 2.8% 

 Consequence 52.8% 41.7% 5.6% 

 Value 77.8% 19.4% 2.8% 

Android     

 Attribute 75.0% 12.5% 12.5% 

 Consequence 12.5% 50.0% 37.5% 

 Value 50.0% 12.5% 37.5% 

 

4.2 Laddering Response 

Several hierarchical value maps (HVMs) were constructed from the implication 

matrix that was coded by the laddering responses (Figure 6). The most frequent relations 

were used to illustrate the process by which the participants categorized animation, robot, 

and human. In this study, the cut-off value was 2 for 30 participants. If the value of each 

linkage was lower than 2, the relation was considered to be irrelative not to present in the 
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HVMs. For the category of animation character, three main attributes were “controlled,” 

“computer generated,” and “unreal.” Three key consequences identified were “follow the 

plot,” “no facial expression,” and “unconvincing.” Only two final values were 

contributed, “demonstration” and “soulless.” Two complete means-end chains were 

found, “controlled–following the story–demonstration” and “computer generated–no 

facial expression–soulless.” The incomplete means-end chain, “unreal–unconvincing,” 

might be caused by the participant’s inconstant responses in the level of value. It 

indicates the participants had the diverse ideas when observing that the animation 

character is unreal.  

 

 

Figure 6. Hierarchical value maps of animation; the value of each linkage represents the 

number mentioned by the participants. 

 

For the category of robot character, five key attributes were identified, 

“mechanical,” “purpose served,” “controlled,” “interaction,” and “human creation” 

(Figure 7). Five sequencing consequences were connected with their preceding attributes: 

“repeated movement,” “doing its job,” “technology,” “convincing behavior,” and 
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“machine.” Although the participants identified many attributes and consequences, only 

three final values were linked, “demonstration,” “simple work,” and “no skin covering.”  

The pattern indicated that the participants had stricter and more robust values toward the 

robots. This pattern was consistent with that of the categorization.  

 

 

Figure 7. Hierarchical value maps of robot; the value of each linkage represents the 

number mentioned by the participants. 

 

For the category of human character, three main attributes were identified by the 

participants, “interactive movement,” “emotions,” and “demonstration” (Figure 8). Three 

consequences were identified: “trust,” “timing,” and “convincing behavior.” Only two 

final values were contributed in the end of laddering: “sophisticated” and “soul.” Two 

complete means-end chains were found, “interactive movement–trust–sophisticated” and 

“demonstration–convincing behavior–soul.”  The results indicated the participants 

considered the humans had the qualities of interaction, trust, and sophistication.  
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Figure 8. Hierarchical value maps of human; the value of each linkage represents the 

number mentioned by the participants. 

 

In contrast, the android’s hierarchical value map indicated mixed and conflicting 

thoughts (Figure 9). Three key attributes were identified, “convincing character,” 

“humanlike appearance,” and “unconvincing setting.” Four consequences were connected 

with their preceding attributes, “convincing facial expression,” “purpose served,” 

“interaction behavior,” and “post-production effect.” Notably, the origin of “purpose 

served” and “interaction behavior” was “humanlike appearance.” At the end of laddering, 

four final values were contributed: “emotions,” “contingency,” “mutual sense,” and 

“personal experience.” Four complete means-end chains were found in the matrix: 

“convincing character–convincing facial expression–emotion,” “humanlike appearance–

purpose served–contingency,” “humanlike appearance–interaction behavior–mutual 

sense,” and “unconvincing setting–post production effect–personal experience.” However, 

these four means-end chains indicated that the participants had both positive and negative 

thoughts toward the androids. One positive chain indicated the android convinced the 

participants of its completed appearance and appropriate facial expression. The 
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participants were convinced that the android appealed to human emotions. Another 

negative chain indicated the participants suspected the android’s imperfect setting, and 

they speculated upon any post-production effect. The participants imputed the 

unconvincing android to their personal experience. For example, the participants might 

have seen vicious androids in science fiction films and copied the idea to this category. A 

participant mentioned a vicious alien cyborg disguised as a female human in Doctor Who 

made him feel the android was scary. 

 

 

Figure 9. Hierarchical value maps of android; the value of each linkage represents the 

number mentioned by the participants. 

 

4.3 Visualization of Categorical Boundaries 

To illustrate the items forming categorical boundaries among the categories, a 

visual mapping of laddering interview were generated. A nodelist of 105 idiosyncratic 

items converted from the laddering responses was used to present the visual map (Figure 

10).  
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Figure 10. The visual mapping of idiosyncratic items associated with three posited 

categories 

 

In the visual map, each coding item connected to three posited categories: the 

animation, the robot, and the human. The width of the line indicated the strength of 

association, operationalized as the co-occurrence frequencies of the associated items. 

Thicker lines indicated stronger associations; thinner lines indicated weaker associations. 

In general, 26 items were associated solely with the animation category (Figure 11); 36 

items were associated solely with the robot category (Figure 12); and 11 items were 

associated solely with the human category (Figure 13). It indicates the animated 

characters and robots provoked more mental images than the human characters.  
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Figure 11. Idiosyncratic items solely associated with the posited animation category 

 

 

Figure 12. Idiosyncratic items solely associated with the posited robot category 
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Figure 13. Idiosyncratic items solely associated with the posited human category 

 

In the areas between the categories, three coding items linked the categories of 

human and robot: Jerky Movement, Sophisticated, and Humanlike Appearance (Figure 

14). However, these three associations were asymmetric. Jerky Movement and Humanlike 

Appearance had stronger associations with the robot category but weaker associations 

with the human category. Sophisticated had a stronger association with the human 

category but weaker association with the robot category. This indicates a categorical 

boundary between human and robot. The participants occasionally associated Humanlike 

Appearance and Jerky Movement with robot but rarely with Sophisticated, and vice versa. 

 

 

Figure 14. Idiosyncratic items coassociated with the posited human and robot categories 
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Environment, Unconvincing Animation Character, Emotions, Multitasking, Socialize, 

Male, and Emotive (Figure 15). The associated pattern of Convincing Human Character 

and Unconvincing Animation Character were extremely asymmetric. They were strongly 

associated with the category of human but weakly associated with the category of 

animation. It indicated the participants were confident of the human category they 

identified; in the meantime, they denied every animation character’s characteristic from 

the human category.  

 

 

Figure 15. Idiosyncratic items coassociated with the posited human and animation 

categories 
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category. It was opposite to Mismatched Facial expression. It indicated another 

categorical boundary about facial expression between robot and animated characters, χ2 

(1, N=20) = 5.50, p = .019. The participants likely considered the robots unable to 

perform appropriate facial expressions and the animation characters able to perform them 

but with the incorrect timing or action. 

 

 

Figure 16. Idiosyncratic items coassociated with the posited animation and robot 

categories 

 

Considering the self-identified categories, the alternative nodelist matrix was 

converted for the visualization. Four main self-identified categories, the animation, the 

android, the robot, and the human, were the roots connecting the coding items in this 

alternative visual map (Figure 17). In general, 17 items solely associated with the self-

identified animation category (Figure 18); 30 items solely associated with self-identified 

robot category (Figure 19); 18 items solely associated with the self-identified human 

category (Figure 20); and 2 items solely associated with the self-identified android 

category.  
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Figure 17. The visual mapping of idiosyncratic items associated with four self-identified 

categories 

 

 

Figure 18. Idiosyncratic items solely associated with the self-identified animation 

category 
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Figure 19. Idiosyncratic items solely associated with the self-identified robot category 

 

 

Figure 20. Idiosyncratic items solely associated with the self-identified human category 
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Compared with the mapping of the original category, the pattern of self-identified 

category seemed similar but different: Demonstration, Personal Experience, and 

Humanlike Character were commonly associated with all four categories (Figure 21). 

Unlike the mapping of the posited category, fewer associated items were linked with the 

categories. It indicated the participants would likely to use the particular idea on their 

self-identified categories instead of using the ambiguous one. Jerky Movement was the 

sole association between the categories of human and robot. Unlike the mapping of 

Figure 10, Sophisticated became one of the exclusively human characteristics. This 

indicates the participants used more unmixed characteristics for the human category. It 

also happened for the associations between the animation and human categories. Only 

Convincing Human Character and Convincing Environment became the direct 

associations instead of Convincing Behavior, Unconvincing Animation Character, Male, 

Multitasking, Emotive, and Socialize. This indicates the participants considered more 

exclusively human characteristics when they gave their own categories.  

 

 

Figure 21. Idiosyncratic items coassociated with the four self-identified categories 
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For the new self-identified category of android, two items, Contingency and 

Mutual Sense emerged from the associations. They were solely associated with the 

android category. It revealed how the participants conceived the idea of android. The 

android was capable of detecting human’s contingent responses and giving the mutual 

sense to the humans. In addition, four associations, Emotions, Convincing Setting, 

Convincing Facial Expression, and Humanlike Appearance, became the shared 

associations between the human and android categories (Figure 22). In the mapping of 

the original category, Convincing Setting and Convincing Facial Expression were the 

common items associated with three categories; Emotions was the association between 

the animation and human categories; Humanlike Appearance was the association between 

the human and robot categories. This indicates the android category, which the 

participants identified, borrowed most of its associations from the animation, robot, and 

human categories; decreasing the ambiguities in the context.   

 

 

Figure 22. Idiosyncratic items coassociated with the self-identified human and android 

categories 
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4.4 Item Evaluation 

After the card sorting, the evaluations of 38 terms based on the perceived 

categories were analyzed, which were decomposed by the 19 semantic differential scales 

(Ho & MacDorman, 2010). Among the 38 terms of the humanness, eeriness, and 

attractiveness indices, humanness items were the most important to all identified 

categories (M=2.0, SD=.25); attractiveness items were the second most important 

(M=1.64, SD=.40); and eeriness items were least important (M=1.60, SD=.33). The result 

showed that the participants were more sensitive to the items of the humanness index. 

When comparing the positive and negative terms in each index, the preference showed 

how the participants would be likely to use the items to categorize the anthropomorphic 

characters. The results indicate that when categorizing the anthropomorphic characters, 

the participants were more likely to choose fewer humanness (M=–0.34, SD=1.24), fewer 

eeriness (M=0.24, SD=0.63), and more attractiveness (M=0.33, SD=0.82) terms.  

In addition, we compared the importance and preference of terms by different 

categories such as robot-related categories versus others, animation-related categories 

versus others, and human-related categories versus others (Table 3). In the importance of 

terms, the participants who identified animation-related categories (M=1.87, SE=.07) 

would likely use fewer humanness terms than those of other (M=2.03, SE=.03) categories 

(F(1, 61)=4.37, p=.041). The participants who identified human-related categories 

(M=1.85, SE=.12) would likely use more attractiveness terms than those of other 

(M=1.57, SE=.05) categories (F(1, 61)=6.18, p=.016). In the preference of items, the 

participants who identified robot-related categories (M=–1.12, SE=.16) would use fewer 

humanness terms than other (M=–0.11, SE=.20) categories (F(1, 61)=18.57, p<.001). The 
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participants who identified human-related categories (M=1.56, SE=.11) would use more 

humanness terms than those of other (M=–0.94, SE=.10) categories (F(1, 61)=172.93, 

p<.001). The participants who identified human-related categories would use fewer 

eeriness terms (F(1, 61)=12.47, p<.001). The participants who identified human-related 

categories would use more attractiveness terms (F(1, 61)=7.91, p=.007). 
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Table 3. The importance and preference by categories 

 Importance 

 Humanness Eeriness Attractiveness 

 M p M p M p 

Robot-related 2.07  .105  1.70  .084  1.62  .788  

Others  1.96   1.55   1.66   

Animation-related 1.87  .041  1.53  .306  1.52  .386  

Others  2.03   1.62   1.67   

Human-related 2.09  .123  1.62  .802  1.85  .016  

Others  1.97   1.60   1.57   

 Preference 

 Humanness Eeriness Attractiveness 

 M p M p M p 

Robot-related –1.12  .000  –0.15  .388  0.22  .400  

Others  0.11   –0.29   0.40   

Animation-related –0.82  .117  –0.12  .436  0.15  .380  

Others  –0.21   –0.27   0.38   

Human-related 1.56  .000  –0.70  .001  0.83  .007  

Others  –0.93   –0.09   0.18   

 

4.5 Revised item suggestion 

When the participants identified various categories, the participants’ ratings of the 

indices would be influenced by the categories they selected. The participants would likely 
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consider the categories they identified instead of the items of the indices they evaluated. 

To reduce the bias, we compared each semantic differential pair by different categories. 

The results indicated that the pair “Without Definite Lifespan–Mortal” (p=.006) of the 

humanness index was significantly biased by the category of robot; the pair “Numbing–

Freaky,” (p=.005) and “Unemotional–Hair-raising” (p=.002) were significantly biased by 

the category of robot. For the category of animation, two pairs “Synthetic–Real,” 

(p=.007) and “Mechanical Movement–Biological Movement” (p=.014) of the humanness 

index, were significantly biased. For the category of human, the pair of the humanness 

index “Inanimate–Living” (p=.001) was significantly biased. Three pairs of the eeriness 

index, “Reassuring–Eerie” (p=.007), “Ordinary–Supernatural” (p=.000), and 

“Unemotional–Hair-raising” (p=.019), were significantly biased. Two pairs of the 

attractiveness index, “Unattractive–Attractive” (p=.034) and “Crude–Stylish” (p=.013), 

were significantly biased. For the category of android, two pairs of the eeriness index, 

“Numbing–Freaky,” (p=.014) and “Unemotional–Hair-raising” (p=.029) were 

significantly biased. The results suggested these terms needed further revising to 

eliminate the subjective bias. Considering the results of the participants’ item evaluations, 

three pairs of the eeriness index, “Numbing–Freaky,” “Ordinary–Supernatural,” and 

“Unemotional–Hair-raising” would likely be biased across various categories.  

Using the participants’ laddering responses as the pool of item suggestion, 

“Numbing–Freaky” could be revised as “Dull–Freaky” or “Boring–Freaky”; “Ordinary–

Supernatural” could be revised as “Ordinary–Unreal” or “Ordinary–Creepy”; 

“Unemotional–Hair-raising” could be revised as “Unemotional–Alarming”; “Reassuring–

Eerie” could be revised as “Predictable–Eerie.” In addition, “Plain–Weird,” “Conformist–
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Bizarre,” and “Habitual–Supernatural,” were also considered potential pairs based on the 

participants’ laddering responses. These newly revised items will be applied in the 

following web survey with the original ones to test whether they are more appropriate. 

 

4.6 Conditional Independence 

From the laddering interview, the complete attribute-consequence-value linkages 

were recorded, Hundreds of laddering responses were coded: 150 ladders were in the 

posited animation category; 150 ladders were in the posited robot category; and 60 

ladders were in the posited human category. While considering the participant’s self-

identified category, 104 ladders were in the self-identified animation category; 144 

ladders were in the self-identified robot category; 91 ladders were in the self-identified 

human category; and 21 ladders were in the self-identified android category. The number 

of different attributes, consequences, and values after content coding were shown in 

Table 4. These ladders were used to construct a 3-way AiCjVk contingency table for each 

category. The cells for the 3-way table presented the frequencies with which each of the 

linkages occurred in the laddering data.  
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Table 4. Characteristics of the laddering data used to test conditional independence 

  Interviews Attributes Consequences Values 

Posited Animation (5) 150 22 22 34 

 Robot (5) 150 29 31 36 

 Human (2) 60 8 12 15 

Self Animation (Mode=4) 104 14 15 20 

 Robot (Mode=5) 144 30 29 34 

 Human (Mode=3) 91 10 11 20 

 Android (Mode=3) 21 6 7 8 

 

The normed fit indices ∆ and the adjusted χ2 statistics for the tests of conditional 

independence were indicated in Table 5. The adjusted χ2 statistics for the posited 

categories and the self-identified models were low. These results indicated the models fit 

the data well. The normed fit indices were close to 1. This indicates little space for 

improvement. The p-values were insignificant. This indicates strong empirical evidence 

for the independence of both AC- and CV-matrices. It indicated that the attributes and 

values are associated indirectly through the attribute-consequence and consequence-value 

linkages. In addition, comparing these statistics of the original categories with those of 

the self-identified ones, the self-identified categories’ ∆s and the adjusted χ2 would fit the 

model better. The results indicated the participant’s prior categorization facilitated the 

validity of the laddering interview. 
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Table 5. Tests for conditional independence of attributes and values given the 

consequences 

 AC, CV, AV AC, CV AC, CV vs. AC, CV, AV 

 ∆ 𝑥!"#!  df ∆ 𝑥!"#!  df ∆𝑥!"#!  df P 

Posited          

Animation .87 66.57 2850 .84 466.97 3542 288.44 692 >.999 

Robot .82 778.07 4498 .78 272.57 5199 540.46 701 >.999 

Human .89 28.77 204 .91 46.81 250 31.08 46 .954 

Self-identified          

Animation .83 54.94 1819 .81 374.8 2410 270.66 591 >.999 

Robot .91 264.58 3851 .90 278.06 4201 271.52 350 >.999 

Human .95 30.21 330 .90 44.88 385 36.03 55 .978 

Android .90 9.22 85 .89 25.54 112 16.01 27 .953 

 

4.7 Between-Method Convergent Validity 

Based on the previous test, the assumption of conditional independence was 

supported; the two models of 𝑃!"#!"# and 𝑃!"#!"# can be estimated separately. The evaluation 

of item importance was considered as the external technique to test between-method 

convergent validity. To test the convergent validity of the laddering interviews and 

evaluated indices, all AC- and CV-linkages from the laddering interviews were used to 

compare the item importance toward different categories with the number of direct and 

indirect AC- and CV-linkages from the laddering matrix. Both the laddering interview 

and the item evaluation were combined and transformed in two 3-way contingency tables 
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containing the frequencies of the AiCi - and CjVk-linkages respectively. Several tests for 

similarity in content were significant (p<.001), including the attributes ([A, C, T] vs. [C, 

AT]), consequence ([A, C, T] vs. [A, CT]), and attributes and consequence 

simultaneously ([A, C, T] vs. [AT, CT]). It indicated that the content of the AC-matrix 

significantly differed between the laddering interview and item evaluation (Table 6). In 

addition, in the test for structural similarity, the model ([AC, AT, CT]) vs. the saturated 

model ([A, C, T]) was insignificant. This indicates the laddering interview and items of 

indices might be similar in terms of structure. For the model test of the CV-linkage, the 

result was similar to the model test of the AC-linkage (Table 7). Based on the between-

method convergent validity tests, both techniques were capable of exploring the concepts 

of various anthropomorphic categories.  
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4.8 Validation of New Items 

(1) Attractiveness Index 

The four items of the attractiveness index were validated together: Ugly–Beautiful, 

Repulsive–Agreeable, Crude–Stylish, and Messy–Sleek, and the sanity check 

Unattractive–Attractive. The overall internal reliability of the index was high 

(Cronbach’s α=.85). The exploratory factor analysis showed all four items including the 

sanity check loaded on a single factor that explained 65.08% of the variance. It confirmed 

the reliability of the original attractiveness index (Ho & MacDorman, 2010).  

(2) Humanness Index 

Similar to the attractiveness index, the five items of the humanness index were 

validated together: Synthetic–Real, Inanimate–Living, Human made–Humanlike, 

Mechanical Movement–Biological, and Without Definite Lifespan–Mortal, and the sanity 

check Artificial–Natural. The overall internal reliability was high (Cronbach’s α=.84). 

The exploratory factor analysis showed all five items including the sanity check loaded 

on a single factor that explained 58.30% of the variance. It also confirmed the reliability 

of the original humanness index on similar samplers (Ho & MacDorman, 2010).  

(3) Eeriness Index 

First, all seven items of the original eeriness index and its sanity check were 

validated. Factor analysis confirmed the existence of the two subdimensions of the 

eeriness index previously found in Ho and MacDorman (2010). Uninspiring–Spine-

tingling, Boring–Shocking, Predictable–Thrilling, Bland–Uncanny, and Unemotional–

Hair-raising loaded on the first dimension, which explained 39.54% of the variance. The 

internal reliability of the first dimension was .84. Reassuring–Eerie, Numbering–Freaky, 
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and Ordinary–Supernatural loaded on the second dimension, which explained 23.62% of 

the total variance. However, the internal reliability of the second dimension was .69, 

indicating some space for improvement.  

Considering the potential items of the eeriness index, nine new item candidates 

still followed the pattern of two dimensions as well as the original index. Seven item 

candidates, Dull–Freaky, Ordinary–Unreal, Ordinary–Creepy, Plain–Weird, 

Predictable–Eerie, Conformist–Bizarre, and Habitual–Supernatural, loaded with the 

dimension of Reassuring–Eerie, Numbing–Freaky, and Ordinary–Supernatural. Two 

item candidates, Unemotional–Alarming and Boring–Freaky, loaded with the dimension 

of Uninspiring–Spine-tingling, Boring–Shocking, Predicable–Thrilling, Bland–Uncanny, 

and Unemotional–Hair-raising. 

First, the two candidates of Ordinary–Creepy (r=.70) and Habitual–Supernatural 

(r=.71) were highly correlated with the dimension of eerie, respectively. They were the 

redundant items or overlapped with other items. Therefore, Ordinary–Creepy and 

Habitual–Supernatural were excluded. Second, adding two candidates of Unemotional–

Alarming and Boring–Freaky only increased the internal reliability of the dimension of 

spine-tingling (Cronbach αs ranged from .84 to .86). This indicates the dimension of 

spine-tingling, which included Uninspiring–Spine-tingling, Boring–Shocking, 

Predicable–Thrilling, Bland–Uncanny, and Unemotional–Hair-raising, had already 

saturated. Given that these five reliable items to measure the concept were already 

available, we did not need to develop additional items. Unemotional–Alarming and 

Boring–Freaky were excluded from the final index. Third, checking the correlations 

between the attractiveness and humanness indices, Ordinary–Creepy (rAttractiveness=–.45 & 
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rHumanness=–.31), Ordinary–Unreal (rAttractiveness=–.37 & rHumanness=–.44), Conformist-

Bizarre (rAttractiveness=–.35 & rHumanness=–.28), and Numbing-Freaky (rAttractiveness=–.30 & 

rHumanness=–.23) were significantly correlated with the attractiveness and humanness 

indices, which violated the criterion of item decorrelation. Therefore, they were excluded 

from the final index.  

Based on the three criteria of item selection (i.e., high internal reliability, correct 

factor loading, and correlation with the “sanity check” item), four items were constructed 

for the final version of the attractiveness index; nine items were constructed for the 

eeriness index; and five items were constructed for the humanness index. Confirmatory 

factor analysis was used to test the theoretical structure of the final set (Table 8). It 

showed the factor loadings for the 18 semantic differential items of the final set. 

Although one goodness-of-fit index (RMSEA = .061) slightly exceeded the cutoff of .05, 

the other goodness-of-fit indices indicated the 18 semantic differential items fit very well 

within the structure of these indices (χ2= 37833, CFI = .97, NFI = .97, GFI = .95, AGFI 

= .93; Bentler, 1990; Chin & Todd, 1995; Gefen et al., 2000). Furthermore, the statistics 

of goodness-of-fit implied two subfactors of the eeriness index were robust enough to 

represent their own theoretical concepts (r = .44). In the practical work, two subfactors of 

the eeriness index could measure independently. 
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Table 8. Structural coefficients for the semantic items 

 Humannes

s 

Eeriness Attractivenes

s 
  Eerie Spine-

tingling 

 
Inanimate–Living .81 - - - 
Synthetic–Real .80 - - - 
Mechanical Movement–Biological 

Movement 

.77 - - - 
Human-made–Humanlike .76 - - - 
Without Definite Lifespan–Mortal .67 - - - 
Dull–Freakyb - .76 - - 
Predictable–Eerieb - .75 - - 
Plain–Weirdb - .75 - - 
Ordinary–Supernatural - .66 - - 
Boring–Shocking - - .77 - 
Uninspiring–Spine-tingling - - .72 - 
Predictable–Thrilling - - .65 - 
Bland–Uncanny - - .65 - 
Unemotional–Hair-raising - - .64 - 
Ugly–Beautiful - - - .79 
Repulsive–Agreeable - - - .78 
Crude–Stylish - - - .77 
Messy–Sleek - - - .69 
     Cronbach’s α .87 .82 .81 .85 
     Model χ2 df GFI AGFI 
 3783 129 .95 .93 
      NFI CFI RMR RMSEA 
 .97 .97 .15 0.061 

a items sorted by the factor loading of each index 

b new item candidate  

 

The correlation analysis indicates the indices retained their construct validity 

(Table 9). In the final version, the attractiveness index had no significant correlation with 

eeriness (r=−.06, p=.069). The correlation of the attractiveness and eeriness indices with 

positive (vs. negative) affect was effectively eliminated. In addition, the eeriness index 

had no significant correlation with the humanness index (r=.04, p=.285). 
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Table 9. Correlation between attractiveness, eeriness, and humanness indices in the final 

version 

 Attractiveness Eeriness Humanness 

Attractiveness -   

Eeriness −.06 (p=.069) -  

Humanness .36 (p<.001) .04 (p=.285) - 

 

Multidimensional scaling (MDS) was performed on the 18 semantic differential 

items. Figure 23 shows that the semantic differential items belonging to the humanness, 

eeriness, and attractiveness indices form three distinct, nonoverlapping subfactors. The 

four items belonging to the eerie subfactor and the five items belonging to the spine-

tingling subfactor of the eeriness index were also separated (Table 8). These MDS results 

indicate the humanness, eeriness, and attractiveness indices could measure distinctly their 

corresponding concepts.  
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Figure 23. Multidimensional scaling of the 18 semantic differential items was performed 

based on participant ratings of the figures in the 12 video clips. Items from the 

humanness, eeriness, and attractiveness indices are widely separated. 

 

The scatter plot showed that humanness and eeriness were decorrelated among 

various anthropomorphic characters (Figure 24). The insignificant correlation of the 

eeriness and humanness indices revealed that the final version of these indices had good 

discriminant validity and high reliability. The eeriness index also had an insignificant 

correlation with the humanness index (r=.04, p=.285). The attractiveness index yielded a 

high correlation with the humanness index (r=.36, p<.001), the data points vertically 
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aligned into three main groups: animation, robot, and human (Figure 25). Specifically, 

the results showed that the improved attractiveness and humanness indices were less 

affected by positive (vs. negative) affect than previously developed indices (Ho & 

MacDorman, 2010).  

 

 

Figure 24. The final humanness and eeriness indices were not significantly correlated 

(r=.04, p=.285). 

 

R2=.002
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Figure 25. The humanness and attractiveness indices were significantly correlated but 

categorized into animation, robot, and human groups (r=.36, p<.001). 

  

R2=.26
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5. DISCUSSION 

In the categorization exercise, the participants applied their schematic knowledge 

on the human categorization (Macrae & Bodenhausen, 2000). Yamauchi (2005) suggests 

that induction is carried out not just by matching similarity but also by abstract reasoning 

processes elicited by category information. In the laddering interview, many exclusively 

human characteristics were mentioned repeatedly. In addition, the automatic category 

activation is triggered when the robot category is identified; the robot category primes 

“machine,” “simple work,” and “human creation.” The category activation comes 

through the heightened accessibility of material following the presentation of a priming 

stimulus (Devine, 1989). The facial expression is strong evidence of categorical 

boundaries based on the symmetrical associations of “Unconvincing Facial Expression” 

and “Mismatched Facial Expression” between the original defined animation and robot 

categories as well as “Convincing Facial Expression” between the self-identified android 

and human categories (cf. Looser & Wheatley, 2010). The participants considered the 

robots incapable of demonstrating proper facial expressions, whereas they believed that 

the animation characters performed appropriate facial expressions but only mismatch 

with the timing or related actions. In addition, participants firmly believed that only the 

humans could have genuine facial expressions. In addition, the eyes were the essential 

clue to determine whether the character looks human (Looser & Wheatley, 2010). The 

participants particularly care about eye movement. The participants’ judgment about 

whether the character was convincing or unconvincing relied on the eyes. 

Based on Ramey’s assumption (2005), humans have difficulty categorizing 

androids or humanoids into such categories as “animate” or “inanimate,” because they lie 
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at the boundary between these categories. Humans would repeatedly make the 

comparisons to solve the dilemma of cognitive dissonance to settle the uncertainty in 

concepts. Ramey thus considers the uncanny valley to be caused by stimuli at category 

boundaries, rather than a unique phenomenon related to anthropomorphic entities. 

However, the association results in this study do not support the assumption of Ramey. 

The participants still can give the android category with many monosemic items (e.g., 

contingency, mutual sense) rather than items with the related, multiple meanings (e.g., 

emotions, past personal experience). In addition, the android category found in this study 

may be close to the assumption of the third ontological category (Kahn et al., 2011, 2012; 

Kahn, Gary, & Shen, 2013). However, the reasons of the android category given by the 

adult participants are different from those given by the children. The differences might 

occur to the specific stage of psychological development. This issue remains for future 

work to clarify.  

Considering the effect of the category, participants used less humanness, less 

eerie, and more attractive items to evaluate anthropomorphic entities. However, the self-

evaluation of the category becomes the tool that can detect underestimating or 

overestimating biases during the category identification (Fox & Clemen, 2005). When the 

participants judge the anthropomorphic entities in terms of a continuous spectrum of 

human likeness, it is harder for them to determine how to partition human likeness. The 

participants underestimate merely humanlike robots with the fewer humanity traits. In 

addition, the participants would be influenced by their domain knowledge about 

anthropomorphism to tend to anchor their ignorance prior. The ordinary participants 

overestimate the automatic robots, which capable of finishing the simple task. Therefore, 
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these cognitive biases may have failed to reach conscious reflection (Arkes, 1991; 

Dunning et al., 2003; Kruger & Dunning, 1999; Pronin, 2007).  

In the original association pattern technique (APT), the evaluated items must 

come from the pilot laddering interview (Gutman, 1982; Hofstede et al., 1998). However, 

it is limited in the small-scale studies because the evaluated items need to be tested.  

Applying the developed indices as the extraneous evaluation in the laddering interview 

will yield high content validity. Furthermore, the association models based on the indices’ 

terms can be used to the convergent validity of laddering interview with respect to the 

content and structure of the means-end chains network that they reveal. Although the 

laddering interviews and evaluated terms have different data formats, the results of model 

testing indicate that both contain the same concepts. The terms used in the indices could 

serve as a snapshot of the relevant attributes, consequences, and values toward the 

anthropomorphic entities. In addition, the participant’s prior categorization would 

facilitate the validity of the laddering interview. 

Some new items of the revised indices came from the participants’ own responses, 

such as dull, predictable, and weird. They might be more appropriate in modern English 

usage and provide better content validity than terms like “numbing” and “reassuring.” 

The revised indices for anthropomorphic characters’ attractiveness, eeriness, and 

humanness are shown to have high internal reliability. With respect to computer-

animated human characters and robots, these indices demonstrate the bipolarity of the 

semantic space for assessing emotional responses and judgments of personality traits 

(Bentler, 1969; Gärling, 1976; Lorr & Wunderlich, 1988; Rosenberg et al., 1968; Van 

Schuur & Kiers, 1994). Confirmatory factor analysis was used to verify the theoretical 
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structure of these indices. Exploratory factor analysis demonstrates a comprehensive 

strategy for item selection prior to validation by confirmatory factor analysis (Gerbing & 

Hamilton, 1996). These indices appear to be valid for measuring their putative concepts. 

Compared with the original indices (Ho & MacDorman, 2010), the revised indices 

eliminate the categorical biases to measure independently. The two subscales of the 

eeriness index can serve as standalone measures to illustrate the perceived eeriness of the 

anthropomorphic characters. Relative to the animated characters, the robot entities had 

higher ratings in the eerie subscale but lower ratings in the spine-tingling subscale. 

 

5.1. Limitations and Future Work 

Considering laddering interviews, one of the limitations of APT is the 

oversimplified representation of the means-end chain network that considering the 

association linkages between concepts (i.e., the AC- and CV-linkages). Adding extra AA-, 

CC-, and VV-matrices that containing the same concepts in both rows and columns could 

lead to a the means-end chain network with a more comprehensive structure (Hofstede et 

al., 1998) In this study, the linkages between the attributes, consequences, and values are 

ignoring whether ladders are elicited from the same or different categories. Using 

nonlinear generalized canonical analysis (NGCA, Valette-Florence, 1998), kernel 

isometric mapping (ISOMAP), or other nonlinear dimensionality reduction techniques 

may not only help the researcher to identify the segments of the user’s thought with 

specific means-end orientation, but also have the probability of the associations between 

the main means-end chain and any prespecified criterion, such as the participant-

identified categories. In addition, the participant’s emotional responses were kept in the 
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laddering transcription. The laddering interview involves a rationalization process; the 

reasons based on emotional responses became more relevant. For the future work, the 

emotional responses could be analyzed. 

From the perspective of index development, there is considerable individual 

variation in emotional responses to humanoid robots and animated human characters. For 

example, although some participants were disturbed by the digital resurrection of the 

businessman Orville Redenbacher, other participants accepted the character as the real 

person. It is important to explore further the merely humanlike appearance that may 

influence the intensity of emotional responses. In addition, although the indices of Ho and 

MacDorman (2010) had high internal reliability and eliminated correlation with positive 

and negative affect, they might still be influenced by the effect of the category. When the 

user evaluated the interaction with the robot, the categorization process is activated 

simultaneously or even in advance. In other words, the predetermined category might be 

dominant. The participants might overestimate or underestimate the new items by the 

specific categories. The improved indices may need confirmation from a categorization 

task.   

Although this study did not find age and gender to be significant factors in our 

population of undergraduates, these variables may be significant in a more heterogeneous 

sample that includes a broader range of ages. Past research has indicated that differences 

of culture and levels of exposure to robots can have a significant influence on attitudes 

(MacDorman, Vasudevan, & Ho, 2009). It is important to test the indices with different 

cultural populations. 
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It is also important to apply external criteria to assess the validity of the developed 

indices. For example, the microdynamics of interaction between an embodied agent and a 

human being can indicate the extent to which the human being is responding to the agent 

as if it were human (Cassell & Tartaro, 2007). The same information can also indicate an 

aversive response when the interaction breaks down. Nonverbal behavior, such as gaze 

frequency and duration, have been used to determine preference between still and 

computer-animated monkeys in experiments on the uncanny valley that used macaque 

monkeys as subjects (Steckenfinger & Ghazanfar, 2009), and similar methods have also 

been applied to human infants and adults in the study of attractiveness. Micro expressions, 

which convey emotional state, can be measured by optical motion tracking or 

electromyography. These kinds of behavioral metrics can be used to test the predictive 

validity of the developed indices, as can physiological variables, such as heart rate, 

respiration, and galvanic skin response, which can increase in response to fear, an 

emotion associated with uncanny stimuli (Ho et al., 2008). Functional magnetic 

resonance imaging (fMRI) can be used to correlate response strength on the indices with 

brain areas that have been identified with emotions associated with the uncanny valley 

(e.g., fear and anxiety in the central and lateral amygdale and medial hypothalamus, 

Panksepp, 2006; disgust in the anterior insular cortex and frontal operculum, Jabbi, 

Bastiaansen, & Keysers, 2008). 
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6. CONCLUSION 

Although laddering interviews can uncover the underlying reasons for people’s 

behaviors, only in combination with a categorization task will they reveal the “bias blind 

spots” (Pronin, 2002) that the participants assess overestimated and underestimated 

claims, which have been identified in the two comparisons: human versus robot, and 

robot versus animation. People tend to rely on introspective evidence despite the bias 

occurring nonconsciously. For instance, the automatic robot needs its software and 

hardware to work together flawlessly, but people devalue its performance. In other cases, 

people tend to convince themselves that their perceptions reflect reality though reality is 

less undesirable. For example, people still criticize the animation character, asserting that 

it cannot perform proper facial expressions because it is not a real human being, even 

through the character uses advanced motion capture to duplicate real human facial 

expressions. In this study, assessing the uncanny anthropomorphic characters not only 

elicits the eerie feeling but also produces the cognitive biases of the uncanny valley (e.g., 

facial expressions). It gives the researchers insight into human judgment (MacDorman & 

Ishiguro, 2006).  

The improved set of uncanny valley indices confirms the measures for human 

perceptions of anthropomorphic characters that reliably assess relatively independent 

individual attitudes (Ho & MacDorman, 2010). Bartneck and colleagues (2009) note that 

developing indices for robots can benefit robot developers. However, the improved 

indices can also benefit animators. Comparing different characters and feature settings by 

means of the same index will help developers in making design decisions. The indices 

revised in this study have four advantages. First, they have excellent psychometric 
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properties. The theoretical structure keeps constant for both male and female participants 

and the large scale testing. Second, the internal reliability of the three indices are high. 

Third, the eeriness index, which could serve as the y-axis in Mori’s graph, not only 

measures its named concept well but also is decorrelated from the x-axis, humanness as 

well as other contenders for the y-axis, the attractiveness and warmth indices.  

The apparent independence of the humanness and eeriness indices enables 

anthropomorphic characters to be plotted along nearly orthogonal axes, as implied by 

Mori’s (1970) original graph of the uncanny valley. Confirmatory factor analysis was 

used to verify the theoretical structure of the indices. The results indicate the 

development of robust instruments for the measurement of attractiveness, eeriness, and 

humanness. Fourth, the stimuli presented in this study were not limited to humanlike 

robots; they included computer-generated human characters. This study widens the range 

of stimuli to which the indices may be applied. 
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7. APPENDICES 

7.1 IRB Statement 
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7.2 Questionnaires  

Importance of items (3-point scale: Not important/Moderately important/Very 

important) 

1. Perceived Humanness  

1. Artificial–Natural 

2. Synthetic–Real 

3. Inanimate–Living 

4. Human-made–Humanlike 

5. Mechanical Movement–Biological Movement 

6. Without Definite Lifespan–Mortal 

2. Eeriness 

1. Reassuring–Eerie 

2. Numbing–Freaky 

3. Ordinary–Supernatural 

4. Uninspiring–Spine-tingling 

5. Boring–Shocking 

6. Predictable–Thrilling 

7. Bland–Uncanny 

8. Unemotional–Hair-raising 

3. Attractiveness 

1. Unattractive–Attractive 

2. Ugly–Beautiful 

3. Repulsive–Agreeable 
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4. Crude–Stylish 

5. Messy–Sleek 
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Mori (1970) proposed a hypothetical graph describing a nonlinear relation between a character’s degree
of human likeness and the emotional response of the human perceiver. However, the index construction
of these variables could result in their strong correlation, thus preventing rated characters from being
plotted accurately. Phase 1 of this study tested the indices of the Godspeed questionnaire as measures
of humanlike characters. The results indicate significant and strong correlations among the relevant indi-
ces (Bartneck, Kulić, Croft, & Zoghbi, 2009). Phase 2 of this study developed alternative indices with non-
significant correlations (p > .05) between the proposed y-axis eeriness and x-axis perceived humanness
(r = .02). The new humanness and eeriness indices facilitate plotting relations among rated characters of
varying human likeness.

! 2010 Elsevier Ltd. All rights reserved.

1. Plotting emotional responses to humanlike characters

Mori (1970) proposed a hypothetical graph describing a nonlin-
ear relation between a character’s degree of human likeness and
the emotional response of the human perceiver (Fig. 1). The graph
predicts that more human-looking characters will be perceived as
more agreeable up to a point at which they become so human peo-
ple find their nonhuman imperfections unsettling (MacDorman,
Green, Ho, & Koch, 2009; MacDorman & Ishiguro, 2006; Mori,
1970). This dip in appraisal marks the start of the uncanny valley
(bukimi no tani in Japanese). As characters near complete human
likeness, they rise out of the valley, and people once again feel at
ease with them. In essence, a character’s imperfections expose a
mismatch between the human qualities that are expected and
the nonhuman qualities that instead follow, or vice versa. As an
example of things that lie in the uncanny valley, Mori (1970) cites
corpses, zombies, mannequins coming to life, and lifelike pros-
thetic hands.

Assuming the uncanny valley exists, what dependent variable is
appropriate to represent Mori’s graph? Mori referred to the y-axis
as shinwakan, a neologism even in Japanese, which has been vari-
ously translated as familiarity, rapport, and comfort level. Bart-
neck, Kanda, Ishiguro, and Hagita (2009) have proposed using
likeability to represent shinwakan, and they applied a likeability in-
dex to the evaluation of interactions with Ishiguro’s android dou-
ble, the Geminoid HI-1. Likeability is virtually synonymous with

interpersonal warmth (Asch, 1946; Fiske, Cuddy, & Glick, 2007;
Rosenberg, Nelson, & Vivekananthan, 1968), which is also strongly
correlated with other important measures, such as comfortability,
communality, sociability, and positive (vs. negative) affect (Abele &
Wojciszke, 2007; MacDorman, Ough, & Ho, 2007; Mehrabian &
Russell, 1974; Sproull, Subramani, Kiesler, Walker, & Waters,
1996; Wojciszke, Abele, & Baryla, 2009). Warmth is the primary
dimension of human social perception, accounting for 53% of the
variance in perceptions of everyday social behaviors (Fiske, Cuddy,
Glick, & Xu, 2002; Fiske et al., 2007; Wojciszke, Bazinska, & Jawor-
ski, 1998).

Despite the importance of warmth, this concept misses the es-
sence of the uncanny valley. Mori (1970) refers to negative shinwa-
kan as bukimi, which translates as eeriness. However, eeriness is
not the negative anchor of warmth. A person can be cold and dis-
agreeable without being eerie—at least not eerie in the way that an
artificial human being is eerie. In addition, the set of negative emo-
tions that predict eeriness (e.g., fear, anxiety, and disgust) are more
specific than coldness (Ho, MacDorman, & Pramono, 2008). Thus,
shinwakan and bukimi appear to constitute distinct dimensions.

Although much has been written on potential benchmarks for
anthropomorphic robots (for reviews see Kahn et al., 2007; Mac-
Dorman & Cowley, 2006; MacDorman & Kahn, 2007), no indices
have been developed and empirically validated for measuring shin-
wakan or related concepts across a range of humanlike stimuli,
such as computer-animated human characters and humanoid ro-
bots. The Godspeed questionnaire, compiled by Bartneck, Kulić,
Croft, and Zoghbi (2009), includes at least two concepts, anthropo-
morphism and likeability, that could potentially serve as the x- and
y-axes of Mori’s graph (Bartneck, Kanda, et al., 2009). Although the
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Godspeed questionnaire lists semantic differential items for each
concept, the indices corresponding to these concepts have not been
empirically tested as a group for overall reliability and validity. In
addition, there is no index corresponding specifically to eeriness, a
dimension that is arguably distinct from likeability but neverthe-
less important in determining whether a human-looking character
has fallen into the uncanny valley.

Phase 1 of the current study evaluates the Godspeed indices
based on participant ratings of computer-animated human charac-
ters and humanoid robots presented in video clips. The perfor-
mance of the Godspeed indices in Phase 1 is used in Phase 2 to
benchmark progress toward developing a new set of uncanny val-
ley indices. The new set includes eeriness as a possible dimension
for the y-axis in Mori’s graph and decorrelates eeriness from
humanness and warmth. Indices for humanness, eeriness, warmth,
and attractiveness were developed in two rounds of testing using
five methods of analysis: (1) adjectives that could serve as poten-
tial anchors for semantic differential items were selected for each
index and rated on their positive (vs. negative) affect, and inversely
correlated adjectives that had similar affective ratings were paired
in semantic differential items; (2) reliability analysis was used to
remove less reliable items from each index; (3) exploratory factor
analysis was used to determine the geometric solution of the indi-
ces by oblique rotation; (4) correlation analysis was used to decor-
relate the indices from interpersonal warmth; and (5) confirmatory
factor analysis was used to test their theoretical structure.

2. An empirical analysis of the Godspeed indices

Bartneck, Kulić, et al. (2009) assembled five indices composed of
semantic differential items in the Godspeed questionnaire to assist
developers in creating embodied social agents. The indices are
anthropomorphism (Powers & Kiesler, 2006), animacy (converted
from Likert scales; Lee, Park, & Song, 2005), likeability (Monahan,
1998), perceived intelligence (Warner & Sugarman, 1996), and per-
ceived safety (Kulić & Croft, 2007). The purpose of Phase 1 of this
study is twofold: to test for the first time the validity, reliability,
and theoretical structure of these indices as a set for a range of ro-
bots and computer-animated human characters and, specifically,
to determine whether anthropomorphism and likeability are suffi-
ciently decorrelated to serve as x- and y-axes in plotting people’s
emotional response to characters that vary in their degree of per-
ceived human likeness. It should be noted that in the past develop-

ment of these indices, no attempt had been made to decorrelate
them from positive (vs. negative) affect or from each other. As an
example of this, anthropomorphism and animacy have a semantic
differential item in common, artificial–lifelike.

Several of the indices, including anthropomorphism, would ap-
pear to be correlated with positive (vs. negative) affect, interper-
sonal warmth, and likeability, based on the face validity of the
opposing anchors used for their semantic differential items. For
example, fake, moving rigidly, and other anchors used to indicate
low anthropomorphism have a negative nuance compared to nat-
ural, moving elegantly, and other anchors used to indicate high
anthropomorphism. This trend continues for animacy with low ani-
macy anchors like dead, stagnant, and apathetic and high animacy
anchors like alive, lively, and responsive; for perceived intelligence
with low intelligence anchors like ignorant, foolish, and irresponsi-
ble and high intelligence anchors like knowledgeable, sensible, and
responsible; and for perceived safety with low safety anchors
like agitated and anxious and high safety anchors like calm and
relaxed.

Given that interpersonal warmth is the dominant dimension of
human social perception and the apparent alignment of the an-
chors with positive and negative affect, a general concern is that
each of the Godspeed indices may not measure the concept after
which it was named but instead measures some convolution of
that concept and interpersonal warmth. A more specific concern
for our study is that, if anthropomorphism and likeability are
strongly correlated, a scatter plot of characters rated along these
axes will be highly skewed (Fig. 2). The plot will not accurately de-
pict the characters’ scores on the convoluted variable, and topolog-
ical relations will be distorted.

2.1. Research methods

2.1.1. Participants
Participants were recruited from a list of randomly selected

undergraduate students and recent graduates of a nine-campus
Midwestern university. Among the 384 participants, 161 (41.9%)
were male and 223 (58.1%) were female, 187 (48.7%) were under
20 years old, 162 (42.2%) were 21 to 25 years old, and 35 (9.1%)
were over 26 years old. The participants reflected the demograph-
ics of the university’s undergraduate population (80.1% non-His-
panic white, 6.9% African-American, 3.4% Asian, 3.0% Hispanic,
and 6.6% foreign or unclassified). With respect to the sample’s rep-
resentativeness of the undergraduate population as a whole, the
measurement error range was ±5.0% at a 95% confidence level.
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Fig. 2. Plotting an index that is a composite of two or more dimensions on a single
axis distorts topological relations among observations. To illustrate this, four
characters, labeled A, B, C, and D, are plotted against the humanness and warmth
axes for the graph on the left and the humanness + warmth and warmth axes for the
graph on the right. For the graph on the right, the degree of humanness of the low
humanness character C and the high humanness character D cannot be distin-
guished. In addition, C is closer to A than B, and D is closer to B than A, although the
distances should be equal.

industrial robot

humanoid robot

stuffed animal

corpse prosthetic hand

zombie

bunraku puppet

{uncanny valley

healthy
person

moving
still

human likeness         50%                               100%

co
m

fo
rt

 le
ve

l (
sh

in
w

ak
an

)  
   

 +

Fig. 1. Mori (1970) proposed a nonlinear relation, which is intensified by
movement, between a character’s degree of human likeness and the human
perceiver’s emotional response. The dip in emotional response just before total
human likeness is referred to as the uncanny valley.
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There were no significant differences among the studies reported
in this paper by gender or age.

2.1.2. Materials and procedures
Each participant viewed 10 video clips presented one at a time in

random order (see Fig. 3). There were five video clips of three-
dimensional computer-animated characters and five of robots. The
video clips were displayed using a width of 480 pixels and a height
of 360 pixels, which is a 4:3 aspect ratio. The clips were 15–30 s in
length. Clips were played in a continuous loop while participants an-
swered a survey on the figure featured in each video clip.

The survey consisted of the Godspeed questionnaire, which is
composed of five indices and 24 semantic differential items. The
anthropomorphism index has five items, the animacy index has
six items, the likeability index has five items, the perceived intelli-

gence index has five items, and the perceived safety index has three
items (Table 1).

2.1.3. Statistical analysis
Cronbach’s a was used to measure the reliability of each index.

Confirmatory factor analysis was used to verify whether the 24
semantic differential items divide into five factors corresponding
to the five Godspeed indices. If the results of confirmatory factor
analysis were inconsistent with the construct dimensions, the
items could not represent the concepts of the indices. In addition,
correlation analysis was used to evaluate the relation among the
indices and to test their discriminant validity. Multidimensional
scaling (MDS) was used to create a (Euclidean) distance matrix
for all pairs of the 24 semantic differential items to approximate
their distance from each other in a space that has been reduced

Fig. 3. The five video clips on the top row contain computer-animated human characters from the films (1) Final Fantasy: The Spirits Within, (2) The Incredibles, and (3) The
Polar Express, (4) an Orville Redenbacher popcorn advertisement, and (5) a technology demonstration of the Heavy Rain video game. The remaining five video clips contain (6)
iRobot’s Roomba 570, (7) JSK Laboratory’s Kotaro, (8) Hanson Robotics’s Elvis and (9) Eva, and (10) Le Trung’s Aiko.

Table 1
Structural coefficients for the Godspeed indices.

Itemsa Anthropomorphism Animacy Likeability Perceived intelligence Perceived safety

Machinelike–Humanlike .89 – – – –
Artificial–Lifelike .87 – – – –
Fake–Natural .85 – – – –
Unconscious–Conscious .76 – – – –
Moving rigidly–Moving elegantly .76 – – – –
Mechanical–Organic – .88 – – –
Artificial–Lifelike – .87 – – –
Dead–Alive – .79 – – –
Stagnant–Lively – .64 – – –
Apathetic–Responsive – .59 – – –
Inert–Interactive – .57 – – –
Awful–Nice – – .86 – –
Unpleasant–Pleasant – – .85 – –
Dislike–Like – – .83 – –
Unfriendly–Friendly – – .81 – –
Unkind–Kind – – .81 – –
Ignorant–Knowledgeable – – – .81 –
Unintelligent–Intelligent – – – .79 –
Incompetent–Competent – – – .78 –
Foolish–Sensible – – – .74 –
Irresponsible–Responsible – – – .70 –
Agitated–Calm – – – – .84
Anxious–Relaxed – – – – .70
Surprised–Quiescent – – – – .19

Cronbach’s a .91 .88 .92 .87 .60

Model v2 df GFI AGFI
3927.25 242 .86 .82
NFI CFI RMR RMSEA
.98 .98 .086 .088

a Items are sorted by the factor loading of each index.
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from 24 to 2 dimensions. The distance matrix was used to visualize
similarities and dissimilarities among the items. Internal reliability
and correlation analysis were performed using SPSS, confirmatory
factor analysis was performed using LISREL, and multidimensional
scaling was performed using MATLAB.

2.2. Results

To confirm the reliability and the validity of the Godspeed indi-
ces, an internal reliability test was conducted. The results showed
that the likeability and anthropomorphism indices had the highest
reliability with a Cronbach’s a of .92 and .91, respectively. The
Cronbach’s a of animacy and perceived intelligence was .88 and
.87, respectively. However, perceived safety had low reliability with
a Cronbach’s a of .60, which is below the standard .70 cutoff (Nun-
nally, 1978).

Confirmatory factor analysis was used to test the theoretical
structure of the Godspeed indices. Table 1 shows the factor load-
ings of the 24 semantic differential items. In the model, two good-
ness-of-fit indices (RMR = .086; RMSEA = .088) exceeded the
standard .05 cutoff, indicating that the 24 semantic differential
items did not fit well in the structure of these five indices
(v2 = 3927.25, CFI = .98, NFI = .98, GFI = .86, AGFI = 0.82; Bentler,
1990; Chin & Todd, 1995; Gefen, Straub, & Boudreau, 2000). A seri-
ous problem was that several factor loadings could not reach a high
level, such as stagnant–lively, inert–interactive, and apathetic–
responsive for animacy and surprised–quiescent for perceived safety.
The result is that the latent constructs could not capture more than
half their variances.

Another serious problem was the significant and extremely high
correlation between anthropomorphism, likeability, animacy, and
perceived intelligence (Table 2). The correlations ranged from .67
for anthropomorphism and perceived intelligence to .89 for anthropo-
morphism and animacy. This suggests that those concepts had no
discriminant validity. In other words, they were all measuring
the same concept instead of measuring distinct concepts.

Multidimensional scaling was performed on the 24 semantic
differential items. Fig. 4 shows that semantic differential items
belonging to the anthropomorphism and animacy indices are dis-
tributed across a large overlapping region. Although the likeability
items are packed closely together, they are wholly contained with-
in the region circumscribed by the anthropomorphism and animacy
items. The MDS results indicate that the anthropomorphism, anima-
cy, and likeability indices are unable to measure distinctly their cor-
responding concepts.

The conclusion that the Godspeed indices lack discriminant
validity is further supported by the fact that the spread of data
points in a scatter plot followed a diagonal line of humanness: all
the robots were located in the lower-left area, and the computer-
animated human characters were located in the upper-right area
(Figs. 5–7). Likeability was significantly (p = .000) and highly corre-
lated with anthropomorphism (r = .73), animacy (r = .74), and per-
ceived intelligence (r = .71). These findings indicate that the
Godspeed indices could not measure the intended concepts inde-

pendently of positive (vs. negative) affect. In addition, the anthro-
pomorphism index could not separate the robots by their degree
of humanness despite a nonanthropomorphic robot, Roomba 570,
being included in the group.

3. The development of humanness, warmth, eeriness, and
attractiveness indices

The results of Phase 1 of this study found that the Godspeed
indices did not represent their concepts independently of positive
(vs. negative) affect. Hence, in Phase 2 an alternative set of indices
is developed to measure participants’ attitudes toward anthropo-
morphic characters: perceived humanness, warmth, eeriness, and
attractiveness.

The first three indices are motivated by the original graph of the
uncanny valley proposed by Mori (1970). Studies on the uncanny
valley typically manipulate as an independent variable a charac-
ter’s ‘‘objective” humanness—the human photorealism of the char-
acter’s morphology, skin texture, motion quality, or other formal
property (MacDorman, Coram, Ho, & Patel, 2010; MacDorman
et al., 2009; Seyama & Nagayama, 2007). However, it is also useful
to have a corresponding measure of its subjective or perceived
humanness to check whether the objective manipulation is having
the intended effect. Interpersonal warmth is useful to include, be-
cause it is the dominant dimension of human social perception and
strongly correlated with concepts identified with shinwakan, the y-
axis of Mori’s graph, such as comfort level, likeability, and rapport.

Table 2
Correlation between anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety.

Anthropomorphism Animacy Likeability Perceived intelligence Perceived safety

Anthropomorphism –
Animacy .89*** –
Likeability .73*** .74*** –
Perceived Intelligence .67*** .72*** .71*** –
Perceived Safety .06** –.01 .20*** .17*** –

** p < .01 (2-tailed).
*** p < .001 (2-tailed).

Machinelike−Humanlike

Artificial−Lifelike
Fake−Natural

Unconscious−Conscious

Moving Rigidly−Moving Elegantly

Mechanical−Organic

Dead−Alive

Stagnant−Lively
Apathetic−Responsive

Inert−Interactive

Awful−Nice

Unpleasant−Pleasant
Dislike−Like

Unfriendly−Friendly
Unkind−Kind

Ignorant−Knowledgeable

Unintelligent−Intelligent
Incompetent−Competent

Foolish−Sensible

Irresponsible−Responsible

Agitated−Calm

Anxious−Relaxed

Surprised−Quiescent

Anthropomorphism
Animacy
Likeability
Perceived Intelligence
Perceived Safety

Fig. 4. Multidimensional scaling of the 24 semantic differential items was
performed based on participant ratings of the figures in the 10 video clips. Items
from the anthropomorphism and animacy indices are spread out across a large
overlapping region, which includes the likeability items.
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Eeriness, which is conceptually distinct from negative warmth (i.e.,
interpersonal coldness), would need to be included in any set of
indices on the uncanny valley, as it corresponds to the phenome-
non to be explained.

An attractiveness index is included, because physical attractive-
ness is an important dimension in explanations of the uncanny val-
ley based on evolved perceptual and cognitive mechanisms for
mate selection and pathogen avoidance (MacDorman & Ishiguro,
2006; MacDorman et al., 2009). Bilateral symmetry, clear skin, cer-
tain proportions of the face and body, and other observable mark-
ers of attractiveness are correlated with reproductive fitness as
measured by a range of physiological variables, including sperm
count, strength of female orgasm, hormonal and immune system
levels, and the ability to conceive (Jasienska, Ziomkiewicz, Ellison,
Lipson, & Thune, 2004; Jones, Little, & Perrett, 2004; Manning,
Scutt, & Lewis-Jones, 1998; Thornhill & Gangestad, 1993; Thornhill,
Gangestad, & Comer, 1995). There is an extensive literature explor-
ing the evolutionary and cultural basis for perceptions of attrac-
tiveness and their pervasive impact on human behavior
(Cunningham, Roberts, Barbee, Druen, & Wu, 1995; Jones, 1995;
Langlois et al., 1987; Langlois et al., 2000). Attractiveness is known
to influence many kinds of decisions, even without principled rea-
sons, including decisions of moral consequence (Cunningham,
1986). Therefore, it is important to control for the effects of attrac-
tiveness in studies on the uncanny valley.

3.1. Research goal

The goal of Phase 2 of this study is to develop valid and reliable
indices for perceived humanness, warmth, eeriness, and attractive-
ness based on corresponding semantic differential items, such that
perceived humanness and eeriness are not significantly correlated
with each other or with warmth or attractiveness. The naïve devel-
opment of perceived humanness and eeriness indices could con-
found these dimensions with interpersonal warmth. If eeriness,
for example, were strongly correlated with interpersonal warmth,
wicked but artfully rendered villains might be rated eerier than
amiable but uncanny-looking heroes (e.g., the queen in Walt Dis-
ney’s 1937 hand-animated film Snow White versus the conductor
in Robert Zemeckis’s 2004 computer-animated film The Polar Ex-
press). Such an index would not be able to detect characters that
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had fallen into the uncanny valley as described by Mori (1970). In
this study, decorrelation between indices was achieved for eeriness
but only partly achieved for perceived humanness.

Semantic differential items were used in Phase 2, because they
can reduce acquiescence bias (i.e., the tendency of participants to
agree with statements) without lowering psychometric quality
(Friborg, Martinussen, & Rosenvinge, 2006; Lorr & Wunderlich,
1988). To decorrelate the humanness, eeriness, and attractiveness
indices from interpersonal warmth, the opponent adjective pairs
of their semantic differential items went through a process of
selection to find adjectives that have about the same level of posi-
tive (vs. negative) affect. These adjectives are paired in semantic
differential scales so the indices that accumulate their values are
not correlated with positive (vs. negative) affect. In addition, this
study attempts to adhere to the following guidelines in construct-
ing humanness, eeriness, and attractiveness indices: (1) the oppo-
nent adjective pairs should be moderately or strongly inversely
correlated; (2) items corresponding to a single, unidimensional
concept should load on the same factor when applying exploratory
factor analysis as a heuristic tool for index development (Comrey,
1978); (3) the positive and negative anchors of eeriness and
humanness adjective pairs should be nearly uncorrelated with
the warmth or pleasure indices, and the attractiveness item pairs
should have at most a medium correlation; (4) there should be
at least three semantic differential scales per index to enable the
estimation of reliability; and (5) the reliability of the indices should
be acceptable (Cronbach’s a P .70).

3.2. Methods

3.2.1. Participants
In the initial round of testing, there were 19 participants, 13

(68.4%) male and 6 (31.6%) female, of whom 7 (36.8%) were 21–
25 years old, 4 (21.1%) were 26–30, 5 (26.3%) were 31–35, and 3
(15.8%) were over 36. Most participants were human–computer
interaction (HCI) graduate students, young professionals, and
HCI-related professionals.

In the second round of testing, participants were recruited from
a random selection of undergraduate students and recent gradu-
ates of a nine-campus Midwestern university. Among the 253 par-
ticipants, 112 (44.3%) were male and 141 (55.7%) were female, 216
(85.4%) were under 25 years old, 20 (7.9%) were 26–30, and 17
(6.7%) were over 31. The participants reflected the demographics
of the university’s undergraduate population. The measurement
error range was ±6.16% at a 95% confidence level.

3.2.2. Materials and procedures
The video clips and method of presentation were the same as in

the previous study. Each participant viewed 10 video clips pre-
sented one at a time in random order (see Fig. 3). There were five
video clips of three-dimensional computer-animated characters
and five of robots. The video clips were displayed using a width
of 480 pixels and a height of 360 pixels, which is a 4:3 aspect ratio.
Most clips were 15–30 s in length. Clips were played in a continu-
ous loop while participants answered a survey on the figure fea-
tured in each video clip. The initial round of the survey consisted
of 22 semantic differential items: seven from the perceived human-
ness index, eight from the eeriness index, and seven from the attrac-
tiveness index. The second round of the survey consisted of 29
semantic differential items: 10 from the humanness index, 8 from
the eeriness index, and 11 from the attractiveness index.

3.2.3. Statistical analysis
Internal reliability was used to measure how reliable items

were for their indices in each round of testing. Exploratory factor
analysis, which applied the principal components analysis method

and the Promax rotation, was used to verify that the semantic dif-
ferential items loaded on factors corresponding to their named
concepts. In addition, artificial–natural in the humanness index,
reassuring–eerie in the eeriness index, and unattractive–attractive
in the attractiveness index were chosen as ‘‘sanity check” items to
verify the correctness of indices. A sanity check item has high face
validity but does not necessarily meet the other criteria for an item,
such as being correlated with interpersonal warmth. If the results
of factor analysis varied from the sanity check’s dimension and
showed low factor loadings, new items should be developed and
added to the index in the next round. Correlation analysis showed
the relation between indices and verified the discriminant validity
of indices during testing. Confirmatory factor analysis was used to
verify the theoretical structure of the new set of uncanny valley
indices. Finally, multidimensional scaling was used to visualize
similarities and dissimilarities among the semantic differential
items by reducing the dimensionality of the space from 19 to 2
dimensions. Internal reliability, exploratory factor analysis, and
correlation analysis were performed using SPSS, confirmatory fac-
tor analysis was performed using LISREL, and multidimensional
scaling was performed using MATLAB.

3.3. Results

3.3.1. Humanness index
A pool of seven items was initially selected for the humanness

index (see Table 3). Artificial–natural was the sanity check for the
humanness index. The overall internal reliability of the initial test
was relatively high (Cronbach a = .85). The initial exploratory fac-
tor analysis with no iterations showed all items loaded on a single
factor that explained 57.33% of the variance. The reliability was im-
proved by removing genderless–male or female, uncommunicative–
bigmouthed, and automatic–deliberate.

These items were replaced with inanimate–living, mechanical
movement–biological movement, and synthetic–real in the second
round of testing. The internal reliability in the second round of
testing remained the same. As with the initial round of testing,
exploratory factor analysis extracted (with no iterations) one ma-
jor factor that explained 60.79% of the variance. However, the new-
ly added items contributed higher factor loadings than those of
genderless–male or female, uncommunicative–bigmouthed, and auto-
matic–deliberate.

In the final version of the index, artificial–natural, human-made–
humanlike, without definite lifespan–mortal, inanimate–living,

Table 3
Reliability and factor loadings of the humanness index.

Itemsa Round
1

Round
2

Final

Artificial–Naturalb .83 .87 .90
Human-made–Humanlike .82 .85 .88
Innocent of Morals–Aware of Right and

Wrongd
.82 .77 –

Without Definite Lifespan–Mortal .81 .84 .85
Genderless–Male or Femaled .71 .63 –
Uncommunicative–Bigmouthedd .66 .62 –
Automatic–Deliberated .62 .52 –
Inanimate–Livingc – .86 .88
Mechanical Movement–Biological Movementc – .86 .86
Synthetic–Realc – .86 .90

Total variance explained 57.33% 60.79% 68.96%

Cronbach’s a .85 .85 .92

a Items are sorted by the factor loading of the initial round of testing.
b The sanity check.
c Items added in the second round of testing.
d Items excluded from the final version.
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mechanical movement–biological movement, and synthetic–real were
the measurement items. Therefore, the final version of the human-
ness index would retain six items. Its internal reliability was high
(Cronbach’s a = .92), and it explained 68.96% of the variance.

3.3.2. Eeriness index
A pool of eight items was initially selected for the eeriness index

(see Table 4). Reassuring–eerie was the sanity check for the eeriness
index. The overall internal reliability in the initial round of testing
was .80. The initial exploratory factor analysis with three iterations
showed that two major factors were extracted. Reassuring–eerie,
numbering–freaky, bland–uncanny, and ordinary–supernatural
loaded on the first factor, which explained 43.42% of the variance.
The internal reliability of the first factor was .76. Unemotional–hair-
raising, uninspiring–spine-tingling, boring–shocking, and predicable–
thrilling loaded on the second factor, which explained 19.80% of
the variance. The internal reliability of the second factor was .79.

Because the initial results met the reliability criterion, the sec-
ond round of testing was followed by exploratory factor analysis
to check whether the items represented the eeriness index appro-
priately. Although the internal reliability of the second round of
data was .74, the exploratory factor analysis result with three iter-
ations was similar to the initial testing. Unemotional–hair-raising,
uninspiring–spine-tingling, boring–shocking, predicable–thrilling,
and bland–uncanny loaded on the first dimension, which explained
38.40% of the variance. Reassuring–eerie, numbering–freaky, and or-
dinary–supernatural loaded on the second dimension, which ex-
plained 22.93% of the variance.

Because the two dimensions explained sufficient variance and
were both relevant to the concept of eeriness, all items in the
eeriness index were retained in the final version. For follow-up
confirmatory factor analysis, the factor corresponding to the
reassuring–eerie, numbering–freaky, and ordinary–supernatural
items was referred to as eerie, and its internal reliability was .71;
the factor corresponding to the unemotional–hair-raising, uninspir-
ing–spine-tingling, boring–shocking, predicable–thrilling, and
bland–uncanny items was referred to as spine-tingling, and its
internal reliability was .81. Therefore, the final version of the
eeriness index would retain eight items that explained 62.04% of
the variance and held an overall internal reliability of .74.

3.3.3. Attractiveness index
A pool of seven items was initially selected for the attractiveness

index (see Table 5). Opponent adjectives that were rated as having
similar levels of positive (vs. negative) affect were paired in seman-
tic differential items. Unattractive–attractive was the sanity check
for the attractiveness index. The initial internal reliability was .78.
The initial exploratory factor analysis with three iterations ex-
tracted two major factors. Unpretentious–alluring, prim–eye-catch-
ing, modest–sensual, unadorned–showy, and plain-featured–racy
loaded on the first factor, which explained 44.09% of the variance.
Only homely–slick was grouped with unattractive–attractive in the
second factor, which explained 14.83% of the variance.

The initial result’s first factor did not contain unattractive–
attractive and thus did not appear to be measuring attractiveness.
Therefore, four items were added in the second round of testing:
ugly–beautiful, repulsive–agreeable, crude–stylish, and messy–sleek.
The internal reliability of the data in the second round of testing
was .84. Although exploratory factor analysis extracted two factors
in three iterations, the four newly added items loaded on the same
factor as unattractive–attractive, and this factor explained 39.75% of
the variance. The cronbach’s a of these five items was .90. The final
version of the attractiveness index would retain these five items,
which explained 70.93% of the variance. Although these items
had high reliability and face validity, the opponent adjectives did
not have the same level of positive (vs. negative) affect. Thus, the
items would be unlikely to meet the goal of decorrelating attrac-
tiveness from warmth.

3.3.4. Pleasure and warmth indices
Sad–happy, bad–good, terrible–wonderful, and annoyed–pleased

comprised the pleasure index in the initial round of testing. The
internal reliability of the pleasure index was acceptable (Cronbach’s
a = .79). The pleasure index was used to assess the correlations
among indices. If the attractiveness, humanness, and eeriness indices
correlated highly with the pleasure index, it means that the positive
(vs. negative) affect in these indices might dilute their discriminant
validity. Cold-hearted–warm-hearted, hostile–friendly, spiteful–well-
intentioned, ill-tempered–good-natured, and grumpy–cheerful
comprised the warmth index in the second round of testing. The
internal reliability of the warmth index was high (Cronbach’s

Table 4
Reliability and factor loadings of the eeriness index.

Itemsa Round 1 Round 2 Final

Factor
1

Factor
2

Factor
1

Factor
2

Factor
1

Factor
2

Reassuring–Eerieb .91 !.34 !.22 .87 !.22 .87
Numbing–Freaky .80 .06 .05 .82 .05 .82
Ordinary–

Supernatural
.68 .13 .20 .67 .20 .67

Bland–Uncanny .68 .16 .70 .09 .70 .09
Unemotional–

Hair-raising
!.14 .85 .75 !.23 .75 !.23

Uninspiring–
Spine-tingling

.05 .82 .78 .08 .78 .08

Predictable–
Thrilling

!.08 .75 .76 !.09 .76 !.09

Boring–Shocking .32 .66 .77 .17 .77 .17

Total variance
explained

43.42% 19.80% 38.40% 22.93% 38.40% 22.93%

Cronbach’s a .76 .79 .81 .71 .81 .71

Overall Cronbach’s
a

.80 .74 .74

a Items are sorted by the factor loading of the initial round of testing.
b The sanity check.

Table 5
Reliability and factor loadings of the attractiveness index.

Itemsa Round 1 Round 2 Final

Factor 1 Factor 2 Factor 1 Factor 2

Unpretentious–
Alluringd

.75 .07 .22 .57 –

Modest–Sensuald .75 .02 !.10 .70 –
Plain-featured–Racyd .74 !.05 !.09 .77 –
Unadorned–Showyd .73 !.05 !.03 .71 –
Prim–Eye-catchingd .73 !.01 .07 .62 –
Homely–Slickd !.15 .92 .35 .26 –
Unattractive–

Attractiveb
.21 .69 .84 .05 .87

Repulsive–Agreeablec – – .88 !.18 .82
Ugly–Beautifulc – – .86 .04 .88
Messy–Sleekc – – .81 !.04 .79
Crude–Stylishc – – .80 .06 .82

Total variance
explained

44.09% 14.83% 39.75% 16.32% 70.93%

Cronbach’s a .79 .49 .87 .72 .90

Overall Cronbach’s a .78 .84 .90

a Items are sorted by the factor loading of the initial round of testing.
b The sanity check.
c Items added in the second round of testing.
d Items excluded from the final version.
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a = .88). Like the pleasure index, the warmth index in the second
round of testing was designed to assess its correlation with other
indices. If any index showed a high correlation with the warmth in-
dex, its items should be modified to eliminate this correlation.

3.3.5. Validation of the final version of the indices
Based on two rounds of testing, five items were constructed for

the final version of the attractiveness index, eight items were con-
structed for the eeriness index, and six items were constructed for
the humanness index (Tables 3–5). Confirmatory factor analysis
was used to test the theoretical structure of the final set. Table 6
shows the factor loadings for the 19 semantic differential items
of the final set. Although one goodness-of-fit index (RMSEA = .075)
slightly exceeded the cutoff of .05, the other goodness-of-fit indices
indicated that the 19 semantic differential items fit moderately
well within the structure of these indices (v2 = 1229.29, CFI = .97,
NFI = .97, GFI = .91, AGFI = 0.88; Bentler, 1990; Chin & Todd,
1995; Gefen et al., 2000).

The correlation analysis indicated that the indices retained their
construct validity (Table 7). In the final version, the attractiveness
index had no significant correlation with eeriness (r = !.03,
p = .316). The correlation of the attractiveness and eeriness indices
with positive (vs. negative) affect was effectively eliminated. In
addition, the eeriness index had no significant correlation with
the humanness index (r = .02, p = .514).

Multidimensional scaling was performed on the 19 semantic
differential items. Fig. 8 shows that semantic differential items
belonging to the humanness, eeriness, and attractiveness indices
are in three distinct, nonoverlapping regions. The three items
belonging to the eerie subfactor and the five items belonging to
the spine-tingling subfactor of the eeriness index (listed in Table 6)
are also widely separated. These MDS results indicate that the per-

ceived humanness, eeriness, and attractiveness indices can measure
distinctly their corresponding concepts.

The scatter plot shows that humanness and eeriness were decor-
related (Fig. 9), and warmth and eeriness were also decorrelated
(Fig. 10). The data points did not follow a diagonal line as they
had in the Godspeed indices. The insignificant correlation of the
eeriness and humanness indices revealed that the final version of
these indices could have good discriminant validity and high reli-
ability. The eeriness index also had an insignificant correlation with
the warmth index (r = !.05, p = .083). Although the attractiveness
index yielded a high correlation with the humanness index
(r = .61, p = .000), the data points vertically aligned into two main
groups. Specifically this analysis showed that the attractiveness
and humanness indices were somewhat less affected by positive
(vs. negative) affect than anthropomorphism in the Godspeed indi-
ces. Although the humanness index was not correlated with the
eeriness index after two rounds of testing, the humanness index
maintained a high correlation with the warmth index (r = .66,
p = .000). This analysis indicated that the notion of warmth might
strongly overlap with the concept of humanness in practical cir-
cumstances. It is difficult to obtain discriminant validity; however,
this may be improved in future studies.

4. Discussion

In Phase 1 of this study, the results of the validity analysis iden-
tified several problems with the Godspeed indices. The reliability

Table 6
Structural coefficients for the semantic differential items.

Itemsa Perceived
Humanness

Eeriness Attractiveness

Eerie Spine-
tingling

Artificial–Natural .89 – – –
Synthetic–Real .87 – – –
Inanimate–Living .86 – – –
Human-made–Humanlike .84 – – –
Mechanical Movement–

Biological Movement
.83 – – –

Without Definite
Lifespan–Mortal

.80 – – –

Reassuring–Eerie – .79 – –
Numbing–Freaky – .69 – –
Ordinary–Supernatural – .55 – –
Uninspiring–Spine-

tingling
– – .75 –

Boring–Shocking – – .75 –
Predictable–Thrilling – – .66 –
Bland–Uncanny – – .63 –
Unemotional–Hair-

raising
– – .63 –

Unattractive–Attractive – – – .87
Ugly–Beautiful – – – .87
Repulsive–Agreeable – – – .78
Crude–Stylish – – – .75
Messy–Sleek – – – .69

Cronbach’s a .92 .71 .81 .90

Model v2 df GFI AGFI
1229.29 146 .91 .88
NFI CFI RMR RMSEA
.97 .97 .23 .075

a Items sorted by the factor loading of each index.

Table 7
Correlation between the attractiveness, eeriness, humanness, and warmth indices in
the final version.

Attractiveness Eeriness Humanness Warmth

Attractiveness –
Eeriness –.03 –
Humanness .61*** .02 –
Warmth .62*** !.05 .66*** –

*** p < .001 (2-tailed).

Artificial−Lifelike
Synthetic−Real

Inanimate−Living

Human-made−Humanlike

Mechanical Movement−Biological Movement

Without Definite Lifespan−Mortal

Reassuring−Eerie

Numbing−Freaky

Ordinary−Supernatural

Uninspiring−Spine-tingling

Boring−Shocking

Predictable−Thrilling

Bland−Uncanny

Unemotional−Hair-raising

Unattractive−Attractive

Ugly−Beautiful

Repulsive−Agreeable

Crude−Stylish

Messy−Sleek

Perceived Humanness
Eeriness
Attractiveness

Fig. 8. Multidimensional scaling of the 19 semantic differential items was
performed based on participant ratings of the figures in the 10 video clips. Items
from the perceived humanness, eeriness, and attractiveness indices are widely
separated.
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of perceived safety was below the standard .70 cutoff. Confirmatory
factor analysis also found inconsistencies in these indices and indi-
cated that several items should be removed. However, the most
serious problem was that anthropomorphism, animacy, likeability,
and perceived intelligence were highly correlated with each other.
This correlation indicates that they may be measuring the same
concept, not separate concepts. These findings indicate the God-
speed indices are not appropriate as distinct concepts for evaluat-
ing anthropomorphic agents.

Therefore, Phase 2 included a new set of uncanny valley indices.
After two rounds of testing, the developed indices for anthropo-
morphic characters’ attractiveness, eeriness, and humanness were
shown to have high internal reliability. With respect to com-
puter-animated human characters and robots, these indices dem-
onstrate the bipolarity of the semantic space for assessing
people’s emotional responses and judgments of personality traits
(Bentler, 1969; Gärling, 1976; Lorr & Wunderlich, 1988; Rosenberg
et al., 1968; Van Schuur & Kiers, 1994). Exploratory factor analysis
was used to determine which items were retained for each index,
and confirmatory factor analysis was used to verify the theoretical
structure of the indices. Exploratory factor analysis demonstrated a
comprehensive strategy for model selection prior to the validation
by confirmatory factor analysis (Gerbing & Hamilton, 1996). In
general, these indices appear to be valid for measuring their puta-
tive concepts.

4.1. Limitations and future work

The new indices were developed and validated with a particular
set of stimuli, but it is important to retest them with other sets of
stimuli. A limitation of the current set is that there were more non-
human characteristics in the humanoid robots than in the ani-
mated human characters. To increase the variation within each
group, less polished animations should be included, such as those
rendered by video game software engines, and more polished hu-
man-looking robots should also be included, such as the Geminoid
F developed by Hiroshi Ishiguro’s laboratory at Osaka University
and Kokoro Co. Ltd.

There is also considerable individual variation in emotional re-
sponses to humanoid robots and animated human characters. For
example, although some participants were disturbed by the digital
resurrection of the businessman Orville Redenbacher, other partic-
ipants accepted the character as the real person. It is important to
explore demographic factors that may influence the intensity of
emotional responses. Although our study did not find age and gen-
der to be significant factors in our population of undergraduates,
these participant variables may be significant in a more heteroge-
neous sample that includes a broader range of ages. Past research
has indicated that differences of culture and levels of exposure to
robots can have a significant influence on attitudes (MacDorman,
Vasudevan, & Ho, 2009). It is important to test the indices with dif-
ferent populations.

It is also important to apply external criteria to assess the
validity of the developed indices. For example, the microdynam-
ics of interaction between an embodied agent and a human
being can indicate the extent to which the human being is
responding to the agent as if it were human (Cassell & Tartaro,
2007). The same information can also indicate an aversive re-
sponse when the interaction breaks down. Nonverbal behavior,
such as gaze frequency and duration, have been used to deter-
mine preference between still and computer-animated monkeys
in experiments on the uncanny valley that used macaque mon-
keys as subjects (Steckenfinger & Ghazanfar, 2009), and similar
methods have also been applied to human infants and adults
in the study of attractiveness. Facial expressions, which convey
emotional state, can be measured by optical motion tracking
or electromyography. These kinds of behavioral metrics can be
used to test the predictive validity of the developed indices, as
can physiological variables, such as heart rate, respiration, and
galvanic skin response, which can increase in response to fear,
an emotion associated with uncanny stimuli (Ho et al., 2008).
Functional magnetic resonance imaging (fMRI) can be used to
correlate response strength on the indices with brain areas that
have been identified with emotions associated with the uncanny
valley (e.g., fear and anxiety in the central and lateral amygdala

10

9

8

7

6

3

4

1

25

Humanness
3.002.001.000.00-1.00-2.00-3.00

E
er

in
es

s
3.00

2.00

1.00

0.00

-1.00

-2.00

-3.00

Robot
Animation
Video type

R² = .003

Fig. 9. The developed humanness and eeriness indices are not significantly corre-
lated (p = .514, r = .02).

10

9 8

7

6

3

4

12

5

Warmth
3.002.001.000.00-1.00-2.00-3.00

E
er

in
es

s

3.00

2.00

1.00

0.00

-1.00

-2.00

-3.00

Robot
Animation
Video type

R² = .052

Fig. 10. The developed warmth and eeriness indices are not significantly correlated
(p = .083, r = !.05).

1516 C.-C. Ho, K.F. MacDorman / Computers in Human Behavior 26 (2010) 1508–1518



	   89 

 
  

and medial hypothalamus, Panksepp, 2006; disgust in the ante-
rior insular cortex and frontal operculum; Jabbi, Bastiaansen, &
Keysers, 2008).

5. Conclusion

The set of uncanny valley indices developed in the current study
are new measures for human perceptions of anthropomorphic
characters that reliably assess four relatively independent individ-
ual attitudes. Bartneck, Kulić, et al. (2009) note that developing
indices for robots can benefit robot developers. Comparing differ-
ent robots and robot settings by means of the same index will help
developers in making design decisions. The indices developed in
this study have four advantages. First, they have excellent psycho-
metric properties. The factor structure remains constant for both
male and female participants and across two rounds of testing. Sec-
ond, the internal reliability of the four indices is high. Third, the
eeriness index, which could serve as the y-axis in Mori’s graph,
not only measures its named concept well but also is decorrelated
from the humanness, warmth, and attractiveness indices. The appar-
ent independence of the humanness and eeriness indices enables
anthropomorphic characters to be plotted along nearly orthogonal
axes, as implied by Mori’s (1970) original graph of the uncanny val-
ley. Confirmatory factor analysis was used to verify the theoretical
structure of the indices. The results indicate the development of ro-
bust instruments for the dimensions of attractiveness, eeriness,
humanness, and warmth. Fourth, the stimuli presented in this study
were not limited to humanlike robots; they included computer-
generated human characters. This widens the range of stimuli to
which the indices may be applied.
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