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37 Three years of daily alendronate treatment increases microdamage in vertebral bone but 
38 does not significantly increase it beyond levels of microdamage found after 1 year of 
39 treatment. This suggests microdamage accumulation peaks during the early period of 
40 bisphosphonate treatment, and does not continue to accumulate with longer periods of 
41 treatment. 
42 

43 Introduction:  Clinically-relevant doses of alendronate increase vertebral microdamage by 4- to 

44 5-fold in skeletally mature beagles after 1 year of treatment. The goal of this study was to 

45 determine if microdamage would continue to accumulate with three years of alendronate 

46 treatment in an intact beagle dog model. 

47 Methods:  One-year-old female beagles were treated with daily oral doses of vehicle (VEH, 1 

48 ml/kg/day) or alendronate (ALN, 0.2 mg/kg/day or 1.0 mg/kg/day) for three years. These ALN 

49 doses were chosen to approximate, on a mg/kg basis, those used to treat osteoporosis (ALN0.2) 

50 and Paget’s disease (ALN1.0).  Microdamage accumulation, static and dynamic 

51 histomorphometry, densitometry, and mechanical properties of lumbar vertebrae were assessed. 

52 Comparisons were made among the three groups treated for three years, and also within each 

53 treatment group, to animals treated under the same conditions for one year (Allen et al. Bone, 

54 2006). 

55 Results:  Overall microdamage accumulation (crack surface density) was not significantly higher 

56 in animals treated for three years with either dose of ALN, while crack density increased 

57 significantly (100%; p < 0.05) with the higher dose of ALN when compared to VEH. Both ALN 

58 doses significantly suppressed the rate of bone turnover (-60% versus VEH). There was no 

59 difference among groups for any of the structural biomechanical properties - ultimate load, 

60 stiffness, or energy absorption.  However, when adjusted for areal bone mineral density ALN- 

61 treated animals had significantly lower energy absorption (-20%) compared to VEH. Toughness, 

62 the energy absorption capacity of the bone tissue, was significantly lower than VEH for both 

63 ALN0.2 (-27%) and ALN1.0 (-33%).  Compared to animals treated for one year, there was no 

64 significant difference in microdamage accumulation for either ALN dose.  VEH-treated animals 

65 had significantly lower bone turnover (-58%) and significantly higher levels of microdamage (+ 

66 300%) compared to values in 1 year animals. Toughness was significantly lower in animals 

67 treated for 3 years with ALN1.0 (-18%) compared to animals treated for 1 year while there was no 

68 difference in toughness between the two treatment durations for either VEH or ALN0.2. 

69 Conclusions:  Although three years of alendronate-treatment resulted in higher microcrack 

70 density in vertebral trabecular bone compared to control dogs, the amount of microdamage was 

71 not significantly higher than animals treated for 1 year with similar doses.   This suggests that 

72 bisphosphonate-associated increases in microdamage occur early in treatment. Because 

73 toughness continued to decline significantly over three years of treatment at the higher ALN dose, 

74 decreases in toughness are probably not dependent on damage accumulation. 

75 
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76 INTRODUCTION 
 

77 Microdamage accumulates with age [1,2] and may play an important role in age-associated bone 
 

78 fragility [3,4].   Microdamage formation occurs in response to mechanical loads [5-7], 
 

79 preferentially at sites of increased tissue mineralization [8-10], and is removed by remodeling 
 

80 [6,7]. The level of skeletal microdamage is determined by the balance between microdamage 
 

81 formation and its removal. Therefore conditions that either increase microdamage formation, or 
 

82 decrease its removal, can have a significant impact on the accumulation of microdamage and 
 

83 bone fragility. 
 

84 Bisphosphonates are efficacious for reducing fractures due to their suppression of bone 
 

85 remodeling [11-13]. However, as reductions in remodeling are permissive for the accumulation of 
 

86 microdamage, bisphosphonate treatment also increases skeletal microdamage. Numerous 
 

87 animal studies have noted significant increases in microdamage following bisphosphonate 
 

88 treatment [14-18]. This accumulation of microdamage occurs with alendronate and risedronate 
 

89 doses comparable to those used for the treatment of post-menopausal osteoporosis, although the 
 

90 accumulation is greater when higher doses are given (e.g. those approximating doses used for 
 

91 treatment of Paget’s disease) [18]. 
 

92 Whether microdamage accumulation continues or plateaus with extended bisphosphonate 
 

93 treatment is not known, yet has significant implications as some patients now enter their second 
 

94 decade of treatment.  Studies to date have assessed microdamage at a single time point, most 
 

95 often one year.  Recently, Komatsubara et al. [16,17] reported that 3 years of daily incadronate, 
 

96 at 2.5 or 5x the clinical dose, significantly increased the accumulation of microdamage in both the 
 

97 vertebrae and rib of dogs.  As no data are available concerning microdamage levels with shorter 
 

98 term incadronate treatment (< 3 years), this study was not able to address whether microdamage 
 

99 accumulation continues or plateaus with prolonged bisphosphonate treatment. 
 

100 Animal studies documenting increased microdamage with bisphosphonate-treatment 
 

101 have consistently shown increases in vertebral bone strength and stiffness, leading to questions 
 

102 regarding the implications of increased microdamage with bisphosphonates.  However, in all but 
 

103 one of these studies [16] bisphosphonate treatment reduced bone toughness, the energy 
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104 absorption capacity of the bone tissue [14,15,17,18].  Furthermore, when normalized for 
 

105 increases in BMD, energy absorption capacity at the whole bone (structural) level was 
 

106 significantly compromised following 1 year of alendronate treatment [19].  If microdamage 
 

107 continues to accumulate with prolonged bisphosphonate treatment it is possible that this could 
 

108 lead to further reductions in work to failure and toughness. 
 

109 The goal of this study was to test the hypothesis that microdamage continues to accumulate 
 

110 throughout the duration of bisphosphonate treatment and that this continued accumulation is 
 

111 accompanied by a progressive decline in energy absorption and toughness.   We have recently 
 

112 documented that clinically-relevant doses of alendronate reduce vertebral bone turnover by more 
 

113 than 70%, increase microdamage by 4- to 5-fold and non-significantly reduce vertebral toughness 
 

114 by 14-17% in skeletally mature beagles after 1 year of treatment [18]. The current study reports 
 

115 results from animals treated for three years with the same doses of alendronate used in the one 
 

116 year study. This allows both an across-treatment analysis at the three-year time point (vehicle 
 

117 

 
118 

versus alendronate) as well as a within-treatment analysis across time points (1 versus 3 years). 

 

119 MATERIALS AND METHODS 
 

120 Animals 
 

121 All procedures were approved prior to the study by the Indiana University School of Medicine 
 

122 Animal Care and Use Committee. Thirty-six female beagles (1-2 years old upon arrival) were 
 

123 purchased from LBL (Reelsville, IN).  Upon arrival, lateral X-rays of all dogs were obtained to 
 

124 confirm skeletal maturity (closed proximal tibia and lumbar vertebra growth plates). Animals were 
 

125 housed two per cage in environmentally controlled rooms at Indiana University School of 
 

126 Medicine’s AALAC accredited facility and provided standard dog chow and water.  Two dogs 
 

127 (both in the ALN 0.2 group) developed hernias, both in year 2, that required surgery. One of 
 

128 these animals developed a second hernia which progressed to the point of needing to be 
 

129 terminated early (month 34 of treatment); this animal was still included in all analyses.  All other 
 

130 
 

131 

animals completed the 36 month treatment without serious complication. 
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132 Experimental Design 
 

133 Following two weeks of acclimatization, animals were assigned to treatment groups (n=12/group) 
 

134 by matching body weights.  All dogs were treated daily for 3 years with oral doses of vehicle 
 

135 (saline, 1 ml/kg/day) or alendronate sodium (0.20 or 1.00 mg/kg/day; Merck and Co., Inc). 
 

136 Alendronate doses were chosen to approximate, on a mg/kg basis, the doses used for treatment 
 

137 of post-menopausal osteoporosis and Paget’s disease, respectively. Alendronate was dissolved 
 

138 in saline and administered to the dogs orally with a syringe.  Vehicle-treated animals received 1 
 

139 ml/kg/day of saline.  Dosing was performed each morning after an overnight fast and at least 2 
 

140 hours prior to feeding. 
 

141 Prior to necropsy, animals were injected with calcein (0.20 mL/kg, IV) using a 2-12-2-5 
 

142 labeling schedule.  Animals were euthanized by intravenous administration of sodium 
 

143 pentobarbital (0.22mg/kg Beuthanasia-D Special).  After death, lumbar vertebrae were dissected 
 

144 and saved for analyses.  The second and third lumbar vertebrae were fixed in 10% neutral 
 

145 buffered formalin while the fourth lumbar vertebra was wrapped in saline-soaked gauze and 
 

146 frozen (-20ºC). All tissue preparation, processing, and analyses were similar to those used for 
 

147 

 
148 

dogs treated for one year [18]. 

 

149 Histology (Static, dynamic, and microdamage) 
 

150 Static and dynamic histomorphometric measures of trabecular bone were obtained on second 
 

151 lumbar vertebrae (L2). Bones were embedded undecalcified in methyl methacrylate (MMA; 
 

152 Aldrich). Mid-sagittal (4 µm) sections were cut using a Reichert-Jung 2050 microtome (Magee 
 

153 Scientific, Inc) and stained with McNeal’s tetrachrome for static histomorphometry. Mid-sagittal (8 
 

154 µm) sections were cut and left unstained for dynamic histomorphometry and wall thickness 
 

155 measures. 
 

156 Third lumbar vertebrae (L3) were processed for microdamage assessment by bulk staining in 
 

157 basic fuchsin as previously described [18,20]. Using 1% basic fuchsin dissolved in increasing 
 

158 concentrations of ethanol, specimens were stained according to the following schedule: 8 hours 
 

159 80% (with one change to fresh 80% after 4 hours), overnight in 95% (with one change to fresh 
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160 95%), 8 hours in 100% (with one change to fresh 100% after 4 hours).  Bones were placed under 
 

161 vacuum (20 in Hg) for all stages during the day and left on the bench top overnight. Following 
 

162 staining, bones were washed in 100% ethanol and embedded undecalcified in MMA. Mid-sagittal 
 

163 (80-100 µm) sections were cut using a diamond wire saw (Histosaw; Delaware Diamond Knives). 
 

164 Histological measurements were made using a semiautomatic analysis system (Bioquant 
 

165 OSTEO 7.20.10, Bioquant Image Analysis Co.) attached to a microscope equipped with an 
 

166 ultraviolet light source (Nikon Optiphot 2 microscope, Nikon). A 5 x 5 mm region of interest, 
 

167 located 1 mm below the cranial plateau, was used for sampling. Static and dynamic variables 
 

168 were measured and calculated in accordance with ASBMR recommended standards [21]. 
 

169 Microdamage was assessed using UV fluorescence as previously described [22]. Measurements 
 

170 
 

171 

included crack length (Cr.Le, µm) and crack number (Cr.N), with calculations of crack density 

(Cr.Dn, #/mm
2
; Cr.N / bone area) and crack surface density (Cr.S.Dn, µm/mm

2
; Cr.N * Cr.Le / 

172 

 
173 

bone area). 

 

174 
 

175 

Densitometry 
 

Areal bone mineral density (aBMD, g/cm
2
) of the fourth lumbar vertebra (L4), without the posterior 

 

176 elements or cranial/caudal endplates, was quantified using a PIXImus II densitometer (Lunar 
 

177 Corp.). Volumetric bone density and geometry of the L4 vertebra was quantified using a Norland 
 

178 Stratec XCT Research SA+ pQCT (Stratec Electronics).  One slice (0.07 X 0.07 x 0.50 mm voxel 
 

179 
 

180 

 
181 

size) was taken at three locations (25, 50 and 75% of total vertebra height).  Total, trabecular, 

and cortical volumetric bone mineral density (vBMD, mg/cm
3
) and cross-sectional area (CSA, 

mm
2
) were obtained for each slice and then averaged together to obtain a single representative 

182 

 
183 

value for each specimen. 

 

184 Biomechanical Testing 
 

185 The biomechanical properties of L4 vertebrae were quantified using a servohydraulic testing 
 

186 system (MTS Bionix, MTS Corporation).  Compression to failure was carried out on saline soaked 
 

187 specimens using displacement control mode (20 mm/min).  Load vs displacement data were 
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188 digitally recorded at a sampling rate of 10Hz.  Plots were analyzed for determination of ultimate 
 

189 force (F), stiffness (k) and work to ultimate force (w). Apparent material-level properties ultimate 
 

190 stress (σult), modulus (E), and toughness (U) were estimated using the following equations: σult = 
 

191 (F / CSA) / BV/TV; E = (k * (height / CSA)) / BV/TV; U = (w / (height * CSA)) / BV/TV, where cross 
 

192 sectional area (CSA) is from pQCT, height measured using digital calipers, and BV/TV from L2 
 

193 
 

194 

histomorphometry. 

 

195 Statistics 
 

196 All statistical tests were performed using SAS software (SAS Institute, Inc.). To determine 
 

197 whether variables were different among treatment groups after 3 years, data were evaluated 
 

198 using a one-way analysis of variance (ANOVA) with Fisher’s protected least-significant difference 
 

199 (PLSD) post-hoc tests.  Strength-density and energy absorption-density relationships from three- 
 

200 year treated animals were compared between VEH and ALN treatments using analyses of 
 

201 covariance with least square means (LSM) used to determine differences in parameters after 
 

202 accounting for aBMD. To determine whether changes occurred within treatment groups across 
 

203 time, t-tests were used to compare data from animals treated for three years with results from an 
 

204 earlier study in our lab which treated animals under the same conditions for one year [18]. For all 
 

205 tests, p < 0.05 was considered statistically significant. All data are presented as mean ± standard 
 

206 
 

207 

error. 

 

208 RESULTS 
 

209 At the conclusion of the study there was no significant difference in body mass among the three 
 

210 groups (VEH: 12.6 ± 0.6 kg; ALN0.2: 12.4 ± 0.5 kg; ALN1.0: 11.6 ± 0.7 kg; p = 0.492). 
 

211 Crack density, the number of microcracks per mm bone tissue, was significantly higher 
 

212 than VEH for ALN1.0 (+100%, p = 0.01), but not ALN0.2 (+50%; p = 0.12)(Figure 1A). Mean 
 

213 crack length was significantly smaller in both ALN-treated groups compared to VEH (-20% for 
 

214 both) (Figure 1B).  Crack surface density, the product of crack density and crack length, was not 
 

215 significantly different among groups (Figure 1C). 
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216 Activation frequency (Ac.f) was significantly lower than VEH in both ALN0.2 (-59%) and 
 

217 ALN1.0 (-60%) treated animals. The reduction in Ac.f resulted from significant suppression of 
 

218 both mineral apposition rate (MAR) and mineralizing surface (MS/BS), with no change in wall 
 

219 thickness.  MAR was 17% lower than VEH for both doses of ALN while MS/BS was -51% and - 
 

220 62% for ALN0.2 and ALN1.0 groups, respectively (Table 1). 
 

221 Structural biomechanical properties – ultimate load, stiffness, and energy to ultimate load 
 

222 – were not significantly different among the treatment groups (Table 2). When normalized for 
 

223 aBMD, there was no difference in the strength-density relationship between VEH- and ALN- 
 

224 treated animals (Figure 2A).   The slope of the energy absorption-density relationship was similar 
 

225 between treatments yet at a given aBMD the energy absorption capacity was significantly lower in 
 

226 vertebrae from ALN-treated animals (-20%, p = 0.01) compared to VEH (Figure 2B). For both the 
 

227 strength-density and energy absorption-density relationships the two doses of ALN were pooled 
 

228 as the results were similar when doses were assessed separately. 
 

229 Toughness, the energy absorption capacity of the bone tissue, was significantly lower in 
 

230 both ALN0.2 (-26%) and ALN1.0 (-33%) groups compared to VEH (Table 2). There was no 
 

231 difference among groups for the other two material-level properties, ultimate stress and modulus. 
 

232 Vertebral aBMD was not significantly different among groups while vBMD tended to be 
 

233 higher (p=0.056) in both ALN0.2 and ALN1.0 groups (both +7%) versus VEH (Table 3). 
 

234 Trabecular vBMD, cortical vBMD, and cross-sectional area were not different among the three 
 

235 treatment groups. Trabecular bone volume, assessed by histology, was significantly greater in 
 

236 both ALN0.2 (+23%) and ALN1.0 (+31%) treatment groups compared to VEH (Table 3). 
 

237 After three years of treatment Ac.f. was significantly lower in ALN0.2 (-40%, p = 0.01), but 
 

238 not ALN1.0 (-30%, p = 0.30), compared to similar treatment groups at 1 year (Figure 3a). The 
 

239 level of microdamage (both Cr.Dn and Cr.S.Dn) was not significantly different at 3 years 
 

240 compared to 1 year for either ALN group (Figure 3b, 3c).  Compared to 1-year of treatment, 
 

241 ALN0.2 had higher ultimate load (+21%), stiffness (+55%) and modulus (+65%) at 3 years while 
 

242 ALN1.0 had significantly higher stiffness (+42%) and modulus (+30%) and lower toughness (- 
 

243 18%) (Table 4 and Figure 3). VEH-treated animals had significantly lower Ac.f. (-58%), higher 
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244 microdamage accumulation (+301%), and higher structural- and material-level strength and 
 

245 
 

246 

stiffness at 3 years compared to VEH-treated animals after 1 year (Table 4 and Figure 3). 

 

247 DISCUSSION 
 

248 Animal studies have consistently documented higher levels of microdamage in bisphosphonate- 
 

249 treated animals [14-18] yet it has remained unclear whether microdamage accumulation 
 

250 continues or plateaus with extended bisphosphonate treatment. Recently, we have documented 
 

251 that clinically-relevant doses of alendronate increase microdamage by 4- to 5-fold in skeletally 
 

252 mature beagles after 1 year of treatment [18]. We now present data to show that the level of 
 

253 microdamage in vertebral trabecular bone does not significantly increase with an additional two 
 

254 years of alendronate treatment (3 years total treatment duration) at doses approximating those 
 

255 used to treat post menopausal osteoporosis or Paget’s disease. 
 

256 As remodeling is necessary to remove microdamage [6,7], bisphosphonate-treatment would 
 

257 be expected to allow accumulation of damage due to turnover suppression. While the degree of 
 

258 turnover suppression is correlated to the degree of microdamage accumulation [15,17,18], even 
 

259 mild suppression of turnover (~40%) with bisphosphonate-treatment is sufficient to allow 
 

260 significant increases in microdamage [18]. The current study shows that the initial suppression of 
 

261 turnover with bisphosphonate treatment has the greatest influence on microdamage 
 

262 accumulation. Following one year of ALN-treatment, vertebral bone turnover is suppressed by 
 

263 ~70%, associated with a 4 to 5-fold increase in microdamage [18]. With an additional 2 years of 
 

264 treatment, and a continued decline in turnover (-30 to -40% compared to values in 1 year 
 

265 animals), microdamage was not significantly increased (1.3- and 1.6-fold higher than VEH). The 
 

266 most plausible explanations for this finding are 1) microdamage can be controlled at a new 
 

267 equilibrium level even with only 30% of normal bone turnover and/or 2) there is a reduced 
 

268 formation of microdamage. The latter could result from the lowering of trabecular strains due to 
 

269 the 20-30% increase in bone volume (Table 3). 
 

270 Consistent with the relationship between turnover suppression and microdamage 
 

271 accumulation, animals treated for 3 years with vehicle had significantly lower turnover (-58%) and 
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272 significantly higher levels of microdamage (+300%) compared to those treated for 1 year. These 
 

273 data highlight that microdamage accumulation is not due to bisphosphonates, per se, but rather 
 

274 the reduction in turnover brought about by bisphosphonate treatment. 
 

275 Toughness, the energy absorption capacity of the material, is consistently reduced in 
 

276 bisphosphonate-treated animals [14,15,17,18]. This change has often been attributed to 
 

277 microdamage accumulation although a cause and effect has yet to be established. The current 
 

278 results provide two pieces of evidence to suggest microdamage accumulation is not ‘causing’ 
 

279 reduced toughness in bisphosphonate-treated bone.  First, despite higher levels of microdamage 
 

280 in VEH-treated animals after three years (compared to 1 year), there was no change in bone 
 

281 toughness.   Second, despite no significant difference in microdamage accumulation between 
 

282 animals treated for one and three years with either dose of ALN, animals treated with ALN1.0 had 
 

283 significantly lower bone toughness at three years compared to one year. While these data do not 
 

284 disprove a cause/effect relationship they strongly suggest bisphosphonate-associated reductions 
 

285 in bone toughness extend beyond simply the accumulation of microdamage. 
 

286 Structural biomechanical properties – ultimate load, stiffness, and energy absorption – were 
 

287 not significantly different than VEH after 3 years of ALN treatment. These results differ from 
 

288 those at one year, where both doses of ALN significantly increased vertebral stiffness [18] and 
 

289 the higher dose of ALN increased strength [15].  The absence of difference among these groups 
 

290 treated for 3 years is likely the result of significant increases in VEH-treated animals, which had 
 

291 significantly higher ultimate load (+24%) and stiffness (+68%) compared to values in 1 year 
 

292 treated animals. These higher structural-level mechanical properties in 3-year VEH-treated 
 

293 animals compared to 1-year VEH-treated animals likely result from age-associated periosteal 
 

294 expansion. Vertebral cross-sectional area, which plays a significant role in determining structural 
 

295 parameters and results from continued periosteal expansion, was significantly higher (+16%) in 
 

296 the 3-year VEH group compared to the 1 year group. Material-level properties – ultimate stress 
 

297 and modulus – were also higher in VEH-treated animals at 3 years compared to one year. We 
 

298 have recently documented increases in collagen cross-linking and collagen maturity of vertebrae 
 

299 that are attributable to turnover suppression [23].  As the organic matrix is known to affect 
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300 material properties, we hypothesize that the reduction in turnover between 1 year and 3 years in 
 

301 vehicle-treated animals (-58%) results in an increase in collagen cross-linking and maturity which, 
 

302 in conjunction with other parameters such as mineralization and microdamage, determine 
 

303 material-level biomechanical properties [24]. 
 

304 An alternative approach to investigate the effects of bisphosphonate treatment on 
 

305 biomechanical properties is to compare the relationships between bone density and 
 

306 biomechanical properties.  Proposed by Hernandez and Keaveny [25], these relationships allow 
 

307 the determination of changes in bone strength or energy to fracture that are not accounted for by 
 

308 a change in bone mass (aBMD). ALN-treated animals had 20% lower energy absorption capacity 
 

309 at a given aBMD, indicating that an increase in BMD is necessary with alendronate treatment to 
 

310 maintain energy absorption capacity at a level comparable to non-treated bone. This result is 
 

311 consistent with the 22% lower energy absorption at a given aBMD following one year of treatment 
 

312 with doses of ALN approximating those used to treat osteoporosis [19]. 
 

313 Given the invasive nature of both microdamage and biomechanical property measures, it 
 

314 proves difficult to determine if the changes noted in the current study extend to humans treated 
 

315 with bisphosphonates.  Higher levels of microdamage exist in bisphosphonate-treated women 
 

316 [26], although there is no data to support whether there exists a similar treatment-duration 
 

317 accumulation pattern as noted in the current study.  Bisphosphonates have clear anti-fracture 
 

318 efficacy suggestive of improved biomechanical properties [11-13].  However, given the multi- 
 

319 factorial nature of fractures it remains possible that reduced toughness or lower energy 
 

320 absorption at a given aBMD could exist even in light of an overall population reduction in fracture 
 

321 risk with bisphosphonates.  Indeed both toughness and energy absorption are compensated for 
 

322 by the increased bone density that routinely occurs with bisphosphonate treatment, but the 
 

323 material properties of the tissue are nevertheless compromised. 
 

324 In conclusion, three years of alendronate-treatment resulted in higher microcrack density in 
 

325 vertebral trabecular bone of intact beagle dogs, yet the amount of microdamage was not 
 

326 significantly higher than in animals treated with equivalent doses for 1 year. This suggests that 
 

327 increased skeletal microdamage associated with turnover suppression occurs early in treatment, 
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328 and does not progress with longer treatment duration. Because toughness continued to decline 
 

329 significantly over three years of treatment at the higher ALN dose, decreases in toughness are 
 

330 

 
331 

 

332 
 

333 

probably not dependent on damage accumulation. 
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342 FIGURE LEGENDS 
 

343 Figure 1.  Microdamage parameters in vertebral trabecular bone following three years of daily 
 

344 vehicle (VEH) or alendronate (ALN) treatment (0.20 or 1.00 mg/kg/day). (A) Crack density, the 
 

345 number of microcracks normalized to bone area, was significantly higher (p = 0.032) in animals 
 

346 treated with the higher dose of alendronate (ALN1.0).  (B) Mean crack length was significantly 
 

347 lower (p = 0.013) with both doses of ALN.  (C) Crack surface density, the product of crack 
 

348 density and crack length, was not significantly different among groups (p = 0.149). There was no 
 

349 significant difference between doses of ALN for any microdamage parameter.  * p < 0.05 versus 
 

350 

 
351 

VEH. 

 

352 Figure 2.  Strength-density (A) and energy absorption-density (B) relationships of vertebral bone 
 

353 from beagles treated for 3 years with vehicle (VEH) or alendronate (ALN). Areal bone mineral 
 

354 density (aBMD) was assessed by densitometry while strength and energy absorption were 
 

355 assessed by monotonic compression biomechanical tests.  The strength-density relationship was 
 

356 similar for vehicle (○, y = 20397x - 2065) and alendronate-treated animals (●, y = 23385x - 3033). 
 

357 The slope of the energy absorption-density relationship was similar yet the intercepts differed 
 

358 significantly between vehicle (○, y = 9912x – 1306) and alendronate-treated animals (pooled (●), 
 

359 y = 11489x – 2228).  After adjusting for aBMD, the energy absorption capacity was significantly 
 

360 lower (-20%) in ALN-treated specimens compared to VEH. ALN-treated groups were combined 
 

361 
 

362 

as there was no difference between the two doses for either relationship. 

 

363 Figure 3.  Differences in activation frequency (A) crack density (B) and toughness (C) between 
 

364 animals treated for 1 and 3 years with vehicle (VEH) or alendronate (ALN0.2 and ALN1.0). (A) 
 

365 Activation frequency was significantly lower in both VEH and ALN0.2 after 3 years of treatment 
 

366 compared to animals at 1 year. (B) Crack density, the number of microcracks normalized to 
 

367 bone area, was not significantly different for either dose of ALN but was significantly higher in 
 

368 VEH-treated animals after 3 years compared to animals treated for 1 year. (C) Toughness, the 
 

369 material-level energy absorption capacity, was significantly lower in animals treated with the 



Page 15 of 16 
 

 
 

370 higher dose of alendronate (ALN1.0) after 3 years compared to values at 1 year. * p < 0.05 
 

371 
 

372 

versus 1 year animals within treatment. 
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Tables & FIgure for Revision 
 
 
 
 

Table 1. Dynamic histomorphometry of the second lumbar vertebrae 
 
 

 Vehicle 

1 ml/kg/day 

Alendronate 

0.20 mg/kg/day 

Alendronate 

1.00 mg/kg/day 

 
p value 

MAR, um/day 1.36 ± 0.08 1.13 ± 0.06 * 1.11 ± 0.07 * 0.028 

MS/BS, % 7.63 ± 0.99 4.15 ± 0.51 * 3.30 ± 0.92 * 0.002 

BFR/BS, µm3/µm2/year 36.75 ± 0.10 16.70 ± 0.04 * 14.31 ± 0.09 * 0.0004 

Ac.f, #/year 0.793 ± 0.097 0.328 ± 0.037 * 0.319 ± 0.094 * 0.0002 

 
N= 12 animals per treatment group. MAR, mineral apposition rate; MS/BS, mineralizing surface 

per unit bone surface; BFR/BS, bone formation rate normalized to bone surface; Ac.f, activation 

frequency. * p < 0.05 vs vehicle. 



Table 2. Compressive biomechanical properties of the fourth lumbar vertebrae 
 

 
 
 
 
 

 Vehicle 

1 ml/kg/day 

Alendronate 

0.20 mg/kg/day 

Alendronate 

1.00 mg/kg/day 

 
p value 

Ultimate Load, N 4656 ± 234 4966 ± 254 4847 ± 304 0.710 

Stiffness, N/mm 11889 ± 1153 14241 ± 1146 13622 ± 956 0.299 

Energy to Ultimate Load, Nmm 1961 ± 198 1764 ± 140 1581 ± 136 0.260 

Ultimate Stress/(BVTV) 1.78 ± 0.11 1.64 ± 0.14 1.51 ± 0.07 0.229 

Modulus/(BVTV) 67.3 ± 6.9 74.1 ± 9.1 62.9 ± 3.2 0.518 

Toughness/(BVTV) 0.049 ± 0.004 0.036 ± 0.003 * 0.033 ± 0.002 * 0.004 

 

N= 12 animals per treatment group. BV/TV, bone volume normalized to tissue volume.  * p < 0.05 vs 

vehicle. 



Table 3. Lumber vertebrae bone mineral density, geometry, and bone volume 

 

 
 
 
 
 

 Vehicle 

1 ml/kg/day 

Alendronate 

0.20 mg/kg/day 

Alendronate 

1.00 mg/kg/day 

 
p value 

Whole aBMD, g/cm2 0.330 ± 0.010 0.343 ± 0.011 0.337 ± 0.009 0.644 

Total vBMD, mg/cm3 554 ± 14 591 ± 13 597 ± 12 0.056 

Trabecular vBMD, mg/cm3 329 ± 7 349 ± 7 341 ± 6 0.111 

Cortical vBMD, mg/cm3 1020 ± 10 1019 ± 7 1027 ± 6 0.746 

CSA, mm2 136 ± 4.5 131 ± 5.3 127 ± 5.1 0.461 

Trabecular BV/TV, % 19.9 ± 1.3 24.5 ± 1.7 * 25.8 ± 1.7 * 0.029 

 

N= 12 animals per treatment group. aBMD, areal bone mineral density; vBMD, volumetric bone 

mineral density; CSA, cross sectional area; BV/TV, bone volume normalized to tissue volume. 

* p < 0.05 vs vehicle. 



 

Table 4. Percent difference between animals treated for 1 and 3 years within treatment 
 
 
 
 

 

 Vehicle 

1 ml/kg/day 

Alendronate 

0.20 mg/kg/day 

Alendronate 

1.00 mg/kg/day 

aBMD, g/cm2 -1 -5 -4 

CSA, mm2 +17 +15 +15 

Ultimate Load, N +24 +21 +14 

Ultimate Stress/(BVTV) +20 +18 -1 

Stiffness, N/mm +68 +55 +42 

Modulus/(BV/TV) +62 +65 +30 

Energy to Ultimate Load, Nmm +13 +7 -3 

 
Comparisons between parameters of lumbar vertebrae after 1 and 3 years of 

treatment (1 year data from Allen et al, Bone 2006). Values represent percent 

difference between 1 and 3 year animals. Bold denotes significance (p < 0.05). 

N= 12 animals per treatment group per time point. aBMD, areal bone mineral 

density; CSA, cross sectional area; BV/TV, bone volume normalized to tissue 

volume. 
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Figure 3. 
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