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Abstract 

The proportion of transpiration (T) in total evapotranspiration (ET) is an important 

parameter that provides insight into the degree of biological influence on the hydrological 

cycles.  Studies addressing the effects of climatic warming on the ecosystem total water 

balance are scarce, and measured warming effects on the T/ET ratio in field experiments 

have not been seen in the literature.  In this study, we quantified T/ET ratios under 

ambient and warming treatments in a grassland ecosystem using a stable isotope 

approach.  The measurements were made at a long-term grassland warming site in 

Oklahoma during the May-June peak growing season of 2011. Chamber-based methods 

were used to estimate the δ2H isotopic composition of evaporation (δE), transpiration (δT) 

and the aggregated evapotranspiration (δET).  A modified commercial conifer leaf 

chamber was used for δT, a modified commercial soil chamber was used for δE and a 

custom built chamber was used for δET.  The δE, δET and δT were quantified using both the 

Keeling plot approach and a mass balance method, with the Craig-Gordon model 

approach also used to calculate δE.  Multiple methods demonstrated no significant 

difference between control and warming plots for both δET and δT.  Though the chamber-

based estimates and the Craig-Gordon results diverged by about 12‰, all methods 

showed that δE was more depleted in the warming plots.  This decrease in δE indicates 

that the evaporation flux as a percentage of total water flux necessarily decreased for δET 

to remain constant, which was confirmed by field observations.  The T/ET ratio in the 

control treatment was 0.65 or 0.77 and the ratio found in the warming treatment was 0.83 

or 0.86, based on the chamber method and the Craig-Gordon approach.  Sensitivity 

analysis of the Craig-Gordon model demonstrates that the warming-induced decrease in 
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soil liquid water isotopic composition is the major factor responsible for the observed δE 

depletion and the temperature dependent equilibrium effects are minor. Multiple lines of 

evidence indicate that the increased T/ET ratio under warming is caused mainly by 

reduced evaporation. 

Keywords: Climate change, Craig-Gordon model, deuterium, hydrogen, Keeling plot, 
mass balance, spectroscopy, stable isotope
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1.	
  INTRODUCTION	
  

Evapotranspiration (ET) plays a critical role in the hydrological cycle and represents the 

process that links both the energy and water cycles (Wang and Dickinson, 2012).  In 

semi-arid environments, ET is a major pathway of water loss and can account for up to 

95% of the precipitation input (Huxman et al., 2005; Wang et al., 2012a).  Transpiration 

(T), the water vapor loss from plants, is a vegetation-controlled process and T/ET ratios 

reflect the influence of vegetation on the hydrological cycle. T/ET changes in response to 

temperature increases provide important insights into biological feedbacks, especially for 

those that might occur under potential global warming scenarios.  Global warming is 

expected to increase ET and lead to greater aridity in water-limited systems, according to 

many global climate model simulations (Gleick, 1989; Zavaleta et al., 2003).  However, 

these model predictions usually do not consider biological feedbacks, which may be 

important in regulating the overall climate change impacts on water cycling.  In a recent 

investigation, it was observed that increased CO2 can improve plant water use efficiency 

during photosynthesis, possibly counteracting the expected drying due to higher 

temperatures (Morgan et al., 2011).  Nevertheless, the global warming effect on 

ecosystem T/ET changes has not been well investigated and experimental evidence for a 

warming effect on ecosystem T/ET is lacking.  Understanding the implications and 

outcomes of these potential changes in vegetation response to climate change is of 

considerable importance. 

Water isotopes are useful tracers in ecosystem hydrology (Dawson et al., 2002).  

The stable isotope composition (δ2H, δ18O) is defined as δ = (R/Rstd − 1), where R is the 

ratio of rare to common isotope (2H/1H or 18O/16O) of a sample, and Rstd is the ratio of the 
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international standard on the V-SMOW (Vienna Standard Mean Ocean Water)-SLAP 

(Standard Light Antarctic Precipitation) scale. These isotopes can, for example, help 

identify plant water sources (Dawson and Ehleringer, 1991), hydraulic redistribution 

(Dawson, 1993), groundwater recharge rates (Cane and Clark, 1999) as well as 

differential rooting depth among adjacent plants (Jackson et al., 1999).  Most applications 

have used liquid water extracted from soils and plants to follow these ecosystem 

processes, but recent advances in laser spectroscopy have allowed for water vapor 

isotopes to be measured in situ at high temporal resolution (e.g., 1 Hz) with analytical 

uncertainties similar to traditional cryogenic trapping methods (Wen et al., 2008; Wang et 

al., 2009; Wang et al., 2010; Griffis et al., 2011; Zhao et al., 2011).  The development of 

such systems allows for the direct use of δ2H and δ18O to study water vapor dynamics, 

including the partitioning of ET into T and evaporation (E) (Wang et al., 2010). These 

new approaches extend previous work that relied on cryogenic trapping (Harwood et al., 

1998; Moreira et al., 2003; Newman et al., 2010). 

Both δ2H and δ18O provide a unique tool for ET partitioning (e.g., calculating 

T/ET ratios).  The basis for using δ2H and δ18O to partition ET is that evaporation 

significantly fractionates the surface soil water (Luz et al., 2009).  Plants, however, do 

not fractionate water during uptake (White et al., 1985; Ehleringer and Dawson, 1992).  

The isotopic composition of transpiration (δT) is therefore assumed to be equal to the 

isotopic composition of plant source water. This assumption is generally valid for 

timescales much greater than the turnover time of water in the leaves and in the absence 

of rapidly changing environmental conditions because mass balance constraints require 

that the δT should be equal to that of the soil water in the rooting zone. This results in 
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distinct isotopic compositions of evaporation (δE) and δT.  By measuring the isotopic end 

members (δE and δT) along with the isotopic composition of aggregated ET (δET), the 

T/ET ratios can be calculated via mass balance (Wang et al., 2012a).  δET is typically 

measured using a Keeling plot approach in which isotopic compositions of water vapor 

are measured at several heights above the canopy (Keeling, 1958).  The resulting gradient 

in water vapor concentration and isotopic composition is used to extrapolate δET derived 

from the ecosystem.  The δT is typically measured using xylem or stem water under the 

assumption that the isotopic composition of xylem water is equivalent to δT under 

isotopic steady state (e.g., Yepez et al., 2005).  The assumption of isotopic steady state 

can be made during times of high transpiration rate and stable vapor pressure deficit 

(Harwood et al., 1998): but the diurnal periods during which this applies depend on 

environmental conditions and plant species.  Wang et al. (2012b) developed and verified 

a new method that uses a mass balance approach to calculate δT from in situ chamber 

measurements, which is applicable for both steady state and non-steady state conditions 

and is applicable to estimate δET and δE.  The δE has commonly been estimated using the 

Craig-Gordon evaporative fractionation model (Craig and Gordon, 1965), although 

numerical isotope modeling efforts are also widely used (Mathieu and Bariac, 1996; 

Braud et al., 2009; Haverd et al., 2011; Soderberg et al., in press).  

The δ2H and δ18O values between plant organic matter and liquid water in both 

leaf and surrounding environments provide important information on current and past 

environments (Terwilliger et al., 2002; McCarroll and Loader, 2004; Helliker, 2011).  

The utility of these liquid-organic isotopic relationships for generating information about 

the entire Soil-Plant-Atmosphere-Continuum (SPAC) depends on an understanding of 
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how water isotopes change throughout the SPAC, including under warming conditions.  

Here we present work that demonstrates the effectiveness of coupled laser spectroscopy-

chamber based isotope techniques for measuring ET partitioning.  The work was 

performed under ambient and artificially warmed conditions to evaluate the effects of 

warming on the sources of contributions to ET. The objectives of this study are to: 1) 

evaluate the performance of multiple isotope-based ET partition methods for the 

estimation of δE, δET and δT ; 2) combine estimates of δE, δET and δT to partition ET; and 3) 

assess how warming scenarios influence surface vapor flux partitioning..------------------- 

 

2. MATERIALS AND METHODS 

2.1 Study site 
 

The study was conducted at the University of Oklahoma’s Kessler Farm field 

laboratory, which is located in central Oklahoma in the Great Plains of the USA 

(34.982°N, 97.521°W).  The mean annual temperature of this site is 16.0°C with monthly 

mean temperature of 3.1°C in January and 28.0°C in July.  The mean annual rainfall is 

911.4 mm (Oklahoma Meteorological Survey).  The study site is an old field dominated 

by C3 winter annuals of Bromus arvensis L. and Vicia sativa L. in the spring, and in 

summer by the C3 forbs Solanum carolinense L. and Euphorbia dentata  Michx. and the 

perennial C4 grass Tridens flavus (L.) Hitchc.  The present study took advantage of the 

experimental setup of a long-term multiple-factor climate control experiment, which was 

established in 2009 to quantify main versus interactive effects of experimental warming, 

added and reduced precipitation, biomass harvesting on ecosystem processes and 

community structure.  We utilized only the warming and control plots without biomass 
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harvesting and precipitation treatments.  Warming is maintained using infrared heaters 

and the air temperature is approximately 2°C above the ambient.  One ‘‘dummy’’ heater, 

made of metal flashing with the same size and shape as the infrared heaters, was 

suspended in each control plot at the same height and position as in the warmed plots to 

exclude the potential effect of shading.  Four warming plots and four control plots were 

used.  Five extensive field samplings were conducted on May 31, June 3, June 5, June 7 

and June 8, 2011 (only two warming and two control plots were measured on June 3 due 

to pump failure).  There were seven rainfall events in May (1, 8, 11, 12, 19, 20 and 24) 

with a total rainfall of 88 mm for the month preceding the measurements. No rainfall 

events occurred during the measurement period. The vegetation and litter cover survey 

was conducted using a grid method on June 8 for all the measured plots. A 1 m x 0.5 m 

double grid frame defining 50 points was placed in each plot.  For each of the 50 points, 

the presences of either a C3 plant, a C4 plant, litter or bare ground was recorded.  Percent 

plant or litter cover was calculated as the number of total hits of plant or litter from the 

grid frame data divided by the total number of hits (50) and multiplied by 100.  On June 

5th the amount of E and ET (mmol m-2 s-1) were measured using Licor instruments (Licor 

6400 and Licor 8100, LI-COR Biosciences, Lincoln, NE, USA) on permanently installed 

collar and metal frame at each plot. 

2.2 Isotopic flux partitioning 

 The fraction of ET derived from transpiration is found through measurement of 

two isotopic end members (δE and δT) and δET.  Given a simple two-part mixing model 

the transpired fraction is given by  

! 

T
ET

=
"ET #"E
"T #"E

  (e.g., Wang et al., 2010).                                                                        (1) 
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The isotopic compositions of vapor fluxes (δE, δET and δT) were directly quantified from 

each plot using a commercially available and field deployable water vapor isotope 

analyzer (WVIA, DLT-100, Los Gatos Research, Mountain View, CA, USA) in 

conjunction with various chambers.   

Multiple methods have been used to estimate the isotopic composition of vapor 

fluxes, including the Keeling plot approach, mass balance approach, the Craig-Gordon 

model and assumptions based on soil extracted water isotopic values (Wang et al., 2012b; 

Good et al., 2012).  The Keeling plot approach assumes constant concentrations and 

isotopic compositions of the background water vapor.  The isotopic compositions of 

source water vapor (e.g., evaporation, transpiration or evapotranspiration) can be 

calculated as:  

,	
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where δ2ΗM, δ2ΗA and δ2ΗS are the isotopic compositions of mixed water vapor, ambient 

water vapor and source water vapor respectively, cM is the mixed water vapor 

concentration, and cA is the ambient water vapor concentration at the measurement 

location.  The temporal Keeling plot approach (e.g., δ2ΗM varies with time due to source 

additions) was used for δE, δET and δT estimates.  A recent report on the techniques 

suitability for assessing the isotopic composition of fluxes found time-based Keeling 

plots are of similar precision to those based on measurements of vertical profiles, given 

that variability in vapor concentrations are similar (Good et al., 2012). 

The calculation of source water vapor isotopic composition using a mass balance 

approach is calculated as: 

                                  ,      
                                                                                                                              (3) 

δ2Hs =
CMδM − CAδA

CM − CA

δ2HM = cA(δ2HA − δ2Hs)(1/cM ) + δ2HS
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where δ2Ηs is the isotopic composition of source water vapor (e.g., plant transpired water 

or evaporation), CA and CM are the concentrations of ambient and mixed water vapor in 

the chamber  [mol m−3], and δA and δM are the isotopic compositions of ambient and 

mixed water vapor in the chamber. The mass balance approach has been applied to 

directly quantify δT using the laser-based analyzer and transparent leaf chamber (Wang et 

al., 2012b).  A similar setup and calculation procedure was used for δE, δET and δT 

estimates.  

The Craig-Gordon model is a traditional way to estimate δE, and is calculated as: 

,           
                                                                                                                               (4) 

where δE is the isotopic composition of water evaporated from the soil, α is the 

temperature-dependent equilibrium fractionation factor (formulated here as the ratio of 

the vapor phase to liquid phase isotope ratios), which can be calculated based on soil 

temperature (Majoube, 1971), δL is the isotopic composition of liquid water at the 

evaporating front, δA is the isotopic composition of the ambient atmospheric water vapor, 

ε* is calculated as (1-α), εK is the kinetic fractionation factor for hydrogen, and h is the 

relative humidity normalized to the surface soil temperature (Craig and Gordon, 1965; 

Horita et al., 2008).  The εK is calculated as 

!K = n(1! h)
D
Di

!1
"

#
$

%

&
'
rm
r
(103

,              (5) 

where h is the relative humidity normalized to the surface soil temperature, D and Di are 

the diffusivities of the light and heavy isotopologue, with the ratio 1.0251 for hydrogen 

(Merlivat, 1978).  The “weighting term” rm/r is assumed to be 1 for small water bodies. 

The aerodynamic parameter n is taken as 0.5 for turbulent conditions between the 
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evaporating surface and the free atmosphere, and 1.0 for completely laminar flow as in 

dry soils. This parameter can be adjusted from 0.5 in wet soils to 1.0 in dry soils (Mathieu 

and Bariac, 1996).  We set n to 1.0 for our soil moisture levels (1-3 % by volume), which 

are relatively dry, and likely close enough to “residual” moisture content for n to be very 

close to 1.0 (e.g., Soderberg et al., in press). 

2.3 Isotopic composition of vapor fluxes 

 Three methods were used for δT calculation: 1) temporal Keeling plot approach 

(equation 2); 2) the mass balance method (equation 3) (Wang et al., 2012b); and 3) the 

measured isotopic composition of soil extracted water, assuming δT is equal to the 

isotopic composition of source water.  For both the Keeling plot and mass balance 

method, the δM value was measured using the WVIA with a transparent leaf chamber 

modified from a LI-COR conifer chamber (part No. 6400-05, LI-COR Biosciences, 

Lincoln, NE, USA).  The specifics of the leaf chamber have been reported elsewhere 

(Wang et al., 2012b).  To summarize the configuration, the leaf chamber is made of 

Teflon lined transparent plastic with a volume of 150 cm3.  The chamber has a residence 

time of 18 seconds at a flow rate of 500 cm3 per minute.  The base plate of the chamber 

was removed and a 1/4” brass bulkhead was installed to allow the WVIA inlet to connect 

to the chamber base.   

Three methods were used for δE calculation: 1) the Craig-Gordon model using soil 

extracted water isotopic composition and measured environmental factors; 2) the mass 

balance method (Wang et al., 2012b); and 3) the temporal Keeling plot approach 

(equation 2).  For the Craig-Gordon model, the δA was measured using the WVIA, the 

temperature and relative humility values were obtained using direct iButton 
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measurements (model No. DS1923-F5#, Maxim, Sunnyvale, CA, USA) at the soil 

surface of each plot.  For the Keeling plot and mass balance calculations, the δM value 

was measured using the WVIA and a LI-COR soil chamber (part No. 6400-09, LI-COR 

Biosciences, Lincoln, NE, USA), which was placed on a permanently installed PVC 

collar at each plot.  One soil sample (0-2 cm depth) was collected along with each δE 

measurement for soil water extraction.   

Two methods were used for δET calculation: the temporal Keeling plot approach 

(equation 2); and the mass balance method (equation 3) (Wang et al., 2012b). The δET 

value was determined using the WVIA and a customized transparent chamber with a 

dimension of 50 x 50 x 50 cm placed on a permanently installed metal frame at each plot.  

The field measurements were conducted typically between 7:30 am to 2:00 pm.  The 

WVIA was covered by thick cloth during the operations to minimize direct radiative 

heating.  The δE, δET and δT measurements were sampled randomly for each plot.  Due to 

instrumental malfunctions and obvious data errors (e.g., δE  > δT), some of the chamber-

based data were excluded from analyses.  Overall, 92% of δET, 89% of δT and 69% δE 

data were usable when combining mass balance and Keeling plot approaches.  If the data 

from the first sampling date were excluded, the successful rates were much higher (e.g., 

100% for δET, 96% for δT and 82% for δE). 

2.4 Laboratory analyses of soil liquid isotopic composition 
 

The collected soil samples were kept cool while in the field and sieved through 2 

mm mesh, with fine roots and plant debris being removed in the laboratory.  The soil 

samples were then frozen for later analysis.  The soil samples were extracted at Princeton 

University using a traditional glass-line system similar to that of West et al. (2006).  The 
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soil water extracts were measured using the WVIA coupled with a water vapor isotope 

standard source (Los Gatos Research, Mountain View, CA, USA), which completely 

vaporizes a droplet (<1 µL) of water without inducing fractionation.  The δ2H precision of 

the WVIA measurements is 1.0 ‰ when 1 Hz data are aggregated over 1-3 minutes 

(Wang et al., 2009). 

2.5 Statistical analyses 

To test the warming effect on end member estimates and on ET partitioning, two-

way ANOVA with sampling date and treatment (warming vs. control) as two main 

factors was used and a Tukey post hoc test was employed to separate the means when 

significant effects were found for any main factors. 

 

3. RESULTS 

3.1 Method comparisons for δE, δET and δT estimates 
 

To evaluate the performance of each method for estimating of δE, δET and δT, 

estimates of isotopic composition from the different methods were compared against each 

other.  The chamber-based mass balance approach and the Keeling plot approach 

compared favorably with each other for δET estimates, with a slope of 0.82 and R2 of 0.89 

(Fig. 1).  The chamber-based mass balance approach and Keeling plot approach also 

showed good agreement for δT (Fig. 2) and δE (Fig. 3) estimates, with a slope of 0.92 and 

1.04, and R2 of 0.81 and 0.86 respectively, for δT and δE.  The chamber-based δT 

estimates were generally lighter than the soil extracted water isotopic compositions (-66.9 

± 15.3‰ vs. -48.0 ± 9.9‰ for chamber-based δT and soil water isotopic compositions, 

respectively) indicating that vegetation utilizes soil water deeper than 2 cm (the soil 
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sampling depth) in this ecosystem and that the deeper soils are less subject to surface 

evaporation enrichment.  These results indicate that using isotopic compositions of soil 

water extraction to represent δT may be subject to errors in this system and therefore only 

the chamber-based method results were used in partitioning ET in this study.  Though the 

mass balance and Keeling plot δE values agreed well with each other (Fig. 3), neither 

method agreed with the Craig-Gordon model based values (Fig. 4).  The δE values of both 

chamber-based methods were consistently more enriched than the Craig-Gordon model 

calculations (Fig. 4).  The enrichment was 12‰ on average. 

3.2 Warming effects on water isotopic compositions 
 

The sampling dates did not have any significant effect on the isotopic 

compositions across all three fluxes (p > 0.05).  The warming significantly decreased 

both the isotopic compositions of soil liquid water and δE, calculated by the Craig-

Gordon model using soil liquid water isotopic compositions and measured environmental 

parameters (Fig. 5).  The isotopic compositions of soil water were -43.3 ± 10.0‰ and -

54.0 ± 6.2‰ (p < 0.05) respectively, for control and warming treatments.  The δE were -

134.3 ± 20.9‰ and -167.3 ± 44.5‰ (p < 0.05) respectively, for control and warming 

treatments.  Warming did not significantly affect δT and δET (p > 0.05).  The δT of the 

control and warming treatments were -63.5 ± 16.1‰ and -69.7 ± 14.5‰ respectively.  

The δET of the control and warming treatments were -80.3 ± 14.0‰ and -82.5 ± 12.6‰ 

respectively.   

3.3 Warming effects on ET partition 
 

Based on the direct measurements on June 5, 2011, the warming did not affect 

total ET, but did decrease E (Fig. 6).  The ET was 1.82 ± 0.60 and 1.07 ± 0.92 mmol m-2 
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s-1 (p > 0.05) for control and warming treatments respectively.  The E was 0.13 ± 0.08 

and 0.04 ± 0.01 mmol m-2 s-1 (p = 0.061) respectively, for control and warming 

treatments (Fig. 6).  These direct measurements are only available for a single day due to 

time and sampling constraints.  Further analyses of the warming effects are assessed 

through isotope flux partitioning. 

Because of the discrepancies between the Craig-Gordon model and chamber-

based estimates of δE, two methods were used to calculate the ET partitioning.  Both 

methods used chamber-based estimates of δET and δT, but method 1 used the chamber-

based δE (Craig-Gordon model based numbers were used for missing values) and method 

2 used the Craig-Gordon model based δE estimates, to calculate T/ET ratios under the 

control and warming treatments.  Both methods showed a significant increase in T/ET 

ratios under the warming treatments (Fig. 7).  Method 1 resulted in 0.65 ± 0.21 and 0.83 

± 0.12 (p < 0.05) in T/ET ratios under the control and warming treatments respectively; 

and method 2 resulted in 0.77 ± 0.15 and 0.86 ± 0.10 (p < 0.05) in T/ET ratios under the 

control and warming treatments respectively (Fig. 7).  There was a positive relationship 

between vegetation cover and T/ET ratios (the relationship is similar using method 2 

results and method 1 results), and vegetation cover explained 37% of the total variance in 

T/ET ratios (Fig. 8).   

 

4. DISCUSSION 

4.1 Method comparisons for δE, δET and δT estimates 
 

The Keeling plot approach has been widely used to calculate the isotopic 

compositions of source CO2 (Keeling, 1958; Pataki et al., 2003).  Recently the same 

principle has been used to calculate the δET at both chamber (Yepez et al., 2005) and 
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ecosystem scales (Moreira et al., 2003) using the traditional cold-trap method.  Wang et 

al. (2010) extended the Keeling plot δET estimate to direct measurements using a laser-

based instrument.  Theoretically the Keeling plot principle can also be used for estimates 

of δE and δT, but such reports are not readily seen in the literature.  Wang et al. (2012b) 

developed and verified a new method based on the mass balance of both water vapor and 

isotopes inside the leaf chamber to calculate δT.  The method is applicable for both steady 

state and non-steady state conditions and is also able to estimate δET and δE.  If we 

rearrange the Keeling plot calculation (equation 2) to solve δ2ΗS, we can form the same 

solution as expressed in equation 3. That is, mathematically the Keeling plot approach is 

identical to the steady-state solution of the mass balance approach.  In the current study, 

the chamber-based mass balance approach and the Keeling plot approach did compare 

favorably with each other for δET, δT and δE estimates (Figs. 1-3).  The discrepancies are 

caused by different time periods used for the two methods: the Keeling plot approach 

used measurements from the “chamber on” periods only and the mass balance approach 

used measurements from both ambient periods and “chamber on” periods. It is difficult to 

evaluate which method is more accurate without a third independent technique for 

comparison.  However, the mass balance approach explicitly considers the isotopic 

compositions of ambient air, whereas the Keeling plot approach avoids using measured 

ambient values in calculations.  The Keeling plot approach is likely advantageous for 

capturing the initial rapid changes before reaching steady state, but less powerful under 

steady state condition when observed values become constant. 

The δE is commonly calculated using the Craig-Gordon model.  In the current 

study, though the mass balance and Keeling plot δE values agreed well with each other 
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(Fig. 3), neither agreed with the Craig-Gordon model based values (Fig. 4).  The δE 

values of both chamber-based methods were consistently more depleted than the Craig-

Gordon model calculations (Fig. 4).  A recent study showed that the Craig-Gordon model 

could be improved by considering the soil water potential in dry soils (Soderberg et al., in 

press).  Unfortunately, soil water potentials were not measured from this experiment and 

such discrepancies require further investigation.  Considering the inconsistency with the 

Craig-Gordon model results and relatively lower successful measuring rates (~70%), the 

employment of chamber-based δE measurements need to be more cautious especially for 

lower evaporation flux conditions.  Nevertheless, this study demonstrates for the first 

time, that it is feasible to use coupled chamber-laser based instrument methods to 

quantify the isotopic compositions of two end members and δET.  Because of the 

capability of field deployment and in situ measurements, the coupled chamber-laser 

instrument method will provide a new opportunity to quantify ET partitioning under 

diverse environmental conditions.  The other potential advantage of using the coupled 

chamber-laser instrument method is the relatively consistent error sources in the isotopic 

compositions of three fluxes (e.g., from the same laser instrument), which might be 

diminished or even canceled out when calculating the ET partitioning.  

4.2 Warming effects on water isotopic compositions 
 

Warming significantly decreased both the isotopic compositions of soil liquid 

water (Fig. 5A) and δE (Fig. 5B) (e.g., the isotopic values were more negative under the 

warming treatments).  Because evaporation tends to enrich the near-surface soil water 

isotopic compositions (Barnes and Allison, 1988), lower isotopic compositions of both 

soil liquid water and the evaporated vapor indicate lower evaporation rates under the 
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warming treatment, which was supported by the direct evaporation measurements (Fig. 6). 

We suspect the reduced evaporation is due to the shading effect (e.g., reduced radiation) 

from higher vegetation cover under the warming treatment.  The vegetation cover survey 

during the measurement period did reveal a higher cover under the warming treatment 

(11.6 ± 5.9% vs. 15.2 ± 7.3% for fractional cover of the control and warming 

respectively).  However, these results were not statistically significant, possibly due to 

high variation within treatments and the small sample size (n = 4).  Warming did not 

significantly affect δT and the consistency in δT between the control and warming 

treatment indicate that the vegetation water source (e.g., uptake from the same soil layer) 

did not change under the warming treatments. 

4.3 Warming effects on ET partition 
 

Both methods for T/ET calculation showed a significant increase in T/ET ratios 

under the warming treatments (Fig. 7). Values of δET and δT did not change under the 

warming treatments, and therefore the observed increase in T/ET ratio under warming is 

due mainly to smaller evaporation of water with a more depleted δE.  Because no 

consistent patterns in relative humidity and isotopic compositions of ambient air were 

observed between the control and warming treatments (data not shown), two potential 

components responsible for δE changes are temperature-dependent equilibrium 

fractionation factor (α in equation 4) and soil water isotopic composition according to 

Craig-Gordon model formulation (equation 4).  To test the effects of changes in α and 

soil water isotopic composition on δE and the consequent T/ET, Craig-Gordon model 

calculations were conducted under two scenarios.  For the first scenario, the change in δE 

was calculated with soil temperatures ranging from the average observed observation to 
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2°C warmer.  The temperature change only affects the α values assuming surface 

temperature is equivalent to air temperature.  In this case the observed mean values of 

relative humidity, air temperature, as well as the isotopic compositions of soil water and 

ambient air were used and kept constant.  Under this scenario, the δE actually increased as 

temperature increased (Fig. 9A), resulting in slightly decreased T/ET ratio (Fig. 9B), 

which is contrary to the observed trend (Fig. 7).  For the second scenario, the δE change 

was calculated for a range of soil water isotopic compositions.  The δL value was forced 

to decrease as temperature increased, following the observations, and other variables 

were kept constant at the average observed values.  Under this scenario, the δE decreased 

as temperature increased (Fig. 9C), resulting in increased T/ET ratio (Fig. 9D) and 

matched the observations (Fig. 7).  These results indicate that warming-induced decrease 

in soil water isotopic composition is the major factor responsible for the observed T/ET 

ratio increase.  Changes in α due to higher soil temperatures play an insignificant role. 

Transpiration response is another important component for T/ET trend under 

warming.  At the leaf level, when temperature increases, vapor pressure deficits of the air 

will increase and result in a concomitant increase in the transpiration rate (Kirschbaum, 

2004).  However, if there is a reduction in the diurnal temperature range, transpiration 

rates may decrease (Kirschbaum, 2004).  At the ecosystem level, earlier experimental 

work has showed that warming could reduce transpiration water losses resulting from 

earlier senescence in an annual-dominated grassland ecosystem (Zavaleta et al., 2003).  

Based on the current data, we cannot conclusively determine whether vegetation 

transpiration rates increased or decreased under the warming treatment.  We can use the 

measured ET and E data to estimate T (Fig. 6), which showed similar T values between 
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the control and warming treatments (data not shown).  However, unlike the isotope-based 

partition method where all fluxes are measured using the same instrument, calculated by 

the same principle, and subject to similar errors, ET and E are measured independently.  

Because of the short duration of the measurements and large variation among plots, the 

calculated T under this particular situation may not be conclusive.  Based on the observed 

E and δE values, it is very likely that the observed T/ET increasing trend under warming 

is due to reduced soil evaporation, which is caused by increased vegetation cover. 

We note that the increases in T/ET under the warming treatments were influenced 

by several prior rainfall events providing adequate soil moisture for vegetation growth.  

Soil moisture limitation could counteract the increase in T/ET or even induce the opposite 

trends (Jung et al., 2010).  Also the results are from a relatively short peak growing 

period and long-term effects still need to be investigated. 

There was a positive relationship between vegetation cover and T/ET ratios, with 

vegetation cover explaining 37% of the total variance in T/ET ratios (Fig. 8).  The 

positive relationship between vegetation cover and T/ET ratios has been reported in an 

earlier manipulation experiment conducted inside Biosphere 2 in Arizona, USA (Wang et 

al., 2010).  In that study, the T/ET ratio rose from 61% to 83% as woody vegetation cover 

increased from 25% to 100% (Wang et al., 2010).  In the current field-based study, the 

T/ET ratio reached 70%, even with a low vegetation cover of 5%.  One potential reason 

of the high T/ET ratio at low vegetation cover is the high litter cover in the experimental 

plots.  The litter covers in the control and warming plots were 38.3 ± 4.6% and 31.8 ± 

4.9% respectively, which is likely to reduce evaporation loss. 

5. CONCLUSIONS 
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The research described here utilized a long-term grassland warming site in 

Oklahoma to test and compare multiple methods to estimate δT, δET and δE in situ and 

examine the effect of warming on ET partitioning.  The δT, δET and δE were quantified 

using a Keeling plot approach and mass balance method, coupling a laser-based isotope 

analyzer and various chambers.  Besides the chamber method, δE was also estimated with 

the Craig-Gordon model based on distilled soil water and measured environmental 

parameters.  

Here we show for the first time that it is feasible to use coupled chamber-laser 

instrument method to quantify the isotopic compositions of all three end members.  The 

chamber method works well for δT and δET estimates, based on agreement between the 

Keeling plot and mass balance approaches.  The chamber method may not always be 

successful for estimating δE, especially when evaporation is very low.  Because of the 

capability of field deployment and in situ measurements, the coupled chamber-laser 

instrument method can provide an improved capacity to quantify ET partitioning over a 

range of scenarios, offering a means of describing this important biophysical response. 

The results showed no change in δT and δET, but there was a significant decrease 

in the isotopic composition of soil liquid water and δE under the warming treatment. 

These changes are likely caused by the higher vegetation cover and lower litter cover 

under the warming treatment, although neither of these variables was significantly 

different. The Craig-Gordon model calculations under two scenarios indicate that 

warming induced decrease in soil water isotopic composition is the major factor 

responsible for the observed δE trend and warming-induced changes in α play an 

insignificant role.  The results showed an increase in the T/ET ratio for the warming 
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treatments compared to the control treatments.  We found the ratio of T/ET in the control 

treatment was about 0.65 or 0.77 and the ratio found in the warming treatment was about 

0.83 or 0.86, based on the different methods employed.  Based on the observed ET, E and 

δE values, we argue that the increased T/ET ratio under warming is caused mainly by 

reduced E, with minimal change in ET and T.  We also found a positive relationship 

between T/ET ratio and vegetation cover combining the control and warming treatments.  

These results suggest a positive feedback of biological effects on hydrological cycles 

under warming scenarios and may provide valuable information for constraining model 

predictions of future change. 
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Figure legends 

Figure 1. Comparison of the Keeling plot approach and mass balance approach	
   on	
  
chamber-based	
  δET estimates. 
 
Figure 2. Comparison of the Keeling plot approach and mass balance approach	
   on	
  
chamber-based	
  δT estimates.	
  
	
  
Figure 3. Comparison of the Keeling plot approach and mass balance approach	
   on	
  
chamber-based	
  δE estimates. 
	
  
Figure 4. Comparison of the chamber-based	
   Keeling plot approach, mass balance 
approach, and Craig-Gordon model based	
  δE estimates. 
 
Figure 5. The effect of warming on soil water isotopic compositions and on δE, calculated 
by the Craig-Gordon model.  In the box and whisker plot, the boundary of the box 
represent 25th and 75th percentile of the observations, the middle line of the box represent 
medians of the observations (the dashed lines represent the means), and whiskers above 
and below the box represent 90th and 5th percentile of the observations. Different capital 
letters indicate different means. 

Figure 6. The measured evapotranspiration (ET) and evaporation (E) rates (mmol m-2 s-1) 
under the control and warming treatments on June 5, 2011 using Licor instruments. α = 
0.1 significance level was used due to small sample size.  Refer to the Methods section 
for measurement details.  

Figure 7. The effect of warming on evapotranspiration partition calculated by method 1 
(all chamber-based estimates, A) and method 2 (chamber-based estimates for δET and δT, 
Craig-Gordon model based estimates for δE, B).  In the box and whisker plot, the 
boundary of the box represent 25th and 75th percentile of the observations, the middle line 
of the box represent medians of the observations (the dashed lines represent the means), 
and whiskers above and below the box represent 90th and 5th percentile of the 
observations. Different capital letters indicate different means. 

Figure 8. The relationship between vegetation cover and evapotranspiration partition 
combining the control and warming treatments.  The solid line is the linear regression 
fitted with the least-square method and the dashed lines are 95% confidence interval of 
the fitted equation. 
 
Figure 9. The effect of changes in temperature dependent equilibrium fractionation factor 
on δE (A) and consequent T/ET ratio (B).  Under this condition, only equilibrium 
fractionation factor varied and other factors (averaged observed values were used) were 
kept constant.  The effect of changes in isotopic composition of soil water (δsoil) on δE (C) 
and consequent T/ET ratio (D).  Under this condition, only δsoil varied and other factors 
(averaged observed values were used) were kept constant.  δE was calculated using Craig-
Gordon model.  For T/ET calculations, δET and δT were the same for the control and 
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warming treatments.  The arrows inside C and D point to the observed isotopic 
compositions of the soil water under the control and warming treatments. 
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