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Zhuokai Li

MULTIVARIATE SEMIPARAMETRIC REGRESSION MODELS FOR

LONGITUDINAL DATA

Multiple-outcome longitudinal data are abundant in clinical investigations. For example, in-

fections with different pathogenic organisms are often tested concurrently, and assessments

are usually taken repeatedly over time. It is therefore natural to consider a multivariate

modeling approach to accommodate the underlying interrelationship among the multiple

longitudinally measured outcomes. This dissertation proposes a multivariate semiparamet-

ric modeling framework for such data. Relevant estimation and inference procedures as

well as model selection tools are discussed within this modeling framework. The first part

of this research focuses on the analytical issues concerning binary data. The second part

extends the binary model to a more general situation for data from the exponential family of

distributions. The proposed model accounts for the correlations across the outcomes as well

as the temporal dependency among the repeated measures of each outcome within an indi-

vidual. An important feature of the proposed model is the addition of a bivariate smooth

function for the depiction of concurrent nonlinear and possibly interacting influences of two

independent variables on each outcome. For model implementation, a general approach for

parameter estimation is developed by using the maximum penalized likelihood method. For

statistical inference, a likelihood-based resampling procedure is proposed to compare the

bivariate nonlinear effect surfaces across the outcomes. The final part of the dissertation

presents a variable selection tool to facilitate model development in practical data analysis.

Using the adaptive least absolute shrinkage and selection operator (LASSO) penalty, the

variable selection tool simultaneously identifies important fixed effects and random effects,
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determines the correlation structure of the outcomes, and selects the interaction effects in

the bivariate smooth functions. Model selection and estimation are performed through a

two-stage procedure based on an expectation-maximization (EM) algorithm. Simulation

studies are conducted to evaluate the performance of the proposed methods. The utility of

the methods is demonstrated through several clinical applications.

Wanzhu Tu, Ph.D., Co-Chair

Hai Liu, Ph.D., Co-Chair
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Chapter 1

Introduction

1.1 Research Objectives

Multiple outcome data are frequently encountered in biomedical research. For example,

randomized clinical trials use multiple outcomes to gauge therapeutic response, occurrence

of adverse events and changes in quality of life. Observational studies use multiple out-

comes to evaluate the overall health of study participants, disease exacerbation and care

cost. Laboratory experiments measures different strains of microorganisms or various types

of gene mutations. A quick examination of recent biomedical publications shows that single

outcome studies are becoming rarer. When multiple outcome data are collected repeatedly

over time, investigators face a challenge of incorporating not only the temporal dependency

among repeated measures, but also correlations among the multiple outcomes. Tradition-

ally, such data are analyzed one outcome at a time. Separate modeling of multiple outcome

data, while being easy to implement, ignores the cross-outcome associations, and thus is

prone to increased estimation bias and reduced inference efficiency. A multivariate modeling

approach seems a logical alternative, if the temporal and cross-outcome data dependency

can be appropriately accommodated.

The objectives of this dissertation are to propose a general and flexible modeling frame-

work for multivariate longitudinal data and to develop relevant procedures for parameter

estimation, statistical inference and model selection. Specifically, a general class of models

is proposed with the following features: 1) simultaneous analysis of multiple longitudinally

assessed outcomes through explicit specification of the correlation structure, 2) a general

model formulation applicable to different types of data distributions, 3) accommodation
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of joint nonlinear influences of two independent variables as well as their interaction, 4)

efficient and robust algorithms for parameter estimation, 5) comparison of covariate effects

across the outcomes through hypothesis testing, and 6) selection of relevant independent

variables (both random and fixed effects) and determination of the cross-outcome correla-

tion structure.

For clarity of presentation, I divide the dissertation into three interrelated pieces. The

first part discusses the analysis of multiple binary outcome data in longitudinal studies.

In this part, I present a multivariate semiparametric logistic regression model with mixed

effects, as motivated by a sexually transmitted infection study of three different organisms.

The second part extends the modeling structure to a broader class of data distributions.

This extension results in a unified analytical framework applicable to a wide range of re-

search areas. The focus of this part is the presentation of the parameter estimation and

statistical inference procedures developed for the general model. The final part of the dis-

sertation presents a variable selection tool that helps determine the inclusion of independent

variables and interaction effects as well as the correlation structure of outcomes. Together,

the three pieces present a very general and flexible modeling framework along with the

necessary implementation tools for the analysis of multiple outcome data.

1.2 Background of the Proposed Research

Statistical methodology for analysis of longitudinal data has matured rapidly in the last

three decades(Fitzmaurice et al., 2004). Most of the published methods, however, have

focused on the modeling of single outcomes. The existing methods can be broadly catego-

rized into two classes, i.e., generalized estimating equation (GEE)-based marginal models

(Liang and Zeger, 1986) and likelihood-based mixed effects models (Laird and Ware, 1982).

Extensions of the tradition longitudinal models for multiple outcomes fall neatly into these
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two categories, including multivariate version of GEE models (Rochon, 1996) and multi-

variate random effects models (Reinsel, 1982). The multivariate mixed effect models, in

particular, explicitly specify cross-outcome correlation structure, thus offering greater flex-

ibility in model formulation. This said, the mixed model approach has only been applied

to multivariate data with normally distributed outcomes.

In this dissertation I further extend the existing multivariate mixed models to other

types of data, including the most often used binary and count data. The extension covers

the entire exponential family of distributions, including the normal, Bernoulli, Poisson

and gamma distributions. I present the general modeling framework for this extended

distribution family. General-purpose model fitting and prediction algorithms are developed

by using the traditional software packages for mixed models.

Unlike the existing multivariate regression models, an important feature of the proposed

model is the nonparametric bivariate smoothing component. This new component is added

to the model for accommodation of nonlinear independent variable effects and their inter-

actions. In regression analysis, semiparametric components allow more flexible modeling

of nonlinear functional relationships between covariates and outcomes, whereas traditional

regression methods primarily assume linear independent variable effects. While linear re-

gression models are easy to implement and interpret, they do not always provide a good fit

to the data, especially when some covariates exert nonlinear influences on the outcomes. To

remedy this issue, various semiparametric regression models have been proposed in which

smooth functions are incorporated for depiction of nonlinear covariate effects; most of the

published semiparametric regression methods are for analysis of single outcome data (Rup-

pert et al., 2003). There has been limited literature discussing semiparametric models for

multivariate longitudinal data. Recent work by Liu and Tu (2012) explored the use of bi-

variate smooth functions in the semiparametric model for a pair of continuous longitudinal
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outcomes.

In this dissertation, I extend the work of Liu and Tu (2012) to discrete data situations.

Specifically, the multivariate semiparametric models proposed in this dissertation feature

bivariate nonparametric functions to incorporate the concurrent nonlinear effects of two po-

tentially interacting independent variables. Graphical tools are used to depict the bivariate

effect surfaces for different outcomes. Since the multivariate modeling approach provides

the opportunity for cross-outcome comparisons, a hypothesis testing procedure is developed

to compare the joint nonlinear covariate effects across the outcomes.

The last topic of this dissertation concerns variable selection and structural discovery.

When a large number of variables are available in the data, it is of critical importance

to select the best subset of variables in order to develop an informative yet parsimonious

model. A traditional approach for variable selection is to use information criteria (Keselman

et al., 1998; Liang et al., 2008), but its feasibility is challenged when the number of can-

didate models becomes too large to handle. A popular class of selection methods is based

on penalized likelihood (Tibshirani, 1996; Zou, 2006). In recent years, the regularization

methods have been applied to traditional and semiparametric mixed models for selection of

fixed and random effects (Ibrahim et al., 2011; Ni et al., 2010). However, variable selection

tools have not been developed for multivariate semiparametric models.

Using the regularization methods, this dissertation presents the first variable selection

tool for multivariate semiparametric mixed models. The selection process involves all three

model components, fixed effects, random effects and bivariate nonparametric functions, with

the respective intentions of selecting relevant independent variables, determining the associ-

ations of the outcomes (through selection of random effects) and examining the presence of

interactions between the nonlinear covariates. A two-stage algorithm is proposed to ensure

the accuracy of model selection and the unbiasedness of parameter estimation.
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1.3 Dissertation Outline

The dissertation is organized as follows. Chapter 2 proposes a multivariate semiparametric

model for binary longitudinal data and illustrates the method using data from an observa-

tional study of sexually transmitted infections in young women. Chapter 3 discusses the

extension of the multivariate semiparametric model to non-normal data situations and de-

velops relevant estimation and inference procedures. Chapter 4 presents a variable selection

method for the proposed model. Chapter 5 summarizes the methodological contributions

of this dissertation.
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Chapter 2

A Multivariate Semiparametric Model for Longitudinal Binary Data

This chapter presents a multivariate semiparametric mixed model for binary longitudinal

data. It starts with a brief introduction to the motivating research question about sexually

transmitted infections (STIs) in young people and the rationale behind the proposed model.

The construction of the model is then presented in detail, followed by an analysis of the STI

data which demonstrates how the proposed method helps inform STI screening strategies.

2.1 Scientific motivation

Chlamydia trachomatis (CT), Neisseria gonorrhoeae (GC), and Trichomonas vaginalis (TV)

are pathogenic organisms that cause sexually transmitted infections (STIs) chlamydia, gon-

orrhea, and trichomoniasis, respectively. Together, they are responsible for millions of new

cases each year in the United States (Cates, 1999; Centers for Disease Control and Pre-

vention, 2011). Adolescents and young adults have assumed much of the burden of these

infections. For example, epidemiological data have shown that young people aged 15 to 24

account for nearly half of the new STI cases while representing only 25% of the sexually

active population in the U.S. (Weinstock et al., 2004). Within this age range, infection risk

tends to vary with age as sexual behavior changes during the transition from adolescence

to adulthood. However, few studies have comparatively examined the age-specific incidence

rates of these infections. Besides the age-related changes in infection risk, epidemiological

evidence points to a strong partner effect (Bernstein et al., 1998; Faber et al., 2011). This

said, no studies, to the best of my knowledge, have examined the concurrent influences of

age and sexual partners on CT, GC, and TV infection risks, and whether partner effect
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changes with age. Therefore, an improved understanding of the mutually interacting effects

of age and sexual partners for different organisms may aid the development of organism-

specific screening strategies that target adolescents at the most appropriate ages based on

their risk profile.

In this chapter, I propose a model to assess the bivariate nonlinear effects of age and

number of partners on the organism-specific probability of infection acquisition. The model

is constructed with the following considerations: (1) The ability to account for the synergis-

tic relationships among the three organisms. It has been well documented that co-infections

with multiple organisms are common, especially between CT and GC. In certain popula-

tions, up to 70% of GC-positive youths were co-infected with CT (Dicker et al., 2003; Kahn

et al., 2005). The fact that CT, GC and TV infections tended to cluster in adolescent

women may be due to the organisms’ biological synergy and their common mode of trans-

mission (Fortenberry et al., 1999; Khan et al., 2005); this provides a compelling rationale

to consider a joint modeling approach. (2) Accommodation of possibly nonlinear effects of

risk factors on STI acquisition. Previous studies suggested that younger adolescents were at

greater risk for STI, particular with CT (Weinstock et al., 2004). Nonetheless it is unclear

whether a linear age effect is adequate to quantify an individual’s STI risk. Similarly, having

multiple sexual partners is a strong predictor for STI acquisition (Bernstein et al., 1998;

Faber et al., 2011), but evidence suggested that STI risk did not increase linearly with the

number of partners, possibly due to the increased prophylactic use in individuals with mul-

tiple partners (Yu et al., 2012). (3) Accommodation of potentially interacting influences.

Effects of STI risk factors are unlikely to be additive. For example, a woman’s infection risk

depends not only on the behaviors that expose her to a source of infection, but also on her

own immunological response to the disease pathogen (Tu et al., 2011). While the number of

partners marks the level of exposure, strength of host immune response may be more related

7



to the biological condition such as age. It is therefore important that the model correctly

depicts these interacting influences. Aggregating the aforementioned features into a statis-

tical model, I envision a multivariate semiparametric regression model in which bivariate

nonlinear independent variable effects are incorporated. The joint modeling structure is

used to connect organism-specific infection outcomes; the nonparametric bivariate effects

are used to accommodate the nonlinear and potentially interacting influences of age and

partner.

Methodologically, constructing and fitting such a model is not trivial. To the best of my

knowledge, no existing models have all of the desired features. This said, various components

of the model have been developed in other contexts. For example, two general approaches

in multivariate regression analysis of longitudinal data have been developed. One is based

on the GEE techniques (Gray and Brookmeyer, 1998; Rochon, 1996). The other is the

random-effects model (Reinsel, 1982; Shah et al., 1997). Various semiparametric models

have also been proposed for nonlinear independent variable effects on multiple outcomes

(Coull and Staudenmayer, 2004; Ghosh and Hanson, 2010; Ghosh and Tu, 2009). More

recently, Liu and Tu (2012) developed a joint semiparametric model for paired continuous

outcomes, which incorporated bivariate smooth components.

In this chapter, I extend the existing methods to a multivariate semiparametric regres-

sion model for binary longitudinal data, such as the infection status with different organisms.

The model accounts for the correlations across the organisms and that among the repeated

measurements of the same organism over time. Joint modeling of multiple outcomes is ac-

complished by specifying a covariance structure through the random effects. Additionally,

bivariate smoothing components are incorporated into the model for nonlinear effects of age

and partner as well as their potential interactions. Finally, the proposed model is used to

quantify the organism-specific infection risks, and the predictive accuracy of the model is
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assessed through a receiver operating characteristic (ROC) analysis.

2.2 Data Source

The data that motivated this research came from a longitudinal cohort study of inner-city

young women, hereafter referred to as the Young Women’s Project (YWP). The study was

approved by a local Institutional Review Board and its protocol was described elsewhere

(Tu et al., 2009). Briefly, young women aged 14 to 17 attending three primary care clinics

were recruited for participation in this observational study. At enrollment, the participants

were tested for CT, GC, and TV infections; those infected were treated promptly. They

also completed an interview on their lifetime and most recent sexual behaviors, including

the number of sex, condom use, and the number of sexual partners in the last three months.

The participants returned to clinic every three months, at which time they had face-to-face

interviews and received STI tests. Infections identified at all follow-up visits were considered

as incident cases (i.e., newly acquired infections) because all prior infections were treated.

The mean length of follow-up was approximately 3.2 years; the longest follow-up was 7.8

years. Of 5,213 follow-up visits of all participants, CT, GC and TV infection status were

missing at only 20, 23 and 1 visit(s), respectively. A high completion rate for quarterly

interviews was also achieved, with only 5% of possible follow-up interviews missing.

The study sample included 386 young women, consisting of 344 (89.1%) African Ameri-

cans, 39 (10.1%) non-Hispanic Whites and 3 (0.8%) Hispanics. Co-infections with different

organisms were common in the study sample. Of 193 cases of GC infection, 31.6% were

co-infected with CT, and 14.5% were co-infected with TV; of 287 cases of TV infection,

16.0% were co-infected with CT. At enrollment, the participants were between 14 and 17

years of age, with a mean age of 15.8 years and a standard deviation of 1.1 years.

I examined the relationship between age and the number of sexual partners in the study
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participants, and found that the number of partners increased with age in early and mid-

adolescence until it peaked between 19 and 20 years of age. Figure 2.1 shows the infection

rates of CT, GC and TV by age group and the number of partners in the last 3 months. Both

age and the number of partners appear to have a nonlinear relationship with all three types

of infections. The age patterns across the organisms are different, with the highest infection

rates occurring at ages 16−17, 18−19 and 24−25 for CT, GC and TV, respectively. These

nonlinear patterns point to the need of nonparametric regression models. Furthermore, by

introducing bivariate smooth functions into the analysis, I hope to capture the potential

interactions between age and the number of partners, which are not available for assessment

in additive models.

2.3 Model Formulation

2.3.1 Multivariate Semiparametric Model for Binary Outcomes

Let Y k
ij be the ith individual’s infection status with sexually transmitted organism k at the

jth visit, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, and k = 1, 2, . . . ,K, where m is the number

of individuals, ni is the number of follow-up visits for the ith individual, and K is the

number of sexually transmitted organisms in the study. The infection status Y k
ij is a binary

outcome with Y k
ij = 1 and Y k

ij = 0 indicating positive and negative test results, respectively,

for organism k.

Assuming Y k
ij follows a Bernoulli distribution with parameter pkij , we propose the fol-

lowing model

g(pkij) = STi β
k
1 + T Tijβ

k
2 +

Q∑
q=1

βk3qYi,j−q +ZT
ijb

k
i + fk(uij , vij), (2.1)

for k = 1, . . . ,K, where g(·) is a known invertible link function, e.g., logit link. The
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parameter vectors βk1 and βk2 represent respectively the fixed effects regression coefficients

associated with time-independent covariates Si and time-dependent covariates T ij . The

qth order autoregressive component Yi,j−q indicates the prior infection status with any of

the k organisms at the (j − q)th visit. Let βk3 = (βk31, . . . , β
k
3Q) denote the coefficient vector

for the autoregressive component. When the follow-up visits are approximately regularly

spaced without missing data, for example, if Q = 1, a fixed parameter βk31 is sufficient to

characterize the effect of lag-1 infection on the current status. If some of the follow-up

visits are irregularly spaced or missing, a time-varying coefficient βk3q(ti,j − ti,j−q) can be

used, with ti,j and ti,j−q being the time at the jth and (j − q)th visits. The time-varying

autoregressive structure is adopted in the analysis of the YWP data in Section 2.6. We

also incorporate a bivariate function fk(uij , vij) in order to capture the nonlinear effects

of other risk factors, such as age and the number of sexual partner, and their potential

interaction effects on STIs. To accommodate the interdependence of multiple organisms

within an individual as well as the correlations among the repeated measurements, the

random effects bki are introduced into the model, which in general, can be a random vector

with multivariate normal distribution. For simplicity, a simple, scalar random effects term

bki is assumed in the context of this example. The vector of subject-specific random effects is

denoted by bi = (b1i , · · · , bKi )T , assuming that it follows a multivariate normal distribution,

i.e., bi ∼ NK(0,Ωb), with variance-covariance matrix Ωb.

For each bivariate smooth function in the proposed model, a set of basis functions

hkl , l = 1, . . . ,Mk is specified, so it can be expressed as fk(u, v) =
∑Mk

l=1 γ
k
l h

k
l (u, v), and

γk = (γk1 , · · · , γkMk
) denotes the vector of regression coefficients for fk. Let fk be a vector

of smooth functions with elements fk(uij , vij), for j = 1, . . . , ni; i = 1, . . . ,m, i.e., fk =

[fk(uij , vij)]1≤j≤ni;1≤i≤m, then it can be written in a matrix form fk = Xkγk, where the

design matrix Xk = [hk1(uij , vij), · · · , hkMk
(uij , vij)]1≤j≤ni;1≤i≤m.
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In this chapter, thin plate regression splines are used to model the smooth functions,

which provide good approximation to the full rank thin plate splines and significantly reduce

the computational cost. Furthermore, truncated eigen-decomposition based approach is

used to avoid choosing knot locations for thin plate regression splines (Wood, 2003, 2006).

The smooth function estimators can be found by maximizing the penalized log-likelihood

function of model (2.1),

`p = `−
K∑
k=1

λkJ(fk), (2.2)

where ` is the log-likelihood function of the model, and λk is the smoothing parameter

associated with fk, which balances goodness-of-fit and smoothness of the model. In the

case of bivariate smoothing, the roughness penalty J(f) is defined as

J(f) =

∫∫
R2

{(
∂2f

∂u2

)2

+ 2

(
∂2f

∂u∂v

)2

+

(
∂2f

∂v2

)2
}

dudv,

which can be expressed as a quadratic form in regression coefficients γk. For example,

J(fk) = γTkΛkγk/2, where Λk are positive semi-definite matrices of known coefficients.

Therefore, the penalized log-likelihood function (2.2) can be rewritten as

`p = `− 1

2

K∑
k=1

γTk Skγk, (2.3)

where the penalty matrix Sk = λkΛk.

2.3.2 Mixed Model Representation

Semiparametric models using penalized splines can be represented by mixed effects models

(Ruppert et al., 2003; Wood, 2006), and as a result, mixed model methodology and soft-

ware can be adopted for the estimation of the proposed model. First, the quadratically

penalized smooth functions, fk, are divided into fixed and random components of a mixed
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effects model, which is achieved by using the eigen-decomposition of Sk (Wood, 2006). The

regression coefficient vector of fk is written as γk = (γTk,F ,γ
T
k,R)T , where γk,F represent

unpenalized coefficients which are considered as fixed effects, and γk,R represent penalized

coefficients which are considered as random effects. The penalty matrix corresponding to

γk,R is denoted by Sk,R such that γTk Skγk = γTk,RSk,Rγk,R. Accordingly, the design matrix

of the smooth term fk are partitioned into Xk = (Xk,F ,Xk,R).

Model (2.1) can now be rewritten as a generalized linear mixed model (GLMM). Let

Y = (Y T
1 , · · · ,Y T

K)T be the response vector, where Y k = [Y k
ij ]1≤j≤ni;1≤i≤m. The cor-

responding mean vector p is related to the linear predictor through a vector-valued link

function g. Defining β̃k = ((βk1)T , (βk2)T , (βk3)T )T and β̃ = (β̃
T
1 , · · · , β̃

T
K)T , the vector

of fixed effects parameters is written as β = (β̃
T
,γT1,F , · · · ,γTK,F )T . Similarly, defin-

ing b̃k = (bk1, · · · , bkm)T and b̃ = (b̃
T
1 , · · · , b̃

T
K)T , the vector of random effects param-

eters is denoted by b = (b̃
T
,γT1,R, · · · ,γTK,R)T . The design matrix associated with b̃

can be written as Z̃ = IK ⊗ Zb such that the components of Zbb̃k corresponding to

subject i are equal to bki . The design matrix associated with β̃ is set up as follows:

X̃ = IK ⊗Xβ, where Xβ = (S,T,YQ), and S = Zb[S
T
i ]1≤i≤m, T = [T Tij ]1≤j≤ni;1≤i≤m

and YQ = [(Y k
ij,Q)T ]1≤j≤ni;1≤i≤m. Then model (2.1) can be written into a GLMM repre-

sentation

g(p) = Xβ + Zb, (2.4)

where X = (X̃, diag(X1,F , · · · ,XK,F )) and Z = (Z̃, diag(X1,R, · · · ,XK,R)) are the design

matrices associated with the fixed effects and the random effects, respectively. The random

effects vector b ∼ N(0,Σb(θ)), where Σb(θ) = diag(Ωb ⊗ Im,S−1
1,R, · · · ,S

−1
K,R) with θ being

the variance components.
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2.3.3 Estimation Procedure

The likelihood of the parameters, β and θ, given the observed data y, can be written as

L(β,θ|y) = |Σb(θ)|−1/2

∫  K∏
k=1

m∏
i=1

ni∏
j=Q+1

(pkij)
ykij (1− pkij)

1−ykij

 exp

(
−1

2
bTΣ−1

b (θ)b

)
db,

(2.5)

where pkij is a function of β and b, as defined in model (2.1). The integral in the likelihood

function is tractable for linear mixed models where the outcome is normally distributed, but

for binary outcomes it does not have a closed form expression. Instead it can be evaluated

using a Laplace approximation (Barndorff-Nielsen and Cox, 1989). The approximate max-

imum likelihood estimators (MLEs) for parameters β and θ can be obtained by optimizing

the Laplace approximation to the likelihood L(β,θ|y).

An alternative estimation method for GLMMs is penalized quasi-likelihood (PQL) (Bres-

low and Clayton, 1993; Schall, 1991) in which the likelihood is replaced by a quasi-likelihood

and maximized as in a linear mixed model to obtain the approximate MLEs. For binary

outcomes, however, the parameter estimates for both fixed effects and variance components

resulting from PQL tend to have a large bias toward zero (Goldstein and Rasbash, 1996; Ng

et al., 2006; Rodriguez and Goldman, 1993). Therefore, the Laplace approximation method

is used for fitting the proposed model, due to its more robust numerical performance. The

details of the model fitting procedure are provided in Section 3.2.3 in the next chapter.

2.4 Statistical Inference

With model (2.1), one may be interested in inference on the fixed effects as well as the

variance components. In the context of STI research, inference on the variance components

(e.g., parameters in Ωb) is usually of interest as they shed light on the correlations among

infection outcomes associated with different organisms and the variability in STI risks in the
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study population. However, a practical issue with statistical packages for fitting GLMMs

is that it does not provide standard errors of variance components due to the violation of

asymptotic normality assumption for Wald type confidence intervals (Bates, 2009). There-

fore, the following procedure based on the bootstrap techniques (Efron, 1979) is proposed

to generate a (1− α)100% CI for a certain parameter (say θ) in variance components:

1. Draw a bootstrap sample with replacement from the observed data. The sampling

units are individuals, that is, either none or all of the records from an individual will

be selected. If an individual is selected more than once, he/she will be treated as a

different person each time by being assigned a new ID in the bootstrap data.

2. Fit model (2.1) to the bootstrap data and obtain a parameter estimate θ̂∗.

3. Repeat the above steps B times to generate θ̂∗1, . . . , θ̂
∗
B. Choose the α

2 100% and (1−

α
2 )100% quantiles of the bootstrap distribution {θ̂∗b}1≤b≤B to form a (1− α)100% CI

of θ.

This simple bootstrap procedure does not require any distributional assumptions on the

data, while preserving the within-subject correlation structure. Percentile bootstrap CIs

obtained from this procedure will always fall in their allowable ranges, which is especially

desirable in our example where inference needs to be made on the correlation coefficients

with a range of [−1, 1].

2.5 Simulation Studies

2.5.1 Evaluation of Estimation Procedure

The first simulation study was conducted to evaluate the performance of the model es-

timation procedure. Two correlated binary variables Y k
ij |bki , Y k

i,j−1 ∼ Bernoulli(pkij) for

i = 1, . . . ,m; j = 1, . . . , n; k = 1, 2 were generated using the following model

logit(pkij) = βk0 + βk1Y
k
i,j−1 + bki + f̄k(uij , vij), (2.6)
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where (b1i , b
2
i )
T ∼ N(0,Ωb) with

Ωb =

 σ21 ρσ1σ2

ρσ1σ2 σ22

 .

In model (2.6), the autoregressive term Y k
i,0 was generated from Bernoulli(0.5), uij was

generated from Uniform(0, 30), and vij was randomly sampled from {0, 1, · · · , 10}. Two

different nonlinear bivariate functions were considered: f1(u, v) = exp[−(u−5)2/200− (v−

10)2/50+(u+8)(v−10)/300] and f2(u, v) = exp[−(u−18)2/500−(v−10)2/40+(u−15)(v−

5)/200]. The joint effects of (uij , vij) on the response variables had functional forms of f̄1

and f̄2, corresponding to the centered functions f1 and f2 over the simulated covariates,

respectively. The fixed effects parameters were chosen as: β10 = −2.5, β20 = −3.5, β11 = 1,

and β21 = 0.7. The parameters in the variance components were set to σ1 = 0.6, σ2 = 1,

and ρ = 0.7.

The model performance was assessed under the following sample size settings: m =

200, 400, and n = 10, 20. The point estimates for the fixed effects parameters and the

variance components were averaged over 200 simulation runs. The standard errors and the

coverage probabilities of the 95% confidence intervals (CIs) for the parameter estimates

were calculated using the proposed bootstrap procedure based on 200 bootstrap samples

within each run. The mean squared errors (MSEs) of the smooth function estimates f̂1

and f̂2 (subject to a centering constraint) were also reported under each of the simulation

settings.

The simulation results are presented in Table 2.1. In general, the estimation procedure

performed well, and the parameter estimates approached the true values as the sample size

(either the number of subjects or the number of repeated outcome measurements) increased.

It can be noted that the estimation bias in the autoregressive coefficients was significantly
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reduced when the number of repeated measurements increased. The coverage probabilities

of the CIs were close to the nominal level 95%. The MSEs of both smooth functions steadily

decreased as the sample size increased. In sum, the proposed model achieved a satisfactory

performance in the estimation of parameters and bivariate smooth functions.

To further evaluate the model performance, another simulation study was conducted in a

setting resembling the YWP data with three binary outcomes. Two hundred data sets were

generated using a model similar to (2.6) with m = 200 and n = 10. An additional bivariate

function was specified for the third outcome as f3(u, v) = (u−10)/120+v/30+
√

35− u/30.

In this simulation study, I compared the performance of two modeling approaches, the pro-

posed multivariate model and the univariate models (i.e., fitting one model for each of the

three outcomes). Table 2.2 provides the parameter estimates, bootstrap standard errors

(SE) and coverage probabilities (CP) of the 95% bootstrap CIs based on 200 simulation

runs. The multivariate model resulted in reduced estimation bias and better coverage prob-

abilities of the CIs for most of the parameters. The standard errors estimated based on the

multivariate model were consistently smaller. The efficiency improvement was more evident

for the variance components. Overall, the multivariate model had improved performance

in terms of estimation efficiency and accuracy as compared to the univariate models which

ignored the correlations of the outcomes.

2.5.2 Assessment of Predictive Accuracy

In this section, a simulation study was performed to assess the predictive accuracy of the

proposed model with a focus on the bivariate nonparametric components. A two-outcome

setting was used with m = 200 and n = 10. The bivariate functions were defined as

f1(u, v) = 9 exp[−4(u − 0.5)2 − 5(v − 0.5)2 + 4(u − 0.5)(v − 0.5)] and f2(u, v) = 4u + 3v,

where the covariates uij and vij were generated independently from Uniform(0, 1). Here,
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f1 depicted the joint nonlinear effects of the two covariates with an interaction on the

first outcome, whereas f2 reflected the linear and additive covariate effects on the second

outcome.

As an accuracy measure for prediction of binary outcomes, the area under the ROC curve

(AUC) was calculated based on 10-fold cross validation (CV). Comparison of predictive

performance was made for four multivariate mixed models, each using a different way to

incorporate the effects of uij and vij in the mean structure. Model 1 was the proposed

semiparametric model as specified in (2.6). Model 2 included the linear effects of u and

v as well as their interactions, i.e., logit(pkij) = βk0 + βk1Y
k
i,j−1 + βk2uij + βk3vij + βk4uijvij +

bki . Model 3 was similar to Model 2 except that the interaction term was removed, i.e.,

logit(pkij) = βk0 + βk1Y
k
i,j−1 + βk2uij + βk3vij + bki . Lastly, uij and vij were dichotomized at the

medians, resulting in two categorical variables ũij and ṽij . Thus Model 4 was specified as

logit(pkij) = βk0 + βk1Y
k
i,j−1 + βk2 ũij + βk3 ṽij + βk4 ũij ṽij + bki . Prediction for the validation set

was carried out in two steps: the fixed effects were predicted based on the estimation using

the training set; the random effects were predicted by fitting a random effect model with

only random intercepts on the validation set.

The simulation was repeated 200 times. For the prediction of the first outcome, the

average AUC for Models 1 − 4 were respectively 0.90, 0.67, 0.65 and 0.67; for the second

outcome, the AUC were 0.85, 0.84, 0.85 and 0.81 respectively. The proposed model (Model

1) achieved high predictive accuracy under both situations. Compared to the other three

parametric models, the semiparametric model was significantly better for predicting the

first outcome when the two covariates had truly nonlinear effects and were interacting with

each other; it still had an excellent performance comparable to Model 3 (with no interaction

effect) in predicting linear and additive effects.
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2.6 Real Data Analysis

2.6.1 Model Development

The YWP data described in Section 2.2 are used to construct the proposed model, which

quantifies the organism-specific infection probability based on the risk factors including age,

the number of sexual partners and an infection history. The data include 386 participants

with a total of 5,213 follow-up visits. Let Y ct
ij , Y gc

ij , and Y tv
ij be the ith participant’s infection

status corresponding to CT, GC and TV at the jth visit, i = 1, . . . , 386, j = 1, . . . , ni, and

ni ranges from 1 to 30, with a median of 13 follow-up visits per participant.

Consider the following model



logit(pctij) = βct0 + βct1 (ti,j − ti,j−1)Yi,j−1 + bcti + f ct(uij , vij)

logit(pgcij ) = βgc0 + βgc1 (ti,j − ti,j−1)Yi,j−1 + bgci + fgc(uij , vij)

logit(ptvij ) = βtv0 + βtv1 (ti,j − ti,j−1)Yi,j−1 + btvi + f tv(uij , vij),

(2.7)

with the subject-specific random effects bi = (bcti , b
gc
i , b

tv
i )T ∼ N(0,Ωb) where

Ωb =



σ21 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ22 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ23


.

In model (2.7), pctij , p
gc
ij , and ptvij are the corresponding means of the binary response

variables conditional on the random effects bcti , bgci , and btvi , respectively. Organism-specific

intercepts are denoted by βct0 , βgc0 , and βtv0 , and βct1 , βgc1 , and βtv1 are the organism-specific

time-varying coefficients for the first-order autoregressive component Yi,j−1, with ti,j−ti,j−1

being the lag time between the (j − 1)th and jth visits. We only include the first-order

19



autoregressive terms because recurrent STIs can be regarded as a Markov process, where

the current infection status depends on the infection status at the previous visit (Tu et al.,

2011). Bivariate functions f ct, fgc, and f tv represent the joint effects of age (uij) and the

number of partners in the last 3 months (vij) on CT, GC and TV, respectively.

Model (2.7) was fitted to the YWP data to obtain the parameter estimates for the fixed

effects and the variance components. The standard errors and the 95% confidence intervals

were computed based on 500 bootstrap samples. The estimated joint effects of age and the

number of partners were depicted using colored contour plots.

2.6.2 Analytical Results

The model fitting results are presented in Table 2.3. Interestingly, the within-subject pair-

wise correlations among the three organisms are strong, especially between CT and GC

(ρ̂12 = 0.68, 95% CI = [0.44, 1.00]), suggesting that young women at high risk for infection

with one organism are very likely to be infected with other organisms. Such relationships

among different organisms would not be captured if they were modeled individually, thus

demonstrating the usefulness of the proposed multivariate modeling approach. Figure 2.2

displays the lag time effects of a prior infection of any type on the current infection status,

from which it can seen that a prior infection significantly increases the risks of CT and TV

infections.

In Figure 2.3, the estimated bivariate surfaces of age and the number of partners are

plotted with (right panel) or without (left panel) a prior infection of any type at the previous

visit. Several important observations can be drawn from the contour plots. First, the age

effect has a nonlinear pattern for CT and GC. CT infection risk peaked at younger ages

between 14 and 16, and then decreased steadily after age 18. GC infection risk increased

until age 19, and then gradually decreased. In contrast, TV infection risk increased almost
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linearly with age. Second, the number of partners is a highly significant risk factor for

all of the three organisms, though its effect tends to depend on the age of the individual.

Specifically, having multiple sexual partners had a stronger effect on CT infection at younger

ages, which means younger girls having multiple partners were more vulnerable to CT

infection than older ones with the same number of partners.

2.6.3 Predictive Accuracy Assessment

The proposed model can be considered as a model-based screening algorithm to target

individuals at greater STI risk. The predicted values of the STI probabilities can be used

to make screening decisions on whether an individual should be tested, and if so, for what

organism(s).

An ROC analysis was performed to assess the predictive accuracy of the proposed model.

The probability of organism-specific infections was predicted for each participant at each

visit using model (2.7). Comparing to the observed infection status, the sensitivity and

specificity of the model were calculated under different cutoff points of infection probabili-

ties, and then an ROC curve was plotted for each type of infection.

The ROC curves are shown in Figure 2.4. The areas under the curve (AUC) for CT, GC

and TV are respectively 0.80, 0.87 and 0.89, indicating that the proposed model achieved

excellent predictive accuracy. As a targeted screening tool, the model was able to correctly

identify most individuals at high risk for further STI testing. Table 2.4 provides the sensi-

tivity and specificity of the model under different cutoff points for the three organisms, and

the corresponding percentages of follow-up visits that meet those cutoff points. In general,

one hopes to have a highly sensitive screening algorithm to target high-risk individuals for

formal STI testing while letting the low specificity be compensated by the diagnostic test.

Based on the proposed model, for example, if individuals who have a CT infection probabil-
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ity of 0.075 or greater were targeted for testing, 84% of CT infection cases would be captured

while the number of tests could be reduced by more than half. Similarly, with appropri-

ately chosen cutoff points, desired levels of sensitivity can be achieved with greatly reduced

number of testing for GC and TV infections. Therefore, the proposed model-based targeted

screening algorithm had an excellent performance in attaining high level of sensitivity as

well as reducing testing cost.

2.7 Discussion

In this chapter, I have proposed a multivariate semiparametric model for the analysis of

multiple binary data in a longitudinal setting. The multivariate modeling approach has the

flexibility to accommodate various types of dependency structure among multiple outcomes.

The bivariate smoothing component allows the exploration of concurrent nonlinear effects of

two independent variables as well as their interaction effects. As shown in the STI example,

without such a flexible modeling tool, many of the important but nuanced observations

could be lost in an oversimplified traditional analysis. Moreover, the method is generally

applicable to a much wider class of biomedical applications where exploration of multiple

biological influences is desired. The model has been proposed for binary outcomes, and it

has the potential to be extended for other members in the exponential family, including

multiple outcomes with different distributions. These extensions will further enhance the

applicability of the proposed method.

Using the model, the risks of CT, GC and TV infections can be expressed as functions

of age and the number of sexual partners in a comparative manner. Previous studies have

examined the age trends of these common STIs (Datta et al., 2007; Sutton et al., 2007),

but few studies have directly quantified age and organism-specific STI risks in longitudi-

nal cohorts, possibly due to the lack of appropriate analytical tools. This research has
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confirmed the differential timing of the peak risks of CT, GC and TV infections, with the

respective peak ages at 14 − 16, 18 − 19, and 24 − 25 years. Furthermore, the waning

partner effect on CT over age once again raises an important question about the underlying

causes of the early emergence of CT infections, in comparison to the relatively late surge

of TV infections (Bernstein et al., 1998; Miller et al., 2005). While the prevalence of these

STIs in the partner population may in part explain the organism-specific timing of infec-

tion acquisition, this does not exclude the possibility of additional contributing factors, for

example, cervico-vaginal tissue immaturity, cervical ectopy, and immunological näıvete̋ in

younger women (Ethier and Orr, 2007). The latter explanation has become particularly

attractive, considering the fact that clearly different partner effects between younger and

older participants has been observed. Clinically, these results can help better define the risk

profiles for those common STIs in young women and thus improving the efficiency of STI

screening.

23



T
ab

le
2.

1:
P

a
ra

m
et

er
es

ti
m

at
es

an
d

m
ea

n
sq

u
ar

ed
er

ro
rs

of
sm

o
ot

h
fu

n
ct

io
n

s
w

it
h

b
o
ot

st
ra

p
st

an
d

ar
d

er
ro

rs
(i

n
p

ar
en

th
es

es
)

an
d

co
ve

ra
ge

p
ro

b
a
b

il
it

ie
s

of
95

%
co

n
fi

d
en

ce
in

te
rv

al
s

(i
n

b
ra

ck
et

s)
.

m
n

β
1 0

=
−

2
.5

β
2 0

=
−

3.
5

β
1 1

=
1

β
2 1

=
0.

7
σ
1

=
0.

6
σ
2

=
1

ρ
=

0.
7

M
S

E
(f̂

1
)

M
S

E
(f̂

2
)

20
0

10

−
2.

4
9
8

−
3
.5

69
1.

02
6

0.
64

1
0.

56
2

1.
05

4
0.

69
3

0.
02

60
0.

02
82

(0
.1

1
3
)

(0
.2

33
)

(0
.1

84
)

(0
.3

08
)

(0
.1

41
)

(0
.2

09
)

(0
.2

51
)

[9
5
.0

%
]

[9
1.

0%
]

[9
1.

5%
]

[9
3.

5%
]

[9
7.

0%
]

[9
2.

5%
]

[9
4.

5%
]

20
0

20

−
2.

5
0
5

−
3
.5

29
1.

01
1

0.
67

4
0.

57
2

1.
00

9
0.

69
9

0.
01

79
0.

01
60

(0
.0

8
2
)

(0
.1

49
)

(0
.1

34
)

(0
.2

23
)

(0
.0

86
)

(0
.1

29
)

(0
.1

58
)

[9
3
.0

%
]

[8
8.

0%
]

[9
4.

0%
]

[9
4.

5%
]

[9
1.

0%
]

[9
0.

5%
]

[9
3.

0%
]

40
0

10

−
2.

5
0
9

−
3
.5

84
1.

00
1

0.
66

3
0.

58
7

1.
07

6
0.

64
9

0.
01

82
0.

01
68

(0
.0

8
0
)

(0
.1

56
)

(0
.1

32
)

(0
.2

11
)

(0
.1

00
)

(0
.1

42
)

(0
.1

80
)

[9
1
.0

%
]

[8
7.

0%
]

[9
5.

0%
]

[9
3.

5%
]

[9
1.

0%
]

[8
6.

5%
]

[9
3.

0%
]

40
0

20

−
2.

4
9
9

−
3
.5

15
0.

99
9

0.
70

1
0.

58
4

0.
99

1
0.

68
1

0.
01

16
0.

00
83

(0
.0

5
8
)

(0
.1

02
)

(0
.0

95
)

(0
.1

55
)

(0
.0

61
)

(0
.0

91
)

(0
.1

16
)

[9
4
.0

%
]

[9
0.

0%
]

[9
4.

0%
]

[9
4.

0%
]

[9
3.

5%
]

[9
4.

5%
]

[9
1.

5%
]

24



Table 2.2: Comparison of simulation results between the multivariate model and the uni-
variate models.

Multivariate Model Univariate Models

Parameter Estimate SE CP(%) Estimate SE CP(%)

β10 = −2.5 −2.517 0.115 92.0 −2.522 0.117 90.0

β20 = −3.5 −3.576 0.226 88.5 −3.601 0.242 88.0

β30 = −3.5 −3.595 0.273 91.0 −3.625 0.300 90.5

β11 = 1 0.996 0.184 93.5 0.993 0.187 94.0

β21 = 0.7 0.636 0.315 90.5 0.624 0.317 90.5

β31 = 1 0.954 0.240 93.5 0.947 0.242 94.0

σ1 = 0.6 0.586 0.128 96.0 0.598 0.159 95.0

σ2 = 1 1.036 0.204 95.5 1.078 0.236 94.5

σ3 = 1.5 1.558 0.241 93.0 1.592 0.267 92.0

ρ12 = 0.8 0.736 0.205 96.0 − − −
ρ13 = 0.6 0.583 0.197 93.5 − − −
ρ23 = 0.5 0.453 0.194 95.0 − − −

Table 2.3: Model fitting results for the YWP data.

Parameter Estimate Std. Error 95% CI

βct0 −2.70 0.10 (−2.93,−2.55)

βgc0 −3.86 0.19 (−4.37,−3.63)

βtv0 −3.69 0.17 (−4.12,−3.45)

σ1 0.69 0.10 (0.47, 0.89)

σ2 1.03 0.16 (0.70, 1.37)

σ3 1.22 0.14 (0.98, 1.52)

ρ12 0.68 0.15 (0.44, 1.00)

ρ13 0.38 0.14 (0.16, 0.69)

ρ23 0.51 0.16 (0.23, 0.84)
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Table 2.4: Sensitivity and specificity of the proposed model under different cutoff points
of infection probability for CT, GC and TV, and percentages of follow-up visits that meet
the cutoff points.

Organism Cutoff Points Sensitivity Specificity Percentage of visits (%)

CT

0.039 0.99 0.20 82

0.056 0.94 0.40 63

0.075 0.84 0.60 44

0.090 0.76 0.76 35

0.116 0.62 0.80 24

GC

0.011 1 0.20 81

0.017 0.99 0.39 62

0.026 0.94 0.59 43

0.033 0.88 0.68 34

0.055 0.72 0.84 19

TV

0.013 1 0.20 81

0.019 0.99 0.40 62

0.031 0.97 0.60 44

0.047 0.89 0.72 31

0.065 0.78 0.80 23
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Figure 2.1: CT, GC and TV infection rates by age and the number of sexual partners.
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Figure 2.2: Lag time effects of a prior infection on current CT, GC and TV infections.
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Figure 2.3: Bivariate surfaces showing the joint effects of age and the number of sexual
partners on CT, GC and TV infections with or without a prior infection.
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Chapter 3

A Generalized Semiparametric Mixed Model for Exponential Family of

Distributions

This chapter presents a general multivariate semiparametric modeling framework by ex-

tending the model for binary data proposed in Chapter 2. The generalized model can ac-

commodate different types of data following the exponential family of distributions. Details

of the model fitting procedure are provided in this chapter. A relevant inference proce-

dure is developed and illustrated by revisiting the YWP data described in the last chapter.

Simulation studies and an analysis of real clinical data are conducted to demonstrate the

generalized model.

3.1 Research Background

Multivariate longitudinal data are common in clinical investigations where multiple out-

comes are measured repeatedly over time on each subject. Methods for univariate longi-

tudinal data analysis have been well developed to take into account various data features,

including the temporal correlations among the repeated measurements from the same sub-

ject (Laird and Ware, 1982; Liang and Zeger, 1986), and potential nonlinear independent

variable effects (Lin and Carroll, 2001; Zhang et al., 1992). For studies with multiple

outcomes, analytical options are generally more limited and analysts sometimes resort to

univariate techniques that models the outcomes one at a time in separate models, at the

expense of estimation bias and inefficiency.

This said, several approaches have been proposed for analysis of repeatedly measured

multiple outcome data. For example, Rochon (1996) used the generalized estimating equa-
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tions (GEE) to analyze bivariate repeated outcomes. Along this line, similar models have

been developed for the analysis of multiple continuous and binary outcomes (Gray and

Brookmeyer, 1998; O’Brien and Fitzmaurice, 2004). With the GEE approach, there is no

need to explicitly specify the covariance structure of the data, and thus the approach is more

useful when one is interested in characterizing the population-averaged covariate effects on

the outcomes, as opposed to evaluating the underlying associations across the outcomes. An

alternative approach is the latent variable models which assume that the observed outcomes

are surrogate measures of a non-observable endpoint of real interest (Sammel and Ryan,

1996; Sammel et al., 1997). Such a modeling approach has been applied to a variety of sit-

uations including bivariate clustered outcomes, multiple continuous longitudinal outcomes

and a mixture of longitudinal outcomes (Catalano and Ryan, 1992; Miglioretti, 2003; Roy

and Lin, 2000). Another approach accounts for the covariance structure of the outcomes

through multivariate mixed effects models (Reinsel, 1982; Shah et al., 1997). Correlated

outcomes are naturally linked together by a prespecified joint distribution of the random

effects. A pairwise model fitting approach was then developed to resolve the computational

problems due to high-dimensionality of the joint covariance structure (Fieuws and Verbeke,

2006). Most of the existing literature on multivariate mixed models has thus far focused on

continuous data.

Another underdeveloped modeling feature is the accommodation of nonlinear indepen-

dent variable effects in the multivariate setting. Without knowing the true functional form

of the independent variable effect, one convenient way of incorporating a potential nonlinear

effect is to use semi-parametric regression models. Existing work on semiparametric regres-

sion models in the multivariate setting, however, is rather limited. Most of the published

methods have focused on the depiction of nonlinear time effect (Coull and Staudenmayer,

2004; Ghosh and Hanson, 2010; Ghosh and Tu, 2009). Liu and Tu (2012) considered bi-
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variate smooth components in a semiparametric model for a pair of continuous outcomes,

and estimated the smooth functions using penalized regression splines.

In this chapter, I extend the bivariate semiparametric model proposed by Liu and Tu

(2012) to a general exponential family setting. Specifically, a generalized semiparametric

mixed model is constructed for multivariate longitudinal data. The proposed model pro-

vides a unified framework for common types of data that follow the exponential family of

distributions. The correlation structure of the outcomes are specified through the random

effects. Bivariate smooth functions are incorporated to accommodate nonlinear influences of

two potentially interacting independent variables. Model parameters are estimated by using

the maximum penalized likelihood method. Simulation studies are conducted to evaluate

the performance of the estimation method. Finally in this chapter, the proposed method is

illustrated by analyzing data collected from a real clinical investigation.

3.2 Methods

3.2.1 Generalized Multivariate Semiparametric Model

Suppose that there are K outcomes of interest. Let Yijk be the ith subject’s response on

the kth outcome at the jth time point, for i = 1, . . . ,m, j = 1, . . . , ni, and k = 1, . . . ,K. A

q×1 vector of random effects bik is introduced to accommodate the correlations among the

repeated measurements of outcome k within subject i, and bik is assumed to be normally

distributed, i.e., bik ∼ N(0,Σk) where Σk is a q×q variance-covariance matrix. It is further

assumed that the conditional distribution of Yijk given bik belongs to an exponential family

of canonical form, i.e., for k = 1, . . . ,K,

fk(yijk|bik) = exp

{
yijkηijk − d(ηijk)

a(φk)
+ c(yijk, φk)

}
, (3.1)
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where the natural parameter ηijk = g(µijk), with µijk being the conditional mean of Yijk

given bik and g(·) being a monotone, invertible link function. For example, ηijk = µijk for

normally distributed data; binary data use a logit link function defined as ηijk = log(
µijk

1−µijk );

for count data following a Poisson distribution, a log link function is used, i.e., ηijk =

log(µijk).

Consider the following semiparametric mixed model,

ηijk = xTijβk + zTijbik + sk(t1ij , t2ij), (3.2)

where βk is a p×1 vector of coefficients for fixed effect covariates xij , zij is a vector of ran-

dom effect covariates which is usually a subset of xij , and sk is a bivariate smooth function

for independent variables t1ij and t2ij associated with outcome k, which is incorporated to

capture the joint nonlinear effects of two independent variables on each outcome. To ac-

count for the within-subject correlations across the outcomes, we define a vector of subject-

specific random effects as bi = (bTi1, . . . , b
T
iK)T following a multivariate normal distribution

N(0,Σb), where the variance-covariance matrix Σb consists of diagonal blocks Σ1, . . . ,ΣK

and off-diagonal elements which accommodate the between-outcome correlations.

For the smooth functions, a set of basis functions hl, l = 1, . . . , L is specified so that

sk(t1ij , t2ij) =
∑L

l=1 αklhl(t1ij , t2ij) with αkl being the corresponding coefficients. Then it

can be written compactly as sk(t1ij , t2ij) = T Tijαk, where αk = (αk1, . . . , αkL)T and T ij =

[h1(t1ij , t2ij), . . . , hL(t1ij , t2ij)]
T . After combining sk(t1ij , t2ij), j = 1, . . . , ni, i = 1, . . . ,m

into a vector sk, it follows that

sk = Tkαk, (3.3)

where αk is the coefficient vector and Tk is the basis function matrix consisting of row

vectors T Tij for j = 1, . . . , ni and i = 1, . . . ,m.
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For convenience, model (3.2) can be written into a matrix form. Denote the outcome

vector by Y = (Y T
1 , · · · ,Y T

K)T where Y T
k = (Y11k, . . . , Y1nik, . . . , Ym1k, . . . , Ymnik)

T for

k = 1, . . . ,K. The natural parameter vector η is defined in a similar way. Then model (3.2)

is rewritten as

η = Xββ̃ + Zbb̃+ Tα, (3.4)

where β̃ = (βT1 , . . . ,β
T
K)T is the vector of fixed effect coefficients for the design matrix Xβ,

b̃ = (bT11, . . . , b
T
m1, . . . , b

T
1K , . . . , b

T
mK)T is the vector of random effects for the design matrix

Zb and it follows a multivariate normal distribution N(0,Σb ⊗ Im), and α = (αT1 , . . . ,α
T
K)T

is the coefficient vector for the basis function matrix T.

3.2.2 Penalized Likelihood

In this chapter, thin plate regression splines are used to model the bivariate smooth function

sk in model (3.2). The estimation of the thin plate regression splines can be unified into

a mixed model framework (Ruppert et al., 2003; Wood, 2006). Let ψ = (β̃
T
, ξT ,αT )T

be a vector of all unknown parameters, where ξ denotes the variance components in Σb.

The proposed model can be estimated by maximizing the following penalized log-likelihood

function

p`(ψ) = `(ψ)−
K∑
k=1

λkJ(sk), (3.5)

where `(ψ) is the log-likelihood function of the model, J(sk) is the penalty function mea-

suring the roughness of sk, and λk is the corresponding smoothing parameter which bal-

ances the goodness-of-fit of the model and the smoothness of sk. A commonly used form of

roughness penalty for bivariate smoothers is J(s) =
∫∫

R2{(∂
2s
∂t21

)2+2( ∂2s
∂t1∂t2

)2+(∂
2s
∂t22

)2}dt1dt2.

Based on the observed data, it can be further written as a quadratic form in the coefficients

of the smooth function, i.e., J(sk) = αTk Skαk where the penalty matrix Sk is a positive
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semi-definite matrix of known coefficients.

The quadratically penalized smooth function sk can be partitioned into conventional

fixed effects and random effects in the generalized linear mixed model (GLMM) by using

eigen decomposition of the penalty matrix Sk. Through reparameterization, the coefficient

vector αk is divided into the fixed effect coefficients αk,F and the random effects αk,R, such

that αTk Skαk = αTk,RSk,Rαk,R where Sk,R is a diagonal matrix with all positive eigenvalues

of Sk on the diagonal. Therefore the fixed effect coefficients αk,F are unpenalized. Equation

(3.3) now has the following mixed model representation

sk = Tk,Fαk,F + Tk,Rαk,R, (3.6)

where Tk,F and Tk,R are the design matrices for fixed effects and random effects respectively,

and αk,R ∼ N(0,S−1
k,R/λk). Applying equation (3.6) to model (3.4) gives the following

GLMM representation,

η = Xβ + Zb, (3.7)

where X = (Xβ, diag(T1,F , . . . ,TK,F )) and β = (β̃
T
,αT1,F , . . . ,α

T
K,F )T are the design ma-

trix and coefficient vector of fixed effects, Z = (Zb,diag(T1,R, . . . ,TK,R)) is the random

effect design matrix, b = (b̃
T
,αT1,R, . . . ,α

T
K,R)T is the vector of random effects, and b ∼

N(0,Σ(θ)) where Σ(θ) = diag(Σb ⊗ Im,S−1
1,R/λ1, . . . ,S

−1
K,R/λK) is the variance-covariance

matrix and θ = (ξT , λ1, . . . , λK)T denotes the variance components.

3.2.3 Estimation Algorithm

Since the proposed model can be formulated into a GLMM representation, the parameters

can be estimated conveniently using existing approaches for mixed models. In particular,

the smoothing parameters can be estimated simultaneously with other variance components,
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which makes the estimation procedure computationally efficient.

Based on equation (3.1), the likelihood function of model (3.7) given the observed data

y is

L(β,θ) ∝ |Σ(θ)|−1/2

∫
exp


K∑
k=1

m∑
i=1

ni∑
j=1

[
yijkηijk − d(ηijk)

a(φk)
+ c(yijk, φk)

]
− 1

2
bTΣ−1(θ)b

 db,

(3.8)

The integral in the likelihood function is usually intractable except when the outcomes

are continuous and follow normal distributions. As discussed in Section 2.3.3, the Laplace

approximation method is used to evaluate this integral. Note that the integrand in equation

(3.8) is the unnormalized conditional density of the random effects b given Y = y. For given

β and θ, the conditional mode of b is

b̂(β,θ) = arg max
b


K∑
k=1

m∑
i=1

ni∑
j=1

[
yijkηijk − d(ηijk)

a(φk)
+ c(yijk, φk)

]
− 1

2
bTΣ−1(θ)b

 .

which can be determined by using a penalized iteratively reweighted least squares (PIRLS)

algorithm (Bates, 2010). By replacing the logarithm of the integrand with its second-

order Taylor expansion at the conditional mode b̂(β,θ), the Laplace approximation to

the likelihood L(β,θ|y) can be optimized to obtain the approximate maximum likelihood

estimators (MLEs) for parameters β and θ (Breslow and Clayton, 1993).

The estimation algorithm is developed based on R (R Development Core Team, 2011)

packages for fitting traditional mixed models (e.g., gamm4 (Wood, 2011)). Again, the stan-

dard errors of β̂ and θ̂ can be obtained by using the bootstrap procedure described in

Section 3.3. The 95% confidence intervals (CIs) of the parameter estimates and the cover-

age probabilities of the CIs can also be calculated based on the bootstrap samples.
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3.3 Statistical Inference

One of the advantages of the multivariate modeling approach is that it allows the comparison

of independent variable effects across the outcomes. For example, one may be interested

in testing whether the bivariate nonlinear effects vary for different outcomes. The question

can be formulated into the following hypothesis about the functional forms of sk,

H0 : s1 = · · · = sK vs. H1 : otherwise. (3.9)

Zhang and Lin (2003) considered testing the equivalence of two nonparametric univariate

functions in semiparametric additive mixed models for two groups. They constructed a test

statistic based on the integrated squared difference of two functions and approximated the

distribution of the test statistic by a scaled chi-square distribution. However, it is difficult to

apply the test they developed to compare bivariate smooth functions. Herein, a likelihood

ratio test (LRT) is proposed based on the test statistic ∆ = −2[`(β̂0, θ̂0)− `(β̂, θ̂)], where

`(β̂0, θ̂0) is the maximized value of the log-likelihood for the null model under H0, and

`(β̂, θ̂) is the maximized log-likelihood for the unrestricted model under H1. Theoretically,

it is very challenging to derive the asymptotic distribution of the test statistic ∆ under

the null hypothesis. The asymptotic properties of LRT based on the large sample chi-

squared mixture approximations are not satisfactory when applied to penalized splines

models (Crainiceanu and Ruppert, 2004). Therefore, resampling techniques are employed

to approximate the sampling distribution of ∆. Härdle et al. (2004) have shown that

bootstrap can be applied to componentwise hypothesis testing in semiparametric generalized

additive models. Roca-Pardiñas et al. (2008) also used a bootstrap method to test factor-

by-surface interactions in a logistic generalized additive model. Liu and Tu (2012) extended

the bootstrap test for comparing the bivariate surfaces among different groups of subjects
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to a longitudinal data setting with paired outcomes. Here a similar strategy is used to

compare the bivariate effects across the outcomes.

To test the hypothesis in (3.9), a resampling procedure is proposed which combines

bootstrap and permutation techniques:

1. Fit model (3.2) under the null hypothesis to obtain the effective degrees of freedom

(EDF) for the penalized splines estimates.

2. Draw a bootstrap sample with replacement from the observed data. The sampling

unit is the subject, that is, either none or all of the observations from a subject will be

selected. If a subject is selected more than once, he/she will be treated as a different

person each time by being assigned a new ID in the bootstrap sample.

3. Permute the labels indicating the 1st, 2nd, . . . and Kth outcomes within each subjects

in the bootstrap sample, preserving the order of the repeated measurements for each

outcome.

4. For the bootstrap data with permuted labels, refit the null and unrestricted models

using regression splines with the degrees of freedom (DF) fixed at the EDF estimated

in step 1, and calculate the likelihood ratio test statistic ∆∗.

5. Repeat steps 2 − 4 for B times to generate a sample of test statistic {∆∗
b}1≤b≤B,

representing an empirical distribution of ∆ under the null hypothesis. The p-value of

the test can be calculated as p = #B
b=1{∆∗

b ≥ ∆}/B.

In the absence of asymptotic results, the resampling procedure provides a valid alter-

native to the traditional inference based on large sample theories. The performance of the

procedure is assessed in a simulation study described in Section 3.4.
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3.4 Simulation Studies

3.4.1 Evaluation of Estimation Procedure

A simulation study was conducted to evaluate the performance of the estimation procedure

for the proposed model. Bivariate outcomes (Yij1, Yij2), i = 1, . . . ,m, j = 1, . . . , n were

generated from Poisson distributions with means µij1 and µij2 respectively. Two settings

were considered with different degrees of between-outcome correlation in the random effects.

In Setting 1, a strong between-outcome correlation was assumed with correlation coef-

ficient ρ = 0.7. The data were simulated using the following semiparametric mixed model


log(µij1) = β01 + β11xij + bi1 + s̄1(t1ij , t2ij)

log(µij2) = β02 + β12xij + bi2 + s̄2(t1ij , t2ij),

(3.10)

where (bi1, bi2)
T ∼ N(0,Σb) with

Σb =

 σ21 ρσ1σ2

ρσ1σ2 σ22

 ,

the smooth functions were defined as s1(t1, t2) = et1 sin(πt2) and s2(t1, t2) = 2
√
t1e

(t2−0.4)2 ,

and s̄1 and s̄2 were centered over the observed values of the covariates (tij1, tij2) which

were generated from N(0, 0.25) independently. Other parameters were chosen as β01 = 1.5,

β02 = 1, β11 = 0.3, β12 = −0.2, σ1 = 0.7 and σ2 = 0.7.

In Setting 2, the correlation was assumed to be moderate with ρ = 0.4. Model (3.10)

was used again to generate the data. The smooth functions remained the same. Other

parameters were β01 = −0.8, β02 = −1.2, β11 = 2, β12 = 1, σ1 = 0.5 and σ2 = 1.

Different sample sizes were examined under each setting with m = 200, 500 and n =
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5, 10. The parameter estimates were averaged over 200 replications. For each simulated

data set, 200 bootstrap samples were drawn to calculate the standard errors and coverage

probabilities of the 95% bootstrap CIs. The MSEs of the smooth function estimates were

also calculated for each setting.

The simulation results under the two settings are presented in Table 3.1 and Table 3.2.

In both settings, the estimation procedure achieved excellent performance for fitting the

proposed model. All parameter estimates had very small bias. The coverage probabilities

of the 95% CIs were close to the nominal level. The MSEs of the smooth functions gradually

decreased while the sample size increased.

3.4.2 Evaluation of Inference Procedure

Another simulation study was conducted to assess the performance of the proposed likelihood-

based resampling procedure. Binary data were generated using the same setting as in the

three-outcome simulation study described in Section 2.5.1, except that the bivariate func-

tions were assumed to have the same functional form for all outcomes. The size of the test

was assessed based on 200 simulation runs, each including 200 bootstrap samples. Under a

sample size of 200 subjects with 10 repeated measurements on each outcome per subject,

the resampling test achieved a size of 0.04, which was close to the nominal level 0.05.

3.5 Real Data Applications

3.5.1 Revisit of YWP Data

In this section, the YWP data introduced in the last chapter was revisited in order to

illustrate the proposed likelihood-based resampling test. In the YWP example, an important

question that one may be interested in is whether the concurrent influences of age and the

number of partners differ for the three organisms. In model (2.1), the joint effect of the two
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risk factors on the infection risk of the kth organism is represented by bivariate function

fk, and thus the question of interest can be answered by testing the hypothesis (3.9). After

repeating the proposed resampling procedure 200 times, the test statistic was obtained as

∆ = 59.6 with a p-value < 0.001, indicating a highly significant difference in the joint effects

of age and the number of partners across the three organisms. The significant test result

was supported by the fact that the estimated bivariate effect surfaces have very different

shapes as shown in Figure 2.3.

3.5.2 Analysis of Health Care Utilization Data

To illustrate the aforementioned model generalization, I used data from a clinical trial of

a care management intervention, namely Geriatric Resources for Assessment and Care of

Elders (GRACE), for low-income elderly patients. The detailed study protocol has been

described by (Counsell et al., 2007). Briefly, patients were recruited from community-based

health centers and were assigned to either the GRACE intervention or usual care group

based on the randomization of their primary care physicians. Patients in the intervention

group received home-based care management that was individualized based on their geriatric

conditions, while the usual care group had access to all primary and specialty care services

as usual. Multiple outcomes were assessed at baseline and then semiannually for 2 years,

including health-related quality of life, activities of daily living, emergency department (ED)

visits (not resulting in hospital admission) and hospital admissions in the last 6 months. In

this analysis, ED visit and hospital admission counts were considered as bivariate outcomes

because they both characterize acute health care utilization. The primary objective was

to examine whether and how patients’ physical and mental health affect their acute care

utilization. Only the control group was used in the analysis as it was representative of the

general population who received usual care.
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Among the 477 patients in the control group, 365 (77%) were females and 292 (61%)

were blacks. They contributed a total of 2037 observations. At baseline, the median age

of this group was 70 years (range: 65 − 97 years; standard deviation: 6 years). A few

comorbid conditions were assessed, including hypertension, angina, congestive heart failure,

heart attack, stroke, chronic lung disease, arthritis, diabetes and cancer. Every 6 months,

the patients were interviewed on their quality of life and health status, and their ED visit

and hospital admission records were obtained from a regional health information exchange.

Specifically, quality of life was evaluated using the Medical Outcomes 36-Item Short-Form

(SF-36; Brazier et al., 1992), and it was aggregated into a single measure by averaging the

Physical Component Score (PCS) and Mental Component Score (MCS), with higher score

indicating better health (score range: 0 − 100); depression status was measured using the

Patient Health Questionnaire-9 (PHQ-9; Martin et al., 2006), with higher score indicating

more severe depression (score range: 0− 27).

To examine the concurrent effects of health-related qualify of life (SF-36) and depression

severity (PHQ-9) on ED visit and hospital admission rates, I considered the following model


log(µEDij ) = xTijβ

ED + bEDi + sED(t1ij , t2ij)

log(µHA
ij2 ) = xTijβ

HA + bHA
i + sHA(t1ij , t2ij),

(3.11)

where µEDij and µHA
ij are the mean numbers of ED visits and hospital admissions in the last 6

months; βED = (βED
0 ,βED

1 ,βED
2 ,βED

3 ,βED
4 )T and βHA = (βHA

0 ,βHA
1 ,βHA

2 ,βHA
3 ,βHA

4 )T are

the outcome-specific regression coefficients for the following covariates: intercept, gender

(female vs male), race (black vs others), age and the number of comorbidities; (bEDi , bHA
i )T ∼

N(0,Σb) with Σb defined as in model (3.10); sED and sHA are the bivariate smooth functions

of SF-36 and PHQ-9 to capture the joint effects of overall health and depression status on

ED visits and hospital admissions.
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Using the proposed model fitting procedure, it took about 30 minutes to fit model (3.11)

on a PC with dual 2.13GHz CPUs and 2 GB memory. The parameter estimates as well as

the bootstrap SEs and 95% CIs are provided in Table 3.3. Females tended to have fewer ED

visits and hospital admissions although the associations were not statistically significant.

Older patients had significantly higher hospital admission rates. A ten-year increase in age

would result in a 35% increase in hospital admission rate. The number of comorbidities was

a significant predictor for both outcomes. An additional comorbidity was associated with

14% and 23% increase in ED visit and hospital admission rates, respectively. We also noted

a strong within-subject correlation between ED visit and hospital admission rates (ρ = 0.86,

95% CI = (0.77, 0.98)) and a greater variability in hospital admission rate (σ2 = 1.71, 95%

CI = (0.91, 1.80)) than in ED visit rate (σ1 = 1.04, 95% CI = (0.79, 1.34)).

The fitted bivariate surfaces showing the concurrent influences of SF-36 and PHQ-9

scores are presented using colored contour plots in Figure 3.1. Note that warmer color

represents higher rates, but the color scales are different for ED visit and hospital admission.

As expected, lower SF-36 scores and higher PHQ-9 scores, indicating worse physical and

mental health, were associated with increased utilization of both ED and inpatient care.

Nonetheless, the two scores interacted very differently as the joint effect surfaces for ED

visit and hospitalization have distinct patterns. Depression status (measured by PHQ-9)

dominated ED visit rate when patients were in poor general health (e.g., SF-36 score <

40), while general health status had the dominating effect when patients were healthier

overall (e.g., SF-36 score > 45). On the other hand, the effects of overall health and

depression status on hospital admission appeared more linear with little interaction. This

is not surprising because when people have poor health conditions, they are more likely to

feel depressed which may result in more frequent visit to ED, but whether or not they are

hospitalized mostly depends on other illnesses instead of depression alone.
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3.6 Discussion

In this chapter, a generalized semiparametric modeling framework has been proposed for

multivariate longitudinal data in which multiple outcomes of interest are measured repeat-

edly over time. The model can be used for data following an exponential family of distri-

butions. A mixed model approach is adopted for explicit specification of the correlation

structure of the outcomes within each subject. The concurrent nonlinear influences and po-

tential interaction effects of two independent variables are incorporated through bivariate

nonparametric functions. Using thin plate regression splines as the smoother, the proposed

model can be formulated into a generalized linear mixed model so that traditional mixed

model packages can be utilized for parameter estimation. With this modeling framework,

one can explore the covariate effects in a flexible way as well as examine the within-subject

correlations among the outcomes. The multivariate modeling approach provides an op-

portunity to compare the covariate effects through hypothesis testing. Testing procedures

have been developed based on the likelihood ratio and bootstrap techniques to compare the

nonlinear covariate effects among different subgroups of the population (Liu and Tu, 2012).

Here, a likelihood-based resampling procedure has been proposed to compare the bivariate

nonparametric functions across multiple outcomes, which may advance the understanding

of the concurrent nonlinear influences on the outcomes in a comparative manner.

For univariate longitudinal data, likelihood-based methods provide valid inference on

fixed effects when data are missing at random as long as the joint distribution of the

outcomes is specified correctly (Fitzmaurice et al., 2004). This holds for the multivariate

semiparametric models presented in this paper since the proposed estimation procedure is

also based on (penalized) likelihood. In the GRACE trial, the control group had very few

intermittent missing values for ED visit and hospital admission; most of the missing data

came from dropout. About 32% of the patients did not complete the 2-year trial. Further
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research is needed to examine the possibility of nonignorable missing data mechanism and to

develop approaches for handling data not missing at random within the proposed modeling

framework.

Currently the proposed method works for the situation in which the multiple outcomes

follow the same type of distribution (e.g., normal, Bernoulli and Poisson distributions). An

important extension will be to accommodate mixed types of data such as continuous and

discrete outcomes. Another area of methodological development is to provide practical tools

for evaluating the goodness-of-fit of the proposed model.
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Table 3.3: Model fitting results for the GRACE trial data.

Outcome Covariate Estimate SE 95% CI

ED Visit

Intercept −1.58 0.90 (−3.24, 0.29)

Female −0.12 0.15 (−0.43, 0.17)

Black −0.03 0.13 (−0.22, 0.31)

Age 0.0002 0.01 (−0.03, 0.02)

Number of Comorbidities 0.13 0.04 (0.06, 0.21)

Hospital Admission

Intercept −4.83 1.11 (−7.13,−2.89)

Female −0.37 0.22 (−0.79, 0.11)

Black 0.08 0.20 (−0.48, 0.35)

Age 0.03 0.01 (0.001, 0.06)

Number of Comorbidities 0.21 0.06 (0.10, 0.34)
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Figure 3.1: Contour plots of estimated joint effects of SF-36 and PHQ-9 scores on ED visit
and hospital admission rates.
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Chapter 4

Variable Selection in Multivariate Semiparametric Models

This chapter discusses variable selection in the proposed multivariate semiparametric mixed

models. The situation where multiple outcomes are normally distributed is considered here.

A two-stage method is proposed for simultaneous selection of the fixed and random effects

as well as the interaction effects in the bivariate nonparametric functions. An expectation-

maximization algorithm is developed to implement the method. The performance of the

method is evaluated through simulation studies, followed by an illustration using data from

a clinical investigation.

4.1 Research Background

Longitudinally assessed multiple outcome data are abundant in clinical investigations. For

example, systolic and diastolic blood pressure readings are always measured in pairs. To-

gether, they quantify the arterial pressure that circulating blood exerts on the walls of

blood vessels during a cardiac cycle. Although one could choose to analyze systolic and

diastolic readings in separate models, simultaneous modeling of the two measures provides

a more complete picture of the systemic circulation; it also affords an opportunity to test

and compare the unique contributing factors to these outcomes.

Among the existing methods, multivariate semiparametric mixed effects models provide

perhaps the most general analytical framework for such data. Among other things, the

inclusion of nonparametric independent variable effects has greatly enhanced the modeling

flexibility for accommodating nonlinear effects. Structurally, these models are extensions

of the traditional mixed effects models (Laird and Ware, 1982), where the fixed effects
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characterize the influences of independent variables, and the random effects reflect the

dependency of repeated measures within each outcome, as well as the correlations across

outcomes within each subject (Reinsel, 1982). The nonparametric components are reserved

for depiction of the nonlinear independent variable effects (Coull and Staudenmayer, 2004;

Ghosh and Tu, 2009). Recently, this modeling framework has been extended to include

bivariate smooth functions to describe the interacting influences of nonlinear independent

variables (Liu and Tu, 2012).

These techniques have been successfully used to disseminate the concurrent influences

of biological regulators of blood pressure (Tu et al., 2014, 2012; Yu et al., 2013). Editorial

commentaries of these studies noted their contributions to the understanding of the patho-

genesis of essential hypertension (Falkner and Gidding, 2011; Funder, 2014). These findings

would not have been made without the advancement of statistical methodology.

What remains unavailable is a systematic approach that helps investigators to determine

the inclusion of independent variables and the functional forms with which key variables

enter the model. This is practically important because including unnecessary variables

reduces model efficiency and creates numerical instability. Similarly, correct specification

of the random effects ensures the validity of variance estimation and statistical inference

(Lange and Laird, 1989); it also determines the correlation structure from which multiple

outcomes arise. Along the same line, the inclusion of specific interactions (as depicted by

the bivariate surfaces) need to be justified in a more objective manner.

Such a methodological need fits nicely into the context of variable selection. A tra-

ditional approach for variable selection is to perform likelihood-based model comparisons,

using the Akaike or the Bayesian information criteria (AIC or BIC) (Akaike, 1973; Schwarz,

1978). While the information criterion-based methods are being used in practice, com-

putational challenges are often formidable, especially when the model is complex, as the
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number of competing models increases at a much faster rate than the number of predictors.

Additionally, effectiveness of AIC and BIC is debatable for mixed models especially when

the focus is on selection of random effects (Greven and Kneib, 2010; Keselman et al., 1998;

Liang et al., 2008). An alternative approach that has gained increasing popularity in recent

years is regularization. It includes various methods based on the least absolute shrinkage

and selection operator (LASSO; Tibshirani, 1996), the smoothly clipped absolute deviation

(SCAD; Fan and Li, 2001), the least angle regression (LARS; Efron et al., 2004), and the

adaptive LASSO (Zou, 2006). Different variations of the penalized methods have been used

for simultaneous selection of fixed and random effects in linear mixed models (Bondell et al.,

2010; Fan and Li, 2012) and in generalized linear mixed models (Ibrahim et al., 2011). Ex-

tension of the variable selection methods to semiparametric models for longitudinal data

has been limited. Among the published methods, Fan and Li (2004) employed the SCAD

penalty to select parametric covariate effects in a class of semiparametric models which did

not require explicit specification of the correlation structure in longitudinal data. Following

a similar vein, Ni et al. (2010) proposed a double-penalized likelihood method for semipara-

metric mixed models, in which a shrinkage penalty was imposed for fixed effect selection

and a roughness penalty was applied for smooth function estimation. More recently, Zhang

et al. (2011) proposed a data-driven method for determining the adequacy of linear effects

of independent variables. To the best of my knowledge, none of these selection tools are

available in a multivariate semiparametric modeling setting.

In this chapter, I present a variable selection tool for determining the inclusion of fixed

and random effects in multivariate semiparametric models. Additionally, the proposed

procedure helps to determine the cross-outcome correlations and to select the interaction

effects in the form of bivariate smooth functions. Specifically, a two-stage model selection

and estimation method is developed. In Stage 1, the regularization methods are used
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to simultaneously select the fixed and random effects, and the interaction effects in the

nonparametric components. In Stage 2, the unbiased estimates for selected parameters

are obtained by maximizing the observed likelihood function. The performance of the

proposed method is demonstrated in simulation studies. Finally, the method is illustrated

by analyzing research data from a blood pressure study.

4.2 Methods

4.2.1 Model Formulation

Suppose that there are m subjects in a longitudinal study and K outcomes are measured

at each visit. For the ith subject, let Yijk be the kth outcome observed at the jth time

point of repeated measurements, i = 1, . . . ,m, j = 1, . . . , ni, and k = 1, . . . ,K. Consider

the following multivariate semiparametric mixed model

Yijk = xTijβk + zTijuik + sk(t1ij , t2ij) + εijk, (4.1)

where βk = (βk1, . . . , βkp)
T is a p×1 coefficient vector for the fixed effects xij , uik is a q×1

vector of subject- and outcome-specific random effects for the corresponding covariates

zij , which could be a subset of xij . It is assumed that the random effects uik follow a

multivariate normal distribution Nq(0,Dkk), the measurement errors εijk independently

follow a normal distribution N(0, σ2k), and uik and εijk are independent. Let t1ij and t2ij

be the continuous covariates that potentially have nonlinear influences on the outcomes.

Without loss of generality, a bivariate nonparametic smooth function sk of t1 and t2 is

included in the model, which can be easily extended to multiple nonparametric components.

The primary objective is to simultaneously select important fixed and random effects from

xij and zij respectively, as well as examine to whether t1ij and t2ij interact with each other.
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For the bivariate smooth function sk, a tensor product basis (Ruppert et al., 2003) is

specified, which consists of marginal basis functions φl1(t1), l1 = 1, . . . , L1 for t1, ψl2(t2),

l2 = 1, . . . , L2 for t2, and all of their pairwise products. Examples of the marginal basis

functions include truncated polynomials and B-splines. The possible interactions between

t1ij and t2ij are incorporated through the product terms in the tensor product basis, and

therefore they can be selected while keeping the main effects intact. Assuming φ1(t1ij) =

ψ1(t2ij) = 1, sk can be written as sk(t1ij , t2ij) =
∑L1

l1=1

∑L2
l2=1 αl1,l2,kφl1(t1ij)ψl2(t2ij) where

αl1,l2,k are the coefficients associated with the corresponding basis functions. Using a vector

form, sk(t1ij , t2ij) = T Tijαk where αk is a vector of the coefficients αl1,l2,k for l1 = 1, . . . , L1

and l2 = 1, . . . , L2, and T ij is the corresponding vector of the tensor product basis functions.

For convenience, model (4.1) is rewritten into a matrix form. Define the response vector

as Y i = (Yi11, · · · , Yini1, · · · , Yi1K , · · · , YiniK)T , the fixed effects coefficient vector as β =

(βT1 , · · · ,βTK)T , the subject-specific random effects as ui = (uTi1, · · · ,uTiK)T , the coefficient

vector for the smooth functions as α = (αT1 , · · · ,αTK)T , and the vector of measurement

errors as εi = (εi11, · · · , εini1, · · · , εi1K , · · · , εiniK)T . Then model (4.1) can be rewritten as

Y i = Xiβ +Ziui + T iα+ εi, (4.2)

where ui follows a multivariate normal distribution NKq(0,D). The covariance matrix D

accommodates the within-subject correlations among the repeated measurements (through
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the diagonal blocks) and across the multiple outcomes. Specifically, D can be written as

D =



D11 D12 · · · D1K

D21 D22 · · · D2K

...
...

...
...

DK1 DK2 · · · DKK


, (4.3)

where Djk for j, k = 1, . . . ,K are q × q submatrices. The diagonal submatrices Djj are

the covariance matrices of the random effects within each of the outcomes, and the off-

diagonal ones indicate the potential correlations across the outcomes. If the outcomes

are not correlated, then D = diag(D11, · · · ,DKK). In addition, the measurement errors

εi ∼ NKni(0,Σi) where Σi = diag(σ21Ini , · · · , σ2KIni).

Cholesky decomposition of the covariance matrix D is a key step for the selection of

random effects as it ensures that D is positive semidefinite (Bondell et al., 2010; Chen and

Dunson, 2003; Ibrahim et al., 2011; Kinney and Dunson, 2007). Using similar approach as

in Ibrahim et al. (2011), D can be decomposed as D = ΓΓT where Γ is a Kq ×Kq lower

triangular matrix. Accordingly, the random effects ui can be reparameterized as ui = Γbi,

and bi ∼ NKq(0, IKq). Then model (4.2) becomes

Y i = Xiβ +ZiΓbi + T iα+ εi. (4.4)

4.2.2 Penalized Likelihood

A penalized likelihood method is used for simultaneous selection of fixed effects, random

effects, and interaction effects between the two covariates in the smooth functions. A

specific aim is to determine whether there are within-subject correlations across the out-
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comes by identifying the nonzero elements of D. Let θ = (βT ,γT ,αT ,σT )T be a vector

of all unknown parameters, where γ is a Kq(Kq+1)
2 × 1 vector of parameters of Γ, and

σ = (σ21, . . . , σ
2
K). I propose to maximize the following penalized (observed) log-likelihood

function:

p`o(θ) = `o(θ)− ηλ1(β)− ηλ2(γ)−
K∑
k=1

ηλ2+k
(αk), (4.5)

where `o(θ) = 1
m

∑m
i=1 log fo(Y i|Xi,Zi,θ) is the observed log-likelihood function, and

ηλj (·) for j = 1, . . . ,K + 2 are nonnegetive and nondecreasing penalty functions for fixed

effects, random effects and smooth functions, with λj > 0 being the tuning parameters

which control the amount of shrinkage.

Many options for the penalty functions can be considered as discussed in Section 4.1.

Here, the adaptive LASSO penalty is adopted for easy implementation in practice. For the

fixed effects, the penalty function is defined as ηλ1(β) = λ1
∑K

k=1

∑p
l=1 |β̃kl|

−1|βkl|, where

β̃kl are the unpenalized maximum likelihood estimators (MLEs). Note that it may not be

necessary to penalize all of the fixed effects coefficients, for example, the intercept can be

left out of the penalty function.

Selecting random effects in a multivariate model involves identifying important random

effects for each outcome and determining the correlation structures across the outcomes.

Similar to equation (4.3),the lower triangular matrix Γ is partitioned as

Γ =



Γ11

Γ21 Γ22

...
...

. . .

ΓK1 ΓK2 · · · ΓKK


,

where Γjk for j = 1, . . . ,K and k = 1, . . . , j are q×q submatrices, and the diagonal submatri-
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ces Γjj are also lower triangular. For a single outcome, the penalty is placed on the row vec-

tors of Γjj in a grouped manner to ensure the positive semidefiniteness of D (Ibrahim et al.,

2011; Yuan and Lin, 2006). If the elements of a certain row of Γjj are all shrunk to zero,

then the corresponding row and column vectors of Djj will also be zero and thus the corre-

sponding random effect will be removed from the model. In a multivariate setting, I propose

to use the following penalty function: ηλ2(γ) = λ2
∑K

j=1

∑j
k=1

∑p
l=1
√
cjkl||γ̃jkl||−1||γjkl||,

where γjkl for l = 1, . . . , p are the lth rows of the submatrix Γjk, γ̃jkl are the unpenal-

ized MLEs, and cjkl are normalizing constants to adjust for the varying sizes of γjkl (e.g.,

cjkl = dim(γjkl)). Penalizations of the diagonal and off-diagonal submatrices in Γ are

separated so that the non-random elements in the within- and between-outcome variance

components can be identified individually.

To select the interaction terms in the smooth functions, grouped penalties are imposed on

the corresponding product terms in the tensor product basis. For sk, the penalty function is

defined as ηλ2+k
(αk) = λ2+k||α̃∗

k||−1||α∗
k||, where α∗

k is a (L1−1)(L2−1)×1 vector consisting

of αl1,l2,k, l1 = 2, . . . , L1, l2 = 2, . . . , L2. Note that different degrees of penalty are allowed

for smooth functions sk in penalized likelihood (4.5) through different tuning parameters

λ2+k, k = 1, . . . ,K.

4.3 Computational Algorithm

The model selection and estimation procedure is implemented in two stages. In Stage 1,

model selection is performed by maximizing the penalized likelihood function. Given a set

of tuning parameters λ = {λj}K+2
j=1 , I use an EM algorithm to optimize (4.5) and obtain

the maximum penalized likelihood estimator (MPLE) θ̂λ. The optimization procedure is

carried out for different values of λ, and the optimal λ is selected based on a certain

criterion. Covariates corresponding to the nonzero elements in θ̂λ will be selected. In Stage
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2, I refit the model with selected fixed effects, random effects and smooth functions (with

or without interactions) to obtain the MLE θ̂. Penalized regression splines are used as the

smoother.

4.3.1 EM algorithm

Consider (Y i, bi,Xi,Zi) and (Y i,Xi,Zi) for i = 1, . . . ,m as the complete data and ob-

served data, respectively. With the same penalty functions in (4.5), the penalized complete

log-likelihood function can be written as

p`c(θ) = `c(θ)− ηλ1(β)− ηλ2(γ)−
K∑
k=1

ηλ2+k
(αk), (4.6)

where `c(θ) = 1
m

∑m
i=1 log fc(Y i, bi|Xi,Zi,θ) is the complete log-likelihood function.

Denote the estimates of θ at the sth iteration by θ(s) = (β(s)T ,γ(s)T ,α(s)T ,σ(s)T )T .

In the E-step, for fixed tuning parameter λ, the expectation of the penalized complete

log-likelihood (4.6) given the observed data and θ(s) can be calculated as follows:

Qλ(θ|θ(s)) = E[p`c(θ)|(Y i,Xi,Zi)
m
i=1,θ

(s)]

=
1

m

m∑
i=1

E[log fc(Y i, bi|θ)|Y i,Xi,Zi,θ
(s)]

− ηλ1(β)− ηλ2(γ)−
K∑
k=1

ηλ2+k
(αk)

=
1

m

m∑
i=1

E[log f(Y i|bi,θ)|Y i,Xi,Zi,θ
(s)] +

1

m

m∑
i=1

E[log fb(bi)|Y i,Xi,Zi,θ
(s)]

− ηλ1(β)− ηλ2(γ)−
K∑
k=1

ηλ2+k
(αk), (4.7)

where f(Y i|bi,θ) = NKni(Xiβ + ZiΓbi + T iα,Σi), and fb(bi) = NKq(0, IKq). Let

g1(bi,θ) = log f(Y i|bi,θ), and g2(bi) = log fb(bi). The two expectation terms in (4.7)
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can be written as

E[g1(bi,θ)|Y i,Xi,Zi,θ
(s)] =

∫
g1(bi,θ)h(bi|Y i,Xi,Zi,θ

(s))dbi, (4.8)

and

E[g2(bi)|Y i,Xi,Zi,θ
(s)] =

∫
g2(bi)h(bi|Y i,Xi,Zi,θ

(s))dbi, (4.9)

where

h(bi|Y i,Xi,Zi,θ
(s)) =

fc(Y i, bi|Xi,Zi,θ
(s))

fo(Y i|Xi,Zi,θ
(s))

=
f(Y i|bi,Xi,Zi,θ

(s))fb(bi|Xi,Zi,θ
(s))∫

f(Y i|bi,Xi,Zi,θ
(s))fb(bi|Xi,Zi,θ

(s))dbi
. (4.10)

Since the q-dimensional integrals in (4.8), (4.9) and the denominator of (4.10) are usually

intractable, multivariate Gauss-Hermite quadrature rules can be used to approximate them

(Pinhero and Bates, 1995). Denote the number of quadrature nodes for each dimension

by n. Let bd and wd, d = 1, . . . , NGH be the pre-specified quadrature nodes and weights

respectively, where the total number of quadrature nodes is NGH = nq. Then the first

expectation term (4.8) can be approximated as

E[g1(bi,θ)|Y i,Xi,Zi,θ
(s)] ≈

NGH∑
d=1

wd exp(||bd||2)g1(bd,θ)h(bd|Y i,Xi,Zi,θ
(s)). (4.11)

Since the second expectation term does not involve θ, it can be omitted in the M-step from

the penalized Q-function (4.7), and thus θs+1 can be found by maximizing

Q∗
λ(θ|θ(s)) = Q(θ|θ(s))− ηλ1(β)− ηλ2(γ)−

K∑
k=1

ηλ2+k
(αk), (4.12)

where Q(θ|θ(s)) = 1
m

∑m
i=1E[g1(bi,θ)|Y i,Xi,Zi,θ

(s)].
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Considering that maximizing (4.12) with respect to θ involves high-dimensional opti-

mization, I propose the following expectation-conditional maximization (ECM; Meng and

Rubin (1993)) algorithm which breaks down the M-step into several conditional maximiza-

tion (CM) steps:

1. Given γ(s), α(s) and σ(s), find β(s+1) = arg maxβ Q(β,γ(s),α(s),σ(s)|β(s),γ(s),α(s),

σ(s))−mηλ1(β).

2. Given β(s+1), α(s) and σ(s), find γ(s+1) = arg maxγ Q(β(s+1),γ,α(s),σ(s)|β(s+1),

γ(s),α(s),σ(s))−mηλ2(γ).

3. Given β(s+1), γ(s+1) and σ(s), find α(s+1) = arg maxαQ(β(s+1),γ(s+1),α,σ(s)|β(s+1),

γ(s+1),α(s),σ(s))−m
∑K

k=1 ηλ2+k
(αk).

4. Given β(s+1), γ(s+1) andα(s+1), find σ(s+1) = arg maxσ Q(β(s+1),γ(s+1),α(s+1),σ|β(s+1),

γ(s+1),α(s+1),σ(s)).

5. Steps 1− 4 are iterated until convergence to obtain the MPLE θ̂λ.

The optimization procedure is started by fitting the full model with all covariates and

using the parameter estimates as the initial values.

4.3.2 Tuning Parameter Selection

The performance of the proposed method depends on the appropriate selection of the tuning

parameters. Selection criteria that have been used extensively include cross validation (CV),

generalized cross-validation (GCV) and information criterion such as AIC and BIC. It has

been shown that GCV tends to select overfitted models, while BIC can identify the true

model consistently (Shao, 1997; Wang et al., 2009, 2007). Therefore, the following BIC-type

criterion is proposed to select the optimal tuning parameters:

BICλ = −2`o(θ̂λ) + log(N)dfλ, (4.13)
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where `o(θ̂λ) is the value of the observed log-likelihood at the MPLE θ̂λ obtained through the

proposed EM algorithm for a given λ. In practice, `o(θ̂λ) is approximated using the Gauss-

Hermite quadrature rules described in Section 4.3.1. The sample size N in a multivariate

setting is defined as N = K
∑m

i=1 ni. The degrees of freedom dfλ is defined as the number

of nonzero elements of θ̂λ. The EM algorithm proposed above is repeated over a grid of

tuning parameters, and the one that minimizes BICλ is considered optimal.

4.3.3 Implementation

The proposed computational algorithm is developed in R. The M-steps in the ECM algo-

rithm are implemented using the optim function in the stats package (R Development

Core Team, 2011). The initial values of the parameters are obtained by fitting the full

multivariate semiparametric model using the gamm4 function in the gamm4 package (Wood,

2011).

4.4 Simulation Studies

To evaluate the performance of the proposed method, two settings are considered in the

simulation study. For each setting, bivariate outcomes were generated from the following

model 
Yij1 = xTijβ1 + zTijui1 + s̄1(t1ij , t2ij) + εij1

Yij2 = xTijβ2 + zTijui2 + s̄2(t1ij , t2ij) + εij2,

(4.14)

for i = 1, . . . , 200 and j = 1, . . . , 5.

In Setting 1, the fixed effect coefficients were specified as β1 = (β10, β11, β12, β13, β14, β15)
T =

(1, 1, 3, 0,−1, 0)T and β2 = (β20, β21, β22, β23, β24, β25)
T = (1, 2, 0,−2, 0, 0)T . The corre-

sponding covariates xij = (xij0, xij1, xij2, xij3, xij4, xij5)
T were generated independently

from N(0, 1) except that the intercept xij0 = 1. The subject-specific random effects were
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(uTi1,u
T
i2)

T = (ui10, ui11, ui12, ui20, ui21, ui22)
T ∼ N6(0,D) with

D =



1 0.5 0.5 0 0 0

0.5 1.25 0.75 0 0 0

0.5 0.75 1.5 0 0 0

0 0 0 1 0.5 0

0 0 0 0.5 0.5 0

0 0 0 0 0 0



,

and the corresponding covariates zij = (zij0, zij1, zij2)
T = (xij0, xij1, xij2)

T . Note that the

outcomes were independent of each other since the 3 × 3 off-diagonal submatrices in D

were 0. The smooth functions were given by s1(t1, t2) = t1 + t2 and s2(t1, t2) = t1 + t2 +

2 exp(t1)/(1.2 − t2) with t1, t2 ∼ Uniform(0, 1), and s̄1(t1ij , t2ij) and s̄2(t1ij , t2ij) were the

values of corresponding smooth functions centered over (t1ij , t2ij) for i = 1, . . . , 200 and

j = 1, . . . , 5. The measurement errors εij1 ∼ N(0, σ21) and εij2 ∼ N(0, σ22) with σ1 = 1 and

σ2 = 1.5.

In Setting 2, the setup was the same except that the outcomes were correlated with the
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covariance matrix D given by

D =



1 0.5 0.5 0.25 0.25 0

0.5 1.25 0.75 0.375 0.375 0

0.5 0.75 1.5 0.5 0.5 0

0.25 0.375 0.5 1.1875 0.6875 0

0.25 0.375 0.5 0.6875 0.6875 0

0 0 0 0 0 0



.

These two settings were chosen to assess whether the proposed method could correctly

determine the correlation structure between the outcomes.

The simulation was repeated 100 times under each setting using the proposed two-stage

method. In Stage 1, important fixed effects and random effects were identified; the existence

of interaction effects in the bivariate surfaces were determined. The between-outcome cor-

relation structure was determined as part of the random effects selection. Then the selected

effects and surfaces were estimated in Stage 2. For estimation, the same algorithm was used

as described in Section 4.3.1, with the penalty terms removed from the likelihood function

(4.6).

Table 4.1 summarizes the selection results for the full model and its components, in-

cluding the fixed effects, the random effects, the interaction effects in the smooth functions,

and the correlation between the outcomes. It presents the percentages of times the correct

model and components are identified, as well as the incorrect selection (an unimportant

effect being selected) and incorrect exclusion (an important effect being excluded) rates.

Under both settings, the selection algorithm achieved a high rate of correct selection of the

true model and components. Specifically, it was able to identify the true fixed and random
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effects, as well as the interactions, with correct selection rates ≥ 99%. The performance in

terms of determining the between-outcome correlation was also satisfactory, although errors

mostly occurred when the outcomes were truly correlated.

Tables 4.2 and 4.3 show the estimated fixed effect coefficients and variance components

from Stage 2. The magnitude of biases in the estimation of non-zero parameters was

generally small. Only one of the unimportant covariates was incorrectly included in the

model. In addition, the mean squared errors (MSE) of the estimated smooth functions

were calculated as follows: in Setting 1, MSE(ŝ1) = 0.010, and MSE(ŝ2) = 0.347; in

Setting 2, MSE(ŝ1) = 0.039, and MSE(ŝ2) = 0.382. These results support the notion that

the two-stage method worked well for both selection and estimation.

The simulation study was performed on a Dell PowerEdge R820 server with Linux

operating system. The server has 4 Intel Xeon CPU ES-4620 8-core processors and 128 GB

memory (shared by multiple users). The computing time increased rapidly with the number

of random effects and the number of quadrature nodes. In both settings, 4 quadrature nodes

was used for each random effect. Given a set of tuning parameters, it took approximately 2

hours to complete model selection in Stage 1. Parameter estimation for the selected model

in Stage 2 took approximately 1.5 hours.

4.5 Real Data Analysis

This research is motivated by a long running cohort study of blood pressure development

in children. In this section, I illustrate the proposed variable selection method by analyzing

the study data. The recruitment protocol of the original study can be found in Pratt et al.

(1989) and the follow-up protocol in Tu et al. (2011). Briefly, study subjects were recruited

from schools in Indianapolis selected to provide a range of socioeconomic status. They were

followed up twice a year to measure blood pressure, height, weight and upper arm circum-
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ference. When measuring blood pressure, three readings were obtained at least two minutes

apart, and the average of the last two was taken as the final measurement. Body mass index

(BMI) was calculated based on height and weight as follows: BMI = weight/height2. Urine

samples were also collected to determine the urine volume and excretion rates of sodium

and potassium.

A subset of the blood pressure data was used for this analysis. Of the 250 randomly

selected subjects, 117 are males and 80 are blacks. The selected data include a total of 1776

follow-up visits, with an average of 7.1 visits per subject. The mean age at enrollment is

9.8 years (SD = 2.7 years).

In this analysis, systolic and diastolic blood pressure are considered as paired outcomes.

The proposed method is used to identify covariates that are associated with the outcomes.

The model selection process is started with the following full model


Yij1 = xTijβ1 + zTijui1 + s1(t1ij , t2ij) + εij1

Yij2 = xTijβ2 + zTijui2 + s2(t1ij , t2ij) + εij2,

(4.15)

where Yij1 and Yij2 are the systolic and diastolic blood pressure respectively for the ith

subject measured at the jth visit, for i = 1, . . . , 250 and j = 1, . . . , ni with ni ranging

from 1 to 18, xij is a vector of fixed effect covariates including intercept, gender (male or

female), race (black or other), birth weight (pound), mother’s length of pregnancy (month),

upper arm circumference (cm), urine volume (L), urinary sodium excretion rate (mmol/mg

creatinine) and urinary potassium excretion rate (mmol/mg creatinine), zij is a vector of

random effect covariates including intercept, birth weight and mother’s length of pregnancy,

(uTi1,u
T
i2)

T ∼ N(0,D) are the subject-specific random effects, s1 and s2 are bivariate smooth

functions of age (t1ij) and BMI (t2ij), and εij1 ∼ N(0, σ21) and εij2 ∼ N(0, σ22) are the in-

dependent measurement errors. Age and BMI were chosen as the bivariate nonparametric
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components because a preliminary analysis (Figure 4.1) showed that both had strong non-

linear effects on blood pressure. Here, the interest is in examining whether they interact

with each other.

In Stage 1, the outcomes and the continuous covariates were standardized to ensure

numerical stability before selection was performed. In Stage 2, the selected covariates were

estimated in the original scale so that the coefficient estimates could be easily interpreted.

The model selection and estimation results are summarized in Table 4.4. Zero estimates

indicate that the corresponding covariates were not selected. For the systolic blood pressure,

the selected fixed effect covariates were gender, race and upper arm circumference; race and

upper arm circumference were also selected for the diastolic blood pressure. Based on the

coefficient estimates, males had significantly higher systolic blood pressure than females.

Comparing to other races, blacks tended to have higher systolic and diastolic blood pressure.

Upper arm circumference, an indicator of obesity, was positively associated with both the

systolic and diastolic blood pressure.

As to random effects, neither of the covariates, birth weight and mother’s length of

pregnancy, were selected for the systolic or diastolic blood pressure. Table 4.4 provides the

variance component estimates, i.e., square roots of the diagonal elements of D, σ1 and σ2.

In addition, the systolic and diastolic blood pressure were highly correlated within each

subject (ρ = 0.78,SE = 0.074), as suggested by the non-zero estimate of the off-diagonal

element of D.

The estimated bivariate smooth functions s1 and s2 are presented using the contour plots

in Figure 4.2. Generally speaking, the systolic and diastolic blood pressure increased with

both age and BMI. It can also be noted that there were substantial interactions between

the two, and specifically, BMI effects on blood pressure were stronger in older children over

12 years of age than in younger children. These observations lend support to the model
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selection results in which the interaction terms in both bivariate smooth functions were

selected.

4.6 Discussion

Variable selection plays a fundamental role in scientific investigation. The ability to deter-

mine the relevance of independent variables to outcomes of interest is of vital importance to

scientific inquiry. For a long time, variable selection has presented many practical challenges

to analysts, who often struggled to find appropriate selection methods and implementation

programs. The situation has improved significantly in the last two decades since the publica-

tion of the least absolute shrinkage and selection operator by Tibshirani (1996, 1997), which

have provided a theoretical foundation for regularization methods. Important applications

of LASSO to various modeling situations have since alleviated barriers for performing vari-

able selections in most standard modeling settings. This said, for newly developed statistical

models the challenge remains.

In this chapter, variable selection has been considered in multivariable semiparametric

models, a class of models that have been shown to be useful, yet for which selection methods

have not been available. To remedy, a two-stage model selection and estimation method

has been presented for random and fixed effect selection and for determining the presence

of interactions in the form of bivariate smooth functions. To the best of my knowledge, the

proposed variable selection method is the first in this model setting. In fact, there are few

formal discussions of variable selection in the context of multivariate models for repeated

measurements. The selection of random effects in multivariate models is important, because

the correlations across the outcomes are accommodated by the random effects. Therefore,

by selecting random effects, one will be able to decide whether simultaneous modeling of

multiple outcomes is truly necessary. The selection of interactions is equally important
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because it facilitates an understanding of the concurrent influences of two continuous in-

dependent variables. Scientific investigations have repeatedly demonstrated the scarcity

of true linear effects in biological research and the danger of over-simplification with linear

approximations. The proposed method has excellent performance, as indicated by the simu-

lation studies. This said, future extensions may be needed to make the method more widely

applicable in data situations where non-normal outcomes are of interest. The extension is

anticipated to be straightforward, although not trivial. Notwithstanding such limitations,

the proposed method could be of use for a wide variety of investigations.
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Table 4.2: Estimates of the fixed effect coefficients with empirical standard errors.

Setting 1 Setting 2

Parameter True Value Estimate SE Estimate SE

β̂10 1 0.941 0.055 0.985 0.037

β̂11 1 1.013 0.041 1.079 0.072

β̂12 3 2.957 0.058 2.955 0.052

β̂13 0 0 0 0 0

β̂14 −1 −0.997 0.021 −0.993 0.023

β̂15 0 0 0 0 0

β̂20 1 1.062 0.056 0.904 0.059

β̂21 2 2.077 0.051 1.923 0.064

β̂22 0 −0.001 0.008 0.001 0.006

β̂23 −2 −1.953 0.034 −1.908 0.213

β̂24 0 0 0 0 0

β̂25 0 0 0 0 0

Table 4.3: Estimates of the variance components with empirical standard errors.

Setting 1 Setting 2

Parameter True Value Estimate SE True Value Estimate SE

D̂11 1 0.923 0.058 1 0.864 0.137

D̂22 1.25 1.306 0.084 1.25 1.364 0.098

D̂33 1.5 1.771 0.165 1.5 1.776 0.127

D̂44 1 1.044 0.062 1.1875 1.103 0.141

D̂55 0.5 0.406 0.070 0.6875 0.742 0.074

D̂66 0 0 0 0 0 0

σ̂1 1 0.998 0.018 1 1.029 0.013

σ̂2 1.5 1.595 0.047 1.5 1.553 0.040
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Table 4.4: Model selection and estimation results for the blood pressure data.

Systolic blood pressure Diastolic blood pressure

Variable Estimate SE Estimate SE

Fixed effects

Intercept 90.52 1.25 48.13 1.34

Male 2.69 0.45 0 −
Black 2.23 0.51 2.01 0.55

Birth weight 0 − 0 −
Mother’s length of pregnency 0 − 0 −
Upper arm circumference 0.44 0.054 0.54 0.058

Urine volume 0 − 0 −
Urinary sodium excretion 0 − 0 −
Urinary potassium excretion 0 − 0 −
Variance components

Intercept 6.09 0.46 5.99 0.49

Birth weight 0 − 0 −
Mother’s length of pregnency 0 − 0 −
Error term 9.28 0.16 10.04 0.17
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Figure 4.1: Marginal effects of age and BMI on systolic and diastolic blood pressure (subject
to the centering constraint) (solid lines) with 95% confidence bands (dashed lines).
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Chapter 5

Discussion

This dissertation describes a general class of regression models for analysis of longitudinally

measured multiple outcome data. In this chapter, I briefly summarize the main method-

ological contributions of my work and reflect upon its practical impact.

First, this dissertation has presented the first generalized multivariate model that in-

corporates the nonlinear and possibly interacting influences of independent variables. The

proposed model combines the strengths of univariate semiparametric models and those of

multivariate linear models, to achieve much enhanced modeling flexibility. In the meantime,

retaining the basic structure of the traditional mixed models allows for the use of existing

inference and computational tools. For example, the inclusion of standard linear model

components, such as the fixed effects and autoregressive terms, in additive forms, allows for

traditional inferences on intervention efficacy, as expected in clinical trials. The mixed ef-

fects model representation of the proposed framework also makes it possible for model fitting

by using existing computational software, thus greatly enhancing the practical applicability

of the proposed methodology.

Second, the proposed model offers a way to accommodate complex correlation structures

through a simple formulation. A central challenge to the analysis of longitudinal data is the

incorporation of temporal dependency among repeated measures from the same individual.

In multivariate data analysis, this difficulty is significantly magnified because of the pres-

ence of correlations among multiple outcomes at each time point of data collection. How

to formulate a structure that is able to accommodate both temporal within-outcome de-

pendency and cross-outcome correlations through a limited number of parameters becomes
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a key challenge. In this research, an indirect approach has been taken to circumvent the

difficulty of explicitly specifying a large and complex correlation matrix, by introducing a

random effect vector and letting it be shared by multiple outcomes within the same indi-

vidual. In the simplest form, this represents a case of the shared random intercept model,

which contains a manageable number of parameters, resulting in a significant alleviation of

the computational burden and assurance of model identifiability. Such a simple formulation,

I contend, has nonetheless induced enough data interdependency both within an outcome

and across the outcomes for a given individual.

Third, a unified modeling framework has been constructed, along with relevant pa-

rameter estimation and inference procedures for a very broad class of data following the

exponential family of distributions. By following the tradition of generalized linear models

in this regard, I have presented the proposed methodology for the exponential family, so

that the model is maximally applicable to the most commonly encountered data distribu-

tions. Along the same line, the estimation and inference procedures are presented in the

most general form to assure universal applicability.

Finally, I have developed a set of variable selection tools for practical data analysis.

Variable selection, or more generally model selection, plays a fundamental role in scientific

inquiry. Misspecification of the analytical model may introduce estimation bias, reduce

analytical efficiency, and/or lead to erroneous inference. For complex models such as the

ones presented here, model selection plays an additional role of determining the necessity of

each model component. Herein, a penalized likelihood approach has been taken to achieve

the goal of variable selection. This approach is very much in line with the current literature

on variable selection. For instance, simultaneous selection of the fixed and random effects

in traditional mixed models has been conducted by imposing penalties on the parameters.

A similar penalization method has been used here with a few critical modifications. In this
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research context, because multiple outcomes are incorporated in the same model through

shared random effects, random effects selection helps determine the cross-outcome correla-

tion structure. This is of particular importance in this modeling setting as it helps decide

whether a multivariate modeling approach is justified. Another significant extension is the

selection of interaction effects in the bivariate nonparametric components, which can help

justify the inclusion of bivariate independent variable effects. The bias in parameter esti-

mation introduced by the use of penalty terms is corrected through a two-stage algorithm

to ensure both selection and estimation accuracy.

Multiple real data examples have been used to illustrate the application of the proposed

methods. At the conclusion of this dissertation, I remain hopeful that the potential appli-

cability of this new class of models will grow in time, when more analysts become familiar

with the newly developed techniques. At the same time, future modifications and varia-

tions are going to be inevitable to meet the demand of specific analytical situations. Further

extensions of the model to accommodate complex data distributions, such as zero-inflated

counts or mixture distributions, and handling of missing data are all worthy objectives.

Further improvement of the computational efficiency of the model selection procedure is

also of great practical importance. In summary, there is no shortage of topics for future

extension, which I take as a sign of methodological vitality. All things considered, I hope

that the more widespread use of this modeling approach will stimulate new thoughts for its

continued improvement in years to come.
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