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Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due
to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed back-
ground, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility
in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice
were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low
normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline
phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-
resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by
dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomogra-
phy. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our
previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, de-
creased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 frag-
ments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical
bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had
consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concen-
trations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline
phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The
high-phosphate diet did not increase serum phosphorus concentration in either mutant or control
mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phos-
phate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and,
thus, can be an effective therapy for tumoral calcinosis. (Endocrinology 152: 4504–4513, 2011)

Tumoral calcinosis (also referred to as hyperphos-
phatemic familial tumoral calcinosis, OMIM

#211900) is characterized by persistent hyperphos-
phatemia, leading to ectopic calcifications in soft tissues.
Although large calcifications found around major joints
are a prototypical feature of tumoral calcinosis, the phe-
notype can vary significantly between patients and some-
times includes dental and ophthalmological abnormalities
(1–5). There is also a variant form of tumoral calcinosis,
hyperostosis-hyperphosphatemia syndrome, which man-

ifests with recurrent swelling of the long bones (diaphysitis
and cortical hyperostosis). However, coexistence of ecto-
pic calcifications and cortical hyperostosis (6–8), as well
as the recent data showing the same genetic etiology of
both conditions (2, 9–11), indicate that they are different
manifestations of the same disease.

Tumoral calcinosis can be caused by inactivating mu-
tations in the FGF23 gene (12–15), encoding a peptide
hormone that regulates phosphate homeostasis (16–18),
as well as the Klotho (KL) gene (19), encoding a coreceptor
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required for fibroblast growth factor 23 (FGF23) signal-
ing through cognate FGF receptors (20, 21). However, by
far, the majority of the patients have mutations in
GALNT3 (2, 22, 23), which encodes a Golgi-associated
glycosyltransferase, UDP-N-acetyl-!-D-galactosamine:
polypeptide N-acetylgalactosaminyltransferase 3 (ppGal-
NAc-T3), involved in the posttranslational modification
of the subtilisin-like proprotein convertase recognition se-
quence (176RHTR179) in FGF23 (24, 25).

In the physiological state, FGF23 inhibits reabsorption
of phosphate by suppressing sodium-phosphate cotrans-
porters NaPi-IIa and NaPi-IIc in the kidney (26–28).
FGF23 also inhibits renal biosynthesis of 1,25-dihy-
droxyvitamin D [1,25(OH)2D] by both decreasing pro-
duction and increasing metabolism of 1,25(OH)2D (16,
26–29). However, in tumoral calcinosis due to GALNT3
mutations, FGF23 lacks O-glycosylation by ppGalNAc-
T3, making FGF23 proteins susceptible to proteolysis by
subtilisin-like proprotein convertases. Thus, the increased
cleavage leads to low or undetectable levels of circulating
intact FGF23, a biologically active form of FGF23 (24, 25,
30, 31). This inability to produce sufficient intact FGF23
is the main molecular defect responsible for increased re-
nal phosphate reabsorption as well as increased renal
1,25(OH)2D synthesis, which in turn enhances intestinal
absorption of phosphate and calcium. These increases in
circulating calcium and phosphate levels are thought to
cause calcium-phosphate deposits in soft tissues in pa-
tients with tumoral calcinosis.

To better understand the pathogenesis of tumoral cal-
cinosis, we recently created Galnt3 knockout mice and
characterized their phenotype at 3, 6, and 12 wk (32). As
in patients with tumoral calcinosis, these animals were
hyperphosphatemic and had low intact Fgf23 levels in the
blood, despite increased Fgf23 expression in the bone. In
addition, male Galnt3 knockout mice had increased bone
mineral density (BMD) and infertility. In this study, we
evaluated the phenotype of Galnt3 knockout mice at an
advanced age (24 wk). We also fed Galnt3 knockout mice
various phosphate diets to test the hypothesis that dietary
phosphate intake alters biochemical and skeletal pheno-
types of these mice. The findings from the present study
have clinical implications for treatment of patients with
tumoral calcinosis.

Materials and Methods

Generation and maintenance of experimental mice
The initial characterization of our Galnt3 knockout mice

used animals on a C57BL/6J-129SvEv hybrid background (32).
To eliminate the potential effect of background strains, these

mice were backcrossed to the C57BL/6J strain for 10 generations
before all experiments. For phenotyping of 24-wk-old Galnt3
knockout mice, experimental mice were generated by mating
heterozygous parents (Galnt3!/") and maintained on a regular
rodent diet, which contained 1.01% calcium, 0.65% phospho-
rus, and 2.05 IU/g vitamin D3 (Teklad Global 18% Protein Ex-
truded Rodent Diet, 2018SX; Harlan, Indianapolis, IN).

For dietary phosphate load experiments, heterozygous males
(Galnt3!/") were crossed to homozygous females (Galnt3"/").
At 3 wk of age, their male offspring (heterozygotes and homozy-
gotes) were weaned to diets containing various phosphate con-
tents: 0.1% (low), 0.3% (low normal), 0.6% (normal), and
1.65% (high) (T.09048, T.07153, T.07152, and TD.88345, re-
spectively; Harlan). All four diets were based on egg whites and
contained similar nutritional compositions, including approxi-
mately 1.0% calcium and 2.0 IU/g vitamin D3. When the males
reached 5 wk of age, they were paired with either heterozygous
or homozygous females (mean, 6.2 wk old; range, 4.4–10.9 wk
old at the start of breeding) and allowed to breed for 12 wk on
the same diets.

Animals had access to the diets and tap water ad libitum. The
study was approved by the Indiana University School of Medi-
cine Institutional Animal Care and Use Committee.

Serum biochemistry measurements
The mice for phenotyping in the congenic strain were eutha-

nized at 24 wk, and the males for the phosphate loading were
euthanized at 17 wk. Blood samples were collected under anes-
thesia by cardiac puncture and stored at "80 C until analysis.
Routine serum biochemistries (calcium, phosphorus, creatinine,
blood urine nitrogen, and alkaline phosphatase) were deter-
mined by Roche COBAS Mira S (Roche Diagnostics, Indianap-
olis, IN). Serum 1,25(OH)2D and tartrate-resistant acid phos-
phatase 5b concentrations were measured using 1,25-Dihydroxy
Vitamin D EIA and MouseTRAP Assay (TRACP 5b Mouse),
respectively (Immunodiagnostic Systems Ltd., Fountain Hills,
AZ). Serum osteocalcin concentrations were measured using
Mouse Osteocalcin EIA Kit (Biomedical Technologies, Inc.,
Stoughton, MA). Serum Fgf23 concentrations were determined
using two different ELISA kits. FGF23 ELISA kit (Kainos Lab-
oratories Inc., Tokyo, Japan) measures only intact FGF23 (33).
In contrast, Mouse FGF-23 (C-Term) ELISA (Immutopics Inter-
national, San Clemente, CA) detects both intact FGF23 and C-
terminal fragments of FGF23 and, thus, measures total FGF23 in
circulation.

Skeletal phenotyping
Femurs were harvested from Galnt3 knockout mice and their

age-matched littermate controls and fixed in 10% neutral-buff-
ered formalin for 2 d. Areal BMD and bone mineral content
(BMC) were measured by dual-energy x-ray absorptiometry
(DXA), using a PIXImus2 densitometer (LUNAR Corp., Mad-
ison, WI). Coefficient of variation from 11 measurements of a
frozen mouse specimen was 0.57% for BMD.

Microcomputed tomography (micro-CT; Skyscan 1172,
Kontich, Belgium) of the distal femur metaphysis was performed
using a 6-"m voxel size, as previously described (32). Trabecular
bone properties, including bone volume/tissue volume (BV/TV),
trabecular number, and trabecular thickness, and bone material
density were assessed on 1 mm of tissue (#166 slices) in the distal
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metaphysis beginning at 0.5 mm from the growth plate. For
cortical bone parameters, bone area, cross-sectional moment of
inertia, cortical thickness, and bone material density were as-
sessed on a single slice of the diaphysis. Bone material density is
the average gray scale value of the bone tissue and represents a
measure of tissue mineralization.

For dynamic histomorphometric analysis, mice were injected
ip with 0.6% calcein (30 mg/kg; Sigma-Aldrich, St. Louis, MO)
solution 14 and 4 d before animals were killed. The fixed femurs
were embedded in plastic (methyl methacrylate) using standard
methods. Four-micrometer-thick sections were cut from the dis-
tal femurs and left unstained for assessment of calcein labeling on
trabecular surfaces using standard methods. Outcome parame-
ters included BV/TV, mineral apposition rate, mineralizing sur-
face/bone surface, and bone formation rate/bone surface.

Statistical analysis
Means, SD, and SEM were calculated for all outcome measures

by genotype. ANOVA was used to test for overall differences
among genotypes; where appropriate, subgroup analyses (e.g.
within sex or same diet) were conducted. Unpaired t tests were
then used to test differences between two genotypic groups. P
values $0.05 were considered significant for all analyses.

Results

Phenotypic characterization of 24-wk-old Galnt3
knockout mice

Serum biochemistries
Galnt3 knockout mice described previously (32) were

in a C57BL/6J-129SvEv hybrid background. Thus, to
eliminate the potential background strain effects, Galnt3

knockout mice were regenerated in the homogeneous
C57BL/6J strain. There were differences in serum bio-
chemical values between males and females (Fig. 1), which
were not apparent in the initial characterization of these
mice. Compared with male mice of the same Galnt3 ge-
notypes, female mice had consistently higher levels of in-
tact Fgf23 (on average, !49% compared with same-gen-
otype males) and alkaline phosphatase (!69%), but lower
1,25(OH)2D ("26%). Although not statistically signifi-
cant, serum phosphorus was also higher in females.

Comparisons between wild-type and heterozygous mice
of the same sex showed no differences in serum biochemis-
tries (Fig. 1 and Supplemental Fig. 1, published on The En-
docrine Society’s Journals Online web site at http://endo.
endojournals.org). Compared with normal mice, both male
and female Galnt3 knockout mice on the C57BL/6J back-
ground exhibited normocalcemia, hyperphosphatemia, in-
appropriately normal 1,25(OH)2D level (for the degree of
hyperphosphatemia), decreased alkaline phosphatase activ-
ity, and low intact Fgf23 concentration, which is similar to
what was observed on the mixed background (32). How-
ever, serum phosphorus was not statistically different be-
tween female wild-type and Galnt3 knockout mice (Fig. 1).
Because serumcreatinineandBUNinGalnt3knockoutmice
were normal, homozygous loss of Galnt3 did not affect renal
function (Supplemental Fig. 1).

The amounts of intact Fgf23 and C-terminal fragments
measured by the Mouse FGF-23 (C-Term) ELISA were 20
times higher in Galnt3 knockout mice than wild-type or

FIG. 1. Serum biochemistries of 24-wk-old mice (n % 9–18 per group). White bars, wild type; light gray bars, heterozygote; dark gray bars,
homozygote. P values $0.05 (by t test) are indicated: *, compared with same-sex wild-type control; †, compared with same-genotype male.
F, Females; M, males.
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heterozygous mice (Fig. 1). However, the apparent in-
crease in Fgf23 concentrations was entirely due to pro-
duction of inactive fragments because less than 1% of the
measured Fgf23 was biologically active, intact protein in
Galnt3 knockout mice (Fig. 1).

Skeletal phenotype
At 24 wk of age, male Galnt3 knockout mice were

heavier, but the females were lighter than corresponding
wild-type mice (data not shown). Bone areas of femurs
determined by DXA were similar between wild-type and
Galnt3 knockout mice. However, femoral BMD and
weight-adjusted BMC were significantly higher in both
male and female Galnt3 knockout mice (Table 1). Males
had 10% higher BMD, whereas females had 7%. The
BMC was 9 and 16% higher in males and females,
respectively.

Micro-CT analysis of femoral cortical bone showed
that the bone area of Galnt3 knockout mice was 13%
higher in males and 9% higher in females, compared with
the wild-type counterparts (Table 1). In addition, male
affected mice had significantly higher polar moment of
inertia (34% increase) with females having a less, yet still
significant, difference of !16% compared with wild-
type controls. Analysis of trabecular bone at the distal
metaphysis also revealed higher bone volume and tra-

becular number in affected males and females. Specifi-
cally, BV/TV in Galnt3 knockout mice was more than
30% higher than wild-type mice. Although the magnitude
of difference in affected males was generally greater than
that of females, females had a greater number of properties
that were significantly affected (Table 1).

Consistent with the micro-CT analysis, bone volume
measured by histomorphometry was also higher in Galnt3
mutant mice (although it was statistically significant only
for affected females) (Table 1). There were no other sig-
nificant differences between mutant and control mice for
any of the histomorphometry parameters.

The effects of dietary phosphate loads on Galnt3
knockout mice

Serum biochemistries
Upon confirming that Galnt3 knockout mice retained

their phenotype in the congenic strain, we evaluated how
these mice respond to alterations in dietary phosphate.
Because there were no discernable differences between
wild-type and heterozygous mice, heterozygotes were
used as littermate controls for this experiment. On all four
diets, Galnt3 knockout mice had significantly higher se-
rum phosphorus (1.2–2.0 mg/dl) than heterozygous con-
trol littermates, with the smallest difference on the low-

TABLE 1. Skeletal analysis of the femur of 24-wk-old mice

Male Female

!/! "/" !/! "/"

DXA
BMD (g/cm2) 0.0531 & 0.0006 0.0587 & 0.0008a 0.0529 & 0.0004 0.0563 & 0.0012a

Weight-adjusted BMC 0.00100 & 0.00001 0.00110 & 0.00002a 0.00114 & 0.00001 0.00132 & 0.00004a

Micro-CT (trabecular bone)
BV/TV (%) 7.80 & 0.33 10.16 & 0.65a 3.28 & 0.23 4.52 & 0.40a

Trabecular thickness (mm) 0.0463 & 0.0018 0.0493 & 0.0008 0.0393 & 0.0007 0.0417 & 0.0010
Trabecular number (1/mm) 1.689 & 0.061 2.053 & 0.118a 0.834 & 0.055 1.085 & 0.087a

Bone material density, gray scale
(pixel intensity)

130.8 & 0.9 132.9 & 0.8 127.1 & 0.6 129.6 & 0.9a

Micro-CT (cortical bone)
Mean total cross-sectional bone

area (mm2)
0.819 & 0.019 0.924 & 0.019a 0.810 & 0.014 0.879 & 0.021a

Mean polar moment of inertia (mm4) 0.425 & 0.017 0.570 & 0.031a 0.351 & 0.011 0.406 & 0.018a

Cortical thickness (mm) 0.162 & 0.004 0.167 & 0.003 0.182 & 0.002 0.192 & 0.003a

Bone material density, gray scale
(pixel intensity)

170.6 & 1.3 169.0 & 1.7 177.9 & 1.1 178.6 & 1.5

Histomorphometry
BV/TV (%) 10.03 & 1.06 11.59 & 1.25 4.35 & 0.52 5.93 & 0.43a

Mineral apposition rate ("m/d) 1.20 & 0.06 1.28 & 0.07 1.89 & 0.11 1.80 & 0.09
Mineralizing surface/bone

surface (%)
39.9 & 2.5 34.8 & 2.5 31.3 & 1.3 31.9 & 1.6

Bone formation rate/bone surface
("m3/"m2 ! yr)

178 & 19 162 & 12 217 & 16 211 & 19

The data are presented as mean & SEM (n % 8–13 per group).
a P $ 0.05 compared with same-sex wild-type control mice.
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phosphate diet (Fig. 2). The low-phosphate diet made
heterozygous littermates severely hypophosphatemic. Se-
rumphosphorus in Galnt3 knockoutmiceon the samediet
were reduced by an average of 3.0 mg/dl; phosphorus in
these mice was at the low level of normal because it was not
statistically different from that of controls on the normal
diet (P % 0.07). In contrast, the high-phosphate diet did
not have a significant effect on serum phosphorus levels in
either Galnt3 knockout mice or their littermate controls; the
levels increased only 0.3 mg/dl on the high-phosphate diet.

With increasing dietary phosphate content, there was a
compensatory increase in both intact and total Fgf23 con-
centrations (Fig. 2). The increase was not limited to wild-
type mice; Galnt3 knockout mice also had a similar re-
sponse to dietary phosphate loads. Galnt3 knockout mice
on the high-phosphate diet achieved intact Fgf23 levels
comparable to wild-type mice on the normal-phosphate
diet by increasing overall production of Fgf23. However,
it should be noted that the level of intact Fgf23 in Galnt3
knockout mice was still markedly inappropriate in the face

of hyperphosphatemia. Furthermore, in both wild-type and
Galnt3knockoutmice, thefractionof intactFgf23withinthe
total immunoreactive Fgf23 increased as the phosphate load
increased, and the fraction decreased on the low-phosphate
diet (Fig. 2), indicating that these mice can modulate proteo-
lytic cleavage of intact Fgf23 protein to some extent.

In heterozygous mice, there was a general trend toward
decreased serum calcium as phosphate contents increased
(Fig. 2). Compared with mice on the normal diet, serum
calcium was significantly elevated only on the low-phos-
phate diet. Although Galnt3 knockout mice showed a sim-
ilar response to lower-phosphate diets, serum calcium had
a marginally significant increase on the high-phosphate
diet (P % 0.05). Compared with the littermate control,
Galnt3 knockout mice had approximately 10% higher
serum calcium on the low- or high-phosphate diets, but
there was no difference between the two genotypic groups
on the low-normal- or normal-phosphate diets. Serum cre-
atinine levels fluctuated considerably (Fig. 2). However,
therewerenomajordifferencesbetweendietsandgenotypes.

FIG. 2. Serum biochemistries of male mice on various phosphate diets (n % 6–12 per group). Light gray bars, heterozygote; dark gray bars,
homozygote. P values $0.05 are indicated: *, compared with heterozygous control on the 0.6% diet; †, compared with Galnt3 knockout mice on
the 0.6% diet (comparisons limited to Galnt3 knockout mice); ¶, compared with heterozygous control on the same diet. TRAP, Tartrate-resistant
acid phosphatase 5b.
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As in the 24-wk-old mice (Fig. 1), alkaline phosphatase
concentrations were consistently lower in male Galnt3
knockout mice at 17 wk of age than in heterozygous lit-
termates (24–34% decrease) (Fig. 2). Regardless of geno-
types of the mice, alkaline phosphatase had a biphasic
pattern with higher levels on the low- and high-phos-
phate diets. Levels of another bone formation marker,
osteocalcin, showed a similar biphasic pattern. How-
ever, unlike alkaline phosphatase, osteocalcin levels
were different between the two genotypic groups only
on the high-phosphate diet with Galnt3 knockout mice
having higher osteocalcin levels (Fig. 2). Compared with
control heterozygotes, serum levels of a bone resorption
maker, tartrate-resistant acid phosphatase 5b, tended to
be lower in Galnt3 knockout mice, particularly on the
low-phosphate diet (Fig. 2).

Skeletal phenotype
As in the biochemical values, the low-normal (0.3%)

phosphate diet had no effect on areal BMD (Fig. 3). How-
ever, compared with same-genotype mice on the normal-
phosphate diet, femurs from those fed the two extreme
diets had significantly lower areal BMD, particularly on
the high-phosphate diet. It is worth noting that this bi-
phasic pattern is an opposite of alkaline phosphatase and
osteocalcin (and to some extent, tartrate-resistant acid
phosphatase 5b) concentrations (Fig. 2).

Comparisons between Galnt3 knockout mice and
heterozygous littermates revealed that on all diets except
the high-phosphate diet, femurs of Galnt3 knockout mice
had significantly higher BMD (up to 11%) than those of
heterozygous littermates (Fig. 3). More importantly, the
low-phosphate diet essentially normalized areal BMD in
Galnt3 knockout mice because there was no difference
from heterozygous controls on the normal diet. Compared
with mice on the normal diet, those on the two extreme
diets tended to be smaller. Thus, weight-adjusted BMC

were also compared between genotypes and diets (Fig. 3).
The findings were identical to those in areal BMD.

Consistent with the DXA data, almost all variables
measured by micro-CT analysis were higher for mice on
the low-normal- and normal-phosphate diets and lower
for those on the low- and high-phosphate diets (Fig. 4 and
Supplemental Fig. 2). In addition, the differences between
the two genotypic groups that were often apparent on the
low-normal and normal diets disappeared in the mice on
the two extreme diets. It should also be noted that trabec-
ular bone parameters for Galnt3 knockout mice on the
low-phosphate diet were similar to heterozygous controls
on the normal diet, but in the same comparison, cortical
bone parameters were significantly lower in Galnt3
knockout mice on the low-phosphate diet.

Fertility
On the same four diets, Galnt3 knockout mice and their

heterozygous littermates were allowed to reproduce freely
for 12 wk. Regardless of Galnt3 genotypes in females,
those placed in the same cages with male Galnt3 knockout
mice had no sign of pregnancy or produced no offspring
(data not shown). In contrast, all females in the same cages
with heterozygous males became pregnant and produced
offspring at least once. However, overall fecundity and
fertility in these females were affected by dietary phos-
phate loads. Compared with those on the normal-phos-
phate diet, the number of pregnancies per female was sig-
nificantly reduced in mice on the low-phosphate diet and
in Galnt3 knockout mice on the high-phosphate diet (Fig.
5). In addition, the same groups had small litters, contrib-
uting to decreased total offspring born to each female.

Compared with heterozygous littermates, female
Galnt3 knockout mice generally had reduced numbers of
pregnancies and offspring and had smaller litter sizes (Fig.
5). However, only total number of pups on the low-nor-
mal-phosphate diet was significantly different between the
two genotypes.

FIG. 3. Body weight and femoral BMD and BMC of male mice on various phosphate diets (n % 10–12 per group for body weight). Light gray
bars, heterozygote; dark gray bars, homozygote. Bone specimens that were broken or missing pieces were excluded from analysis (n % 6–10 per
group for BMD and BMC). P values $0.05 are indicated: *, compared with heterozygous control on the 0.6% diet; †, compared with Galnt3
knockout mice on the 0.6% diet (comparisons limited to Galnt3 knockout mice); ¶, compared with heterozygous control on the same diet.
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Discussion

To better understand the pathophysiology of tumoral calci-
nosis, we recently developed an animal model of the disease
by disrupting the Galnt3 gene in mice (32). The initial phe-
notypic characterization of Galnt3 knockout mice in the
mixed background revealed biochemical characteristics of
tumoral calcinosis as well as increased BMD in males, which
maybereminiscentofhyperostosis-hyperphosphatemiasyn-
drome. In this study, we extended phenotypic characteriza-

tion of the animals in a more homogeneous background of
C57BL/6Jandonvariousdietaryphosphate loads.Biochem-
ical phenotypes of Galnt3 knockout mice in the new strain
were essentially identical to those found in the mixed back-
ground (32): normocalcemia, hyperphosphatemia, inappro-
priately normal 1,25(OH)2D level, decreased alkaline phos-
phatase activity, and low intact Fgf23 concentration.
However, this study revealed that Galnt3 knockout mice
have markedly elevated C-terminal Fgf23 fragments, reca-
pitulating the lowintact,highC-terminalpatternobserved in

FIG. 5. Fertility of female mice bred with heterozygous males (n % 5 per group). Light gray bars, heterozygote; dark gray bars, homozygote. P
values $0.05 are indicated: *, compared with heterozygous control on the 0.6% diet; †, compared with Galnt3 knockout mice on the 0.6% diet
(comparisons limited to Galnt3 knockout mice); ¶, compared with heterozygous control on the same diet.

FIG. 4. Micro-CT analysis of male mice on various phosphate diets. Light gray bars, heterozygote; dark gray bars, homozygote. Bone specimens
that were broken or missing pieces were excluded from analysis (n % 5–6 per group). P values $0.05 are indicated: *, compared with
heterozygous control on the 0.6% diet; †, compared with Galnt3 knockout mice on the 0.6% diet (comparisons limited to Galnt3 knockout mice);
¶, compared with heterozygous control on the same diet.
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patients with tumoral calcinosis (24, 30, 31, 34, 35). Simi-
larly, Galnt3 knockout mice on the four different phosphate
dietshadconsistentlyhighphosphorusandC-terminalFgf23
fragments but low intact Fgf23 and alkaline phosphatase
concentrations.

Because of a compensatory increase in Fgf23 produc-
tion and decrease in intact Fgf23 processing, serum phos-
phorus levels within same genotypic groups did not differ
significantly for either Galnt3 knockout mice or their lit-
termate controls on the low-normal-, normal-, and high-
phosphate diets. This finding suggests that given the in-
creased stimulus, Galnt3 knockout mice (and human
counterparts) can secrete more intact Fgf23 protein and,
thus, may be able to achieve normal phosphorus levels.
However, we cannot rule out that at least in Galnt3 knock-
out mice, the lack of increased phosphorus may be due to
the fact that excess phosphate is precipitated as calcium-
phosphate deposits in soft tissues as seen in some mice on
the high-phosphate diet (unpublished observations).

Hypercalcemia seen in some of the younger Galnt3 knock-
out mice in our previous study (32) also manifested in mice on
the low-phosphate diet. It is likely that low intact Fgf23 levels
secondary to the severe hypophosphatemia enhanced renal
1,25(OH)2D synthesis, which in turn increased intestinal ab-
sorption of phosphate as well as calcium. In contrast, the
increased calcium in Galnt3 knockout mice on the high-
phosphate diet (compared with littermate controls) is more
difficult to explain. On the high-phosphate diet, there is a
higher demand for intact Fgf23 protein to reduce intestinal
phosphate absorption and enhance renal phosphate excre-
tion. However, because Galnt3 knockout mice lag behind
the controls in intact Fgf23 production, this may lead to in-
creased 1,25(OH)2D synthesis and calcium absorption in
these mice. It is also possible that Pth, which has a similar
phosphaturic effect as Fgf23, may be elevated in Galnt3
knockout mice such that phosphate remains normal at the
expense of hypercalcemia.

In anticipation of a more pronounced skeletal phenotype,
we investigated Galnt3 knockout mice at 24 wk of age. Al-
though in the previous study (32) only 12-wk-old males had
increased BMD, in this study, both male and female Galnt3
knockout mice showed increased femoral BMD likely due to
the combination of increased sample size and the homoge-
neous background. Femoral BMD in Galnt3 knockout mice
were also consistently higher than those in heterozygous lit-
termates on the low, low-normal, and normal diets. Mi-
cro-CT analysis, which was previously done only on a small
number of males (32), revealed that both male and female
Galnt3knockoutmicehaveincreasedcorticalandtrabecular
bone properties. This finding may reflect the unique skeletal
feature (i.e. hyperostosis) seen in some patients carrying
GALNT3 mutations. Because there was no evidence for in-

creased bone formation rate by histomorphometric analysis,
the higher bone volume in Galnt3 knockout mice could be
due to reduced osteoclast activity as indicated by somewhat
lower serum tartrate-resistant acid phosphatase 5b levels or
higher bone formation rates earlier in life that have normal-
ized in these skeletally mature aged animals. Alternatively, it
is possible that small changes inbone formationexist in these
mice, yet the differences are not sufficiently large enough to
be detected by histomorphometry.

Because Galnt3 knockout mice had hyperphosphatemia
on the low-normal- or normal-phosphate diets, they toler-
ated the low-phosphate diet reasonably well. In fact, most
biochemical and skeletal phenotypes in these mice were
normalized by the low-phosphate diet. However, as indi-
cated by various bone parameters measured by DXA and
micro-CT, the low- or high-phosphate diets had adverse
effects on bone quality of normal mice. In addition, femurs
in Galnt3 knockout mice on the high-phosphate diet were
particularly prone to breakage during the extraction. Be-
cause mice fed the low- or high-phosphate diets had gener-
ally higher serum bone turnover markers (alkaline phospha-
tase,osteocalcin,andtartrate-resistantacidphosphatase5b),
increased bone remodeling is a likely explanation for bone
loss in these animals.

Mice lacking Fgf23 or Kl, the two other genes associ-
ated with tumoral calcinosis, also have hyperphos-
phatemia and abnormal bone development. Kl knockout
mice have low-turnover osteopenia, accompanied by de-
creased cortical bone thickness, but increased trabecular
bone (36–39). Similarly, mice lacking the Fgf23 gene have
significantly decreased mineralized bone with reduced os-
teoblast and osteoclast surface areas, indicative of sup-
pressed bone turnover (40, 41). Their skeletal phenotypes
are strikingly different from the increased bone in Galnt3
knockout mice. The differences could be due to the sever-
ity of hyperphosphatemia affecting overall health of these
animals. In this regard, Galnt3 knockout mice can sup-
press hyperphosphatemia (as observed on the high-phos-
phate diet) because of small amounts of intact Fgf23 in the
blood and have a normal lifespan, whereas the other two
animals develop severe hyperphosphatemia due to no
Fgf23 or its signaling, leading to a short lifespan.

Because male infertility was one of the prominent fea-
tures of Galnt3 knockout mice (32), we tested the hypoth-
esis that hyperphosphatemia causes infertility in these
mice. None of the females placed in the same cages with
male Galnt3 knockout mice produced offspring even on
the low-phosphate diet, which normalized serum phos-
phorus in the males. In contrast, infertility caused by hy-
pogonadism in Kl-null mice was reversed by introducing
homozygous loss of NaPi-IIa in the Kl-null background
(i.e. NaPi-IIa/Kl double-knockout mice) and, thus, ge-
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netically reducing serum phosphate levels (42). How-
ever, the double-knockout mice became infertile again
once fed a high-phosphate diet (1.2%). These data sug-
gest that male infertility in Galnt3 knockout mice is not
mediated by hyperphosphatemia like in Kl-null mice,
but rather it is a direct consequence of lack of O-gly-
cosylation by ppGalNAc-T3.

All females placed with heterozygous males produced
offspring. However, total number of pregnancies, total
offspring born, and mean litter size were all reduced in
females on the low-phosphate diet as well as Galnt3
knockoutmiceon thehigh-phosphatediet.Although these
data imply the relationship between phosphate and fertil-
ity, it is difficult to estimate how much of the reduced
fertility and fecundity is attributable to overall health or
serum phosphorus levels of experimental mice.

To further our understanding of tumoral calcinosis, we
generated Galnt3 knockout mice in the congenic
C57BL/6J background and tested the effect of dietary
phosphate intake on their phenotype. The biochemical
and skeletal findings observed in this study are of signif-
icant clinical importance. Regardless of phosphate load,
Galnt3 knockout mice had consistently higher phospho-
rus levels and lower alkaline phosphatase and intact Fgf23
concentrations than littermate controls. Although high
phosphate intake may not increase serum phosphorus in
Galnt3 knockout mice due to a compensatory increase in
circulating intact Fgf23 levels, our data suggest that it may
induce hypercalcemia, likely contributing to the overall
increase in calcium-phosphate products and subsequent
ectopic calcifications. On the other hand, the low-phos-
phate diet normalized serum phosphorus and alkaline
phosphatase levels and areal BMD in Galnt3 knockout
mice. Therefore, dietary phosphate restriction, as well as
the use of phosphate binders, should be considered when
treating patients with familial tumoral calcinosis.
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RG, Jüppner H, Lanske B 2004 Homozygous ablation of fibroblast
growth factor-23 results in hyperphosphatemia and impaired skel-
etogenesis, and reverses hypophosphatemia in Phex-deficient mice.
Matrix Biol 23:421–432

42. Ohnishi M, Razzaque MS 2010 Dietary and genetic evidence for
phosphate toxicity accelerating mammalian aging. FASEB J 24:
3562–3571

Endocrinology, December 2011, 152(12):4504–4513 endo.endojournals.org 4513


