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Ruchi Bansal 

 

AN INHIBITOR OF THE MITOTIC KINASE, MPS1, IS SELECTIVE TOWARDS 

PANCREATIC CANCER CELLS 

 

The abysmal five year pancreatic cancer survival rate of less than 6% highlights the need 

for new treatments for this deadly malignancy. Cytotoxic drugs normally target rapidly 

dividing cancer cells but unfortunately often target stem cells resulting in toxicity. This 

warrants the development of compounds that selectively target tumor cells. An inhibitor 

of the mitotic kinase, MPS1, which has been shown to be more selective towards cancer 

cells than non-tumorigenic cells, shows promise but its effects on stem cells has not been 

investigated. MPS1 is an essential component of the Spindle Assembly Checkpoint and is 

proposed to be up-regulated in cancer cells to maintain chromosomal segregation errors 

within survivable limits. Inhibition of MPS1 kinase causes cancer cell death accompanied 

by massive aneuploidy. Our studies demonstrate that human adipose stem cells (ASCs) 

and can tolerate higher levels of a small molecule MPS1 inhibitor than pancreatic cancer 

cells. In contrast to PANC-1 cancer cells, ASCs and telomerase-immortalized pancreatic 

ductal epithelial cells did not exhibit elevated chromosome mis-segregation after 

treatment with the MPS1 inhibitor for 72hrs. In contrast, PANC-1 pancreatic cancer cells 

exhibited a large increase in chromosomal mis-segregation under similar conditions. 

Furthermore, growth of ASCs was minimally affected post treatment whereas PANC-1 

cells were severely growth impaired suggesting a favorable therapeutic index. Our 

studies, demonstrate that MPS1 inhibition is selective towards pancreatic cancer cells and 
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that stem cells are less affected in vitro. These data suggest MPS1 inhibition should be 

further investigated as a new treatment approach in pancreatic cancer. 
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INTRODUCTION 

 

1. Mitosis 

 

Mitosis is the process of cell division of the somatic cells of eukaryotic organisms. The 

process is essential for the development, maintenance and regeneration of an individual. 

It is a part of the cell cycle which consists of four phases namely G1 (Gap1), S (DNA 

Synthesis), G2 (Gap2) and M (Mitosis) phase. Mitosis is divided in six stages such as 

prophase, prometaphase, metaphase, anaphase, telophase and cytokinesis. During 

prophase, the DNA is coiled and supercoiled to form compact genetic structures called 

chromosomes and the spindle apparatus begins to form followed by the disappearance of 

the nuclear membrane in prometaphase. Also, chromosomes are aligned at the metaphase 

plate, which is the cell’s equator, throughout metaphase after which the sister chromatids 

begin their journey to the opposite sides of the cell in anaphase. Cell division is 

completed with the process of cytokinesis where the mother cell is divided into two 

daughter cells. The mitotic spindle apparatus ensures that the daughter cells receive equal 

amount of DNA and it consists of the centrosomes, kinetochore, microtubules (MT) and 

microtubule associated proteins (MAPs) [Figure 1 adapted from (Bruce Alberts 2002)]. 

The centrosomes establish MT polarity and determine the number and distribution of 

microtubules. Each centrosome is composed of two centrioles, which are open-ended 

cylinders, each comprising of nine sets of triplet MTs linked together, plus some 

surrounding pericentriolar material. The kinetochore is a protein structure on chromatids 

where the spindle fibers attach during cell division to pull sister chromatids apart. The
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Figure 1 Schematic representation of the spindle apparatus in metaphase 

Chromosomes are aligned at the metaphase plate. Microtubules arising from the 

centrosome attach to the kinetochores on each sister chromatid. The plus ends (growing 

ends) are away from the spindle poles. Spindle microtubules are classified into three 

categories: 

1. Astral microtubules that radiate in all directions, contribute to forces that separate the 

poles and are responsible for orientation and positioning of the spindle 

2. Kinetochore microtubules which attach to the kinetochore 

3. Overlap Microtubules that interdigitate at the equator of the spindle and are 

responsible for the symmetrical and bipolar shape of the spindle 

[Figure adapted from (Bruce Alberts 2002)] 
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kinetochore contains open chromatin but it assembles within a largely heterochromatic 

domain which is located on the centromere and is made of non-coding sequences called 

the repetitive alpha satellite DNA (Figure 2). The microtubules are the fundamental 

machinery of the spindle apparatus originating in the microtubule organizing center 

(MTOC), which is a part of the centrosome. These microtubules are hollow cylinders that 

are formed by the polymerization of a dimer of two globular proteins, alpha and beta 

tubulin and they form the spindle fibers that attach to the kinetochore and pull the sister 

chromatids away from each other towards the opposite ends of the cell. The attachment 

of the kinetochore and microtubules is governed by the spindle assembly checkpoint 

complex (SAC) which will be described in detail in later sections. Errors at any stage of 

the cell division lead to an abnormal number of chromosomes in daughter cells and/or 

structurally aberrant chromosomes causing genetic instability. 

 

2. Chromosomal Instability 

 

2.1.Definition of chromosomal instability 

 

Chromosomal instability (CIN), a form of genomic instability, is defined as an increased 

rate of change of number and/or structure of chromosomes. It was first defined by 

Vogelstein and his team in 1997 as ‘a striking defect in chromosome segregation, 

resulting in gains or losses in excess of 10–2 per chromosome per generation’ (Lengauer, 

Kinzler, and Vogelstein 1997). Since then, CIN has been shown to be promoted by many 

different mechanisms including defects in chromosome segregation, disturbances in the
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Figure 2 Schematic representation of the organization of the kinetochore at the 

centromere 

The centromere consists of a higher order repeat of α-satellite DNA on which the 

kinetochore is built during mitosis. The sister chromatids are held together by cohesin 

complex until the end of metaphase. The inner kinetochore is marked with the epigenetic 

marker CENP-A, which is a variant of histone H3. The outer kinetochore is in contact 

with a kinesin motor protein called CENP-E and the proteins from the mitotic checkpoint 

complex also called the spindle assembly checkpoint (SAC). 

[Figure courtesy: Dr. Brenda Grimes] 
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cell cycle and faulty DNA damage repair systems (Thompson, Bakhoum, and Compton 

2010). Mutations in tumor suppressor genes such as p53 and RB also lead to cells 

becoming chromosomally unstable (Gordon, Resio, and Pellman 2012). Figure 3 

summarizes the four primary defects in mitosis that give rise to CIN namely, impaired 

SAC, defects in the geometry of the centromere, faulty attachments between the 

kinetochore and the microtubule and changes in the number of centrosomes in a cell 

[Figure 3 adapted from (Orr and Compton 2013)]. The activity or expression of the 

proteins that regulate these mechanisms are affected by mutations and changes in their 

upstream factors. For example, loss of function of the tumor suppressor gene RB disrupts 

the localization of cohesin proteins on the centromere thereby altering sister chromatid 

cohesion during cell division and causing CIN (Orr and Compton 2013, Manning, 

Longworth, and Dyson 2010). CIN and aneuploidy are interrelated, but both are 

distinguished from each other as CIN being the ‘rate of chromosomal mis-segregation’ 

and aneuploidy being the ‘state of abnormal chromosome number’ (Bakhoum and 

Compton 2012). 

 

CIN is classified into (1) numerical CIN (nCIN), which results in deviation of the normal 

chromosome number resulting in aneuploidy, and (2) structural CIN (sCIN), reflecting 

changes in the structure of the chromosome via mechanisms such as translocations, 

deletions, amplifications and inversions [Figure 4 adapted from (McGranahan et al. 

2012)]. nCIN is caused by different mechanisms such as errors in mitotic checkpoints, 

defects in the assembly of the spindle apparatus, defects in sister chromatid cohesion, 

amplification of centrosomes and faulty attachment of spindle microtubules to the  
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Figure 3 Schematic representation of mitotic defects that cause CIN 

The innermost circle represents chromosomal instability (CIN). The middle circle 

comprises the four main defects in mitosis that are known to cause CIN while the 

outermost circle depicts the factors that regulate these mechanisms. These factors are the 

downstream targets for various oncogenic pathways shown in the bubbles. 

[Figure adapted from (Orr and Compton 2013)] 
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Figure 4 Schematic representation of numerical and structural chromosomal 

instability 

Numerical chromosomal instability (nCIN) is characterized by gains and losses of whole 

chromosome(s) whereas structural chromosomal instability displays structural 

rearrangements such as translocations, deletions and amplifications within and between 

arms of chromosomes. 

[Figure adapted from (McGranahan et al. 2012)] 
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kinetochores (McGranahan et al. 2012). It is also reported that DNA damage occurs 

during aberrant chromosome segregation which can result in the subsequent structural 

rearrangement of chromosomes and contribute to sCIN (Janssen et al. 2011, Crasta et al. 

2012). sCIN is also reported to be associated with ‘reactive’ chromosomes which are 

formed after chromosome breaks. These reactive chromosomes give rise to ‘Breakage-

Fusion-Break’ cycles which in turn cause genomic rearrangements (Gisselsson et al. 

2000). Both nCIN and sCIN are often correlated with each other in cancer cells and result 

in a complex karyotype (Roschke et al. 2003, Gisselsson et al. 2000). 

 

CIN can have profound effects on the cell. The presence of CIN may lead to the 

formation of fusion gene products as well as deletion and amplification of genes making 

which in turn may propagate CIN further (McGranahan et al. 2012). Clinically, CIN 

causes congenital abnormalities, anatomic malfunctions and immunodeficiency in 

various instability syndromes such as Fanconi Anemia, Bloom Syndrome, Ataxia 

Telangiectasia and Roberts syndrome all of which have increased risks of developing 

malignancies (Zhang 2005). 

 

2.2.Measurement of chromosomal instability 

 

CIN needs to be characterized to measure the chromosomal variations between cells 

across a given population and also to assess the rate at which these variations change. 

Fluorescence in situ hybridization (FISH) has been used to assess CIN. An accepted 

method for indirectly inferring the nCIN using chromosome enumeration probes in FISH 
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analysis rate has been developed (Speicher and Carter 2005, Geigl et al. 2008, 

McGranahan et al. 2012). In this method, the nCIN rate is inferred by determining the 

percentage of cells exhibiting a chromosome signal number that deviates from the modal 

chromosome number. G-banding, FISH with regional/chromosome specific probes, 

spectral karyotype (SKY) analysis and Comparative Genomic Hybridization are 

cytogenetic methods for detecting sCIN. More recently, bioinformatics studies to detect 

changes in chromosome structure and number have been developed (McGranahan et al. 

2012, Carter et al. 2006). With the advent of next generation sequencing technology, it 

will be interesting to see how these tools will be exploited in determining CIN at the level 

of nucleotide sequence (McGranahan et al. 2012). 

 

2.3.Chromosomal instability in cancer: a benefit and a vulnerability 

 

CIN is a characteristic feature of most solid tumors and hematologic human cancers 

(McGranahan et al. 2012). It was first demonstrated in colorectal cancer cell lines by 

Vogelstein and his colleagues in 1997 (Lengauer, Kinzler, and Vogelstein 1997). CIN is 

associated with unfavorable prognosis in human cancer resulting in poor patient 

outcomes (McGranahan et al. 2012, Carter et al. 2006). CIN levels in tumors can stratify 

patients where high levels of CIN are generally linked to poorer survival and increased 

risk of relapse (McGranahan et al. 2012, Carter et al. 2006, Slee et al. 2014). 

 

CIN is proposed to be involved in the initiation and growth of tumors causing aneuploidy 

and intra-tumor heterogeneity (Bakhoum and Compton 2012, McGranahan et al. 2012). 
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Cancer cells that have elevated nCIN are reported to have elevated chromosomal mis-

segregation levels altering gene dosage and promoting Loss of Heterozygosity (LOH) 

events (Thompson and Compton 2008, Lengauer, Kinzler, and Vogelstein 1997, 

Bakhoum and Compton 2012). These genetic changes provide an advantage to cancer 

cells and allow them to tolerate and adapt to the stress present in the environment and 

facilitate emergence of drug resistant cells (McGranahan et al. 2012). However, this 

instability itself imposes stress and makes cancer cells potentially vulnerable (Gordon, 

Resio, and Pellman 2012). It may even play a role in tumor suppression if CIN gets too 

high by putting stress on the cells (Gordon, Resio, and Pellman 2012). 

 

CIN is reported to be a ‘double-edged sword’ where in addition to conferring tumor cells 

with selective advantages, it negatively impacts their biological fitness (Williams et al. 

2008). A threshold exists in the tolerance of CIN by cancer cells beyond which it is no 

longer compatible with cellular viability (Cahill et al. 1999). Elevated levels of 

chromosome segregation errors have been linked with DNA damage in the form of 

double strand breaks (DSBs) which lead to unbalanced translocations in daughter cells 

(Janssen et al. 2011). Daughter cells undergo cell death when the DSBs are not efficiently 

repaired or the gene imbalance as a result of the translocation is too severe for the cell 

(Janssen and Medema 2011). CIN results in the accumulation of deleterious mutations 

arising as a result of genomic rearrangement (Kops, Foltz, and Cleveland 2004, Janssen, 

Kops, and Medema 2009, Cahill et al. 1999). Earlier studies in yeast and mice have 

shown that the addition of an extra chromosome adds to the burden on the energy 

requirements of the cells because the genes on the extra chromosomes are being 
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replicated and transcribed slowing down cell growth and increasing cell lethality (Torres 

et al. 2007, Williams et al. 2008). It has been observed that cells make attempts to correct 

altered protein stoichiometry when chromosomally unstable (Tang et al. 2011). Pathways 

that stabilize normal cells under environmental stress are defective in tumor cells making 

them more vulnerable to stress inducing agents (Cahill et al. 1999). In a recent clinical 

study, extreme genomic instability in breast cancer was associated with favorable 

prognosis which might be explained by the vulnerable nature of cancer cells with an 

extremely high CIN level (Birkbak et al. 2011). Of interest to the hypothesis of this 

thesis, we test whether it is possible to selectively target CIN often seen in cancer cells to 

promote CIN elevation in them resulting in their death, while sparing normal cells. 

 

3. Mitotic kinase protein MPS1 as a potential therapeutic target 

 

3.1.Spindle Assembly Checkpoint Complex: 

 

Mitosis is a highly regulated process governed by the spindle assembly checkpoint (SAC) 

(also called Mitotic Checkpoint Complex (MCC)) to ensure legitimate segregation of 

chromosomes to the daughter cells. The role of the SAC, which is a large protein 

complex that binds to kinetochores, is to ensure proper alignment of the chromosomes at 

the metaphase plate and regulate bipolar attachment of the sister chromosomes to the 

mitotic spindle thus giving the green signal for the transition of the cells from metaphase 

to anaphase (Musacchio and Salmon 2007). 
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Unattached and/or misaligned chromosomes signal the SAC to block the anaphase 

promoting complex (APC/C) by inactivating its activator cdc20 (Yu 2007, 2002). APC/C 

is an ubiquitin ligase that promotes the progression of mitosis from metaphase to 

anaphase. When the SAC is activated, it prevents the polyubiquitylation and proteasome 

mediated degradation of cyclin B and securin, both of which are bound to CDK1 and 

separase respectively arresting mitosis in prometaphase. On degradation of cyclin B, 

CDK1 is inactivated thereby promoting progression of mitosis whereas when securin is 

degraded, it releases separase which in turn cleaves the SCC1 component of the cohesin 

complex that binds the sister chromatids together. This event allows the sister chromatids 

to separate to opposite poles allowing anaphase to progress (Peters 2006). Figure 5 shows 

the key components and the functional mechanism of the SAC in the transition of 

prometaphase to anaphase [Figure 5 adapted from (Colombo and Moll 2010)]. 

 

3.2.Function of MPS1 kinase 

 

The SAC is a complex of proteins and one important component of this complex is 

monopolar spindle 1 (MPS1) kinase, also known as TTK (Colombo et al. 2010). MPS1 is 

a cell cycle regulated dual serine/threonine kinase and also phosphorylates tyrosine 

residues (Stucke et al. 2002). It is a highly dynamic kinase and is expressed only in 

proliferating cells with maximum activity during mitosis (Stucke et al. 2002, Colombo et 

al. 2010). The activity of MPS1 kinase increases with the activity of the SAC (Stucke et 

al. 2002). Though its exact functions remain unknown, MPS1 kinase is reported to be 

involved in the maintenance of the SAC as well as in stabilizing the attachment of the 
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Figure 5 Key components and their function in Spindle Assembly Checkpoint 

Before metaphase, unattached chromatids trigger the Spindle Assembly checkpoint signal 

which comprises of BUB1, BUB3, MAD1, MAD2, MPS1 and BUBR1. This signal 

inhibits the APC/C by blocking cdc20. Once all the kinetochores are attached to the 

spindle microtubules, the SAC is released from kinetochores resulting in activation of 

APC/C. This in turn, degrades cyclin B and securin resulting the separation of sister 

chromatids and progression of the cell cycle into anaphase. 

[Figure adapted from (Colombo and Moll 2010)] 
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mitotic spindle fibers to the kinetochores (Janssen, Kops, and Medema 2009, Weiss and 

Winey 1996, Stucke et al. 2002). In addition, it localizes to the kinetochore and is 

required to recruit essential SAC proteins such as MAD1 and MAD2 to the kinetochore 

(Stucke et al. 2002, Liu et al. 2006, Tighe, Staples, and Taylor 2008, Kang et al. 2007). 

MPS1 inhibits post-mitotic checkpoint activation of the p53 signaling pathway in the 

event of controlled and normal chromosomal segregation (Tardif et al. 2011). In 

chromosomally unstable cancer cells, MPS1 kinase inhibition causes massive aneuploidy, 

which is incompatible with survival making it an excellent target in selective cancer 

therapeutics (Tighe, Staples, and Taylor 2008, Jelluma, Brenkman, van den Broek, et al. 

2008). Interestingly, normal fibroblasts and other differentiated cells are less affected 

thus creating a possible therapeutic window for treatment against a wide range of cancers 

(Colombo et al. 2010, Slee et al. 2014). 

 

3.3.Elevated Expression of MPS1 in chromosomally unstable cancer cells 

 

CIN is tolerated by cancer cells until a threshold is reached, beyond which it proves to be 

lethal to the cell. To maintain CIN within the survivable limits as well to reap the benefits 

provided by CIN, it is proposed that cancer cells up-regulate genes that are critical to 

limit chromosomal segregation errors (Grabsch et al. 2003, Schmidt and Medema 2006, 

Yuan et al. 2006). Carter and his group identified a set of 70 genes, called the CIN70 

signature, which in an unbiased bioinformatics approach turned out to stratify patients 

into groups based on survival or risk of relapse (Carter et al. 2006). In general, patients 

with high levels of CIN70 (which serves also as a surrogate measure of CIN) have a 
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poorer prognosis than those with lower CIN70 gene expression levels (Carter et al. 2006, 

Birkbak et al. 2011). CIN70 genes play a role in chromosome maintenance and include 3 

SAC genes. It is hypothesized that CIN70 gene up-regulation keeps CIN within limits to 

allow cancer cell survival. This increased reliance of tumor cells to elevate genes 

involved in chromosome maintenance is a form of “non-oncogene addiction” (Luo, 

Solimini, and Elledge 2009, Solimini, Luo, and Elledge 2007). Almost a quarter of these 

70 genes are associated with chromosomal segregation including MPS1 kinase (Carter et 

al. 2006, Luo, Solimini, and Elledge 2009). 

 

3.4.Inhibition of MPS1 as a therapeutic target in cancer cells 

 

MPS1 kinase activity is required in dividing cells for maintenance of the SAC and to 

ensure correct segregation of chromosomes. It is reported that inhibition of MPS1 kinase 

results in the override of the SAC and premature exit from mitosis (Schmidt et al. 2005, 

Kwiatkowski et al. 2010, Burgess, Rasouli, and Rogers 2014). Silencing of this mitotic 

kinase in mammalian cells has been shown to generate massive chromosomal mis-

segregation due to inaccurate alignment of chromosomes at the metaphase plate and 

accelerated mitosis ultimately leading to cell death (Tighe, Staples, and Taylor 2008, 

Jelluma, Brenkman, van den Broek, et al. 2008). Yeast cells that harbor mutations 

resulting in faulty chromosomal segregation are more sensitive to compounds that inhibit 

MPS1 kinase (Dorer et al. 2005). Many groups have demonstrated in a wide variety of 

tumor cell lines including cancer cells derived from lung, ovary and colon that targeted 

inhibition of MPS1 makes these cancer cells die via massive chromosome mis-
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segregation (Jemaa et al. 2012, Kwiatkowski et al. 2010, Castedo et al. 2004). The 

inhibition impairs SAC and kills human cancer cells by inducing hyperdiploidization, 

arresting growth and inhibiting DNA synthesis causing gross aneuploidy followed by cell 

death making MPS1 a potential therapeutic approach in cancer as normal cells are less 

affected (Jemaa et al. 2012, Tardif et al. 2011, Kwiatkowski et al. 2010, Slee et al. 2014, 

Colombo et al. 2010). 

 

One such MPS1 inhibitor [Figure 6 adapted from (Colombo et al. 2010)], NMS-P715, an 

ATP competitor was identified and characterized as a small-molecular inhibitor, which is 

selective towards cancer cell lines. NMS-P715 accelerates mitosis and affects localization 

of kinetochore components leading to massive aneuploidy and cell death leaving normal 

cells almost unaffected [Figure 7 adapted from (Colombo et al. 2010)]. The molecule is 

also shown to rapidly inhibit tumor growth in mouse xenograft models for ovarian 

carcinoma and malignant melanoma [Figure 8 adapted from (Colombo et al. 2010)]. 

 

4. Targeting pancreatic cancer cells 

 

Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer of the exocrine pancreas, a 

functional unit of the pancreas that produces digestive zymogens and forms 80% of the 

total tissue mass of the organ (Hezel et al. 2006). It is the most common form of 

pancreatic cancer and has an abysmal five year survival rate of less than 6% (Siegel, 

Naishadham, and Jemal 2012). It is the 4th highest contributor to cancer related deaths in 

the United States and there has been little improvement in patient survival over the last 
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Figure 6 NMS-P715 is a selective ATP-competitor that inhibits MPS1 

NMS-P715 (shown in light blue competitively binds in the catalytic domain of MPS1 

kinase (shown as sticks with green carbon). Hydrogen bonds between NMS-P715 and 

MPS1 are represented by red dashed lines. 

[Figure adapted from (Colombo et al. 2010)] 
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Figure 7 NMS-P715 inhibits Spindle Assembly Checkpoint affecting alignment of 

chromosomes and subsequently increases aneuploidy in treated cells 

A: Metaphase and anaphase images of U2OS osteosarcoma cell line that are treated with 

DMSO (control) or 1 µmol/L NMS- P715 for 1 hour. DNA is stained with DAPI (blue) 

while alpha-tubulin is visualized as green fluorescent signal YFP. 

B: Mitotic chromosome spread results of HCT116 colon cancer cells treated with NMS-

P715 (1 µmol/L) or DMSO (control) for 24 hours. Treated cells show a wide range of 

chromosome numbers/ cell consistent with increased aneuploidy after treatment with the 

inhibitor. 

[Figure adapted from (Colombo et al. 2010)] 
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Figure 8 NMS-P715 inhibits growth of tumors in xenograft models 

A: Nude mice bearing xenograft derived ovarian cancer tumors (A2780human cell line) 

show a significant reduction of tumor weight after oral administration of 90mg/kg NMS-

P715 (gray bar) daily for 7 consecutive days when compared to the control group. 

B: A375 human melanoma xenograft model also showed significant decrease in tumor 

weight after they were orally administered with 100mg/kg NMS-P715 for 2 consecutive 

days over a 10 day period as compared to the control group. 

[Figure adapted from (Colombo et al. 2010)] 
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30 years (Siegel, Naishadham, and Jemal 2012). Pancreatic cancer is typically detected at 

a later stage as the disease is symptom-free in the early stages and has a high metastatic 

propensity making surgery and other therapeutic interventions inadequate (Karhu, 

Mahlamaki, and Kallioniemi 2006). The current compound used in PDAC treatment, the 

DNA synthesis inhibitor gemcitabine, does little to improve the overall survival (Choi, 

Saif, and Kim 2014). This stresses the need to develop new therapeutic options that 

improve survival of patients suffering from PDAC. 

 

PDAC tumor cells are genetically very complex, show extensive heterogeneity, and are 

highly unstable leading to acquired clonal aberrations and complex karyotypes (Karhu, 

Mahlamaki, and Kallioniemi 2006, Gorunova et al. 1998). The most common mutation 

that is observed in over 90% of PDAC tumors is the activating mutation of KRAS 

oncogene (Hansel, Kern, and Hruban 2003). Elevated CIN70 gene expression, including 

that of MPS1 kinase, in PDAC patient tumor samples indicated poor prognosis (Slee et 

al. 2014). Patients with PDAC were categorized into prognostic categories based on their 

MPS1 kinase expression levels [Figure 9 adapted from (Slee et al. 2014)]. In addition, 

MPS1 kinase was highly expressed in PDAC cell lines such as BxPC3 and PANC-1 in 

comparison with primary pancreatic ductal epithelial cells [Figure 10 adapted from (Slee 

et al. 2014)]. Due to the presence of CIN and elevated MPS1 kinase levels, we explored 

the potential of NMS-P715 to 1) inhibit PDAC cell growth and 2) have less effect on 

stem cells, as these cells are the main target of cytotoxic compounds widely used in 

chemotherapy. 
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Figure 9 Kaplan-Meier Survival analyses of 94 PDAC patients segregated by level of 

MPS1 expression 

The graph represents the survival analysis of 94 PDAC patients relative to levels of 

MPS1 expression. The patients were classified in two prognostic categories namely the 

‘upper’ and ‘lower’ halves based on the expression of MPS1. The median survival for 

upper half patients is 28 months whereas that for the lower half is 13.2 months. 

[Figure adapted from (Slee et al. 2014)] 
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Figure 10 MPS1 is up-regulated in pancreatic cancer 

A: Box whisker plot of MPS1 expression in normal pancreatic cells and PDAC cells. 

Central band indicates the median and the lower and upper bands denote first and the 

third quartiles respectively. Whiskers represent the data within the 1.5 interquartiles of 

upper and lower box limits. Red bars indicate outliers. 

B: MPS1 gene expression in primary human pancreatic ductal epithelial cells (hPDEC), 

BxPC-3, and PANC-1 cell lines. 

[Figure adapted from (Slee et al. 2014)] 
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5. Human Adipose Stem Cells 

 

Therapeutic Index is defined as the ratio of the concentration of the drug required for the 

toxic effects to the concentration required for therapeutic effects (Kaelin 2005). A drug is 

reported to have a favorable therapeutic index when it targets a biomolecule that is 

important for the survival of a cancer cell without compromising normal cellular survival 

or function (Rubin and Gilliland 2012). Most of the chemotherapeutic compounds in use 

today, including gemcitabine, have very low therapeutic indices as they damage normal 

cells such as the stem cells of the bone marrow and the normal epithelia of the gut 

(Kaelin 2005). As a result, the success rate of most anticancer drugs remains low (Rubin 

and Gilliland 2012). NMS-P715 is shown to have a favorable therapeutic index in 

untransformed cells such as fibroblasts and B-lymphocytes as they are almost unaffected 

by it under conditions where cancer cells are severely affected (Colombo et al. 2010). 

Since NMS-P715 was not tested in stem cells, we wanted to check whether it inhibited 

MPS1 kinase in adipose derived mesenchymal stem cells (ASCs) as a model for how 

stem cells might be affected in vivo. 

 

ASCs are multipotent stem cells that were isolated from donors who underwent 

liposuction procedures. They share many properties with the bone marrow derived 

mesenchymal stem cells (Hong, Traktuev, and March 2010). These cells have high 

proliferation capacity in vitro and maintain a stable diploid karyotype (Grimes et al. 

2009). As gemcitabine affects stem cells in vivo, the relative sensitivities of pancreatic 

cancer cells and ASCs to both Gemcitabine and NMS-P715 were analyzed by Dr. Roger 
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B. Slee from Grimes’ Lab. Pancreatic cancer cell lines such as PANC-1 and BxPC-3 

were significantly more sensitive to the inhibitory effects of NMS-P715 than five isolates 

of ASCs when treated with increasing concentrations of the drug for 72 hours [Figures 11 

A and 11B adapted from (Slee et al. 2014)]. This was also reflected in the IC50 values 

which were 1.5, 1.6 and 3.4 µmol/L for PANC-1, BxPC-3 and ASCs respectively [Figure 

11C adapted from (Slee et al. 2014)]. These results when compared to those observed in 

the PDAC cells were more resistant than ASCs suggesting a favorable therapeutic index 

for the MPS1 kinase inhibitor (Slee et al. 2014). Based on the results established in the 

previous studies and Dr. Slee’s experiments, we hypothesize that MPS1 inhibition is 

selective towards PDAC cells and that stem cells will be more resistant in vitro. In 

addition, we also tested whether normal human pancreatic ductal epithelial (hTERT-

HPNE) cells immortalized by human telomerase, were negatively affected by the 

inhibition of MPS1 kinase. The inhibitor was tested in murine PDAC cells (Carriere et al. 

2011). The results presented in this thesis focus on the relative resistance of stem cells 

and normal pancreatic epithelial cells to the NMS-P715 inhibitor of MPS1 kinase 

compared to pancreatic cancer cells and support further testing of MPS1 inhibitors as 

potential selective agents for treatment of pancreatic cancer. 
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Figure 11 Sensitivities of Pancreatic Cancer Cells and ASCs to both gemcitabine 

and NMS-P715 

A: IC50 values of NMS-P715 in BxPC-3, PANC-1 and ASC 

B: IC50 valued of gemcitabine in BxPC-3, PANC-1 and ASC 

C: PANC-1 and BxPC-3 are more sensitive to the inhibitory effects of NMS-P715 than 

ASCs 

[Figure adapted from (Slee et al. 2014)] 
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MATERIALS AND METHODS 

 

1. Cell lines 

 

Human PDAC cell lines PANC-1 (ATCC CRL-1469) and BxPC-3 (ATCC CRL-1687) 

were grown in Dulbecco’s Modified Eagle Medium/10% FBS or RPMI/10% FBS, 

respectively, obtained from American Type Culture Collection (ATCC). 825-2 and 1170-

4 KRC cells are murine PDAC cells that were obtained from two pancreatic cancer 

tumors arising in a genetically engineered mouse model of PDAC in which Kras was 

combined with Rb (Retinoblastoma) gene deletion using Cre-recombinase (Carriere et al. 

2011) and were cultured in RPMI/10% FBS. Human ASCs were collected from donors 

undergoing lipoaspiration using an approved protocol (Institutional Review Board 0305-

59) as described previously (Hong, Traktuev, and March 2010) and cultured in EGM2-

MV medium (Lonza)/ 10% FBS. Human telomerase-immortalized pancreatic ductal 

epithelial cells (hTERT-HPNE) cells (ATCC CRL-4023) were cultured according to the 

supplier’s conditions. The cells were maintained in a humidified atmosphere of 5%CO2 

at 37°C. 

 

The population doubling times of PANC-1, BxPC-3, KRC, ASC and hTERT-HPNE cells 

were approximately 50 hours, 40 to 60 hours, 20 hours, 24 to 26 hours and 40 hours 

respectively. 
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2. Compounds 

 

NMS-P715 was provided by Nerviano Medical Sciences or purchased from EMD 

Millipore (Cat#475949-5MG) and suspended in dimethyl sulphoxide (DMSO). 

Gemcitabine, obtained from Tocris Bioscience, was suspended in H2O. 

 

3. Clonogenic Survival Assay 

 

Cells were counted and plated in duplicate or triplicate in 12 well dishes. The inhibitor 

was added after 24 hours at concentrations ranging from 0.1 to 5.0 µmol/L. DMSO was 

used as a control. For continuous treatment, the inhibitor was added every 3 days whereas 

in washout condition the cells were treated with the inhibitor for 24 hours and then grown 

in compound-free medium. The total duration of cell growth was 9 days or 6 days after 

the first addition of the drug. Cells were fixed with methanol for 15 minutes and left to 

dry overnight. The plates were then stained with 0.05% methylene blue (w/v) for 15 

minutes, rinsed twice in water and dried overnight. Cell growth was quantified by 

suspending cells in 0.5 mol/L hydrochloric acid and the optical density was measured at 

320 nM on a Beckman-Coulter DTX880 MultiMode Detector (Oliver et al. 1989). 

Inhibition of growth by NMS-P715 was measured relative to the DMSO control. 
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4. SAC Override analysis by Immunoblotting Assay 

 

4.1.Preparation of Cell Lysate 

 

Cells were treated with increasing concentrations of NMS-P715 or DMSO control for 72 

hours after which, media was aspirated from cultures. Then cells were harvested by 

adding 1ml 0.25% Trypsin (Thermo Scientific) and collected in graduated 15 ml 

centrifuge tubes (Sarstedt). The cells were washed with 1X PBS (Dulbecco), counted 

using Beckman Coulter Counter and frozen at -80°C overnight in medium supplemented 

with 10% DMSO until next use. After thawing the cells on ice, the cells were lysed by 

resuspension in RIPA buffer (Thermo Scientific) and sonication for 30 seconds at 10 

second intervals to shear DNA and reduce viscosity. A 15µl aliquot removed then 15µl 

RIPA buffer, 15µl 3X Loading Buffer and 1µl 2-Mercaptoethanol (BME) were added 

then the sample was heated for 3 minutes at 90°C followed by cooling on ice. 

 

4.2.SDS-polyacrylamide gel electrophoresis of protein and transfer: 

 

30µl of sample was loaded onto SDS-PAGE gel (10cm X 8.5cm) (Thermo Scientific) and 

electrophoresis was performed. After separation on the gel, proteins were electroblotted 

onto Polyvinylidene fluoride (PVDF) membrane (Biorad) overnight at 30V at 4°C. The 

transfer buffer contained 30mM Tris, 200mM glycine, 1.4mM SDS and 20% methanol. 
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4.3.Immunoblotting 

 

The membranes were incubated while under constant agitation in blocking buffer [3% 

(w/v) non-fat dry milk in PBS] at room temperature for 1 hour. After washing briefly in 

1XPBS-T buffer (1X PBS / 0.05% Tween), membranes were immunoblotted in blocking 

buffer containing primary antibody [phosphorylated histone H3 serine 10 (pS10H3); 

(Millipore)] at a concentration of 1:1000 (v/v) at room temperature for 2 hours. 

Membranes were washed 3 times, each wash for 10 minutes, with 1XPBS-T buffer, 

followed by incubation in blocking buffer containing goat-anti-rabbit-horseradish-

peroxidase conjugates [1:5000 (v/v)] for 1 hour at room temperature. After three washes 

(10 minutes each wash) in 1XPBS-T buffer, the membranes were exposed to enhanced 

chemilumescent (ECL) plus mixture (Thermo Scientific Pierce) for 1 minute, and 

exposed to autoradiographic film from 10 seconds to 5 minutes to obtain desired signal 

intensity. The same procedure was followed for a loading control using β-Actin (Sigma) 

[1:10000 (v/v)] as the primary antibody and goat-anti-mouse-horse radish peroxidase 

conjugate [1:5000 (v/v)] as the detecting antibody. 

 

5. SAC Override Assay by Immunofluorescence 

 

5.1.Cell Fixation 

 

PANC-1 and BxPC-3 Cells were counted and plated in chamber slides at a concentration 

of 10,000 to 20,000 cells/well. After 24 hours, replicate cultures were blocked in 
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75nmol/M nocodazole for 18 hours. The cells were treated either with DMSO or 0.4 

µmol/L NMS-P715 in the last two hours of block. Murine PDAC cells were plated at 

same densities as that of human PDAC cells but were treated with increasing 

concentration of nocodazole for 18 hours without NMS-P715 treatment. DMSO was used 

as control. The cells were then fixed in 1XPBS/4% formaldehyde for 15 minutes at room 

temperature and washed three times in 1XPBS for 5 minutes each. 

 

5.2.Immunofluorescence 

 

The cells were blocked for 60 minutes in 100 µl of blocking buffer containing 1X PBS, 

5% normal goat serum and 0.3% Triton X-100. The cells were then incubated overnight 

at 4°C with Alexa-Fluor 488-labeled pS10H3 antibody (Cell Signaling Technologies) 

which was diluted in the antibody dilution buffer (1x PBS/ 1% bovine serum albumin 

(BSA)/ 0.3% Triton X-100) in a dark moist chamber. After incubation, the cells were 

rinsed thoroughly with PBS three times for 5 minutes each at room temperature. The 

nuclei were counterstained with 6-diamidino-2-phenylindole (DAPI) and observed under 

a Leica DM5000B fluorescence microscope (Leica Microsystems). A minimum of 200 

cells per well were scored for the presence of green pS10H3 positive cells. The assay was 

performed in duplicates. 
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6. Measuring nCIN using Fluorescence In Situ Hybridization 

 

6.1.Cell Fixation 

 

Duplicate cell cultures were incubated with NMS-P715 or DMSO control for 72 hours 

after which they were harvested using 1 ml 0.25% Trypsin/EDTA) and centrifuged at 

1000 rpm for 5 minutes. The cells were incubated for 10 minutes at 37°C in hypotonic 

buffer (0.075M KCl). The cells were then fixed in 3:1 (v/v) methanol: acetic acid, 

dropped on slides and aged under vacuum overnight. 

 

6.2.Preparation of FISH probes 

 

Commercial probes recognizing X chromosome or chromosome 17 centromeres (Abbott 

Molecular Cat# 05-J08-033, 06-J37-027 respectively) in human cells were aliquoted into 

hybrisol containing 50%formamide, 20%dextran sulfate, 2XSSC and 0.1mg/ml salmon 

sperm DNA. The probes were denatured at 72°C for 7 minutes, and then placed on ice in 

dark. 

 

For murine cells, commercial probe for mouse chromosome 11qE1 (Kreatech 

Diagnostics Cat#30501) was aliquoted in mouse probe solution containing ultrapure 

deionized water and large-scale integration (LSI) hybridization buffer provided by the 

supplier. The probe was denatured at 73°C for 5 minutes and placed on ice in dark prior 

to adding to slides. 
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6.3.Hybridization 

 

The slides containing the cells were preheated in 2X SSC at 37°C for approximately 30 

minutes. The slides were washed three times in 70%, 80% and 100% ethanol sequentially 

for 2 minutes each at -20°C and dried at room temperature. The slides were placed in 

denature solution (70%Formamide/2XSSC; pH 7.0) for 2 minutes at 72°C to denature 

DNA. The cells were again sequentially washed with ethanol at -20°C and dried at room 

temperature. 15µl of the human probe mixture or 10µl of the mouse probe was added to 

the samples and sealed in a coverslip. The slides were incubated overnight in a moist 

chamber at 37°C. 

 

After incubation, the PDAC and ASC slides were placed twice in post hybridization wash 

solution (50%Formamide/2XSSC; pH 7.0) at 42°C for 8 minutes each followed by a 

wash in 2XSSC at 37°C for 8 minutes. KRC slides were placed in post hybridization 

wash I (0.4X SSC/0.3%NP40) at 73°C for 2 minutes followed by wash in post 

hybridization wash II solution (2X SSC/ 0.1%NP40) at room temperature for 1 minute. 

 

The nuclei were counterstained with 6-diamidino-2-phenylindole (DAPI) and observed 

under Leica DM5000B fluorescence microscope (Leica Microsystems). Chromosome 

numbers were counted in ≥50 spreads per culture. 
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RESULTS 

 

1. Pancreatic cancer cell growth is selectively inhibited by MPS1 inhibitor NMS-

P715 whereas human stem cells are markedly less affected. 

 

To examine the specificity of MPS1 inhibition by NMS-P715, we tested and compared 

the effects of the drug in pancreatic cancer cells with that in the normal adipose stem cells 

(ASCs) using a clonogenic survival assay. The assay assesses the ability of the cells to 

divide and proliferate after an external insult to them (Puck and Marcus 1956). This long 

term assay is an indirect measurement of cell death in vitro where it takes into account 

the different mechanisms that kill cancer cells (Brown and Attardi 2005). This is 

observed as a decrease in the cell number after the treatment under consideration. To 

analyze the growth inhibitory effects of the drug, we checked for the proliferative 

capacity of the cells after treatment with NMS-P715. The assay requires the formation of 

large, deeply staining colonies each consisting of more than 50 cells as an indicator that 

the cells have retained their clonogenic properties (Puck and Marcus 1956). Hence, the 

optimum seeding number and length of treatment is different for each cell line and 

experiment to obtain the best representative results in the clonogenic survival assay. 

 

PANC-1 and BxPC-3 cells were seeded at concentrations of 500 and 1000 cells/well 

respectively. When PDAC cells were treated continuously for 9 days with NMS-P715 at 

concentrations ranging from 0.1 µmol/L to 5.0 µmol/L, their growth was markedly 

inhibited at 0.5 µmol/L (Figure 12A). In addition, a treatment of 1.0 µmol/L NMS-P715 
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for 24 hours followed by compound washout significantly reduced the proliferation of 

PANC-1 and BxPC-3 indicating high sensitivity to the drug (Figure 12A). On the other 

hand, ASCs were more resistant when they were plated at a density of 200 cells/well and 

treated with the drug for 6 days continuously at increasing concentrations from 0.1 

µmol/L to 5 µmol/L (Figure 12B). The stem cells show a marginal decrease in cell 

growth at 0.5 µmol/L when compared to that in 0.1 µmol/L but are still actively 

proliferating which is in contrast to that observed in PDAC cells. 

 

However since ASCs do not form colonies at low plating numbers because they are 

migratory (Figure 12B), cell growth was measured using an indirect colorimetric assay to 

quantitatively compare the growth of PDAC cells with ASCs after MPS1 inhibition. In 

this assay, cells were fixed and stained with methylene blue. The dye was released by 

lowering the pH with hydrochloric acid and the intensity of the color of the extracted dye 

was measured as the absorbance on a plate reader (Oliver et al. 1989). PANC-1, BxPC-3 

and ASC were plated at a density of 200cells/well and treated with NMS-P715 at 

concentrations varying from 0.1 µmol/L to 0.5 µmol/L for 6 days. A clear trend is visible 

where the number of cells surviving after treatment decreases with the increasing 

concentration of the drug (Figure 12 C). The percentage of PDAC cells surviving 

decreases sharply in comparison with that of the ASCs. Also, the PDAC cells seem to be 

more sensitive than the ASCs to MPS1 inhibition and there is significant difference 

between their survivals when treated with 0.3 µmol/L, 0.4 µmol/L and 0.5 µmol/L NMS-

P715. In addition, the growth inhibition of PANC-1 (75.1% ± 7.7%) and BxPC-3 

(78.83% ± 4.49%) was twice that observed in the ASCs (38.2% ± 8.5%). These data are 
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Figure 12 NMS-P715 selectively inhibits cancer cell proliferation leaving ASCs 

relatively unaffected 

A: Growth inhibition of PANC-1 and BxPC-3 cells plated at concentrations of 500 and 

1000cells/well respectively when treated with NMS-P715 for 9 days continuously or for 

24 hours followed by growth in compound-free medium for 9 days (washout treatment). 

B: Cell proliferation of two independent ASC1 and ASC2 isolates treated with NMS-

P715 for 6 days continuously. The cells were seeded at concentration of 200cells/well. 

C: Comparison of clonogenic effect in BxPC-3, PANC-1 and ASC after treatment with 

NMS-P715 for 6 days continuously using colorimetric analysis. The cells were plated at a 

density of 200cells/well. 

The assays were performed in duplicates.  
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published in (Slee et al. 2014). 

 

To permit additional assessment of the anti-proliferative effects of the MPS1 inhibitor, 

PANC-1 cells and ASCs were first treated with 1.0 µmol/L NMS-P715 for 72 hours in a 

different clonogenic survival assay. DMSO was used as control. Cells were harvested and 

plated at 400 cells/well in compound-free medium in a 12 well dish for 6 days. PANC-1 

cells showed significantly higher growth inhibition (72.2%) than that observed in ASC3 

(16.1%) and ASC4 (23.2%) (Figure 13) (Slee et al. 2014). 

 

2. Pancreatic cancer cells bypass the mitotic checkpoint after treatment with NMS-

P715. 

 

The spindle assembly checkpoint (SAC) is an essential regulator of mitotic cell division 

where it acts as a gatekeeper during the transition of the cell from metaphase to anaphase 

thus keeping chromosome segregation under check (Musacchio and Salmon 2007). It 

delays the onset of anaphase until all kinetochores are properly attached to the spindle 

microtubules (Schmidt et al. 2005). Defects in this protein complex abrogate the 

checkpoint mechanism causing premature transition in anaphase (Thompson and 

Compton 2008). It has been previously shown that cells having a weak SAC show 

chromosomal instability (CIN) and undergo mitotic catastrophe (Burds, Lutum, and 

Sorger 2005). With this rationale, we wanted to assess whether MPS1 inhibition makes 

PDAC cells override the SAC, by testing the presence of phosphorylation at serine 10 on 

histone H3 (pS10H3). This histone modification is associated with chromosome 
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Figure 13 PDAC cell growth is inhibited by pre-treatment with 1µM NMS-P715 for 

72 hours while human adipose stem cells are markedly less affected 

A: Image showing PANC-1 and ASCs were pre-treated with 1µmol/L P715 for 72 hours 

before being plated at densities of 400cells/well in triplicate in compound free medium 

for 6 days. DMSO was used as control. Cells in columns 1 and 2 are controls while those 

in 3 and 4 are treated with the inhibitor. 

B: Graph showing percent growth inhibition of PANC-1 and ASCs relative to control 

group after treatment with 1µmol/L P715 for 72 hours NMS-P715 determined by 

colorimetric assay. The growth of ASCs is almost three times more than PANC-1 after 

treatment with the inhibitor.  
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condensation during mitosis (Hendzel et al. 1997, Prigent and Dimitrov 2003). 

Phosphorylation at Ser 10 begins in late G2 phase and reaches its maximum at 

metaphase. Dephosphorylation begins in anaphase and ends in telophase indicating 

decondensation of chromosomes (Hendzel et al. 1997). Thus, disappearance of pS10H3 

indicates that cells have passed through mitosis (Kwiatkowski et al. 2010) and we tested 

the absence of this marker in PANC-1 cells after treatment with NMS-P715. In addition, 

we repeated this experiment in ASCs to compare the effect on SAC in PANC-1 with that 

observed in the stem cells. 

 

Cells were treated with increasing concentration of MPS1 inhibitor for 72 hours. The 

PANC-1 cells showed dose-dependent reduction of pS10H3 using Western analysis, 

suggesting early exit from mitosis and hence, bypassing the SAC. On the other hand, 

ASCs did not show a decrease in pS10H3 marker when treated with the same conditions 

(Figure 14). 

 

To confirm the failure of SAC to arrest in PDAC cells, the cells were treated with NMS-

P715 in the presence of nocodazole, a microtubule depolymerizing agent. Addition of 

nocodazole to dividing cells prevents the microtubules from attaching to the kinetochore 

which results in the activation of the SAC (Stucke et al. 2002). 

 

However, cells with a weakened checkpoint will fail to arrest in prometaphase in the 

event of unattached kinetochores and transition into anaphase (Jelluma, Brenkman, 

McLeod, et al. 2008). To check the ability of NMS-P715 to cause the bypass of the 
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Figure 14 PANC-1 cells exhibit bypass of the SAC in the presence of NMS-P715, in 

contrast to ASCs which maintained an intact SAC under similar treatment 

conditions 

Image showing western blot analysis of PANC-1 cells and ASCs when treated with the 

indicated concentrations of NMS-P715. ‘0’ indicates DMSO control. Antibody to 

pS10H3 detected cells in mitosis while antibody to β-actin was used as control. 
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checkpoint, we tested the inhibitor in PANC-1 and BxPC-3 cells after activating the 

checkpoint signaling with nocodazole and scored the frequency of pS10H3 positive 

nuclei. Cells were blocked in 75nmol/L nocodazole for 18 hours and were treated with 

0.4 µmol/L NMS-P715 in the last two hours of the nocodazole treatment. Both PANC-1 

and BxPC-3 showed a significant decrease in pS10H3 positive nuclei after treatment with 

the MPS1 inhibitor (Figure 15). The reduction in the number of cells arrested in 

prometaphase indicates that the depletion of MPS1 in the cells caused the checkpoint to 

become dysfunctional resulting the cells to exit mitosis prematurely. The experiment was 

attempted in the ASCs. However ASCs did not grow uniformly making analysis and 

interpretation ambiguous. Thus we relied on results from Western analysis to measure 

comparative resistance to SAC override in ASCs as outlined above. 

 

These results suggest that NMS-P715 abrogates the function of the SAC in PANC-1 cells 

and that ASCs are resistant to this weakening of the checkpoint when treated with same 

concentration of the inhibitor, thereby lending support to the possibility that the inhibitor 

is more selective to cancer cells than stem cells. 
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Figure 15 PDAC cells fail to arrest in prometaphase after treatment with nocodazole 

in the presence of NMS-P715 and exit mitosis prematurely 

On the left is the graph showing the percentage of pS10H3 positive green cells when 

treated with nocodazole (noc) only or with nocodazole and NMS-P715 (noc + NMS-

P715). A minimum of 200 cells per chamber were scored for the presence of green cells 

indicating the presence of pS10H3. On the right are representative images of cells when 

treated with noc or noc + NMS-P715. Nuclei are stained with DAPI (blue). The assay 

was performed in duplicate. 
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3. Pancreatic cancer cells are more chromosomally unstable than normal healthy 

cells after treatment with NMS-P715. 

 

A decrease in the activity of MPS1 abrogates the functioning of the SAC (Jelluma, 

Brenkman, McLeod, et al. 2008) and increases errors in chromosomal segregation 

thereby promoting catastrophic CIN (Kops, Foltz, and Cleveland 2004, Colombo and 

Moll 2010). In addition, elevation of CIN beyond a threshold is not tolerated by cancer 

cells and they succumb to the deleterious effects of this phenotype (Cahill et al. 1999, 

Kops, Foltz, and Cleveland 2004) making CIN elevation an attractive therapeutic target 

in the treatment of many cancers (Colombo et al. 2010). With this rationale, we wanted to 

test for increased levels of numerical CIN in PDAC after treatment with the MPS1 

inhibitor. We also wanted to check whether ASCs and hTERT-HPNE were resistant to 

increase in nCIN under conditions similar to that in PANC-1, suggesting a therapeutic 

window exists allowing selective targeting of cancer cells. To explore this hypothesis, we 

performed fluorescence in situ hybridization (FISH) to examine levels of nCIN after 

treating the cells with 1 µmol/L NMS-P715 or DMSO for 72 hours by assessing changes 

in percent modal deviation (%MD) for chromosome enumeration probes after treatment 

which is an accepted indirect measure of the CIN rate. %MD was calculated for 

chromosomes X and 17. As the alpha satellite DNA is divergent between centromeres in 

humans, probes were specific to chromosomes X and 17 (Willard 1985). 

 

PANC-1 showed significantly elevated levels of nCIN as compared to ASCs prior to 

treatment, consistent with the chromosomally unstable phenotype of cancer cells (Figure 
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16). PANC-1 showed a dramatic increase in nCIN from 13% MD for chromosome X and 

14% MD for chromosome 17 when treated with DMSO to 63% MD for chromosome X 

and 59% for chromosome 17 after treatment with 1 µmol/L inhibitor for 72 hours. On the 

other hand, the %MD in ASCs was less than 5% in both control and test samples making 

the change after treatment with NMS-P715 statistically insignificant suggesting that the 

chromosome mis-segregation rate was similar in treated or control conditions. To 

understand the limit to which the ASCs can tolerate the drug, we treated the cells with 3 

µmol/L NMS-P715 for 72 hours and observed a significant, but modest increase in %MD 

from less than 5% for chromosomes X and 17 in control to 20% for chromosome X and 

17% for chromosome 17 after treatment with the higher concentration of the drug. 

 

In addition, normal pancreatic epithelial cells (hTERT-HPNE), which are telomerase-

immortalized, showed a small but statistically insignificant increase in nCIN after 

treatment with 1 µmol/L NMS-P715 for 72 hours providing further supporting evidence 

that untransformed cells are less susceptible to SAC over-ride using an MPS1 inhibitor 

(Figure 17). On the contrary, a statistically significant increase in nCIN was observed in 

PANC-1 cells when they were treated under similar conditions as hTERT-HPNE. 

  

 43   
 



 

Figure 16 MPS1 inhibition elevates nCIN in PANC-1 cells but not in ASCs 

PANC-1 and ASCs were treated with 1 µmol/L NMS-P715 for 72 hours and processed 

for FISH. ≥50 cells per culture were analyzed for the number of chromosomes. Green 

probe represents chromosome 17 whereas red indicates chromosome X. The modal 

number for chromosomes 17 and X was 4 for PANC-1 and 2 for ASCs. PANC-1 cells 

show significant elevation in CIN after treatment with the inhibitor. Although ASCs are 

resistant to the inhibition of MPS1 under conditions similar to that for PANC-1, the stem 

cells show significant but modest increase when treated with higher concentration (3 

µmol/L) of the drug. The assay was performed in 2 replicate plates per treatment group. 
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Figure 17 hTERT-HPNE cells are resistant to elevation of nCIN when treated with 1 

µmol/L NMS-P715 for 72 hours 

PANC-1 and hTERT-HPNE cells were treated with 1 µmol/L NMS-P715 or DMSO for 

72 hours and processed for FISH analysis. A minimum of 50 interphase cells per culture 

were scored for number of chromosomes X and 17. hTERT-HPNE show slight but 

statistically insignificant increase in percent modal deviation whereas PANC-1 show a 

dramatic increase in %MD for both chromosomes X and 17, indicating higher sensitivity 

towards NMS-P715 than that observed in hTERT-HPNE under similar conditions. The 

assay was performed in 2 replicates per treatment group. 
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4. Growth of murine PDAC cells is inhibited by NMS-P715 

 

To assess the effect of MPS1 inhibition in murine PDAC cells, 825-2 and 1170-4 KRC 

cells were checked for their clonogenic capacity after treatment with NMS-P715. KRC 

cells were derived from PDAC tumors arising from genetically engineered mice with 

oncogenic Kras and deletion of the retinoblastoma (Rb) gene using Cre-recombinase 

(Carriere et al. 2011). 825-2 and 1170-4 KRC cells were plated at a density of 100 and 50 

cells/well respectively and were treated with NMS-P715 at concentrations ranging from 

0.3 µmol/L to 1.0 µmol/L for 5 days continuously or for 24 hours followed by growth for 

4 days in the absence of the inhibitor (washout treatment). DMSO was used as vehicle 

control. Large colonies with ≥50 cells that were stained with giemsa were scored. There 

is dose depended decrease in the growth of KRC cells after inhibition of MPS1. In the 

continuous treatment with the drug, the growth of 825-2 and 1170-4 cells was completely 

inhibited at drug concentrations from 0.5-0.7 µmol/L and 0.7-0.9 µmol/L respectively 

whereas in the washout experiment the growth of the KRC cells decreased by 85% when 

treated with 1.0 µmol/L for 24 hours (Figure 18A) suggesting a very potent effect on 

these tumor cells which are very aggressive in vivo. 

 

In addition, the murine PDAC cells were also tested for nCIN both before and after 

inhibition of MPS1. 825-2 and 1170-4 cells were treated with 2.4 µmol/L and 2.7 µmol/L 

respectively for 72 hours after which they were analyzed by FISH. The concentrations of 

NMS-P715 used in this experiment were in calculated in accordance to their IC50 values 

of 1.3 and 2.2 µmol/L for 825-2 and 1170-4 respectively which was determined by 
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Fig 18 Growth of murine PDAC was inhibited by NMS-P715 

A: Clonogenic survival assay. 825-2 and 1170-4 were seeded at a density of 100 and 50 

cells/well and treated with then indicated concentrations of NMS-P715 for either 5 days 

in a continuous treatment or for 24 for hours followed by growth in compound-free 

medium in washout treatment. Colonies that had at least 50 cells stained with giemsa 

were scored. 

B: On the left is a graph showing that nCIN in not elevated in murine PDAC cells after 

treating 825-2 and 1170-4 cells with 2.4 µmol/L and 2.7 µmol/L respectively for 72 
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hours. On the right is a representative image showing modal and non-modal number of 

chromosomes in the cells. The modal number of chromosome 11 was 7 for 825-2 and 4 

for 1170-4. 

  

 48   
 



Dr. Slee (Slee et al. 2014). The KRC cells did not show statistically significant elevation 

in nCIN after MPS1 was inhibited (Figure 18B). However, since KRC cells already 

display high nCIN with 65% and 45% modal deviation for a chromosome 11 probe in 

825-2 and 1170-4 in untreated cells they start with an extremely high basal nCIN rate. 

Cells with deleted Rb gene, which is the case in KRC cells, have been reported to be 

chromosomally unstable due to misregulation of MAD2 protein via E2F transcription 

factor (Manning, Longworth, and Dyson 2010). The very high basal nCIN rate in KRC 

cells prompted us to explore whether the SAC was compromised in KRC cells. KRC 

cells were treated with increasing concentration of nocodazole with the rationale that a 

weakened SAC will bypass the checkpoint and exit mitosis prematurely as they will not 

be blocked by nocodazole treatment. In this experiment, cells were plated at 10,000 to 

20,000 cells/well and treated with 25nmol/L, 50nmol/L and 75nmol/L nocodazole for 18 

hours. DMSO was used as control. The cells were then fixed in 4% formaldehyde and 

incubated with pS10H3 (green) antibody. The frequency of cells positive for pS10H3 

signals was calculated to test whether the cells were arrested in prometaphase when the 

microtubules were prevented from attaching to the kinetochore indicating the activation 

of SAC. There was no significant difference between the percentages of pS10H3 positive 

cells in control than those treated with nocodazole though the number of cells decreased 

with increasing concentration of nocodazole (Figure 19). However cells appeared to be 

less viable when incubated with nocodazole. This raises the possibility that the SAC is 

weak in KRC cells which reduced their viability as they try to go through an aberrant 

mitosis in the presence of nocodazole. This elevated sensitivity to nocodazole in cells 

with a weakened SAC is consistent with earlier published data (Sihn et al. 2003). Since 
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Fig 19 Murine PDAC cells may have a weakened SAC 

Image shows murine PDAC cells arrested in prometaphase after 18 hour treatment with 

increasing concentrations of nocodazole as indicated. The percentage of cells positive for 

pS10H3 (green) is indicated below each panel. Nuclei appear blue due to staining with 

DAPI. The frequency of cells arrested in prometaphase in the treated cells was not 

significantly different than that observed in control (p>0.05; χ2 test). ≥200 cells were 

scored per well. The assay was performed in duplicate. 
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825-2 and 1170-4 cells already showed high basal nCIN in control treatment, increasing 

nCIN further may be lethal. 

 

In conclusion, the relative resistance towards NMS-P715 displayed by human ASCs and 

hTERT-HPNE normal pancreatic epithelial cells indicates that NMS-P715 may be 

selective towards pancreatic ductal adenocarcinoma cells while sparing stem cells. Mouse 

KRC PDAC cells, which are highly aggressive tumor cells in vivo, were also highly 

sensitive to NMS-P715 lending further support to the possibility that MPS1 inhibition 

may be a useful strategy for limiting growth of PDAC cells in vivo. 
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DISCUSSION 

 

1.  Thesis Summary 

 

Pancreatic ductal adenocarcinoma (PDAC) is the only major cancer with a 5 year 

survival rate in the single digits i.e. 6% (Siegel, Naishadham, and Jemal 2012, Hoos et al. 

2013). It is one of the commonly diagnosed cancers for which both the incidence and 

death rate is increasing (Hoos et al. 2013). Gemcitabine, which is the standard of care 

either alone or in combination with erlotinib or folfirinox (Sullivan and Kozuch 2012) 

can only provide a short increase in survival and has toxic effects (Choi, Saif, and Kim 

2014). This has warranted the development of therapeutics that target PDAC cells, that 

have improved efficacy and are less toxic to normal cells. 

 

The goal of this study was to exploit a vulnerability of PDAC cells. Like many tumors, 

PDAC tumors are chromosomally unstable, shows intra-tumor heterogeneity and up-

regulate MPS1 (Karhu, Mahlamaki, and Kallioniemi 2006, Gorunova et al. 1998, Slee et 

al. 2014). We demonstrate that PDAC cells are relatively more sensitive to MPS1 

inhibition than human adipose stem cells. 

 

Exploitation of a vulnerability in cancer cells has been traditionally linked to the 

existence of a pre-existing mutation followed by a second hit leading to cancer cell death. 

This has been successfully demonstrated in BRCA1 deficient tumors using PARP 

inhibitors (Fong et al. 2009). Here we build upon the hypotheses being proposed in the 
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literature that indicate that cancer cells become addicted to up-regulation of genes 

involved in chromosome segregation and that targeting them may lead to selective cancer 

cell death via massive chromosome mis-segregation (Colombo et al. 2010, Carter et al. 

2006, Yuan et al. 2006, Kwiatkowski et al. 2010, Lens, Voest, and Medema 2010, 

Sausville 2004). The antimitotic inhibitor of MPS1 kinase used in this study is modeled 

on the approach where selective increase of chromosomal instability may act as a second 

hit and push CIN beyond survivable limits leaving normal cells relatively unaffected 

(Colombo et al. 2010). Cancer cells, including pancreatic cancer cells and other solid 

tumors, up-regulate MPS1 and this up-regulation is proposed to keep nCIN within 

survivable limits (Carter et al. 2006, Yuan et al. 2006, Grabsch et al. 2003, Slee et al. 

2014). Inhibiting MPS1 kinase, a protein essential in the normal and equal segregation of 

chromosomes during mitosis, causes the abrogation of the spindle assembly checkpoint 

(SAC) followed by massive CIN and eventually cell death (Colombo et al. 2010, Kops, 

Foltz, and Cleveland 2004, Schmidt et al. 2005, Kwiatkowski et al. 2010). In previous 

studies, normal untransformed cells such as fibroblasts and B-lymphocytes remain 

largely unaffected by the NMS-P715 relative to breast cancer, colon cancer, renal 

carcinoma and melanoma cells (Colombo et al. 2010). Here, we tested the selective 

nature of MPS1 inhibition in normal human adipose stem cells (ASCs) as a model for 

how stem cells of the intestine or blood may be affected in vivo. The goal of my 

dissertation was to test the hypothesis that NMS-P715 can selectively kill PDAC cells in 

vitro by elevating mis-segregation of chromosomes while having much less effect on 

stem cells. Our in vitro MPS1 kinase inhibition assays in PDAC show promising results 

in selectively targeting pancreatic cancer cells by overriding the SAC and increasing 
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chromosomal mis-segregation ultimately leading to cell death. This is consistent with the 

consequences of MPS1 inhibition observed over a range of cancer cell lines and 

xenograft models reported in previous studies (Colombo et al. 2010, Jelluma, Brenkman, 

McLeod, et al. 2008, Jelluma, Brenkman, van den Broek, et al. 2008, Kops, Foltz, and 

Cleveland 2004, Burds, Lutum, and Sorger 2005, Schmidt et al. 2005) and our studies 

demonstrate promise that MPS1 inhibition results in selective targeting of PDAC. 

 

2.  NMS-P715 selectively inhibits pancreatic cancer cell proliferation leaving 

human adipose stem cells relatively unaffected. 

 

In previous studies done by Dr. Slee in the Grimes lab, the half maximal inhibitory 

concentration value of the small-molecule inhibitor, NMS-P715, in ASCs is more than 

twice as that observed in the pancreatic cancer cells. In contrast, ASCs were highly 

sensitive to gemcitabine compared to PDAC cells (Slee et al. 2014). The differences 

between the growth of human ASCs and cancer cells was more pronounced in longer 

term clonogenic survival assays, when cells were either continuously treated for 3 days 

with 1.0 µmol/LNMS-P715 or exposed to a one day pre-treatment with NMS-P715. The 

inhibitor showed higher activity toward inhibition of proliferation of PANC-1 and BxPC-

3 PDAC cells while growth of ASCs was markedly less impacted. Growth of PDAC cells 

was inhibited when treated with 0.5 µmol/L NMS-P715 but ASCs showed only a 

marginal decrease in cell growth after treatment with the same concentration of the 

inhibitor. Being a long term assay to assess the proliferative capacity of cells after 

treatment, clonogenic survival assay takes into account all forms of cell death 
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mechanisms activated by the external insult to the cells as well as the heterogeneity 

within the population of cells with regards to the time of activation of the cell death 

machinery after treatment (Brown and Attardi 2005). The anti-proliferative results 

obtained in this study are in consistence with previous studies which showed that 

inhibition of essential mitotic checkpoint proteins such as MPS1 and BUBR1 causes 

death in cells within 6 cell divisions (Kops, Foltz, and Cleveland 2004). The new data 

presented here demonstrate that MPS1 inhibition results in significant growth impairment 

of PDAC cells while having less effect on ASCs thus opening up the possibility of a 

therapeutic window using MPS1 treatment to selectively target tumor growth in vivo. 

 

3. Selective override of the SAC in PDAC cells following MPS1 inhibition 

 

Our studies demonstrated that NMS-P715 abrogates the SAC in PDAC cells. 

Phosphorylation of Histone H3 at serine 10 (pS10H3) is a marker of cells in mitosis. 

Western analysis showed that PDAC cells exhibited a dose-dependent decrease in 

pS10H3 upon NMS-P715 treatment, reflecting premature exit from mitosis due to SAC 

over-ride whereas ASCs were unaffected under similar conditions. Furthermore NMS-

P715 treatment caused over-ride of a nocodazole block, again supporting the mechanism 

of SAC over-ride by NMS-P715. Finally our FISH analysis of cells treated with 1 µmol/L 

NMS-P715 was consistent with an increase in nCIN in PDAC cells while ASCs were not 

affected. These data, together with the comparative increase in cell growth inhibition of 

PDAC cells relative to ASCs supports our hypothesis that NMS-P715 treatment caused 

selective death to PDAC cells via massive CIN under conditions where stem cells are less 
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affected. The results in ASCs were further supported by NMS-P715 treatment of 

telomerase immortalized pancreatic ductal epithelial cells (hTERT-HPNE-1 cells). 

hTERT-HPNE cells also did not exhibit growth inhibition or elevated nCIN under 

conditions were PDAC cells exhibited increased nCIN and cell growth inhibition, again 

supporting the possibility of a therapeutic window where PDAC cells could be selectively 

targeted by MPS1 inhibition. These studies provide new insights into the mechanism of 

resistance of non-tumorigenic cells to MPS1 inhibition and suggest that the SAC is more 

resistant to override by MPS1 inhibition in stem cells and pancreatic epithelial cells than 

PDAC cells. The difference observed in differential sensitivity to MPS1 inhibition of 

tumorigenic versus non-tumorigenic cells could be related to 1) the increased basal levels 

of nCIN (as measured by the FISH assay) and 2) the relative up-regulation of MPS1 in 

PDAC cells. Current models suggest both that the increased level of CIN (both structural 

and numerical) make cancer cells particularly sensitive to increases in CIN (such as 

shown here by MPS1 inhibition and SAC abrogation) than normal cells, such as ASCs 

and hTERT-HPNE cells that are diploid (Grimes et al. 2009, Slee et al. 2014) as is 

evident from the data presented in this thesis. Furthermore, cancer cells may be addicted 

to up-regulation of MPS1 for their survival. The vulnerability of cancer cells to MPS1 

inhibition is discussed in further sections. 
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4. Murine PDAC cells show impaired growth when treated with NMS-P715 and 

may have a weakened SAC 

 

The anti-tumor activity of NMS-P715 was elevated in murine PDAC cells that were 

obtained from genetically engineered mice with oncogenic Kras and deleted Rb using 

cre-recombinase (KRC cells 825-2 and 1170-4) (Carriere et al. 2011). NMS-P715 

affected their proliferation in long-term clonogenic survival assays where the growth of 

825-2 & 1170-4 was completely abolished when treated continuously for 5 days with 

approx. 0.7 µmol/L inhibitor whereas their growth decreased by 85% after treatment with 

1.0 µmol/L for 24 hours. The KRC cells showed extreme CIN phenotype in the control 

group but did not show an increase in nCIN after treatment with their IC50 concentrations 

of the inhibitor for 72 hours. These data are consistent with previous reports where the 

inactivation of Rb gene is linked to CIN (Manning, Longworth, and Dyson 2010). 

Furthermore, the cells failed to arrest in prometaphase in the presence of nocodazole, a 

microtubule depolymerizing agent, indicating a weakened SAC (Sihn et al. 2003). As a 

result, the inhibition of MPS1 in murine PDAC cells may have completely abrogated the 

SAC making the treatment with NMS-P715 lethal to these cells (Kops, Foltz, and 

Cleveland 2004). 

 

Since in vitro results do not always mimic in vivo results, it will be interesting to see the 

anti-tumor effects of NMS-P715 in vivo by transplanting KRC cells in the pancreata of 

syngeneic immune competent mice. It has been observed that tumors in situ contain 

significantly lower percentage of dividing cells than in cell culture (Mitchison 2012) 
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which may affect the efficacy of the inhibitor in vivo since it only attacks mitotic cells. In 

addition, tumors are not only genetically heterogeneous but their microenvironments 

show variability as well (Orth et al. 2011) causing differential response within the tumor 

resulting in individual cells responding differently to the same compound (Yang et al. 

2010). Using syngeneic mice will allow the analysis of microenvironmental interactions, 

endocrine signaling tumor-secreting factors as well as effects of the immune system and 

vasculature on the tumor in response to the inhibitor (Pearson and Pouliot 2000). In 

addition, it will become possible to examine the impact of the inhibitor on the metastatic 

behavior of PDAC with the help of syngeneic mouse models (Pearson and Pouliot 2000). 

Testing these mice with NMS-P715 will give us a better understanding by taking into 

consideration factors such as cell-to-cell contact and hypoxia which are known to confer 

drug resistance in vivo (Sarasin 2003). 

 

5. Inhibition of MPS1 is selective towards PDAC cells in vitro whereas normal cells 

are less affected under similar conditions. 

 

To address the possibility that ASCs could not uptake small molecule inhibitors 

efficiently, an independent assay was conducted. The half minimal concentration (IC50) 

value of NMS-P715 for ASCs and hTERT-HPNE was 3.4 µmol/L indicating that the 

inhibitor did have an effect on cell growth though at a concentration much higher than 

that required for PANC-1 and BxPC-3 (Slee et al. 2014). In addition, ASCs showed 

statistically significant increase in nCIN after the cells were treated with 3 µmol/L 

inhibitor for 72 hours suggesting that the molecule was successful in inactivating the 
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SAC. These results indicate that the tumor cells lack the shield which normal cells 

possess in order to resist the inhibitory effects of NMS-P715. 

 

PDAC cells are aneuploid and display intra-tumor heterogeneity with respect to 

chromosome number as well as structure (Sirivatanauksorn et al. 2001) whereas ASCs 

maintain a diploid number (Grimes et al. 2009). In addition to other genetic and non-

genetic factors, mitosis in aneuploid cells is usually prolonged due to extra chromosomes 

that have to be attached to the spindle microtubules, aligned on the metaphase plate and 

segregated to the daughter cells (Yang et al. 2008). In addition, chromosomally unstable 

cells have more stable kinetochore-microtubule (KT-MT) attachments than normal cells 

due to massive variations in the expression of different spindle and kinetochore proteins 

in dividing tumor cells (Bakhoum, Genovese, and Compton 2009). The altered 

expression of these proteins also results in merotelic attachments of microtubules to the 

kinetochores which are usually undetected by the SAC resulting in lagging chromosomes 

during anaphase further triggering chromosomal mis-segregation (Bakhoum, Genovese, 

and Compton 2009). Inhibition of MPS1 is known to stabilize the already hyperstable 

KT-MT attachment (Kwiatkowski et al. 2010) thereby affecting segregation of 

chromosomes. 

 

Because normal cells differ from most tumor cells with respect to the number of 

chromosomes, stability of KT-MT attachments and balance of gene doses, MPS1 

inhibition can potentially be more selective towards PDAC cells. This increased 

sensitivity could be due to extensive genetic imbalances that the cancer cells had started 
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off with before treatment which make them unable to repair the damage and combat the 

stress that accompanied MPS1 inhibition (Kops, Weaver, and Cleveland 2005, Williams 

et al. 2008). Though our data demonstrates that NMS-P715 significantly affects ASCs at 

higher doses, the effect may be minimal and the affected cells may have been removed 

from the population as a result of selection towards diploid cells. However, the possibility 

of tumorigenic mutations in ASCs after treatment needs full considerations and will 

require further analysis of long term effects of the inhibitor on healthy cells. 

 

6. Future Directions 

 

The results of this study show great promise in selective killing of pancreatic cancer cells 

by inhibiting MPS1 kinase using a single-agent NMS-P715. However, in vivo analyses 

for anticancer drugs are necessary to understand the efficacy and delivery of the molecule 

in the target region of pancreatic cancer. This can be achieved by testing the inhibitor in 

orthotopic implantation of human PDAC cell lines in immunocompromised mice and 

also in syngeneic mouse models of pancreatic cancer as discussed earlier (Carriere et al. 

2011). Tumor microenvironment plays an important role in drug resistance, tumor 

recurrence as well as drug delivery (Olive et al. 2009). PDAC in mice, just as in human 

PDAC, is surrounded by a dense matrix that limits the blood supply to the malignant cells 

by compressing the vasculature thereby resulting in poor drug uptake and efficacy 

(Hingorani et al. 2003, Sofuni et al. 2005) making it necessary to study the inhibitor in 

vivo to improve its delivery to its site of action. It was earlier shown that MPS1 inhibition 

in xenograft mouse models for human ovarian carcinoma and melanoma impeded tumor 
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growth (Colombo et al. 2010) and it now remains to be seen if these results are replicated 

in mouse models for PDAC as well. 

 

One of the biggest challenges in cancer therapeutics is tumors becoming drug-resistant. 

According to the National Cancer Institute, therapeutic resistance is a characteristic 

feature of PDAC (NCI 2014). Cancer cells become insensitive to therapeutic agents by 

different mechanisms such as accumulating mutations that enhance the cells’ survival, 

acidic microenvironment or limited blood supply to the tumor cells (Olive et al. 2009). 

SAC components are not mutated frequently but are instead overexpressed in 

chromosomally unstable tumors (Wang et al. 2004, Cahill et al. 1999, Carter et al. 2006, 

Yuan et al. 2006, Slee et al. 2014). However an unstable genome can give rise to new 

mutations that alter proteins and make them resistant to anti-cancer drugs. A study in 

2005 showed that a substitution mutation from methionine to glutamine in MPS1 kinase 

(M602Q) made the cells resistant to its inhibitor SP600125 thereby reducing its potency 

(Schmidt et al. 2005). This calls for testing the efficacy of NMS-P715 in PDAC cells in 

the event of an M602Q mutation or other similar alterations in the protein. 

 

To overcome the problem of drug-resistance, there has been more focus on designing 

combination therapies to improve patient outcomes. Various studies are being carried out 

to determine whether cancer cells can be sensitized to MPS1 inhibition by combination 

with compounds targeting other mechanisms critical for cells survival pathways that 

rescue cells from proteotoxic stress and proteins involved in DNA damage response 

(Torres et al. 2007, Janssen, Kops, and Medema 2009). It has been previously shown that 
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reducing the levels of MPS1 increased the sensitivity of tumor cells to low doses of 

paclitaxel, a microtubule destabilizing agent, resulting in synergistic lethality of the 

treated cells. (Janssen, Kops, and Medema 2009). Interestingly, both nab-paclitaxel 

(Frese et al. 2012) or IPI-926, the inhibitor of the Hedgehog signaling pathway (Olive et 

al. 2009), are individually shown to improve the delivery of gemcitabine in PDAC in 

mice which may also improve NMS-P715 delivery to tumors in future studies. Enhancing 

multipolar division by preventing clustering of chromosomes along with MPS1 inhibition 

is also known to be a promising strategy in dramatically reducing the viability of PDAC 

tumor cells (Kwon et al. 2008, Janssen and Medema 2011). Furthermore, the ability to 

selectively reduce chromosomally unstable cells within the tumor may give agents 

targeting pathways altered in patient sub-populations more chance of working as tumor 

heterogeneity that is thought to promote drug resistance would be suppressed due to 

MPS1 inhibition. 

 

To ensure clinical success of NMS-P715 in the treatment of PDAC, a long term endpoint 

in clinical trials is needed to determine whether MPS1 inhibition could promote cancer in 

healthy cells if, at a very low level, CIN is increased through a minor effect on the SAC. 

As with any drug, it will be necessary to study whether NMS-P715 shows good tumor 

penetration and efficacy and exhibit toxicity within acceptable limits. At least in 

xenografts for ovarian cancer and malignant melanoma, NMS-P715 showed good 

efficacy and target engagement and no overt toxicities were reported (Colombo et al. 

2010). Interestingly, a derivative potent and selective MPS1 kinase inhibitor developed 

by Nerviano Medical Sciences will soon enter Phase I clinical trials in triple-negative 
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breast cancer (TNBC) patients (NMS 2013) which lack over-expression of human 

epidermal growth factor 2 (HER2) and absence or reduced expression of progesterone 

estrogen receptors. TNBC cells are also the most chromosomally unstable subset of 

breast cancers (Smid et al. 2011, Foulkes, Smith, and Reis-Filho 2010). It will be 

interesting to follow the results of these clinical trials in the hope that they will yield 

positive results without serious side effects and their subsequent testing in other tumor 

types, including pancreatic cancer. 

 

7. Concluding Remarks 

 

The data presented in this study lead us to conclude that the abrogation of the SAC by 

inhibiting MPS1 kinase is a potentially novel approach to pancreatic cancer therapy 

because it selectively blocks the proliferation of pancreatic tumor cells while leaving 

normal stem cells relatively unaffected. Our results suggest a favorable therapeutic 

window of the MPS1 inhibitor and warrant development of pre-clinical models for testing 

the capacity of NMS-P715 to selectively target primary and metastatic PDAC tumors. 
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