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Kashish Chetal 

OperomeDB: DATABASE OF CONDITION SPECIFIC TRANSCRIPTION IN 

PROKARYOTIC GENOMES AND GENOMIC INSIGHTS OF CONVERGENT 

TRANSCRIPTION IN BACTERIAL GENOMES 

Abstract 

My thesis comprises of two individual projects: 1) we have developed a database for 

operon prediction using high-throughput sequencing datasets for bacterial genomes. 

2) Genomics and mechanistic insights of convergent transcription in bacterial 

genomes.  

In the first project we developed a database for the prediction of operons for bacterial 

genomes using RNA-seq datasets, we predicted operons for bacterial genomes. RNA-

seq datasets with different condition for each bacterial genome were taken into 

account and predicted operons using Rockhopper.  We took RNA-seq datasets from 

NCBI with distinct experimental conditions for each bacterial genome into account and 

analyzed using tool for operon prediction. Currently our database contains 9 bacterial 

organisms for which we predicted operons. User interface is simple and easy to use, in 

terms of visualization, downloading and querying of data. In our database user can 

browse through reference genome, genes present in that genome and operons 

predicted from different RNA-seq datasets. 

Further in the second project, we studied the genomic and mechanistic insights of 

convergent transcription in bacterial genomes. We know that convergent gene pairs 

with overlapping head-to-head configuration are widely spread across both eukaryotic 

and prokaryotic genomes. They are believed to contribute to the regulation of genes at 

both transcriptional and post-transcriptional levels, although factors contributing to their 
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abundance across genomes and mechanistic basis for their prevalence are poorly 

understood. In this study, we explore the role of various factors contributing to 

convergent overlapping transcription in bacterial genomes. Our analysis shows that 

the proportion of convergent overlapping gene pairs (COGPs) in a genome is affected 

due to endospore formation, bacterial habitat, oxygen requirement, GC content and 

the temperature range. In particular, we show that bacterial genomes thriving in 

specialized habitats, such as thermophiles, exhibit a high proportion of COGPs. Our 

results also conclude that the density distribution of COGPs across the genomes is 

high for shorter overlaps with increased conservation of distances for decreasing 

overlaps. Our study further reveals that COGPs frequently contain stop codon overlaps 

with the middle base position exhibiting mismatches between complementary strands. 

Further, for the functional analysis using cluster of orthologous groups (COGs) 

annotations suggested that cell motility, cell metabolism, storage and cell signaling are 

enriched among COGPs, suggesting their role in processes beyond regulation. Our 

analysis provides genomic insights into this unappreciated regulatory phenomenon, 

allowing a refined understanding of their contribution to bacterial phenotypes. 
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Chapter 1 Introduction 

1.1 What is Gene Regulation? 

Bacteria are the simplest form of free-living life known to man. They are single-celled 

and vulnerable to adverse and dynamic environmental forces and yet, they have 

colonized diverse niches. Bacteria can thrive in any different environment and 

habitats. Bacteria are capable of living on a single host or large host, different 

habitats, different environmental conditions and to the extent of animal host. The 

necessity of living in diverse habitats forces bacteria to form molecular tools to 

survive under these conditions (Seshasayee, et al.). 

Bacteria do not make all the protein as which they are capable of making. Instead of 

that they adapt to the particular environment in which they are living and make only 

those gene products, which are essential for them to survive in particular condition. 

There are some of the gene products required by bacteria to survive in any condition 

and those are called housekeeping genes (Seshasayee, et al.). This includes the 

genes that encode different protein such as DNA polymerase, RNA polymerase and 

DNA gyrase. For example, if the tryptophan is present in abundance in environment 

then bacteria will not produce the enzymes, which help in production of tryptophan, 

whereas if the former is not present in the environment bacteria will produce the 

enzyme, which produces tryptophan. So bacteria generally control the expression of 

gene by regulating the process of mRNA transcription (Winkler and Breaker). Here 

we will discuss about expression regulatory aspects in bacteria, as how it regulates 

the expression of its genes so that which genes will be expressed and how they will 

control the expression or cell growth conditions. There are many studies carried out 

to understand that how bacteria regulate its expression in response to different 

extracellular and intracellular conditions (Browning and Busby). There are hundreds 
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of different transcription factor found due to large scale sequencing of bacterial 

genomes, so regulation of transcription is a key factor for bacteria to regulate its 

gene expression (Scheffers and Errington).  

Regulation of gene can occur at different places and time points to produce an active 

gene product. Gene can be regulated using transcriptional machinery or translational 

machinery, when the gene is transcribed and how much it is transcribed would tell 

about its expression and this is called as transcriptional regulation. Gene products 

are also regulated when they are completely synthesized at post-transcriptional and 

post-translational level. Post transcription includes those that control transcription 

elongation, transcription termination, translation initiation, and translational 

termination mechanisms (Babitzke) (Stulke). 

When two convergent promoters locate on a DNA it’s called convergent 

transcription (Crampton, et al.). Convergent transcription is a simultaneous induction 

of the sense and antisense transcription through two different opposing promoters 

(Lin, et al.). Sense and antisense transcripts frequently occurs in prokaryotic and 

eukaryotic organisms, so convergent transcription provides a meaningful role in the 

process of gene expression and in the process of functionality. Many studies have 

been done to document the role of convergent transcription to provide the evidence 

about the functionality and gene regulation occurring in different organisms. 

Convergent gene transcription also allows understanding of the biology and the 

process of transcriptional gene silencing by involving RNA interference mechanism 

(Gullerova and Proudfoot). Bacterial genes are organized into a cluster of genes 

called operons, which are co-regulated, and these all are controlled by the same 

promoter. In various studies it has been discussed that in various bacterial species 
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the structure of operons change with the environment (Guell, et al.). So every step, 

which requires preparing an active gene product, leads to gene regulation. 

 

1.2 Operons in bacterial genomes: analysis and prediction using RNA-seq datasets 

We present OperomeDB (http://sysbio.informatics.iupui.edu/operomeDB/), which 

provides an ensemble of all the predicted operons for bacterial genomes using 

available RNA-sequencing datasets across a wide-range of experimental 

conditions(Guell, et al.). Although several studies have recently confirmed that 

prokaryotic operon structure is dynamic with significant alterations across 

environmental and experimental conditions, there are no comprehensive databases 

for studying such variations across prokaryotic transcriptomes. To address this gap, 

we exploited the growing number of publicly available RNA-sequencing datasets 

from NCBI-SRA for various experimental conditions across diverse bacterial 

genomes, to provide a one stop portal for understanding the genome organization in 

the context of transcriptional regulation in a condition-specific manner. Currently our 

database contains nine bacterial organisms and 168 transcriptomes for which we 

predicted operons. User interface is simple and easy to use, in terms of visualization, 

downloading and querying of data. Users can browse through the reference genome, 

genes and operons predicted in the genome based on RNA-seq datasets as well as 

those identified in specific conditions. In addition, because of its ability to load 

custom datasets, users can also compare their datasets with publicly available 

transcriptomic data of an organism.  
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OperomeDB as a database, should not only aid experimental groups working on 

transcriptome analysis of specific organisms but also enable studies related to 

computational and comparative operomics.  

Our database can be assessed at http://sysbio.informatics.iupui.edu/operomeDB/, 

 

1.3 Genomic and mechanistic Insights of convergent transcription in bacterial 

genomes 

 
Convergent gene pairs with overlapping head-to-head configuration are widely 

spread across both eukaryotic and prokaryotic genomes. They are believed to 

contribute to the regulation of genes at both transcriptional and post-transcriptional 

levels, although factors contributing to their abundance across genomes and 

mechanistic basis for their prevalence are poorly understood. In this study, we 

explore the role of various factors contributing to convergent overlapping 

transcription in bacterial genomes. Our analysis shows that the proportion of 

convergent overlapping gene pairs (COGPs) in a genome is affected due to 

endospore formation, bacterial habitat, oxygen requirement, GC content and the 

temperature range. In particular, we show that bacterial genomes thriving in 

specialized habitats, such as thermophiles, exhibit a high proportion of COGPs. Our 

results also show that the density distribution of COGPs across the genomes is high 

for shorter overlaps with increased conservation of distances for decreasing 

overlaps. Our study further reveals that COGPs frequently contain stop codon 

overlaps with the middle base position exhibiting mismatches between 

complementary strands. Functional analysis using cluster of orthologous groups 

(COGs) annotations suggested that cell motility, cell metabolism, storage and cell 
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signaling are enriched among COGPs, suggesting their role in processes beyond 

regulation. In conclusion our study provides genomic insights into this unappreciated 

regulatory phenomenon, allowing a refined understanding of their contribution to 

bacterial phenotypes. 

For this project, we used 2,168 bacterial genomes to predict their functionality, 

lifestyle, distribution and conservation for convergent overlapping gene pairs across 

transcription. For the study, we first paired the genes as FF or RR, FR and RF; from 

this we selected the gene pairs with FR strands, which are responsible for 

convergent transcription. Gaussian density distribution was used to predict the 

highest density distribution point and the inter-genic distance for each genome 

having COGPs. This led us to find the conservation pattern across all genomes, 

where most of the convergent transcription occurs. To predict functionality, we used 

COGs and mapped them to the FR strand to anticipate their functionality across 

convergent gene pairs. 
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Chapter 2 OperomeDB: a database of condition-specific transcription units in 

prokaryotic genomes  

2.1 Introduction 

As the gap between the rate at which sequencing of complete genomes and the 

experimental characterization of transcriptional regulation in them increases, 

automated computational methods for unravelling the regulatory code are 

increasingly being sought after.  Although accurate tools for identifying the genes 

encoded in a genome have been developed, our understanding on how the genes 

are expressed and regulated depends on our knowledge of how they are organized 

into operons - sets of genes that are co-transcribed to produce a single messenger 

RNA (Jacob, et al., 1960; Jacob, et al., 2005). Operons are the essential units of 

transcription in prokaryotic organisms, and as a result, identifying these structures is 

a main step in understanding transcriptional regulation. Knowing operon structure in 

a genome not only facilitates to identify sets of genes, which are co-regulated but 

also aids in other computational analyses, such as prediction of cis-regulatory 

elements which often depend on accurate detection of operons. In addition, since 

operons often consist of genes that are relate functionally and required by the cell for 

a numerous biological process, they are often good predictors of biological 

modules(Dandekar, et al., 1998; Janga, et al., 2005; Overbeek, et al., 1999). 

Therefore, deep understanding of operons, will improve our knowledge of higher-

order genomic associations and structures thereby expanding our understanding of 

various cellular networks composed of regulatory, structural and functional pathways 

(Janga, et al., 2005; Lathe, et al.). Operons also provide insights into the cellular 

functions and also help in determining different experimental designs. In various 

recent high-throughput RNA-sequencing studies across a number of prokaryotic 

organisms, it has been convincingly shown that the structure of operons’ changes 
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with the environmental conditions (Guell, et al.; Sorek and Cossart). Thus, 

suggesting a need to the discovery and a better understanding of the transcriptional 

units originating from operons (predicted or otherwise) across experimental 

conditions in bacterial genomes. For all these reasons, the characterization of 

condition-specific transcription unit structure on a genomic scale is an important 

starting point for microbial functional genomics.  

Several operon databases are currently available and provide information with 

varying levels of reliability and emphasis (Chivian, et al.; Mao, et al.; Pertea, et al.; 

Salgado, et al.; Taboada, et al.). However, it is important to note that traditionally, 

definitions of operons and transcription units are synonymously used for 

computational predictions, mainly because each operon was believed to encode for 

a single transcription unit (single polycistronic unit). However, emerging evidence 

from several RNA-sequencing studies support a more complex model, with several 

operons in a genome encoding for multiple transcription units depending on the 

condition (Guell, et al.; Sorek and Cossart). Databases such as RegulonDB 

(Salgado, et al.), which are based on manual curation of experimentally reported 

polycistronic transcripts identified in at least one experimental condition in the 

literature in Escherichia coli K12, define an operon as the ensemble of all the 

transcription units in a given genome loci which results in the longest stretch of co-

directional transcript. In such frameworks, each transcription unit is governed by a 

promoter and terminator identified in atleast one condition. In contrast, working 

definition for computational prediction of operons across most studies simply 

assumes the longest possible polycistronic transcript in a genomic locus as an 

operon. These differences in the working definition indicate that the current 

prediction pipelines and databases for operon prediction are from perfect in 
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predicting condition-specific transcription units/operons in bacterial genomes.  In 

OperonDB, Pertea et. al employed a method to find and analyze gene pairs that are 

located on the same strand of DNA in two or more bacterial genomes (Pertea, et al.). 

The computational algorithm used in this database locates operons structure in 

microbial genomes using a method published earlier by the authors (Ermolaeva, et 

al.). OperonDB currently contains 1059 genomes with prediction sensitivity of 30%-

50% in Escherichia coli (Pertea, et al.). DOOR (database for prokaryotic operons) is 

another database, which contains predicted operons for 675 sequenced prokaryotic 

genomes. It provides similarity scores between operons by which user can search for 

related operons in different organisms (Mao, et al.). ProOpDB (prokaryotic operon 

database), predicts operons in more than 1200 prokaryotic genomes using a neural 

network based approach. It provides several options for retrieving operon 

information. In ProOpDB, users can also visualize operons in their genomic context 

and their nucleotide or amino acid sequences (Taboada, et al.). 

MicrobesOnline is another operon database, which facilitates the phylogenetic 

analysis of genes from microbial genomes (Chivian, et al.). In principle, this database 

has two functionalities 1) user can build a phylogenetic tree for every gene family as 

well as a species tree in a tree-based browser to assist in gene annotation and in 

reconstructing their history of evolution, 2) using its tool one can analyze microarray 

data to find genes which exhibit similar expression profiles in an organism which can 

subsequently be used for identifying regulatory motifs and seeing if they are 

conserved. User can also compare the organization of a protein domain with genes 

of interest in a browser (Chivian, et al.). Finally, as mentioned above, RegulonDB is a 

database (Salgado, et al.), which is curated and designed for Escherichia coli K12 to 

facilitate the prediction of its transcriptional regulatory network and operon 
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organization across growth conditions.  It also provides extensive information about 

the evolutionary conservation of a number of regulatory elements in Escherichia coli 

genome. . The method used in RegulonDB has a certainty of 88% identification of 

pairs of genes, which are adjacent in operon, and it also describe 75% of the known 

transcription units which are used to predict the transcriptional organization of 

Escherichia coli genome (Salgado, et al.). However, there is not a single database 

present, which uses data from RNA-sequencing experiments to predict the 

transcription unit organization in a broad range of bacterial genomes in a condition-

specific manner. In this study, we present operomeDB to address this gap – a 

database dedicated to the identification and visualization of transcriptional units from 

publicly available RNA-seq data in microbial genomes. 

High-throughput sequencing platforms like illumina, ABI and Roche are used to 

quantify the expression levels of RNA in a condition-specific manner in bacterial 

genomes –frequently referred to as an RNA-seq experiment. Such high-throughput 

technologies have several advantages compared to traditionally used microarray 

platforms like a low background signal, large dynamic range of expression level, and 

possibility of detecting novel transcripts. There are different tools for detection, 

management and analysis of the eukaryotic RNA-seq data, however relatively very 

few tools are available for the analysis and processing of RNA-seq data in 

prokaryotes. Rockhopper is an open source computational algorithm implemented 

for the analysis of bacterial RNA-seq data (McClure, et al.). It supports different 

stages of RNA-seq analysis and datasets from different sequencing platforms. The 

algorithm performs several functions such as aligning the sequence reads to a 

genome, constructing transcriptome maps, calculating the abundance of transcripts, 

differential gene expression and predicting transcription unit structure. It also has the 
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ability to detect novel small RNAs, operons and transcription start sites with a high 

accuracy in a transcriptome specific manner (McClure, et al.).  

Although there are many tools and software’s available for the visualization and 

exploration of next-generation sequencing datasets for eukaryotic organisms, there 

is a lack of proper genome browsers to visualize prokaryotic organisms and 

transcriptomes in particular.  The size of data generated by RNA sequencing 

methods is usually large and makes data visualization a challenging task. IGV 

(Integrative genomic viewer) is a visualization tool that can visualize large data sets 

very smoothly with the main aim of helping the researchers to visualize and explore 

the results (Thorvaldsdottir, et al.). The UCSC and Ensembl genome browsers are 

online tools that have been used to display different biological datasets, including 

genomic variants, expressed sequence tags and functional genomic data with 

manually curated annotations (Flicek, et al.; Goldman, et al.). In this study, we used 

jBrowse to develop visualization of predicted transcription units for each RNA-seq 

dataset analyzed across genomes. jBrowse is an open source, portable, JavaScript 

based genome browser particularly suitable for prokaryotic genomes. The browser 

provides easy navigation of genome annotations on the web and has good track 

selection, zooming, panning and navigation features (Skinner, et al.). 

 

We believe that biological community could benefit from having a new operon 

prediction database, which uses RNA-seq datasets to predict transcription units in a 

condition/transcriptome-specific manner. In our presented database (operomeDB) for 

bacterial genomes, we used an innovative approach to query operons. We predict 

operons for nine bacterial genomes for which at least few RNA-seq datasets are 

available in the public domain from the Sequence Read Archive (SRA) of NCBI 
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(Kodama, et al.). We used Rockhopper (McClure, et al.) for the computational 

analysis of data. Using RNA-seq data for different bacterial genomes, the developed 

database, which to our knowledge is the largest of its kind to date, should facilitate 

researchers to navigate through operons predicted under different experimental 

conditions. 

 

2.2 Datasets 

We collected RNA-seq datasets for various bacterial species under a number of 

different conditions from the Sequence Read Archive (SRA) of NCBI (Kodama, et al.) 

as described below. 

 

Escherichia coli K-12 Mg1655  

Escherichia coli is generally found in the colon and large intestine of the warm-

blooded organisms. It belongs to a family of k-12 and B strain that is used in 

molecular biology for different experiments and also considered as a model 

organism. K-12 is the strain first confined from a sample of stool of the patient 

suffering from diphtheria. Different strains have been emerged in years due to 

various treatment agents (Stothard, et al.). Expression profiling of wild type and SgrR 

mutant E. coli under aMG and 2-DG-induced strain were performed by Wadler et. al 

(Wadler and Vanderpool). RNA-sequencing data available for illumina platform for 

this strain under 54 different conditions was analyzed using Rockhopper (McClure, et 

al.). 

 

Eggerthella Lenta DSM2243  
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Eggerthella lenta is an anaerobic, non-motile, non-sporulating pathogenic gram-

positive bacteria confined from rectal tumor. It is mostly found in blood and human 

intestine and can cause severe infections. Temperature favorable for growth of these 

bacteria is 37 degree Celsius(Stothard, et al.). Expression profiling study carried out 

for the generation of datasets is based on RNA-Seq analysis of Eggerthella lenta 

cultured with or without digoxin. This dataset comprised of 21 different 

transcriptomes in Eggerthella lenta DSM2243 strain from Haiser et. al (Haiser, et al.). 

 

Campylobacter Jejuni RM1221  

Campylobacter species are the prominent cause of gastroenteritis in countries on the 

path of development. An infection occurring due to C. jejuni is the most frequent 

preliminary cause for a neuromuscular paralysis, which is also known as Guillain-

Barre syndrome. Healthy cattle and birds can carry C. jejuni (Stothard, et al., 2005). 

For this study, data from Dugar et al. (Dugar, et al.) did the comparative dRNA-seq 

analysis of multiple campylobacter jejuni strains revealed a conserved and specific to 

strain transcription pattern was used. For 16 different conditions RNA-seq data for 

Campylobacter jejuni RM1221 was obtained from this study (Dugar, et al.). 

 

Clostridium Beijerincki NCIMB 8052  

C. beijerinckii NCIMB 8052 is anaerobic, motile, rod-shaped bacteria. The anatomy 

of the cell changes with the progression of growth cycle of the organism. C. 

beijerinckii species are present everywhere in nature and routinely segregated from 

soil samples (Stothard, et al., 2005). Wang et al. carried out single-nucleotide 

resolution analysis of the transcriptomic structure of Clostridium beijerincki NCIMB 

8052 using RNA-seq technology (Wang, et al.). This comprised of expression 

quantification dataset for 6 different conditions in this organism (Wang, et al.). 
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Clostridium difficile 630 RNA-seq experiments 

C. difficile is commonly found in water, air, human and animal feces. Its genome 

reveals that the pathogen thrives in the gastrointestinal tract and some of its strains 

are more fatal than others. With the help of C.difficile genome we can understand the 

antimicrobial resistance and various treatment options available. After the 

sequencing of the whole genome, researchers found that from the whole genome, 

11% of it consists of genetic elements such as conjugative transposons. These 

genetic elements contribute clostridium with the genes subjected for their 

antimicrobial resistance, interaction to host and surface structure production 

(Sebaihia, et al., 2006).  We used data from Fimlaid et al., where the authors 

conducted a global analysis of genes induced during sporulation of Clostridium 

difficile using Illumina HiSeq 1000 for 18 different conditions (Fimlaid, et al.). 

 

Mycobacterium tuberculosis H37rv 

Mycobacterium is a causative agent of tuberculosis and has a waxy coating on its 

surface. Primary mycobacterium affects respiratory system and lungs. H37rv strain 

of tuberculosis has 4 million base pairs with 3959 genes. The genome contains 250 

genes that are involved in metabolism of fatty acids. Datasets for this genome are 

collected from experiments in which authors performed the high-resolution 

transcriptome and genome wide dynamics of RNA polymerase and NusA (Uplekar, 

et al.). A total of 10 different transcriptomes were collected from this study for 

Mycobacterium tuberculosis (Uplekar, et al.). 

 

Salmonella enterica subsp. enterica serovar typhimurium str. 14028S 
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Salmonella enterica serovar is a subspecies of s.enterica, these are in the shape of 

rod, flagellated, aerobic and gram-negative. Salmonella serovar can have many 

strains, which allows for accelerated increase in the total number of antigenically 

variable bacteria. In a study by Stringer et. al (Stringer, et al.), authors used RNA-seq 

to conclude the effects of AraC and arabinose on RNA levels genome-wide in S. 

enterica. Wild type or delta AraC mutant cells were developed in the presence and 

absence of 0.2% L-arabinose. The data for Salmonella enterica was collected for 8 

different conditions (Stringer, et al.) 

 

Sinorhizobium meliloti 2011 

Sinorhizobium meliloti is a nitrogen-fixing bacterium. Nitrogen fixation by S. meliloti is 

hampered by the plastic modifier bisphenol A. Dataset used in our database 

corresponded to a recent study where the authors performed RNA-sequencing of 18 

samples corresponding to this bacteria in 3 different conditions  (Sallet, et al.). For 

each condition, both short and long RNA fractions were analyzed, and three 

replicates per condition and per RNA fraction were performed. In this study next 

generation annotation of prokaryotic genomes with EuGene-P was performed - 

applied to Sinorhizobium meliloti 2011 genome (Sallet, et al.). 

 

Synechococcus elongatus PCC 7942 

Synechococcus elongatus are found in aquatic environments. They are called 

photosynthetic bacteria, as they are responsible for its production. Synechococcus 

consists of one circular chromosome and two plasmids. This particular strain 

contains a circular chromosome 2,700,000 bp long with GC content of 55 %. For the 

generation of 17 datasets, three strains (7942, SE01 and SE02) were analyzed by 

Ruffing at two time points (100 h and 240 h) with three biological replicates (Ruffing). 
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2.3 Prediction of operons using Rockhopper 

To predict transcription units (operons) in a condition/transcriptome-specific manner, 

we used Rockhopper, a computational algorithm which supports different stages of 

RNA-seq analysis for datasets originating from diverse sequencing platforms 

(McClure, et al.). Rockhopper takes sequenced RNA reads as input in a number of 

formats including FASTQ, QSEQ, FASTA, SAM and BAM files (McClure, et al.). It 

allows the processing of next-generation RNA-seq data by permitting the user to 

specify different parameters to align sequence reads to a genome, such as number 

of mismatches allowed, orientation of mate-pair reads and minimum seed length. For 

transcriptomic analysis in Rockhopper, some parameters specified include whether 

the dataset is strand specific, test for differential expression, prediction of operons 

and minimum expression of UTRs and detection of ncRNAs. However, the authors 

recommend the use of default settings most of the time for best operon prediction 

performance and hence in this study we used the default parameters where possible 

(McClure, et al.). Indeed, operon prediction by Rockhopper has been shown by the 

original authors to perform at ~90% accuracy when benchmarked against 

RegulonDB (Salgado, et al.) and DOOR (Mao, et al.) databases. Each run of 

Rockhopper on a single RNA-seq dataset corresponding to a condition, provides 

different files as output, such as summary file - which contains a summary analysis 

of successfully aligned reads to genomic regions, transcript file - which includes 

newly predicted transcripts, transcription start and stop sites with expression levels. 

Finally, it provides operons file containing predicted operons in the condition. We ran 

Rockhopper in a batch mode to process and predict operons in each condition for 

each genomic dataset discussed above by selecting the appropriate reference 
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sequence. We also ran operon prediction on the complete transcriptomic dataset for 

each genome to obtain a consensus set of operon predictions which was used to 

show as a reference operome (operon track) of the organism in jBrowse. In order to 

index the operons in our database, we numbered them by matching with the IDs of 

the predicted operons from DOOR database in order to easily know the novel 

operons. If our predicted operon shared at least one gene we gave the same operon 

ID as DOOR database and for operons, which were not present in DOOR database, 

we marked them as ‘NA’. 

 

2.4 Visualization using jBrowse 

In our database we incorporated jBrowse, which supports different file formats 

and in our specific implementation, we use FASTA files to display the reference 

sequence and BED, GFF or BAM format files for displaying the list of genes and 

other discrete features such as operons (Westesson, et al.). User can select the 

particular operon and selecting that particular operon can display the length of the 

operon, genes constituting the specific operon as well as sequence for that particular 

operon (Fig.3). From jBrowse panel, user can also select any number of 

experimental conditions for which operon predictions using RNA-seq data are 

available, and it will display the operons for selected location. Users have the choice 

to display any number of tracks and visually compare them for downstream analysis. 

For instance, Figure 4 shows examples of predicted presence and absence of 

operons for different experimental conditions in Escherichia coli K12 MG1655 and 

Campylobacter jejuni RM1221. It was found that certain operons in microbial 

genomes studied here; were missing for a few experimental conditions. In our 

database we represent this variability of tracks with respect to the reference genome. 
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For example, in Escherichia coli K12 MG1655, ‘3025’ operon encoding for the genes 

speD (S-adenosylmethionine decarboxylase) and speE (spermidine synthase) was 

found to be missing in the experimental condition SRX254733 (Figure 4A). Such 

observations could be contributed due to the specific experimental condition which 

the experimentalists interested in the operon can explore further on a case-by-case 

basis. Another example shown in Figure 4B from the Campylobacter jejuni RM1221 

transcriptome also exhibits variability in operon organization. In this organism we 

found that ‘61693’ operon (encoding for the poorly annotated ORFs CJE0054 and 

CJE0055) is missing in SRX155620. In our database multi-gene operons are 

predicted based on the co-transcription occurring in genes.  Hence, the operons with 

a lack of occurrence of co-transcription would be identified as missing operons 

suggesting either a functional relevance of their absence or in few cases for very low 

abundant genes due to the lack of sequencing depth, in certain experimental 

conditions under study. We anticipate that with increase in the depth and number of 

conditions for which RNA-seq datasets will become available, it will become easy to 

tease functionally important condition-specific transcription units via operomeDB. 

Our system also allows a user to submit their own sequence in specific file format 

and database will display its contents as an additional track. Using option in jBrowse, 

user can easily upload their data files to jBrowse or paste URLs, where data is 

present to display its contents. Various file formats such as GFF3, BigWig, BAM 

index, BAM and VCF are supported. User can also visualize and compare different 

tracks and hence analyze if there are similarities/dis-similarities between tracks. This 

feature will enable the comparison of new RNA-seq data for a given organism with 

already available public data for various experimental conditions available in 

operomeDB.  Additionally, custom tracks will also enable comparison of operon 
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tracks of different closely related organisms to study the variations in transcript 

architecture across the length of the genome. 

In comparison to earlier resources of bacterial operons, our database offers high 

quality single nucleotide resolution bacterial operon predictions based on high-

throughput data sets. 

 

2.5 Using the database: an example 

Below we provide an example illustrating the functionality of operomeDB. The 

presented example (Figure 5) is from Escherichia coli K12 MG1655 genome for a 

newly identified three gene operon yeaP-yoaK-yoaJ which has not been annotated in 

other databases such as DOOR (Mao, et al.) highlighting novel predicted operons 

that can be identified and visualized using our database. 

1. A user can go to the main page of our Graphical User Interface (GUI), click on 
‘Select Organism’ and then it will provide the list of the entire bacterial organisms 
present in the database. For instance, selecting the query genome as 
Escherichia coli K12 MG1655 will display the page showing the operon 
predictions in various formats for E. coli.  

2. On the query result page, it will display the information regarding E. coli and 
other possible options available. By clicking on the link ‘View in jBrowse’ will 
enable the user to navigate the data via genome browser through different 
tracks. 

3.  In genome browser on the left panel user can select any number of available 
tracks and selected tracks will be displayed in the browser window. The user can 
now go through each track and query different operons predicted in our 
database.  

4. Using the download button user can download the fasta sequence file for a 
particular operon.  

5. By selecting ‘file’ option in upper panel, users can also upload/add their own 
sequence or dataset for visualization or comparison in the genome browser. 

6. User can also look for predicted operons in each bacterial organism marked as 
‘NA’. These are the operons that are newly predicted in our study compared to 
the DOOR operon database (Mao, et al.) (Figure 5). 
 

OperomeDB’s functionality may not be optimum in mozilla firefox where there are 

known issues reported for jBrowse. We anticipate resolving these issues with the 
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help of the developers of jBrowse in the next release of operomeDB so that the 

database is accessible in all platforms and browser 

2.5 Implementation and Interface 

We developed an interface using HTML, CSS, JavaScript and also incorporated 

jBrowse, a genome viewer to display different tracks for building operomeDB 

(http://sysbio.informatics.iupui.edu/operomeDB/) presented here. User interface of 

our database is shown in Figure 1 which allows the selection of an organism using a 

drop-down list. User can select an organism and selected bacterial genome 

information is displayed. There are multiple view options available for users, like 

viewing as a table of predicted operons, viewing operons using jBrowse or to 

download the predicted operons as a table (Figure 1). Clicking on the tab with the 

option of ‘view in jBrowse’, will display data in jBrowse and user can view reference 

sequence of the genome, gene list in the particular bacterial genome and a list of 

operons predicted. User can also select to show the operon data for different 

conditions from which RNA-seq datasets have been taken, with reference to their 

SRA IDs. Also, using SRA ID, user can search for a specific condition of each 

bacterial genome in the NCBI SRA database (http://www.ncbi.nlm.nih.gov/sra) 

(Kodama, et al.). 

For a selected operon or gene, jBrowse will provide detailed information such as 

genomic position of that particular operon, its length in base pairs (bp) and its 

primary attributes such as IDs, associated gene names, source and sequence region 

in FASTA format (Figure 2). For a selected gene in the gene track, additional 

attributes such as Dbxref (reference id) and Gbkey (CDS, Gene) are also displayed. 

Our database can generate a fasta file containing user-specified operons and 
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associated information and can be downloaded to the user’s local computer for 

further analysis. 

 

 

Figure 1. Web interface for operomeDB showing a screenshot of a selected 
bacterial genome to facilitate the browsing and download of predicted 
operons.  
The left panel of the webpage allows user to select an organism of interest. Once the 
user selects a bacterial organism the interface will provide information about the 
organism, experimental conditions under which RNA-seq datasets are available, 
SRA link for experimental conditions and options to visualize in jBrowse, show 
operon table and download the complete set of operon predictions across all the 
conditions as a table. 
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Figure 2. Screenshot showing the selection of an operon in the operons track. 
Highlighted is the ecpBCDE operon in Escherichia coli K12 genome encoding 
for the membrane and fimbria formation proteins. This view provides the name 
(database generated ID), position, type and length of the operon. It also gives 
information such as the number of genes present in the operon and sequence of the 
region for the selected operon. 
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Figure 3. Snapshot of the jBrowse visualization showing the ensemble of all 
the operons predicted for a bacterial organism.  
User can select the reference sequence; genes present in the organism, operons 
predicted from all the datasets as well as select the individual dataset to get the 
operons predicted for a particular experimental condition. 
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Figure 4.  Presence and absence of operons for different experimental 
conditions in two different bacterial genomes.  
(A) for Escherichia coli K12 MG1655 we have displayed the information for the 
missing operon ‘3025’ in one of the experimental conditions - SRX254733. (B) 
Another example is from Campylobacter jejuni Rm1221 where we have displayed 
the information for the condition SRX155620 with missing operon ‘61693’. 

(A)

(B)
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Figure 5. Operonic view showing a newly identified operon (yeaP-yoaK-yoaJ) 
in the genome of Escherichia coli K12. In operomeDB, newly identified 
operons compared to other databases such as DOOR are marked as ‘NA’ and 
user can further click on these to get the relevant information. 
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Chapter 3 Genomic and mechanistic Insights of convergent transcription in bacterial 

genomes 

 

3.1 Introduction 

In the process of gene expression, transcription is the first step in which DNA is 

converted into RNA. A complementary antiparallel strand is produced when the DNA 

is read by RNA polymerase. When two convergent promoters locate on a DNA 

strand, it is called convergent transcription (Crampton, et al.). Convergent 

transcription is the simultaneous induction of the sense and antisense transcription 

through two different opposing promoters (Lin, et al.). Sense and antisense 

transcripts frequently co-occur in genomic proximity in prokaryotic and eukaryotic 

organisms, so convergent transcription provides a model in the process of gene 

expression control. Many studies have been conducted to document the role of 

convergent transcription, providing evidence for its functionality and gene expression 

control in various organisms. Convergent gene transcription also allows an 

understanding of the biology and the process of transcriptional gene silencing by 

RNA interference mechanisms due to pervasive overlapping transcripts produced in 

most genomes (Gullerova and Proudfoot). 

 

Chatterjee et al. described the role of convergent transcription in acting as a bistable 

switch in the process of antibiotic synthesis in Streptomyces coelicolor (Chatterjee, et 

al.). The authors showed precise expression control via antisense regulation acting 

as a bistable switch and thus stabilizing specific concentrations in the production of 

antibiotics (Chatterjee, et al.). In another study by the same authors, convergent 

transcription was postulated to act as a bistable switch across other species, 

suggesting that the mechanism of coupling RNA polymerase (RNAP) collision and 
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antisense interaction have an important regulatory role in gene expression in 

bacterial systems (Chatterjee, et al.). In particular, the authors showed that 

convergent transcription in the prgX and prgQ operon in Enterococcus faecialis 

enable the system with several properties of a genetic switch with premature 

termination of elongating transcripts due to collisions between RNAPs transcribing 

from different directions and an antisense regulation between the resulting 

complementary counter-transcripts (Chatterjee, et al.). Studies have also shown that 

head-on collision of RNAPs can hinder transcription in eukaryotes (Hobson, et al.). In 

yeast, it was shown that RNAP collision stops transcription when there is head-to-

head collision, further demonstrating the role of convergent transcription in the 

process of gene regulation (Hobson, et al.). 

Studies on viral RNA suggest that there is a suppression of UGA by tRNA. UGA 

is the stop codon that gets suppressed by tRNA unlike UAG and UAA. The authors 

also discussed the mismatch of base position in the transcription process (Urban, et 

al.). In a different study, it is shown that in bacteria, TGA is the leading stop codon, 

which is probably due to the abundance of GC content in their genome (Wong, et 

al.). Another study suggests that TGA has higher adaptability for biological mutations 

in bacteria than do TAA and TAG codons and that is because the frequency and 

fitness for TAA and TAG are dependent upon their GC content (Povolotskaya, et al.). 

The probability of use of premature stop codons (PSC's) content truly depends on 

the GC content of the bacterial genome, but not all bacteria contain that significant 

amount of GC content, which could possibly make the high usage of UGA universal 

for all bacterial species. All conserved genes are necessary to define on the basis of 

their homologous and orthologous relationships to obtain information about genome 

sequences. Clusters of orthologous groups (COGs) of proteins represent a 
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phylogenetic classification encoded in complete genomes, and this classification 

helps in providing a functional insight into various genomes (Tatusov, et al.). 

 

For this project, we used 2,168 bacterial genomes to predict their functionality, 

lifestyle, distribution and conservation for convergent overlapping gene pairs across 

transcription. For the study, we first paired the genes as FF or RR, FR and RF; from 

this we selected the gene pairs with FR strands, which are responsible for 

convergent transcription. Gaussian density distribution was used to predict the 

highest density distribution point and the inter-genic distance for each genome 

having COGPs. This led us to find the conservation pattern across all genomes, 

where most of the convergent transcription occurs. To predict functionality, we used 

COGs and mapped them to the FR strand to anticipate their functionality across 

convergent gene pairs. 

 

3.2 Material and Methods 

 

Genome size distribution across bacterial genomes 

To identify the distribution of genome size (Mbp) across COGPs, we calculated the 

proportion of 3’ to 3’ adjacent gene pairs for each organism. We then mapped the 

proportion of COGPs to genome size and plotted a distribution for different bacterial 

groups, giving us an understanding of the significance of genome size across 

COGPs. 
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Bacterial lifestyle distribution across COGPs 

We studied the distribution of proportion of COGPs for different bacterial lifestyles 

across bacteria and their effect on COGPs. For this, we plotted a multi-panel boxplot 

for COGPs with different lifestyles. We considered four lifestyles for bacteria 

endospore formation, oxygen requirement, habitat and temperature to study their 

effect on COGPs. We used a Wilcoxon test to determine the significance and 

performed ANOVA and multiple regression to study the individual and combined 

effects of each factor on COGPs across bacterial population. 

 

Density distribution of COGPs  

To determine the intergenic distance density distribution of COGPs across bacterial 

genomes, we plotted the intergenic distance for COGPs for all 2,168 bacterial 

genomes available at NCBI’s RefSeq database (Tatusova, et al., 2014). Using the R 

programming environment, we plotted the density distribution for intergenic distance 

to determine the highest density distribution point for COGPs across the intergenic 

distance range of 0 to −50 to 0 bp. 

 

Identify COGPs conserved overlaps 

To identify the overlaps conserved across genomes, a matrix was generated for all 

convergent gene pairs for a particular genome across all other genomes. The 

proportion of COGPs was calculated by taking a count of the negative gene pairs to 

total number of positive and negative counts. A graph was generated with the 

proportion of negative convergent gene pairs and the inter-genic distance for 

different genomes. 
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Mapping of COGs to Convergent gene pairs 

COGs are groups of clusters found to be orthologous across at least three lineages. 

Each COG has a specific functional description; it may also have one or more 

general categories. Each COG represents one of 23 different functional categories. 

To predict the functional enrichment of convergent gene pairs, we mapped each 

COG and its functional category to convergent gene pairs. This allowed us to 

determine the symmetry of the COGs and their functional categories. For each 

functional category, we mapped gene pairs and calculated their hypergeometric test 

using the dhyper function in R programming language (Rivals, et al.).  Further, we 

generated a heat map for 23 functional categories to learn the significant functional 

categories that might help in the regulation of gene functioning. 

 

Mapping of Gene Sequence to COGPs 

Gene sequences of all bacterial genomes were mapped to COGPs to further 

investigate various signature patterns of overlapping gene pairs. Mapping was done 

to enquire about the various functions and processes related to COGPs. We used 

WebLogo to illustrate sequence pattern of COGPs with intergenic distance overlaps 

of −4 and −11 respectively (Crooks, et al.) 

 

3.3 Results and discussion 

The workflow and methodology we used to predict the mechanistic insights in 

bacterial genomes for convergent transcription is discussed in Figure 6. For this 

study, we used bacterial genomes, gene replicon information and a COGs database 

to learn various functionalities and distribution of convergent transcription in bacteria.  
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Figure 6.  Flowchart for methodology and processing of bacterial genome data. 
Flowchart describes the methodology and the process we used to determine the 
genomic and mechanistic insights of the bacterial genomes for convergent 
transcription 
 
 

Bacterial genomes of different groups show significant correlations with 

genome size for COGPs 

Bacterial genomes show a negative correlation between genome size (Mbp) and 

their proportion of convergent overlapping gene pairs (COGPs) (R= -0.1334291; p = 

1.634038e-09). A previous study suggested that overlapping gene pairs are related 

to gene expression regulation and minimization of genomes (Johnson and 

Chisholm). In agreement, we found that the proportion of COGPs tends to decrease 

with increase in genome size (Mbp) across various groups of bacterial genomes 
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(Figure 7). The distribution patterns across phyla showed that Actinobacteria have 

larger genome sizes with lower proportions of COGPs. Gamma-Proteobacteria 

showed higher proportions of COGPs with smaller genome sizes.  

 

Significant and wide distribution of COGPs across bacteria with different 

lifestyles 

To better understand the distribution and roles of COGPs, we studied different 

lifestyles of bacteria, such as oxygen requirement, endospore formation, habitat, 

temperature range, shape, motility, genome size and pathogenicity. We plotted the 

proportion of COGPs with different lifestyles (Figure 8).  

In agreement with previous studies (Nicholson, et al.). endospore formation is 

present in just a few of the bacterial organisms examined. Bacteria that do not form 

endospores have a significantly higher proportion of COGPs Table 1; Figure 8A). 

According to our results, bacteria growing with in conditions with very low levels of 

oxygen requirement, microaerophilic, tend to have higher proportions of COGPs 

(Table 1; Figure 8B). 
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Figure 7. Distribution of proportion of COGPs across genome size for bacterial 
genome groups 
Proportions of COGPs across genome size (Mbp) represent that the higher the 
proportion of COGPs, the less their genome size across bacterial groups. Some of 
the gammaproteobacteria have high proportion and less genome size. Therefore, 
there is a pattern across genomes in which the proportion of COGPs decreases with 
the increase in genome size. 
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Figure 8. Comparison of proportion of COGPs to different lifestyle for bacterial 
genomes  
Different lifestyles of bacteria include endospore formation, oxygen requirement, 
habitat and temperature range. Proportion of COGPs for bacterial genomes was 
plotted with different lifestyles to learn about its factors and the pattern of different 
conditions or factors across COGPs. (A) For endospore, the negative factor has a 
high proportion, which explains that endospore is not present for bacteria with high 
COGPs proportion. (B) Oxygen requirement explains the level of oxygen required by 
different bacteria to survive. Microaerophilic shows high abundance for COGPs, 
which means bacteria with high COGPs can thrive in a low level of oxygen. (C) 
Specialized and aquatic habitats have a high proportion of COGPs for bacterial 
genomes. The proportion of COGPs is higher in bacteria for specialized habitats than 
in other habitats. (D) Hyperthermophilic and thermophilic is the temperature range in 
which bacteria with the highest proportion of COGPs can survive. 
 
 

Specialized and aquatic habitats are not completely understood (Sunagawa, et 

al.). We find that a specialized habitat has the highest proportion of COGPs followed 

by an aquatic habitat (Figure 8) with significant p-values (Table 1). We found that a 

specialized habitat has the highest proportion of COGPs followed by an aquatic 
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habitat (Table 1; Figure 8C).  Bacteria that thrive in psychrophilic and mesophilic 

conditions have higher density distribution than thermophilic bacteria (Figure 9). 

However, thermophilic and hyperthermophilic bacteria have a higher proportion of 

COGPs (Figure 3D) with significant p-values (Table 1). 

To estimate the relationship between proportion of COGPs and other lifestyles, 

analysis of variance (ANOVA) was performed for individual and combined lifestyles. 

Many of these were significant (Table 2). We performed a multiple regression 

analysis (R-squared = 0.5986; p-value < 2.2e-16) of proportion of COGPs and 

different lifestyles (Table 5). From the analysis, we confirmed that bacteria with no 

endospore formation, high level of GC content, thermophilic nature, and living in 

specialized habitats with low oxygen levels show a high proportion of COGPs. 
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Figure 9. Density distribution plots for various lifestyles on the basis of their 
proportion. 

 

 
 
Table 1. Detailed p-value calculated using paired Wilcoxon test for the proportion of 
COGPs across bacterial genomes for different lifestyles 
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Microaerophilic and Facultative 1.326e-11 

 

 

Habitat 

 

 

Multiple and Specialized 

Multiple and Aquatic 

Aquatic and Terrestrial 

Aquatic and Host-Associated 

Aquatic and Specialized 

Terrestrial and Specialized 

Specialized and Host-associated 

 

 

< 2.2e-16 

4.758e-09 

0.0003638 

1.189e-05 

0.001327 

1.501e-08 

4.587e-13 

Temperature Range Mesophilic and Thermophilic 

Mesophilic and Hyperthermophilic 

Thermophilic and Psychrophilic 

Thermophilic and Hyperthermophilic 

Psychrophilic and Hyperthermophilic 

8.238e-13 

< 2.2e-16 

9.231e-05 

4.583e-07 

4.779e-07 

 

 

COGPs across bacterial genomes tend to exhibit shorter overlaps 

The density distribution of COGPs on the basis of intergenic distance across 

bacterial genomes can provide insight into the distribution and their overlaps. We 

performed a Gaussian density distribution analysis of COGPs intergenic distances 

for 2,168 bacterial genomes. Figure. 10 shows the density distribution for six 

organisms: Escherichia Coli, Bacillus Subtilis, Helicobacter Pylori, Synechocystis, 

Shigella Boydii and Synechococcus sp. We observed that COGPs tend to exhibit 

high densities at intergenic distances corresponding to short overlaps (approx. -4 to 

0 bp). For better understanding of the overlapping region, the density distribution was 

plotted for all bacterial genomes by selecting the range of intergenic distance     -50 
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to 0 (Figure S1). From the data we can conclude that COGPs across bacterial 

genomes tend to have short overlaps with a prevalent intergenic distance of -4. 

Table 2.  P-values for individual and combined factors for different lifestyles 
calculated using anova. Proportion of COGPs was taken as a response variable to 
other lifestyles, and p-values were calculated for each. 
 
Individual factors p-value for 

Individual 
factors 

Combined factors p-value for 
Combined 
factors 

 

GC content 

 

Temperature 

 

Habitat 

 

Oxygen 
Requirement 

 

 

Genome size 

 

Motility 

 

Endospore 

 

Shape 

 

Pathogenicity 

 

<2e-16 

 

<2e-16 

 

3.25e-15 

 

7.65e-12 

 

 

2.54e-10 

 

2.51e-08 

 

1.97e06 

 

2.81e-06 

 

0.00194 

 

Genome size: temperature 
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GC content: oxygen requirement 
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Endospore: oxygen requirement: 
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temperature 

Genome size: oxygen 
requirement 

Endospore: oxygen requirement 

Genome size: shape 

Oxygen requirement: habitat 

Genome size: shape: 
temperature 

GC content: shape: oxygen 
requirement 

Genome size: GC content 

Shape: habitat 

GC content: oxygen 
requirement: habitat 

 

1.98e-12 

3.00e-11 

1.69e-09 

8.23e-09 

4.78e-08 

6.02e-08 

 

6.84e-08 

1.55e-07 

 

4.16e-07 

1.06e-05 

1.45e-05 

2.23e-05 

4.56e-05 

5.29e-05 

 

0.000154 

0.000321 

3.56e-
040.00038
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GC content: endospore 

Genome size: habitat: 
temperature 

7 

1.39e-03 

 

 

 

 

 

 

 
 
Figure 10. Density distribution of bacterial genomes for COGPs 
Gaussian density distribution across COGPs was calculated for each bacterial 
genome to learn about its overlapping pattern. It showed that most COGPs with 
shorter intergenic distance have high density distribution for bacterial genomes. 
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COGPs with shorter overlaps tend to be more conserved 

The conservation pattern across microbial genomes has also been studied 

previously, depicting that conservation of overlapping genes is within small 

overlapping sequence regions (Johnson and Chisholm). For studying the 

conservation pattern of COGPs across bacterial genomes, we mapped the genes of 

a particular genome to their orthologous genes in all other genomes to study their 

conservation patterns. We generated a plot of conservation of COGPs organized by 

the intergenic distance of the reference COGPs (Figure 11). Overall, these results 

suggested that COGPs with shorter overlaps are the most conserved across 

bacterial genomes, with prevalence, again, of the -4 bp intergenic distance overlap. 

This analysis also explains the high conservation and proportion of COGPs that 

increase with the decrease in inter-genic distance. 

 

Functional enrichment of convergent gene pairs using COGs 

To investigate the possibility of a bias in functions performed by genes found in 

COGPs, we mapped genes in COGPs to their Clusters of Orthologous Groups 

(COG) IDs and their corresponding 23 COG functional categories (Tatusov, et al.). 

We constructed a heatmap (Figure 12) showing the enrichment of COG category 

pairs found in COGPs  (using hypergeometric test (Rivals, et al.), −log of p-value at 

1% FDR) Many significant functional categories those that regulate the functioning of 

many bacterial genes were identified from the heatmap. Most of the functional 

categories have a significant enrichment in cell motility, cellular processes and 

signaling, metabolism, processing and storage of information. Most of the functions, 

which are significant, interact through COGPS pairs are 1) translational, ribosomal 

structure and biogenesis (J) with defense mechanism (V), 2) nucleotide transport 
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and metabolism (F) with inorganic transport and metabolism, 3) signal transduction 

mechanism (T) with co-enzyme transport and metabolism (H), 4) replication, 

recombination and repair (L) with translational, ribosomal structure and biogenesis 

(J), 5) transcription (K) with amino acid transport and metabolism (E) and defense 

mechanism (V). 

 

 

 

 

 
Figure 11. Conservation of COGPs across shorter overlaps for all genomes 

COGPs are conserved across shorter overlaps for all genomes. One genome was 
mapped across all genomes to determine the distribution across COGPs and its 
intergenic distance. Most of the genome shows conservation of COGPs for shorter 
overlaps across bacterial genomes. 
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Figure 12.  Functional enrichment of convergent gene pairs 
Mapping was done for convergent gene pairs using COG IDs and functional 
category. For this Hypergeometric distribution was done to calculate the p-value for 
convergent gene pairs, then the calculated p-values were adjusted using 1% FDR 
and, after that, a negative log of p-value was calculated to obtain the significant 
functional categories for convergent gene pairs. 

 
 
 Stop codon prediction from shorter overlapping COGPs 

To further investigate the shorter overlaps that are conserved, we mapped gene 

sequences to COGPs. We observed that the process of convergent transcription 

contains stop codons, with inter-genic distances −4 and −11 bp. We designed a 

WebLogo to represent the overlapping stop codons (Fig.13) (Crooks, et al.). 

We further analyzed COGPs with intergenic distance overlaps of −4 and less than −4 

by mapping them to gene sequences and finding that various stop codons 
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associated with COGPs have 1,2 and 3 base position mismatches (Table 3a and b). 

Previous studies have suggested that codons that reduce the folding of mRNA at the 

starting of translation process are favored in bacteria (Bentele, et al.).  

 

We also calculated the proportion of stop codon for COGPs with intergenic distance 

−4 and less than −4  (Table 4). For obvious compatibility issues, the intergenic 

distance overlap of −4 contains only two stop codons, which are TAG and TAA (48% 

and 52% respectively). COGPs at intergenic distance of less than −4 contain all 

three stop codons: TAG, TGA and TAA (24%, 46% and 30% respectively). 

Previously published studies suggested that TGA was present in overlapping gene 

sequences with a high frequency of GC content, while TAG and TAA were prevalent 

in genes with lower GC frequency, despite the fact that TAG and TGA have the 

same composition, suggesting TGA has high adaptability than do TAG and TAA for 

biological mutations (Povolotskaya, et al.; Wong, et al.).  As previously discussed in 

the results, GC content is significant for COGPs and we also know that TGA has a 

higher percentage in gene sequence with intergenic distance less than −4. This 

confirms that TGA occurs more frequently in high GC content COGPs. 
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Table 3. Percentage and mismatch of stop codons for COGPs when mapped to gene 
sequence (A) determines the COGPs for inter-genic distance less than <−4 (B) It 
determines the COGPs for inter-genic distance −4 

 

(A) 

 

Gene Pairs 

 

Percentage 

 

No. Of base 
Mismatch 

 

TGA|AGT 25.4% 1 base mismatch 

TGA|AAT 10.3% 1 base mismatch 

TAA|AGT 9.9% 1 base mismatch 

TAA|AAT 13.3% 1 base mismatch 

TGA|GAT 11% 2 base mismatch 

TAA|GAT 6.7% 2 base mismatch 

TAG|AAT 6.5% 2 base mismatch 

TAG|AGT 10.8% 2 base mismatch 

TAG|GAT 6% 3 base mismatch 

 

 

(B) 

 

Gene Pairs 

 

Percentage 

 

No. Of base Mismatch 

 

TAA|AAT 33% 1 base mismatch 

TAG|AAT 19% 2 base mismatch 

TAA|GAT 19% 2 base mismatch 

TAG|GAT 29% 3 base mismatch 
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Table 4.	
   Percentage of each stop codon across COGPs (A) for intergenic distance 
−4, (B) for intergenic distance less than <− 4 
 

(A) 

Stop Codon Percentage 

 

TAG 48% 

TAA 52% 

 

(B) 

Stop Codon Percentage 

 

TAG 24% 

TGA     46% 

TAA 30% 
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Figure 13. Sequence logo representation for gene sequence. A sequence logo 
was developed for COGPs that have intergenic distance (A) −4 and (B) −11. The 
logo describes the forward strand and reverse strand for intergenic distance. This 
figure informed us about the pattern occurring across the COGPs, which shows the 
presence of stop codons. 
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Table 5. This table contains the significant p-values for individual factors that are 
significant for a particular lifestyle. Adjusted R-squared value and p-value were also 
calculated using multiple regression, which shows all the factors significant for 
bacteria with COGPs. 

Factors for Lifestyles p-value for 

individual factors 

Adjusted R-squared value and 

p-value for all factors 

 

GC content 

 

4.66e-07 

 

Adjusted R-squared value= 

0.5986 

 

p-value for all = <2.2e-16 

Endospore [Yes] 1.16e-07 

Oxygen Requirement 

[Anaerobic] 

0.00728 

 

Temperature 

[Thermophilic] 

1.88e-10 

Temperature 

[Mespohilic] 

<2e-16 

Pathogenicity [human, 

animal, insect] 

7.87e-05 

Pathogenicity [plant] 0.00905 
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Chapter 4 Conclusion 

 

Bacteria are considered simpler organisms than are humans, and they are easy to 

study; however it is fairly clear that gene regulation in bacteria is extremely efficient. 

As bacterial organisms are highly organized, they can thrive in different 

environmental conditions and can respond to environment changes by adapting 

themselves accordingly. 

In our study, genomics and mechanistic insights of convergent transcription in 

bacterial organisms, we have discussed the various processes that help in the 

regulation of genes and how they adapt to different environments with relation to 

convergent transcription. In this study, we explored the role of various factors 

contributing to convergent overlapping transcription in bacterial genomes. Our 

analysis showed that the proportion of convergent overlapping gene pairs (COGPs) 

in a genome is affected due to endospore formation, bacterial habitat, oxygen 

requirement, GC content and temperature range. In particular, we showed that 

bacterial genomes thriving in specialized habitats, such as thermophiles, exhibit a 

high proportion of COGPs. Our results also showed that the density distribution of 

COGPs across the genomes is high for shorter overlaps with increased conservation 

of distances for decreasing overlaps. Our study also revealed that COGPs frequently 

contain stop codon overlaps with the middle base position exhibiting mismatches 

between complementary strands. Functional analysis using COGs annotations 

suggested that cell motility, cell metabolism, storage and cell signaling are enriched 

among COGPs, suggesting their role in process that go beyond regulation. Thereby, 

our analysis provided genomic insights into this unappreciated regulatory 
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phenomenon, allowing a refined understanding of their contribution to bacterial 

phenotypes. 

Characterizing operon structures in a genome is one of the first and fundamental 

steps towards improving our understanding on transcriptional regulation in bacterial 

genomes. OperomeDB represents one of the first attempts to provide a 

comprehensive resource for operon structures in microbial genomes based on RNA-

sequencing data, providing a one stop portal for understanding the genome 

organization in the context of transcriptional regulation in a condition-specific 

manner. OperomeDB as a database, should not only aid experimental groups 

working on transcriptome analysis of specific organisms but also enable studies 

related to computational and comparative operomics.  

In our study each SRA ID for which the operon prediction was performed 

corresponds to a different condition or perturbation to the cell in which RNA was 

sequenced to quantitate the expression levels of genes. Therefore, this database will 

not only be helpful for researchers to browse through each condition and analyze 

operons predicted for that particular condition but also to add their own new RNA-

seq datasets corresponding to their experiments to uncover novel operon signatures 

specific to their condition of interest. Researchers can also compare operons 

predicted in our database with other databases under various conditions. Comparing 

operons under experimental and normal conditions will provide insight into the 

mechanism and effect of the particular condition on bacterial regulation at specific 

genomic loci. In the future, we will add more bacterial organisms with RNA-seq 

datasets to our database and we will also increase the number of datasets/conditions 

for already existing bacterial organisms in our database. 
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Chapter 5 Future Work 

In our future work, we would like to increase the number of bacterial 

organism in our database for operon prediction. We also desire to 

include other scientific data from different sources to the database. We plan on 

making the web interface more effective and user friendly; so that 

this tool can be of help to show bigger, a better picture of genomes. 
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