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Abstract 1

Periosteum contains osteogenic cells that regulate the outer shape of bone, and work in co-2

ordination with inner cortical endosteum to regulate cortical thickness and the size and 3

position of a bone in space. Induction of periosteal expansion, especially at sites such as the 4

lumbar spine and femoral neck, reduces fracture risk by modifying bone dimensions to 5

increase bone strength.  The cell and molecular mechanisms that selectively and specifically 6

activate periosteal expansion, as well as the mechanisms by which  osteoporosis drugs 7

regulate periosteum remain poorly understood.  We speculate that an alternate strategy to 8

protect human bones from fracture may be through targeting of the periosteum, either using 9

current or novel agents.  In this review, we highlight current concepts of periosteal cell 10 

biology, including their apparent differences from endosteal osteogenic cells, discuss the 11 

limited data regarding how the periosteal surface is regulated by currently approved 12 

osteoporosis drugs, and suggest one potential means through which targeting periosteum 13 

may be achieved. Improving our understanding of mechanisms controlling periosteal 14

expansion will likely provide insights necessary to enhance current and develop novel 15 

interventions to further reduce the risk of osteoporotic fractures.16

17 
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Introduction 1

Osteoporosis drugs reduce fracture risk at clinically relevant sites, such as the femoral neck 2

and lumbar spine in postmenopausal women.  Although increased bone mineral density 3

(BMD) contributes significantly to the reduced fracture risk [1], statistical analyses show the 4

protective effects of antiresorptive and anabolic drugs cannot be explained by increased 5

BMD alone [2, 3].  The effects of osteoporotic drugs on cortical bone surfaces, which 6

dictate bone geometry and thereby significantly influence overall strength, are less well 7

understood.  Because femoral neck fractures initiate in cortical bone [4], and greater cortical 8

bone mass may explain the higher resistance to vertebral fracture in males [5, 6], cortical 9

bone biology clearly plays a major role in fracture prevention.  Periosteal expansion of the 10

cortical shell significantly increases bone strength, independent of increases in areal bone 11

mineral density  [7, 8].  This holds true even for bones composed predominantly of 12

trabecular bone, such as the femoral neck and lumbar vertebrae [9].  Gaining a better 13

understanding of how current osteoporosis drugs regulate cortical bone biology, especially 14

the preservation and expansion of periosteal surfaces, is critical to discovery of new 15

therapeutic regimens to reduce fractures.   16

Periosteum is a thin layer of osteogenic and fibroblastic cells in a well-developed 17

nerve and microvascular network, located along the periosteal cortex of cortical bone (Fig. 18

1).  Because there are ligament and tendon muscle attachments, and fibrocartilage, on some 19

areas of the periosteal surface, the different physical environments to which periosteal cells 20

are exposed is quite unlike that of the more frequently studied endosteal cells which are 21

bathed in hematopoietic marrow. Compared to endosteal osteoblasts, periosteal osteoblasts 22

exhibit greater mechanosensitivity to strain [10], a lower threshold of responsiveness to 23

osteogenic compounds such as parathyroid hormone [11], higher levels of expression of 24 
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proteins such as periostin [12-14], and more estrogen alpha receptors [15].These 1

differences in threshold sensitivity to physical, hormonal and mechanical stimuli may 2

underlie the differences in periosteal and endosteal surface responses to therapy [16].  More 3

extensive data are needed to fully characterize and understand the reasons for any difference 4

at the cellular level.  Once this is accomplished, then periosteal cells can be targeted 5

therapeutically.  6

Our knowledge of the effects of approved osteoporosis drugs on cortical bone 7

biology is limited. Anti-resorptive and anabolic osteoporotic drugs may regulate periosteal 8

cells differently than endosteal cells.  For mechanical reasons, periosteal stimulation may 9

provide better anti-fracture efficacy than agents that primarily target endosteal and 10 

trabecular cell populations [17, 18].We speculate that an alternate strategy to protect 11

human bones from fracture may be through targeting of the periosteum, either using current 12 

or novel agents. In this review, we highlight current concepts of periosteal cell biology, 13

including their apparent differences from endosteal osteogenic cells, discuss the limited data 14 

regarding how the periosteal surface is regulated by currently approved osteoporosis drugs, 15 

and suggest one potential means through which targeting periosteum may be achieved.16

Periosteum anatomy  17

Periosteum covers the external surfaces of most bones, to serve as a transitional region 18

between cortical bone and the overlying soft tissue or musculature.   Long bones exhibit a 19

continuous periosteal surface, yet this surface may not be covered by an intact periosteum.  20

Periosteum is absent from articular surfaces, tendon insertions, or sesamoid bone surfaces 21

[19], and is present in locations at high risk for fracture,  such as femoral neck, distal radius, 22

and vertebrae.  The existence of periosteum at the femoral neck has been questioned; early 23

observational [20, 21] and histological [22] studies suggested the femoral neck lacked a 24
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periosteal cambium layer.  More comprehensive and recent histological studies show that  1

periosteum is present on human femoral neck surfaces [23-26], and in some cases, a thin 2

cambium layer with osteoblasts can be observed in discrete locations (Fig. 2) [26, 27].     3

Periosteum is composed of two distinct layers when viewed histologically (Fig. 1), 4

and of up to five distinctly different functional regions when dissociated enzymatically and 5

cultured [28-30]. Anatomically, the outer more “fibrous” layer of periosteum is composed of 6

fibroblasts, collagen, and elastin fibers [31] along with a distinctive nerve and microvascular 7

network [32, 33].  The inner “cambium” layer, positioned in direct contact with the bone 8

surface, is highly cellular.  It contains adult mesenchymal progenitor cells, differentiated 9

osteogenic progenitor cells and osteoblasts [34], fibroblasts [35], as well as microvessels 10

[32] and sympathetic nerves [33].  Sympathetic nerve density is significantly higher 11

compared to the endosteum [36], but the relevance of this difference in terms of a 12

contribution to regulation of periosteum homeostasis and bone formation is not known.  13

Osteoblasts of the cambium layer are cuboidal in immature bone, becoming more 14

elongated [32] and fewer in number [37] with maturity. This reduction in osteoblast number 15

may contribute to the apparent atrophy and thinning of the cambium layer that occurs with 16

age [38].  Fibroblasts within the cambium layer are smaller and more isodiametric than 17

those in the outer fibrous layer, which have more typical (elongated) fibroblast 18

characteristics [35].  Periosteal fibroblast number and fibrous layer thickness decrease with 19

age [37], although atrophy of the fibrous layer is less than that of the cambium layer [32, 20

38].  Vessel density throughout the periosteum also declines with age [32], but retains the 21

capacity to increase when activated by mechanical loading or fracture repair [32].  These 22

age-induced changes may help explain why periosteal cells from older subjects fail to form 23

mineralized nodules in culture [39], and why periosteal bone formation rate [40], and 24
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responsiveness to hormones and cytokines [41] declines with age.  Whether such changes in 1

periosteal cells are also due to age-related changes in circulating hormones known to 2

influence the periosteum, such as growth hormone and sex steroids [42], deserves further 3

study.4

Due to its high vascularity, the periosteum contains an abundance of endothelial 5

pericytes [43].   Pericytes are cells in physical contact with capillary endothelial cells, with 6

the ability to differentiate into numerous cell types, including osteoblasts, under appropriate 7

culture conditions [29, 44]. These cells may serve as a supplementary source of 8

osteoprogenitor cells [43] and may be more important in periosteal bone formation, due to 9

their greater abundance in periosteum [45], than in endosteal bone surface apposition [29].  10

Cultured pericytes mineralize in vitro [45] and synthesize the osteoblast marker, alkaline 11

phosphatase [45], as well as bone matrix proteins, including osteocalcin [32, 45], 12

osteonectin [32], osteopontin [32], and bone sialoprotein [32].  These cells form an 13

osteogenic tissue that mimics bone-derived tissue, both spatially and temporally [32] and 14

responds to osteogenic stimuli, such as BMP and parathyroid hormone [44].  A potential 15

role for pericytes as a source of osteoblasts in periosteum has not been investigated.   16

Site-specific differences in periosteum anatomy/activity clearly exist throughout the 17 

skeleton.   It is well know that the calvarial periosteum is uniquely regulated compared to 18 

the axial skeleton (see below), and that cellular periosteum is sparse at the femoral neck 19 

[24].  As the femoral neck increases periosteal dimensions with age [46, 47], the 20 

consequences of having sparse periosteum are not clear.  There are few studies that 21 

specifically address the site-specific differences [48-50] yet clear differences (> 3 fold) in 22 

periosteal bone formation rates exist among skeletal sites (Fig 3).  Such varying rates 23 

suggest periosteum anatomy/regulation may differ throughout the axial skeleton.  Further 24 
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investigation of such site-specific differences is essential as it is possible that targeting the 1

periosteum may benefit only certain locations.2

Periosteal cells are unique from other osteogenic cell populations 3

Most data detailing periosteal cell responses have been derived from cultures of calvarial-4

derived cells, such as the MC3T3.E1 cell lines, primary calvarial cells or calvaria organ 5

cultures.  Abuin and Triffitt [34] present an excellent review of the genetic regulation and 6

hormonal responsiveness of these cells.  Although the embryonic mouse calvarial cell line 7

(MC3T3.E1) has been studied in great detail, its validity as a model for periosteal osteoblast 8

responses of appendicular and axial bones has not been adequately investigated.  Calvarial 9

periosteum appears to be regulated differently from the periosteum of appendicular and 10

axial bones [51], and it is important to clarify whether MC3T3.E1 periosteal cells predict 11

generic periosteal responsiveness in culture, or are more representative of specific calvarial 12

periosteal responses.  Furthermore, if this cell line is to be used as a prototype periosteal cell 13

model, it will be important for scientists in the field to reach consensus on the characteristics 14

of a reproducible phenotype, and standardized culture conditions, as these parameters 15

currently differ for the MC3T3.E1 cell line among laboratories [52]. 16

Of studies using periosteal cells from appendicular or axial bones, few have directly 17

compared the response of periosteal and endosteal cells. Differences between periosteal and 18

endosteal cells are qualitative and quantitative, and range from patterns of growth in culture 19

[53] to the response to mechanical [10] and pharmacological stimuli [11].  Periosteal cells 20

divide more rapidly and mineralize in a more random pattern in vitro [53].  When exposed 21

to physiological levels of mechanical strain (3000 ), periosteal cells increased proliferation 22

and PGE2 production while osteoblasts of endosteal origin failed to respond [10].  Cultured 23

periosteal cells respond to PTH at a lower threshold, exhibiting a 7-fold increase in bone 24
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matrix protein production compared to non-treated control cultures; cultured endosteal cells 1

inhibit bone matrix protein production when exposed to PTH [11].  Collectively, the data 2

support the idea that osteogenic cells display site-specific characteristics although the 3

limited studies make definitive conclusions difficult.  If such differences are confirmed, it 4

will be essential to define how they translates to in vivo responses.5

Effect of approved osteoporosis drugs on periosteal expansion 6

Current pharmacological interventions include anabolic and anti-resorptive agents.  Both 7

modes of treatment reduce risk of osteoporotic bone fracture, in part by increasing bone 8

density. Anabolic agents, such as PTH, increase bone modeling [54] and remodeling [55].9

Anti-resorptive agents, such as the bisphosphonates (e.g. alendronate, risedronate, 10

ibandronate, incadronate, or pamidronate), and estrogenic compounds (estrogen, raloxifene) 11

suppress bone remodeling through suppression of osteoclast resorption and increased 12

osteoclast apoptosis.  The extent to which these various agents have surface-specific effects 13

and share common mechanistic pathways on the periosteal surface has not been studied in 14

depth. 15

Dual energy x-ray absorptiometry (DXA) is the most common form of skeletal 16 

assessment in humans with differences in total cross-sectional area assumed to be related to 17 

periosteal apposition.  The limited resolution of DXA is well known [56], and may account 18 

for the high variability among studies investigating pharmacological interventions in 19 

humans.  Despite limitations, the paucity of data on pharmacological effects on periosteal 20 

bone in humans necessitates generalization to be drawn using such data.  21 

Once daily parathyroid hormone (PTH) treatment increases cortical bone width 22

through preferential modeling on both periosteal and endosteal surfaces [56-60].   Cross 23

sectional clinical studies using DXA document significant increases in vertebrae [61] and 24
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radius [62] cross sectional area following 12-18 months of PTH treatment in post-1

menopausal women.  Histological [54, 63-65] and microCT [65] data document PTH-2

induced increases of cortical wall thickness.  Femoral neck cortical bone volume increased 3

over 18 months with PTH treatment in post-menopausal women [66].  Data from paired 4

iliac crest biopsies suggests this to be the result of both endocortical and periosteal surface5

formation [54].  Recent clinical trials document an attenuated BMD increases if anti-6

resorptive agents are given prior to or simultaneously with PTH (1-34), suggesting 7

remodeling accounts for a significant portion of PTH-induced benefits [66-68].  Blunted 8

effects of PTH were noted in cancellous bone of animal previously treated with anti-9

resorptive agents [69] whereas other animal studies show resorption is not necessary for 10 

increased bone formation on cancellous bone [70, 71]; no such data exist on cortical bone.11 

More detailed studies that clearly show the surface- and time-specific effect of PTH have 12 

been carried out in mice [60, 72]. Paradoxically, continuous exposure to PTH and 13

hyperparathyroidism in humans [59] and normal and genetically modified mice stimulates 14

periosteal surfaces, but fails to stimulate endocortical surfaces [73-79].  Even more 15

puzzling, constitutive activation of the PTH1 receptor in genetically modified mice inhibits 16

periosteal and endocortical bone formation, but stimulates trabecular bone formation [80].17

Continuation of this work using genetically modified mouse models to elucidate the surface-18

specific role of PTH is essential, as is more focused research on the periosteal surface 19

response to PTH in humans.  20

The anabolic effect of recombinant human growth hormone (rhGH) on periosteal 21

surfaces is well established in animals models [81], [82, 83]but remains unclear in humans 22

due to limited studies.  Clinical trials using rhGH have documented increased cross sectional 23

area of the rib [84], lumbar vertebrae and femoral neck [85] using longitudinal biopsy and 24 
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DXA analyses.  The interdependence of growth hormone and insulin-like growth factor I 1

(IGF-I) versus GH-independent effects of IGF-I make it difficult to independently assess the 2

contribution of each compound to periosteal apposition.  IGF-I and it’s interaction with the 3

six known binding proteins influence periosteal geometry based on animal models [86, 87], 4

[88].  No studies to date have assessed IGF-I’s influence on periosteal apposition in humans 5

although low-dose recombinant human IGF-I treatment for one month significantly6

enhanced bone formation biomarkers in women [89].  When given at bone effective doses, 7

the side-effects of GH, and to a lesser degree IGF-I, have limited the advancement of human 8

studies to assess their use as osteoporosis therapies.  Recently some investigators have 9

suggested such treatments could proceed with thorough oversight [90]. More research is 10

needed to understand how rhGH and its intermediaries regulate periosteal biology in 11

humans to determine if these are prototype agents to selectively stimulate periosteal 12

expansion and protect against osteoporotic fracture.   13

Few data document if bisphosphonate-induced reductions in bone remodeling impact 14

periosteal expansion.  One year of high dose bisphosphonate treatment results in 15

significantly higher rib cross-sectional area (compared to controls) in dogs although 16

periosteal bone formation rate was not different at sacrifice [91].  This suggests the 17

increased rate of periosteal apposition was transient and occurred early during treatment.  18

Neither tibial diaphyseal periosteal perimeter of primates [92] nor iliac crest cortical width 19

of women were significantly altered [93] following prolonged bisphosphonate treatment.  20

Evidence suggests positive effects of bisphosphonates on osteoblasts in vitro [94-96], so the 21 

selective effect of these drugs on periosteal modeling/remodeling should be assessed. The 22 

periosteal surface displays evidence of bone resorption and therefore undergoes remodeling23 

[8, 97]. If the majority of apposition on the periosteal surface is remodeling driven, the 24 
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potential benefits of bisphosphonates on osteoblasts would not likely translate into new bone 1

formation although they could prevent some loss from this surface.   If periosteal apposition 2

occurs via modeling processes, and if bisphosphonates suppress osteoblast apoptosis [98, 3

99], the benefits to bone strength by periosteal mechanisms could be significant.4

Estrogen inhibits periosteal expansion while estrogen deficiency stimulates 5

periosteal expansion in animals [100-102].  Androgens stimulate periosteal apposition [103]6

while androgen deficiency reduces periosteal apposition rates [101, 104, 105].  Periosteal 7

cells express both estrogen (alpha and beta) [15] and androgen receptors [106] as well as 8

numerous enzymes important for inter-conversion of sex steroids (i.e. aromatase, 5-9

reductase) [107, 108].  The estrogen receptor-alpha (ER ), is more highly expressed in 10 

cortical bone [15], and appears a major regulator of periosteal apposition in males and 11 

females.  Mice lacking ER receptors exhibit reduced periosteal diameter [109, 110] and an 12 

attenuation of loading-induced periosteal apposition [111].  Osteoblasts lacking ER do not 13 

respond to strain in vitro [112].  Animals and cells lacking ERß are minimally affected with 14 

respect to periosteal geometry and cellular activity.  The absence of androgen receptors 15 

(AR) abrogates testosterone-induced increases in periosteal bone formation [113] while 16 

mice overexpressing AR exhibit increased periosteal formation rate [114].  These animal 17 

and cell culture studies clearly document the influence of sex steroids on periosteal cell 18 

activity, the effects of these hormones on human periosteal bone are less clear.  19 

Pubertal changes in sex steroids account for the sexual dimorphism in human 20 

periosteal geometry [115, 116].  How age-induced changes in exogenous sex steroid levels 21 

influence periosteal expansion during the adult years, along with the effect of 22 

pharmacological supplementation/replacement, are unclear. Reduced serum estrogen levels 23

occurring during menopause are associated with periosteal expansion and concomitant loss 24
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of bone from endocortical and trabecular surfaces [7].  Estrogen replacement or hormone 1

replacement therapy increases periosteal apposition.  Postmenopausal women taking 2

estrogen therapy for one year increased vertebral cross sectional area [61], and show a trend 3

toward increased iliac crest cortical width  [117].  Cross sectional area of the femoral neck 4

and midshaft increased more in estrogen-treated postmenopausal women than in controls 5

[118].  There are no known data on periosteal changes with androgen treatment in humans.6

Limited data suggest selective estrogen receptor modulators (SERMs) have little or no effect 7

on periosteal apposition in humans. Iliac crest biopsy data document a non-significant 8

increase in cortical bone width after two years of raloxifene treatment, compared to a 9

decrease in placebo treated subjects [119].  Clearly sex steroids and their interaction with 10 

osteoblast receptors influence periosteal apposition.  Elucidating the mechanisms of though 11 

which these interactions regulate periosteal biology may lead to novel drug targets for12 

stimulating periosteal expansion.13 

Two important concepts influence the value of pharmacological stimulation of 14 

periosteal apposition.  First, we need to understand the comparative extent to which 15 

periosteal apposition relies on modeling versus remodeling.  Illiac crest data document both 16 

modeling and remodeling on the periosteal surface in healthy women [97].  Differences in 17 

the relative contribution of remodeling on cortical periosteal surfaces may determine the 18 

relative benefit of anabolic and anti-resorptive treatments.  Second, it is important to 19 

understand the conditions under which periosteal apposition is related to endosteal 20 

resorption.  It is hypothesized that the loss of endocortical surface bone leads to higher stress 21 

on the remaining bone, especially on the periosteal surface where stresses are highest in 22 

bending, resulting in periosteal formation to normalize the stress [120].  Anti-resorptive 23 

agents that reduce endocortical bone loss, and anabolic agents that increase endocortical 24 
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formation, could reduce the need for periosteal apposition if mechanical compensation is 1

absolute.  It is likely that the magnitude of mechanical compensation depends on initial bone 2

size.  Smaller bones exhibit more periosteal apposition in response to an equal absolute 3

amount of endocortical bone loss in larger bones [121].  Interactions between periosteal and 4

endosteal cortical bone surfaces, and the role that mechanical compensation plays in 5

periosteal expansion,  necessitates more in-depth study.6

Possible mechanisms to target periosteal bone formation. 7

In vivo studies of animals and post-menopausal women have revealed differences in the 8

osteogenic response on periosteal and endosteal surfaces, indicating a potential to 9

preferentially target the periosteal surface cells and increase bone circumference, thereby 10

reducing the risk of osteoporotic fracture.  Selective targeting of the periosteum requires we 11

identify genes and proteins unique to periosteum, or present in greater concentrations in 12

periosteum.  Recently, seven chromosomes that contain quantitative trait loci for periosteal 13

circumference in genetically altered mice were identified [122].  These data provide a 14

starting point from which to increase our understanding of the genetic control of periosteal 15

dimensions.   16

The relatively small quantity of periosteum at a given site other than calvaria, and 17

the difficulties in isolating relevant periosteal cells for such studies in animals and humans, 18

present hurdles that may be overcome by the use of technologies such as laser dissection 19

microscopy combined with molecular biology assays and tissue arrays, such as those used in 20

cancer. It is important to determine the relative extent to which animal models to predict 21

human periosteal cell responses.  New data concerning periosteal adaptations in humans is 22

essential to improve our understanding of periosteal biology.  More detailed cortical bone 23

analysis of iliac crest biopsies is necessary, beyond simply measuring cortical thickness.  If 24
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we are to gain a better understanding of how pharmacological interventions influence the 1

periosteal bone surface, more in-depth analyses should be undertaken including dynamic 2

bone formation assessment.  The ability of the periosteum of the iliac crest to predict 3

periosteal responses at sites of greater osteoporotic fracture risk needs to be clarified. 4

To date, only one protein, periostin, is present in greater abundance in periosteum.  5

Periostin is localized predominantly in preosteoblasts, and secreted into the extracellular 6

matrix [12].  Periostin, originally termed OSF-2 [14], is highly expressed in the periosteum 7

cambium layer and in the mouse periosteal calvarial cell line, MC3T3.E1 during 8

proliferation [12].  Expression of periostin is increased 4-fold within three days of fracture9

[123]. The transiently higher expression of periostin during osteoprogenitor proliferation 10

and abnormal osteoblast proliferation, and the decline in expression as differentiation 11

progresses, need to be better understood within the context of periosteal biology.  12

Expression of periostin is negatively regulated by 1,25-(OH)2-D3 [14] and positively 13

regulated by TGF-ß [12, 14].  Through interaction with the promoter of a transcription 14

factor Twist, which is important for osteogenesis, periostin acts as a negative regulator for 15

osteoblast differentiation [13].  Further work is necessary to determine if the periostin-null 16

mouse can be used as a model to study periosteal adaptations. 17

Conclusions 18

This review takes a somewhat different approach than other recent reviews of 19

periosteal biology [8, 124-126] by focusing on the implications of the anatomical structure 20

of the periosteum and pointing out the limited data available from clinical trials with respect 21 

to the effects of currently approved osteoporosis pharmaceuticals. Specifically, periosteal 22

cells appear to differ from endosteal cells; each cell population responds differently both 23

qualitatively and quantitatively to a wide variety of hormones and growth factors. We 24
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suggest, after considering the limited published data of therapeutic interventions for 1

osteoporosis, that substantial work should be undertaken to assess how current drugs 2

influence periosteal cells. We speculate there are selective and specific drug targets within 3

the periosteum that can be activated independently of endocortical or trabecular surfaces.4

Expanding the periosteal perimeter would represent a novel mechanism to dramatically 5

improve bone strength and reduce fracture risk, independent of the well-accepted effects of 6

increasing bone density.7

8
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Figure captions 1

2

Figure 1. Periosteal covering of the human femoral midshaft.  Note the abundance of cells 3

(arrowheads) near the periosteal surface comprising the cambium layer.  Section is from an 4

81 year old female cadaver stained with Massons trichrome.  Original magnification x 400, 5

bar = 25 m. 6

7

Figure 2. Periosteal covering of the human femoral neck.  Note the sparseness of cells 8

(arrowheads) near the periosteal surface as well as the abundant mineralized tissue (M) near 9

the periosteal surface.  Section is from an 81 year old female cadaver stained with Massons 10

trichrome. Original magnification x 400, bar = 25 m. 11

12 

Figure 3. Periosteal bone formation rates throughout the adult skeleton.  Untreated adult 13 

female cynomolgus monkeys (n=18) were injected with calcein three months apart and 14 

formation rates were calculated at the radius mid-diaphysis, femoral neck, femoral mid-15 

diaphysis, 2nd lumbar vertebra, and humeral mid-diaphysis.  Data presented as mean ± SE.  16 

Overall ANOVA p values = 0.04.  See R. Brommage et al.  J Clin Endocrinol Metab. 1999 17 

for further study information.   18 

 19

20 
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