STUDY OF THE THERMAL AND MECHANICAL PROPERTIES OF LA₂ZR₂O₇ USING FIRST PRINCIPLE METHOD

Xingye Guo^a, James Knapp^b, Li Li^b, Yeon-Gil Jung^c, Jing Zhang^a* aDepartment of Mechanical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA bPraxair Surface Technologies Inc., Indianapolis, IN 46222, USA

cSchool of Nano and Advanced Materials Engineering, Changwon National University, Changwon, Kyungnam 641-773, Korea

*Corresponding Author: jz29@iupui.edu

As an advanced thermal barrier coating, Lanthanum zirconia ($La_2Zr_2O_7$) has been studied in this paper using first principle calculations. La₂Zr₂O₇ crystal bulk was used in this calculation. The lattice parameter, mechanical and thermal properies of La₂Zr₂O₇ were investigated by means of density functional theory (DFT). Hydrostatic pressure-dependent elasticity constant, bulk modulus were calculated. The thermal conductivity was calculated based on fick's law using a 20 layers supercell. La₂Zr₂O₇ coating samples were spraied by APS equipment, the coating samples were identified by XRD and observed by optical microscope. The thermal effect of Ce doping of the La₂Zr₂O₇ were studied by ab initial calculations. The calculated properties have considerable good agreement with others experimental and calculation results.