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Abstract 

Savannas cover more than 40% of Africa and provide a variety of important 

ecosystem services.  Their productivity is constrained by disturbance and limiting 

resources.  In southern Africa, fine-leaf savannas typical of arid environments are 

known for being richer in nutrients than broad-leaf mesic savannas.  However, 

despite numerous recent studies on the dynamics of southern African savannas, the 

interplay among water and nutrient limitations remains poorly investigated in these 

systems.  To better understand the interactions among water, nutrients (N and P in 

this manuscript) and grazing on the productivity of grasses and trees in fine-leaf 

savanna ecosystems, a fertilization experiment with controlled grazing was 

conducted at two sites with different mean annual rainfall in Namibia.  The 

experiment demonstrated that the vegetation at the drier site may not be nutrient 

limited (N, P or N+P).  At the wetter site, however, vegetation showed significant 

response to nutrient addition.  Grasses exhibited N limitation and trees exhibited P 

limitation.  This experiment also showed that grazing reduces the overall grass 

biomass, but may not modify the response to nutrient treatments.  The results 

indicated a switch from water to nutrient limitation between dry and wet sites and 

demonstrated different tree and grass responses to nutrient additions.   

Keywords: Fertilization, Grazing, Kalahari Transect, Phosphorus, Namibia, Nitrogen, 

Savanna 
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Introduction 

Savanna ecosystems cover about 20% of the Earth’s land area (Scholes and Walker, 

1993) and produce approximately 29% of global terrestrial net primary 

productivity (Grace et al., 2006).  Water availability, disturbance (e.g., fire, herbivory) 

and nutrient availability are considered to be the three major factors determining 

the structure and function of savanna ecosystems (Walker et al., 1981, Sarmiento, 

1984, Scholes and Walker, 1993, Scholes and Archer, 1997, Aranibar et al., 2004, 

Sankaran et al., 2004, Sankaran et al., 2005, Okin et al., 2008, Wang et al., 2010a).  

Recent study showed that temperature may also affect tree establishments in cooler 

savannas (Wakeling et al., 2012).  Among these factors, the composition and 

structure of savanna vegetation and plant-plant interactions are particularly 

sensitive to soil water availability, which, in turn, depends on rainfall regime and 

soil properties (Scanlon et al., 2005, D'Odorico et al., 2007). 

It is commonly accepted that the so-called “nutrient-poor savannas” existing 

in semiarid climatic regions of southern Africa, are limited by nitrogen (N) 

availability (Scholes and Walker, 1993, Ludwig et al., 2001), while savanna 

vegetation in more arid environments is mainly water limited.  However, the 

Kalahari sands, which cover extensive areas in southern Africa, are highly 

weathered, mature and highly depleted in primary phosphorous (P) minerals (Wang 

et al., 2007).  Because P is an essential nutrient, its low availability may constrain 

ecosystem productivity on the Kalahari sands.  The likelihood of P limitations is 

even stronger at the dry end of the Kalahari, due to the dominance of potentially N 

fixing plants (Wang et al., 2009a).  Prior studies in the Kalahari have shown that 
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grass biomass does not respond to nutrient addition across a major rainfall gradient 

(Wang et al., 2010b), but less is known about the response of trees to additional 

nutrient availability.  In addition, the nutrient effects on grasses could be affected by 

grazing and browsing through processes such as physical vegetation removal and 

dung deposition (e.g., O'Halloran et al., 2010, Wang et al., 2010b) both by livestock 

and wildlife.  Although savannas cover more than 40% of Africa (Scholes and 

Walker, 1993) and provide extensive rangeland for traditional pastoral societies, 

only a handful of savanna fertilization experiments have been reported  in the 

literature (e.g., Ludwig et al., 2001, O'Halloran et al., 2010, Wang et al., 2010b). 

Overall, interactions among water, nutrients and grazing in savannas remain poorly 

investigated, which significantly hinders our understanding of their response to 

future environmental and anthropogenic changes. 

The Kalahari Transect (KT) is one of a set of IGBP (International Geosphere-

Biosphere Programme) megatransects (Koch et al., 1995, Scholes et al., 2002) 

identified for global change studies.  The KT traverses a dramatic aridity gradient 

(e.g., 200 mm to 1000 mm in rainfall gradient) on relatively homogenous soils (deep 

Kalahari sands, Thomas and Shaw, 1991, Thomas et al., 2008), offering an ideal 

setting to study nutrient and vegetation dynamics under different rainfall regimes 

without confounding soil effects (Wang et al., 2007).  Both modeling results based 

on remote sensing data (Scanlon and Albertson, 2003) and leaf-level physiological 

data (Midgley et al., 2004) suggest the existence of two distinct regimes of 

vegetation productivity-rainfall relationships across the KT, likely mediated by soil 

biogeochemical variations.  In this study, we use two sites along the KT in southern 
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Africa as representative of relatively dry savannas (mean annual rainfall < 450 mm) 

under two distinct rainfall regimes.   Through a fertilization experiment we directly 

investigate how the interactions among water and nutrient limitations, and grazing 

affect the productivity of grasses and trees in dry, fine-leaf and supposedly nutrient 

rich savannas.  Specifically, we ask 1) whether there is a difference in nutrient 

limitation (N vs. P) at two sites under different levels of mean annual precipitation 

(MAP), and 2) whether there is a difference in tree and grass response to nutrient 

additions. 

Materials and Methods 

Field Sites 

Two sites (Okonjoka and Rooibult) from the Kalahari within Namibia were 

chosen to compare the grass and tree responses to fertilization under different 

rainfall conditions, with Okonjoka being drier (200-250 mm MAP, the dry site 

thereafter) and Rooibult (the mesic site thereafter) receiving about 400-450 mm 

MAP (Fig. 1).  However, during the experiment period (November 2008 to May 

2009), total rainfall at the dry site (425 mm) was higher than at the mesic site (361 

mm), reflecting the strong rainfall interannual variability in drylands.  Rainfall at 

both sites is concentrated between November and April (Fig. 2), corresponding to 

the growing season of both trees and grasses.  Both the dry site (23.48°S, 19.75°E) 

and the mesic site (21.50°S, 19.18°E) are classified as open savannas dominated by 

Acacia species such as Acacia erioloba and A. mellifera Benth.  Based on the field 

observations, most grass species found at the dry site were annuals, whereas the 

grasses at the mesic site were primarily perennials such as Eragrostis lehmanniana, 
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Stipagrostis uniplumis and Schmidtia kalahariensis.  A. mellifera was the most 

common tree species at the dry site and A. erioloba was the most common tree 

species at the mesic site.  Soil properties such as porosity, field capacity, saturated 

hydraulic conductivity were similar between these two sites and the general pattern 

of variability of these soil parameters within the Kalahari sand can be found in 

earlier reports (Wang et al., 2007, Wang et al., 2009a).  To summarize, the soils of 

the Kalahari are sandy (sand content >96%) and acidic (pH ≈ 6); the soil nutrient 

level is low, with total soil N% ranging from 0.01 to 0.04% (Wang et al., 2007) at the 

surface (0-10cm); PO43- and NO3- concentrations range from 1 to 4.5 μg/g, and from 

0.5 to 20 μg/g respectively (Wang et al., 2009a), while soil plant available 

phosphorus (Bray extraction soil P) ranges from 2 to 15 μg/g (O'Halloran et al., 

2010). 

Fertilization treatment and biomass estimation 

Grass fertilization 

The experiment consisted of a randomized block design with four 15 m x 15 

m plots at each of the two sites along the KT.  A fence was installed in 2008 with a 

total enclosed area of 1800 m2 (225 x 4 x 2=1800 m2).  Four 15 m x 15 m plots were 

also set up in an open rangeland at the mesic site to test the interactive effects of 

grazing and nutrient additions on plant biomass responses.  Each 15 m x 15 m plot 

was divided into four 7 m x 7 m subplots with 1 m buffer zone between each 

subplot.  In this region livestock production relies both on grazers (mainly cattle) 

and browsers (goats).  The dry site was inside the village and subject to heavy 

grazing while the mesic site was away from the village.  At each study site soil 
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topography and vegetation cover were similar in all the subplots within each block.  

In October 2008, four treatments (N addition, P addition, N+P addition and control) 

were randomly applied to the subplots.  For the N and N+P treatments, 133 kg N/ha 

as NH4NO3 was evenly applied to each subplot and 33 kg P/ha as Na2H2PO4 was 

evenly applied to the P and N+P subplots, whereas the control subplots were 

supplied with water only.  The applied concentrations of fertilizers were chosen on 

the basis of data reported by Wang et al. (2010b) for experiments in different 

locations of the Kalahari savannas.  For each treatment plot (49 m2), the reagents 

were dissolved in 10 L water.  Water was used here as a solvent to homogenize the 

fertilizer and a sprayer was used to ensure even distribution of the fertilizer 

solution.  The amount of water used for each plot was very small (10 L for 49 m2), 

which is equivalent to about 0.2 mm rainfall.  This amount of rainfall evaporates 

almost right way with no substantial impact on vegetation growth.  The fertilizer 

solution was applied to the soil surface and was observed to infiltrate into the soil 

with only a negligible interception by the sparse canopy of grass leaves. According 

to Wang et al. (2010b), 40-70% of the foliar N is from the N fertilizer after one 

growing season.  Newly-formed (i.e., post-treatment green tissues) grass biomass 

was measured by harvesting all grasses from the grass bottom using scissors from 

the treatment subplots at each site in early June 2009.  

Tree fertilization 

To investigate the effect of P on trees, one representative tree species (Acacia 

mellifera at the dry site and Acacia erioloba at the mesic site, both of them are 

potential nitrogen fixers) was selected at each site.  Fertilizer at the same 
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concentration (10 L water for each tree) as the grass fertilization experiment was 

applied evenly over an 8 m diameter circle centered at the base of each tree.  Three 

individual trees were used for each treatment (P and control).  All the selected trees 

were within the same age class.  The basal diameters of the selected A. erioloba trees 

were 13-26 cm and the heights were 1.7-2.2 m.  The canopy diameters of the 

selected A. mellifera were 0.8-2.2 m and the heights were 0.5-1.1 m.  Canopy 

diameter (for A. mellifera only), branch length, tree height and basal diameter (for A. 

erioloba only) were measured for all the trees in the subsequent wet season.  A. 

mellifera and A. erioloba have different growth forms. A. mellifera is thorny and has 

multiple stems. The basal diameters for these trees are very difficult to measure, 

because their base is difficult to access. Therefore we did not measure basal 

diameters of A. mellifera.  The canopy shape of A.erioloba is irregular and the canopy 

diameter cannot be accurately measured even with measurements from multiple 

directions. For this reason for A. erioloba we only measured the basal diameters.  We 

measured canopy diameter in two perpendicular directions and took the average to 

indicate mean canopy diameter. For branch length measurements, we randomly 

selected three branches from each tree and marked them.  We measured the net 

growth for these branches and calculated the means for each tree.  Relative growth 

was defined as (basal diameter after fertilization – basal diameter before 

fertilization)/ basal diameter before fertilization.  Relative growth was only 

estimated for A. erioloba, at the mesic site.  The experiment was conducted for one 

season.  

Statistical analyses 
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To test the grazing and nutrient (N and P) effects on grass biomass response, 

two-way ANOVA for a randomized block design with grazing and nutrient treatment 

as two main factors was used to test for differences in grass biomass at Rooibult 

(SAS v. 9.1 PROC MIX).  One-way ANOVA was used for the Okonjoka site since there 

was no grazed treatment.  Mean separations for the treatment effects (e.g., grazing 

and nutrient fertilization) were achieved using the Tukey post hoc test at α = 0.05.  

To test the P effect on trees, at each site, tree relative growth rate, canopy diameter, 

tree height and branch length were measured before and after P fertilization and the 

calculated differences were compared between the P treatment and control using 

one-way ANOVA at α = 0.05. 

Results 
 

The grass biomass at the dry site did not show significant differences among 

the nutrient treatments (Fig. 3, e.g., N, N+P and P fertilization), though some 

individual plots showed a large amount of grass biomass for the N+P treatment with 

a value up to 180 g/m2.   At the mesic site, two-way ANOVA showed a significant 

grazing effect and a nutrient effect without significant interactions between them 

(Table 1).   Grazing significantly decreased grass biomass from 360.1 g/m2 to 298.0 

g/m2 (Table 1).  For the nutrient effects, the above ground grass biomass showed 

significant increases at the N and N+P treatments compared with the control 

treatment (Table 1, Fig. 3).  There was no biomass increase for the P only treatment 

(Table 1, Fig. 3).  

Before the nutrient additions, there were no significant differences in the 

canopy diameter and tree height between control and P fertilization trees at both 
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sites (p > 0.05).  There were no significant differences in the changes of canopy 

diameter (for A. mellifera only), tree height and branch length between the P 

treatment and the control treatment for A. mellifera at the dry site and A. erioloba at 

the mesic site (Table 2).  However, the relative growth (basal diameter) of A. 

erioloba at the mesic site significantly increased for P treatment compared with 

control treatment (Table 2). 

 
Discussion 
 
Grass response to fertilization 
 

The grass biomass at the drier site (Okonjoka) did not show significant 

differences between the nutrient treatments, indicating that the drier site may not 

be nutrient limited.  The grass biomass at the dry site was significantly lower than 

that at the mesic site (Fig. 2).  This was not only caused by lower mean annual 

rainfall, but also vegetation composition and temporal patterns of rainfall.  Based on 

communications with Okonjoka residents, even though the total rainfall was high for 

this particular year, it came as intensive infrequent storms. Thus grass seedlings 

died between major rainfall events.  Furthermore, the only grass species found in 

our plots at the dry site was an annual, whereas the grasses at the mesic site were 

primarily perennials.  Due to their ability to survive dry periods between storms and 

their deeper rooting systems, perennials are more amenable to exhibit differences 

in growth in experiments like ours (Wang et al., 2006).  In addition, the significant 

spatial variability observed in grass responses at the drier site - which were likely 

caused by the uneven soil moisture distribution due to the presence of trees 

(D'Odorico et al., 2007, Wang et al., 2009b) - contributed considerably to the 
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variability in biomass among plots.  Prior livestock impacts at the dry site may also 

have contributed to the high variability in biomass production.  In fact, the dry site is 

located within 1 km from a borehole and is therefore exposed to significant 

livestock impacts.  Although obvious indicators of differential animal impacts were 

avoided when placing our experimental plots, earlier activity by grazers and 

browsers, including differential effects of fecal matter could have contributed to the 

heterogeneity observed in our experiment (e.g., Li et al., 2010).  Moreover, the 

heterogeneity was likely enhanced by aeolian processes (e.g., sand saltation and 

wind-induced nutrient redistribution) acting on a heterogeneous vegetation cover 

(e.g., Ravi et al., 2009). 

The significant increase in grass biomass for N and N+P treatment at the 

wetter site (Rooibult; Fig. 2) indicate that the grasses at the wetter site are limited 

not by P, but by N.  Grazing decreased overall grass biomass, but did not change the 

grass response to nutrient additions (Table 1, Fig. 3).  An earlier fertilization 

experiment in the Botswana’s Kalahari showed that nitrogen additions did not 

result in increased plant nitrogen content (Wang et al., 2010b), e.g., no increase in 

grass palatability (a function of N content). This could explain why grazing did not 

affect the results of nutrient treatments (Fig. 3).  It is possible that after fertilization 

leaching of NO3- occurs both at the dry and at the mesic sites.  However, since in 

these environments soil moisture seldom reaches field capacity, the rates of NO3- 

leaching are expected to be low especially in relatively well vegetated areas (the 

vegetation cover at the two sites was larger than 80%), though in areas denuded of 

vegetation leaching may occur (Aranibar et al., 2011).  An earlier experiment on 
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Kalahari sands using 15N as a tracer, Wang et al. (2010b) showed that 40-70% of the 

foliar N was from the N fertilizer after one growing season. Thus we expect the 

effect of NO3- leaching to be minimal when compared to plant uptake.   

The limitation of grass productivity by N observed at the mesic site contrasts 

with results from a previous field experiment in the Botswana Kalahari (Wang et al., 

2010b) where the grass biomass did not respond to N and P additions.  However, 

the experiment by Ludwig et al. (2001) in the dry savannas of Tanzania showed that 

grass production was limited by N availability.  Nitrogen limitation is expected to 

exist especially in the more mesic areas, where soils are weathered or depleted in N.  

The diversity of results from these three experiments (from Botswana, Tanzania and 

Namibia) demonstrates the complexity of nutrient and water interactions in dry 

savannas: water availability affects plant photosynthesis, plant nutrient uptake and 

soil microorganism activity (e.g., mycorrhiza P transfer and symbiotic N fixation); 

these processes, in turn, affect plant photosynthesis.  Moreover, the complexity also 

arises from the interactions among different nutrients.  For example, micronutrients 

such as Mo could limit N fixation (Barron et al., 2009), while N and P could co-limit 

N fixation.  These complex interactions suggest that some of the responses to 

nutrient additions could be transient and/or region-specific. 

Tree response to fertilization 
 

The significant differences in relative growth (calculated from basal diameter 

changes) of A. erioloba before and after P fertilization at the mesic site demonstrate 

that at the wetter site, P limits tree growth rates.  These results also indicate that 

differences in changes of canopy diameter, tree height and branch length before and 
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after P fertilization may not be sensitive indicators to assess tree responses to 

nutrient fertilization.  The fact that A. mellifera has multiple stems made it difficult 

to repeatedly measure basal diameter, and thus it is unclear whether A. mellifera at 

the drier site (Okonjoka) is limited by P or not. 

Tree responses to nutrient additions were different than the responses of 

grasses.  In our experiments, N was not added to trees, so we cannot rule out the 

possibility that trees are limited by N as well.  However, A. erioloba and A. mellifera 

are reported to fix N in southern African savannas (Schulze et al., 1991),  though 

anther study showed that the growth of N-fixing trees was constrained by grass 

competition (Cramer et al., 2010). Using foliar δ13C and δ15N data of trees and 

grasses in southern African savannas, Wang et al. (2010a) implied that, trees are not 

likely limited by N, even if grasses are superior competitors for soil N.  In our 

results, it is clear that P limits tree growth and not grass growth, at least at the 

wetter site.  The difference in response to P addition between trees and grasses are 

likely based on their physiological traits.  As N fixers are typically limited by P or 

micronutrients (Vitousek et al., 2002), it is not surprising to see the different 

response to P addition between trees and grasses.  Indeed, the different usage of N 

and P between trees and grasses may contribute to the co-existence of these two 

plant functional types (Swap et al., 2004, Aranibar et al., 2008, Wang et al., 2010a).  

Only limited data exist on tree response to nutrient addition in tropical savannas. A 

recent report for tropical forests showed that the relative growth rate of trees 

increased with N and P combination but not P alone (Santiago et al., 2011). Our 

results differ from this study in that P alone increased relative growth.  Notice that 
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in this experiment, grass treatments were at the community level and tree 

treatments at the individual level.  However, since the tree species selected are the 

most common species at these sites, our results may capture trees’ response at 

these locations.  Nevertheless, these results refer to only one growing season; the 

long-term response still need to be assessed by future experiments. 

The results from our multiple-site fertilization experiment have important 

implications for the management of savanna ecosystems.  These results indicate that 

in the south-western Kalahari the grass biomass of arid rangelands (MAP ≈ 200 

mm) is strongly controlled by interannual variations in rainfall and soil moisture 

(Scanlon et al., 2005), while no significant dependence on nutrient availability 

(either N or P) is detected.  The lack of nutrient response was further supported by 

the fact that the experimental year was particularly wet at the dry site: despite these 

anomalous wet conditions we still did not see the effect of nutrient additions.  It is 

worth noticing, however, that because of the structure of multi-stem trees, we were 

not able to measure the relative growth at the dry site.  In addition, we did not 

measure belowground biomass; thus, the belowbrwound biomass response to N and 

P addition is not known. Since in these environments rainfall is the main 

determinant of ecosystem productivity, adequate rangeland management should 

focus mainly on the hydrologic conditions and their interannual variability.  

Conversely, the more mesic site (i.e., MAP ≈ 400 mm) in north-eastern Namibia is 

limited by nutrients: grasses appear to be N limited while A. erioloba trees are P 

limited.  At the same time, past modeling study showed that soil moisture and 

rainfall have a strong control on soil nutrients in the Kalahari even under wetter 
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rainfall regimes (Wang et al., 2009a).  Together these results contribute to the 

understanding of the water and nutrient interactions, which is fundamental to 

better manage rangeland productivity. 

Summary 

To summarize the findings, this experiment demonstrates that a site on Kalahari 

sands in Namibia with 400 mm MAP is limited by nutrients, with grasses appearing 

to be N limited while the tree A. erioloba is P limited.  The different tree and grass 

responses are likely due to N-fixation of trees.  At a drier site, with only 200 mm 

MAP, our experiments did not show nutrient limitation, through high variability in 

rainfall timing and grass growth, and difficulty measuring basal diameter for the 

multistemmed A. mellifera may have contributed to the lack of a significant 

treatment effect.  
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Table 1. Results of two-way ANOVA and post hoc Tukey test of grass biomass responses 
to grazing and nutrient treatments at Rooibult site (mesic site).  The different capital 
letters indicate differences between treatments for Tukey test. 
 
 

 
 

 Source  df F-value p  
Grazing 1 4.28 0.05  

Nutrients 3 5.08 0.007  

Grazing x Nutrients 3 0.47 0.71  

Residual 24    

     
Mean biomasses at 
different grazing 
treatments (g/m2) 

Grazed Ungrazed   

 298.0A 360.1B   

     
Mean biomasses at 
different nutrient 
treatments (g/m2) 

N P N+P Control 

 386.0AC 275.9BC 389.0AC 265.3B 
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Table 2. Differences between control treatment and phosphorus treatment for tree species 
at two sites with distinct rainfall regimes. The parameters monitored include relative 
growth, changes in canopy diameter, height and branch length. The numbers in 
parentheses are standard deviations.  The different capital letters indicate differences 
between treatments. 

 

a: Relative growth = (basal diameter one growing season after the treatments–initial 
basal diameter)/initial basal diameter 

 

 

 

 

 

 

  

    Relative growtha 

Changes in 
canopy 
diameter (m) 

Changes in 
height (m) 

Changes in 
branch 
length (m) 

Okonjoka  
 (Acacia mellifera) Control \ 5.5 (2.4)A -1.4 (2.9)A 11.8 (3.5)A 

 P \ 6.2 (7.3)A 1.5 (1.9)A 10.1 (2.7)A 
Rooibult  

(Acacia erioloba) Control 0.08 (0.07)A \ 0.29 (0.13)A 67.1 (20.2)A 

 P 0.35 (0.20)B \ 0.36 (0.28)A 66.1 (16.7)A 
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Figure 1. Sampling locations within the Kalahari desert.  

 

Figure 1 
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Figure 2. The monthly rainfall at Okonjoka (dry site) and Rooibult (mesic site) 
between November 2008 and May 2009.  The mean annual precipitation (MAP) of 
each site was shown in the legend. 

 

Figure 2 

 
Figure 3. Grass biomass response to fertilization and grazing exclusion at Okonjoka 
(dry site) and Rooibult (mesic site).  Two-way ANOVA for a randomized block 
design was used for Roobibult site and one-way ANOVA was used for Okonjoka site.  
The error bars represent standard errors.  

 

Figure 3.  
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