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Abstract 

Several reports have been published detailing various platforms for obtaining crystals of membrane proteins to 

determine their structure including those that use disk shaped bilayers called bicelles. While these crystals have 

been readily grown and used for x-ray diffraction, the general understanding as to why bicelles are adequate for 

such a procedure or how to rationally choose conditions remains unknown. This review intends to discuss issues 

of protein stabilization and precipitation in the presence of lipids that may influence crystal formation. 
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Introduction  

Approximately one-third of the genome is dedicated to membrane proteins but there are few unique atomically 

resolved membrane protein structures compared to those of soluble proteins (over 30,000 structures for soluble 

proteins versus approximately a 100-fold decrease for membrane proteins), illustrating that obtaining membrane 

protein crystals continues to be a significant challenge (1). These statistics alone demonstrate the importance to 

finding mechanisms to obtain structural information on these proteins in order to understand their activity 

within the membranes of living cells. However, such information is scarce, to great extent, due to their 

amphiphilic character, which is critical to their function within the cellular membrane.  

Membranes are made up of bi-layered lipids forming an essentially impermeable barrier, whose functionality is 

mediated by a myriad of membrane proteins, including those that span the transmembrane region (2; 3). 

Structural information on membrane proteins is needed to understand how these proteins behave within the 

membranes of living cells. The lipid environment around membrane proteins has been proposed to directly 

influence protein functionality. For example, the surrounding lipids affect membrane protein structure and 

function by causing tilting, bending and/or by decreasing the height of the transmembrane helices or they can 

reorganize and/or swell around a protein (4-6). Such conformational changes have been associated with changes 

in affinity for regions differing in lipid composition within the membrane. Thus, obtaining the structures of 

membrane proteins in different lipid environments and binding conditions will ultimately be critical for relating 

structural changes to signaling events. This knowledge will then help develop those biotechnologies that 

produce drug therapies targeting specificity in protein functionality. 

Atomically resolved membrane protein structures are obtained with high quality protein crystals for x-ray 

diffraction measurements. Currently, the most common membrane protein crystallization procedure is a pure 

surfactant method (7), whereby membrane proteins are removed from their native environment by detergents 

and then induced to nucleate into crystals that contain both proteins and detergents. Although successful, 
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detergent stabilization of hydrophobic moieties of these proteins has been very challenging. Detergents that are 

generally successful in removing proteins from membranes do not stabilize protein structure for long periods of 

time, and therefore are not successful in crystallization trials (8). Micellar/cubic phase crystallization also has its 

challenges in that micelles co-exist with protein-detergent aggregates that form when the detergents are above 

the critical micelle concentration (CMC), a condition often necessary to pull the proteins from the lipids.  

Above detergent CMC, detergents undergo micellar phase transitions and fuse into macromolecular structures 

and the detergent itself can form a physical barrier or detergent ring preventing protein-protein interactions (9-

14). In addition, some detergents will phase separate at high precipitant concentrations and form birefringent 

liquid crystal phases (7).  

Recently some membrane proteins have been crystallized in solutions of amphiphilic molecules that form 

bicontinuous membrane-mimetic phases (6; 15; 16). These mixtures serve as adequate environments for 

membrane protein crystallization as they form an interconnected membranous environment in which several 

proteins can be reconstituted and structure stabilized. This environment becomes a lipid scaffold allowing 

proteins to freely diffuse and form nucleation sites. Currently there are two bicontinous mixture types in which 

crystallization has consistently worked: the bicontinuous cubic phase and the bicelle lipid mixture solution (6; 

15). There are approximately thirty structures deposited with the Protein Data Bank that were resolved from 

lipidic cubic crystals, where there are some 14 structures resolved using bicelles that have been deposited. In 

cubic crystallization, the temperature is increased to at least 20°C where with the help of the precipitant, the 

continuous bulk cubic phase bilayer contracts and curves to induce protein association and organization into a 

crystal lattice (17). In general, bicontinuous cubic phase preparations that are best found to yield crystals 

contained 60–70% (wt/wt) monoolein or monopalmitolein as well as small amounts (1.2% wt/wt) of a detergent 

such as octylglucoside (Landau 1996). Small angle x-ray scattering shows that crystal volume per unit protein 

mass of cubic grown crystals is larger, and therefore denser in packing, than those grown in with bicelles or 

other bilayered systems (18). However, the lipid cubic phase has proven to be difficult to work with due to its 

viscous nature whereas bicelles are liquids that can easily be manipulated and used for crystallization at much 
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lower temperatures (19). Bicelles are a disk-shaped long-chain phospholipid bilayer (e.g. DMPC) capped by 

short-chain phospholipids (e.g. DHPC, CHAPSO) whose diameter is determined by ratio of long-to-short chain 

lipids, q, and thickness driven by the length of the long-chain lipid acyl chains (20-23). As the temperature and 

concentration is moderately increased the structure is better described as being worm-like or ribbon nematic 

transition, where the small discoidal micelles have joined together to form a mostly continuous ribbon structure 

where the short chain lipid is segregated to the structural edge (23; 24). Further increases in temperature and 

concentration causes lengthening to a more perforated lamellar phase, driven by the immiscibility of DMPC and 

DHPC above DHPC’s, yet below DMPC’s, melting temperature where DHPC forms holes in the bilayer 

(Figure 1) (24; 25).  

As of December 2011, there were 15 unique x-ray crystallography structures for membrane proteins deposited 

in the Protein Data Bank generated from crystals grown in the lipid cubic phase while the structures resolved by 

x-ray crystallography using bicelles have been those of the rhodopsin family, human β2-adrenergic G-protein 

couple receptor, voltage-dependent anion channel 1, and rhomboid protease (19; 22; 26-29) (Table 4). There 

were also 6 unique bicelle related structures deposited using NMR, suggesting that this method is of greater 

value for structural biologists. This report is intended to review what is currently known about the effect of 

common crystallization lyotropes and precipitants on lipid systems, leading to a design rationale for future 

crystallization of membrane proteins using bicelles. 

Discussion 

Protein crystallization is described as a process of three stages: nucleation, growth of nuclei into mature 

crystals, and termination of crystal growth (30). Generally, the nucleation can be linear or branched oligomers 

where growth can be in one of two dimensions or the protein may oligerimize in into all three directions (31). In 

the case of membrane proteins which intercolate a lipid environment, nucleation is a results of 2D contacts 

within the membrane, and the third dimension is a result of interaction of proteins within membranous stacks 

(Type I). Alternatively, the hydrophilic surface of the membrane extending from a micelle serves as potential 

sites for crystal contacts in detergent solubilized proteins (Type II). Lamellar protein crystallization, such as 
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biclles, extends from Type I crystals, lending to a thinner crystal but with more controlled growth than a Type II 

crystal (32). The effect of crystallizing the hallmark protein Bacteriorhodopsin in these different crystal packing 

types has been described in Table 3. For this protein, Type I crystals have led to higher resolution structures, 

and bicelle associated structures are much more symmetrical, providing motivation for further investigation of 

bicelle crystallization for other proteins. Oligermization into all three directions is generally responsible for 

driving nucleation into the growth of a stable crystal, and the degree of protein supersaturation determines the 

rate of crystal growth. Crystallographers have often used precipitants as a mechanism to drive the condition of 

supersaturation. Those additives include: salts, detergents from purification/stabilization of the protein, and 

polyethylene glycol. Too rapid of crystal growth has been associated with defects in crystal formation, as 

described by decrease in order, increased mosaicity, misaligned unit cells, and increased incorporation of 

impurities. These defects lead to crystals that do not diffract well and problematic diffraction analysis (31). 

Therefore, bicelles as the hydrophobic shield provides a better balance for controlled growth during 

supersaturation than detergent based methods. These additives can also affect the behavior of the lipids and 

drive the formation of lipid structures that enhance the ability to crystallize membrane proteins. To rationally 

design bicelle crystallization conditions, all of these factors should be accounted for and are described in this 

review. 

Proteo-bicelle Crystallization. The methodology of protein crystallization using bicelles as the membranous 

environment to stabilize the hydrophobic transmembrane regions of the protein has been previously described in 

great detail (19; 33-35). In this method, detergent stabilized membrane proteins are mixed with bicellar 

mixtures, a low pH but high salt precipitating solution, and a small amount of an alkyl glycoside detergent. 

Crystals are then grown using the hanging drop or sitting drop methods at room temperature or higher. While 

the general structure of the bicelle has been described in these conditions, there are many additives that are used 

during the crystallization of proteins that can affect the bicelle lipid, thereby affecting the precipitating 

conditions that should be used for crystallization. The perturbations can be seen in lipid melting temperature, 

which affects 2D protein diffusion for the initial nucleation events, and lamellar stacking/rippling which support 
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crystal growth in the third dimension. In general, 2D diffusion of proteins in lamellar structures is faster with 

more possibilities for collisions associated with nucleation events in fluid rather than gel state lipids (36; 37). 

Decreases in the lamellar spacing increases the probability of interfacial protein contacts which should also 

support crystal growth. 

Long-Chain Lipids. Several bicelle mixtures have been described which use several lipid types as the long chain 

lipid, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and 

Phosphatidylglycerol (PG). Each of these phospholipids has two different characteristics to be considered when 

incorporating into a bicelle: shape and head-group charge. Lipid shape influences the overall shape of the 

bicelle as they elongate as well as change the melting temperature. The shapes of PC, PS, and PG lipids lend to 

a preference for forming lamellar liquid crystalline phases, however PE lipids form the inverted hexagonal 

phase (Table 2) (38; 39). The bicellar lamellar interior at low temperatures that extend into perforated lamellar 

repeating units with increasing temperature is driven by the presence of lamellar phase lipids (24; 40). PC and 

PE have zwitterion head groups, while PS and PG head groups have a negative charge at most relevant pHs. 

Charge on the surface of the bilayer due to ions present in the buffer solution can affect its ability to interact 

with proteins by either repelling or attracting the protein to the membrane. However, this charge can manipulate 

the bulk buffer as well as the phase transition of the bilayer. Gouy-Chapman boundary layer affects have been 

discussed at length elsewhere (41-43). In short, the presence of anionic lipids creates localized charge build-up 

that becomes dispersed with respect to the distance from the surface of the membrane. Charge in the buffer has 

also been shown to affect the structure of the bicelle. Cations have been shown to increase the diameter of PC 

containing bicelles proportional to ion charge (44). In addition, the melting temperature of the lipid is sensitive 

to pH which affect the ionization state of the head group as demonstrated by the ability of divalent cations to 

increase, and monovalent cations to decrease, the melting temperature of negatively charged bilayers (45). 

Anion groups larger than chlorides, such as sulfates and acetates, bind more tightly to PC headroups and cause a 

decrease in phase transition temperature (46; 47).  In PC lipids, the temperature range for the discoidal shape is 

extended by the presence of monovalent salts, which suggests an effect opposing anions on zwitterionic lipids 

6 
 



(48). Therefore the presence of ions can be used to modulate and stabilize the fluidity and phase of the bicelle 

during crystallization, in addition to precipitating and stabilizing the protein.  

Not only have additives shown to affect the melting temperatures of the lipids, they also affect lamellar spacing 

which in turn determines the ability of proteins to form the contacts in the third dimension. As the concentration 

of ions in solution increases, zwitterionic head groups experience a decrease in repulsive hydrations and 

attractive van der Waals forces (49). Monovalent cations increase size of the water layer in between bilayers 

(46), but generally have less of an effect than that of divalent cations whose effects are seen even with very low 

concentrations (50-53). Increasing concentrations of monovalent salts such as potassium chloride and potassium 

bromide have a sigmoidal salt-induced swelling effect on the lamellar systems (54). Petrache et al. have shown 

that this effect is more significant at low osmotic pressure, as DLPC multilayers swell to a maximum which is 

specific to the counterbalancing anion. While salts are generally used to cause supersaturation of the protein, 

one must keep in mind that the presence of salts will cause an increase in the water layer within lamellar stacks 

thereby decreasing the amount of potential contacts during nucleation and crystal growth. Evaporation is 

generally key in moving the protein solution from nucleation to the growth of crystals. However, in the case of 

proteo-bicelle crystallization, evaporation may terminate crystal growth as the bilayers move farther apart in 

response to the increasing local salt concentration. 

Membranes and Alkyl Glycosides (AGs). Detergents such as n-octyl-β-D-glucoside (OG) and dodecyl maltoside 

(DM) belongs to a larger class of non-ionic surfactants, AGs, which contain one or several glucose molecules in 

the hydrophilic part, and at least one hydrocarbon chain that makes up the hydrophobic part. These detergents 

have been used during solubilization of native membranes to stabilize purified membrane proteins. Sucrose 

density gradient centrifugation studies have shown that in general, membrane proteins that behave as monomers 

or dimers bind between 0.28 and 1.12g of detergent per g of protein (55). That report, in addition to thin layer 

chromatography work, suggests that after reconstituting proteins into bicelles in the aforementioned proteo-

bicelle crystallization methods the mixtures would contain 7-30 mg/ml of OG. The addition of AG detergents at 
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these amounts to the mixtures demands that attention be paid to the structure of the detergents themselves as 

well as the effect of this detergent type on membranous structure. 

Studies in aqueous buffers show that as the concentration increases to the critical micelle concentration, 

aggregates of these molecules have a self-induced curvature, forming an isotropic spherical or oblate ellipsoid-

shaped micelle (56; 57). Small angle neutron scattering shows that the structure of the OG micelle is ellipsoidal, 

where the long axis increases in length as the concentration of the molecule increases from the CMC to 292 

mg/ml (58) creating a more rod-like or cylindrical micelle. As the concentration of this detergent increases, the 

molecules condense and organize to form higher ordered and more continuous phases including hexagonal, 

followed by cubic structures at room temperature. As the concentration further increases, a lamellar phase is 

seen (59). In the current crystallization methodology being studied, the concentration of this lyotrope would 

begin in the fluid isotropic regime, where micellar ellipsoids prevail growing with increasing lyotrope 

concentration along the long axis to a more rod-like shape, which is opposite that of the typical discoidal growth 

demonstrated with phospholipids generally used in bicelle mixtures. 

The additive effect of the presence of these detergent micelles on membranes has been studied using two 

different lipid phases: lamellar and bicontinuous cubic phase, where long chain PC lipids and monoolein (MO) 

are used, respectively. As OG is added to cubic MO (Qiu, 2000), the OG incorporates homogenously within the 

membrane moving the structure from a continuous packing of membranous blocks to a lamellar stacking of 

fluid membranous sheets. Similarly, when OG was added to a lamellar phase formed by DPPC, it also changed 

the phase from the viscoelastic gel to a fluid Lα lamellar phase generally only seen by DPPC at temperatures 

above its melting point (60). Other reports have showed that lamellar liposomes created from egg phosphatidyl 

choline and egg phosphatidic acid become solubilized by less than 10 mg/ml DM in solution (61; 62) and POPC 

vesicles were solubilized with alkyl ether with similar characteristics as decylmaltoside, where an increase in 

detergent composition moves the solution from a lamellar phase to a mixed micelle cubic phase (63; 64). 

Lipidic studies done in lamellar phases, suggest that an addition of OG to bicelles would induce the 

solubilization of the membrane into micelles. Hence, it stands to reason that in the case of the proteo-bicelle 

8 
 



crystallization procedure, the bicelle solution will change from ribbon-like lamellar structure to a cubic and/or 

micelle structure with the addition of OG, with the final structure being temperature and total lyotrope 

concentration dependent. Due to the significant amount of detergent present in the proteo-bicelle crystallization, 

as was seen in the micellar and lipid cubic methods, it becomes important to understand the structural changes 

driven by the presence of the detergent OG. My previous work presented at several conferences suggests that 

bicelle structure also changes as a function of OG/DM content, temperature, and total lyotrope concentration 

using small angle neutron scattering (SANS) measurements (65). Bicelle mixtures with less than 20% detergent 

and greater than 30mg/ml lipid have structures characteristic of an elongated bicelle, which becomes lamellar as 

the temperatures increases (unpublished).  As seen with lamellar mixtures, an increase in the detergent content 

leads to a biphasic regime where the bicelle takes on the rod characteristic of the detergent (unpublished) 

(Figure 2).  Elongating bicelles with low amount of OG to crystallize membrane proteins as reported by Faham 

et al., as well as other groups, serves as a mechanism to increase the number of proteins in each aggregate 

thereby increasing the possibility of protein nucleation events (19).  Further increasing the temperature of these 

elongated structures could also provide a stacking of the aggregates, furnishing a means for proteins from 

various aggregates to form even larger crystals. In addition, as these detergents incorporate throughout the 

bilayer region of the bicelle, they contribute to the thickness of the membrane. Thinning of the DMPC bilayer 

by OG may allow for the membrane to better match the hydrophobic moieties of the protein’s transmembrane 

structure. Mouritsen et al. proposes a macroscopic mattress model in which lipids of the membrane must 

entirely wet, or hide, this region in order to maintain protein structure, or risk deforming either the protein or the 

surrounding local membrane (4; 66). However, Dumas et al. suggest that Bacteriorhodopsin (Br) has a higher 

affinity to long chain DSPC (18:0 PC) than short-chain DPPC (16:0 PC) at temperatures higher an 40°C (67). A 

potential resolution to the discrepancy between these studies may be found in addressing the affects of 

detergents on membrane fluidity.  The study by Dumas was done above the melting temperature of these lipids 

suggesting that both lamellar structures were liquids instead of viscous gels, whereas pure bicelle mixtures at 

high concentrations and temperatures lower than 40°C (the conditions used by Faham et al.) have been 
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characterized to be viscous gel-like lamellar phases.  The addition of small amounts of OG results in a less 

viscous mixture, which would reduce the temperature needed to “melt” the lipids.  

Like salts, detergents also affect the d-spacing of the lamellar phase however the effect is head group and acyl 

chain dependent. The addition of OG to DPPC and DOPE bilayers lead to a decrease in d-spacing, however 

detergents such as dodecyl sulfate are expected to increase the lamellar spacing (60; 68). OG decreases the 

inter-lamellar spacing of DOPE bilayers with increasing temperature, while increasing DPPC inter-lamellar 

spacing (60). DM had little effect, while dodecyl-β-d-glucopyranoside (DG) increased the spacing of DPPC 

lamellar structures at room temperature. As the temperature increases, the DPPC-DG and DPPC-DG mixtures 

are able to compensate for the loss of hydration and returns the d-spacing to that of the native DPPC bilayer or 

even tighter packing (69). When taken in the context of proteo-bicelle crystallization, the effect of room 

temperature OG and high temperature DM/DG on lamellar stacking should lead to an increase in nucleation 

contacts and crystal growth. However, care should be taken to the final concentration of any of these detergents 

in the final crystallization conditions. 

Polyethylene Glycol (PEG). Bicelle crystallization has been used successfully at two different temperatures. 

The first publication of bacteriorhodopsin (bR) crystals using this method was at 37°C using (3:1) 

DMPC/CHAPSO bicellar solution to create a mixture of ∼8.0 mg/ml bR/8% bicelles mixture which was 

precipitated by 3.2 M NaPO4 (pH 3.5) (22). Similar crystals were also formed using DMPC/CHAPSO bicelles 

at room temperature by introducing 180 mM hexanediol with either ~30% PEG2K or ~3% triethylene glycol 

(19). Low molecular weight PEG (e.g. PEG400) have been shown to increase the transition temperature of 

phospholipids, however PEGs with molecular weights greater than 1K have been shown to drive a depletion 

effect that leads to aggregation and lateral fusion of lamellar membranes (70-72). Faham et al. used this 

lamellar fusion effect of PEG2K to reduce the melting temperature of this bicellar mixture, which transitioned 

the bicelle into the perforated lamellar phase to crystallize bR at room temperature (Table 3). The change in 

lipid melting temperature associated with the presence of PEG has also been linked to the hydration state, and 

therefore the lamellar spacing of PC, PS, and PE bilayers (73). PEG has been shown to wrinkle or form large 
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bumps in the lamellar and hexagonal structures (73-76). In addition to the wrinkles, it decreases the interfacial 

spacing of these lipid structures and this effect is intensified with increasing temperature (75). Rippling and 

decreases in d-spacing in the perforated lamellar structure generated by PEG in proteo-bicelle crystallization 

can only serve to increase the nucleation events and promote crystal growth. 

Acyl Chains. Generally, bicelles are made with aliphatic long chain lipids between 12 and 18 carbons in length 

(21). A summary of some common long chain phospholipids used in bicelle mixtures and their properties can be 

found in Table 1 (77-81). Lipid-detergent mixtures close to phase separation boundaries should be avoided if 

unnecessary as it has also been reported that lipid-protein interactions can also cause local compositional de-

mixing of multiple lipid species, further inducing lipid phase separation and creating microdomains (82-85). In 

this case, the proteins induce a more distinct boundary condition on the thermally equilibrated binary lipid 

mixture in the fluid phase, and reorganization occurs via long-range diffusional processes. Phase separating 

lipid mixtures have been used in bicelles to mimic lipid rafts seen in cellular membranes, but their effect on 

structure has not yet been shown and generally should include cholesterol to stabilize the bicelle structure over a 

large temperature range (20). Hence, when choosing the long chain lipids for the bicelle mixture it becomes 

important to consider the approximate length of the membrane inserting region of the protein, overall 

shape/lipidic phase, charge, and melting temperature. 

Hydrophobic mismatch. Mouritsen et al. suggest that for proteins to be stable in their environment, the length of 

the protein’s hydrophobic region must match that of the hydrophobic bilayer. They also suggest that the 

mismatch of protein transmembrane region’s height to the thickness of the bilayer’s hydrophobic core may 

determine protein aggregation within phases depending on the strength of the van der Waals lipid-protein 

hydrophobic contact (4). Based on this theory, longer proteins would induce stronger lipid-mediated attractive 

protein-protein interactions and thereby cause aggregation. Theoretical studies have been done which show that 

in the presence of a transmembrane protein, the bilayer thickness increases exponentially to match the 

hydrophobic length of the static protein (86-91). Changes in bicelle thickness would therefore change the 

melting temperature, causing a shift in the temperature necessary for forming the lamellar stacks associated with 
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crystallization. Therefore it becomes important to select bicelle and detergent components with long chain 

components most entropically favorable to interact with the hydrophobic surface of the protein without 

deforming the bilayer. Individual protein helices were found to experience a tilt, and more interestingly, 

changes in tilt angle of the individual helices were associated with changes in protein activity (5). More 

specifically, long, single-spanning proteins bend to adapt to a too-thin bilayer, while larger, multi-spanning 

proteins have small amounts of tilting (92-97). When smaller sized proteins were introduced to a hydrophobic 

mismatch, it induced changes of the tilt-angle of individual helices based on the conformations allowed by the 

protein’s activity (98). While it is not currently known if hydrophobic mismatch derived changes in the protein 

structure are associated with increasing the propensity to crystallize in the bicelle, it should be understood that 

the defects will be propagated into the protein structure. 

It has been suggested that perturbations of the membrane on the macroscopic scale lead to two different kinds of 

mismatch adjustments. First, tilting of the protein may occur to minimize water exposure to hydrophobic 

regions. Second, larger proteins are able to reduce hydrophobic mismatch by deforming the bilayer rather than 

undergo tilting (5). To further understand this building hydrophobic mismatch theory, Sabra et al. (6) used 

rhodopsin, a protein noted for an affinity for fluid lipid phases, in two different states that have different 

hydrophobic lengths. They found that this protein was sensitive to certain types of lipids and was capable of 

adapting to the lipid-protein interface during the transition by adjusting the height of the transmembrane region. 

In general, Br has been crystallized in bicelles with DMPC, a phospholipid with 14 carbon acyl chains which is 

known to create a fluid phase bilayer (99). In addition, the presence of the detergent OG would increase the 

ability of the membrane to bend to the rhodopsin helices while minimizing the bending of the B helix to 20 

degrees (100). While lipids have not been seen in the resolved structures of Br, they have been seen in other 

protein structures solved using proteo-bicelle crystallization. Rhomboid protease GlpG shows small changes 

with respect to the detergent based structure in its L1 domain as a result of accommodating the lipid molecules, 

while Histindine displacements are more pronounced in the detergent versus the lipid environment (29). In 

addition, the structure shows that the acyl chains of the lipid are incorporated into the protein’s grooves and 
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crevices, allowing hydrophobic contacts between the lipid molecules and the WR motif, as well as hydrogen 

bonding between the lipid glycerol back bone and charged side chain amino acids (29). It has also been 

proposed that GlpG and the voltage-gated potassium channel thin the surrounding bilayer to accommodate their 

2D oligomeric arrangements while still providing a third dimension of contact for crystal formation (29; 101; 

102). 

Summary. Proteins are generally crystallized using salts and PEG to drive nucleation and crystal growth. Protein 

domains that insert and/or pass thru their native membrane require an amphiphilic molecule to stabilize their 

structure. Bicelles have been used in this capacity to stabilize membrane proteins for several structure methods 

including x-ray crystallography. Different lipids can be incorporated into the bicelle mixture to change the 

bilayer thickness, lipid de-mixing, phase transition temperature, local charge build-up to induce specific lipid-

protein interactions based on acyl chain length and phospholipid head group. However, the bicelle lipids are 

affected by salts, detergents, and PEG causing shifts in lipid melting temperature, bicelle phase, and lamellar 

stacking as demonstrated by the ability to use long chain PEG to achieve lamellar protein crystallization at room 

temperature (103). Membrane proteins participate in a variety of signaling pathways, and structure-function 

analysis gives way for a detailed understanding of how to modulate their function within various disease states. 

Structural biologists and biochemists should use these factors to improve their success with bicelle 

crystallization for membrane proteins.  
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Figure Legends 

Figure 1. Bicelle Mixture Phases. As the temperature and/or lipid concentration are increased, bicelles merge 
and form the nematic phase followed by the perforated lamellar phase. It has been shown that proteo-bicelle 
crystallization generally occurs in the perforated lamellar phase. 

Figure 2. Bicelle structure response to AG content. Detergents such as OG and DM have been shown to change 
the phase and structure of lipids. As these detergents are added to the bicelle mixture, it elongates and thins the 
bicelle until the structure becomes that of the native AG micelle, being the most dominant component. This 
figure depicts that effect of rod shaped OG. 
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Tables 

Table 1. Bacteriorhodopsin Crystallization Conditions Reported in the Literature 

Temp Additives Amphiphile(s)  Protein 
Conc. 

Growth 
Period 

Crystal 
Form, 

Resolution 

Crystal 
Packing 

23°C 

2.5 M 
(NH4)2SO4 or 2.8 

M Na2SO4, 
pH4.8 

>1% octyl 
glucoside micellar 30-35 

nmol/ml 1 wk NR, 
8 Å 

Type II 
(104) 

32°C 

0.4–1.2 M 
(NH4)2SO4, 0.16 
M NaCl, 0.04 M 
sodium citrate 
(pH 5.2) and 
0.04% NaN3 

5mg/ml purple 
membrane, 2.5 

mg/ml OTG 

spherical 
vesicles,  

diameter =50 
nm 

NR 1–2 
wks 

P622, 
3.5 Å 

Type I 
(105) 

20°C 

0.7–4.0 M Na/K-
Pi; 1.5–3.75% 

methylpentanedi
ol; 0.36–0.48% 

OG; final pH 5.6 

60–70% (wt/wt) 
monoolein or 

mono-palmitolein 

bicontinuous 
cubic phases 

2.5–4.5 
mg/ml 

Several 
days 

P63, 
3.7 Å 

Type I 
(106) 

37◦C 3.2 M NaPO4 pH 
3.5 

8% Bicelle 
DMPC:CHAPSO 
(2.8:1), 0.7% β-
octylglucoside 

Perforated 
lamellar 8 mg/ml 2 wks P21, 

2.0 Å 
Type I 
(22) 

25◦C 

100 mM 
HCOONa pH 

4.3, 28.5% PEG 
2K, 280 mM 

(NH4)2SO4, and 
180 mM 

hexanediol 

10% Bicelle 
DTPC:CHAPSO 

(3:1) 

Perforated 
lamellar 10 mg/ml 2–3 mo P21, 

1.8 Å 

Type I 
(19) 

25◦C 

2.45 M NaH2PO4 
pH 3.7, 180 mM 
hexanediol, and 

3.5% 
triethyleneglycol 

10% Bicelle 
DTPC:CHAPSO 

(2.8:1) 

Perforated 
lamellar 10 mg/ml 1–2 

wks 
C2221, 
2.2 Å 
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Table 2. Common Long Chain Phospholipids Used in Bicelles 

Long Chain Lipid 
(Carbons in acyl chain: 

number unsaturated bonds) 

Membrane Thickness  
(Å) 

Melting 
Temperature 

 (Celsius) 

DLPC (12:0) 19.9 -1 

DTPC (13:0)  14 

DMPC (14:0) 22.5 23 

DMPG (14:0) 20.5 23 

DMPS (14:0) 22.4 35 

DMPE (14:0) 20.6 50 

PC (15:0)  33 

DPPC (16:0) 25.4 41 

PC (17:0)  48 

DSPC (18:0) 28.5 55 
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Table 3. Phospholipid and Detergents 
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Table 4. Summary of Unique Structures in Bicelles Resolved by X-Ray Crystallography 

Protein Bicelle Composition Additives Temp 
Crystal 
Form, 

Resolution 

Bacteriorhodopsin 
(22) 

8%  
DMPC:CHAPSO 
(2.8:1), 0.7% β-
octylglucoside 

3.2 M NaPO4 pH 3.5 37◦C P21, 
2.0 Å 

LeuT–Leu 
(107) 

7% (w/v) 
DMPC:CHAPSO 

(2.8:1) 

100 mM sodium acetate, pH 
4.5–5.0, 25–35% (v/v) 2-

methyl-2,4-pentanediol (MPD) 
and 5–10% (v/v) PEG 400 

20 °C C2, 
2.5 Å 

NavAb voltage-
gated sodium 
channel (108) 

10%  
DTPC:CHAPSO (3:1) 

1.8–2.1 M (NH4)2SO4, 100 mM 
Na-citrate pH 4.75 25◦C I222, 

2.7 Å 

Methylated β2 
Adrenergic 

Receptor-Fab 
complex 

(109) 

2% w/v  
DMPC:CHAPSO 

(3:1) 

1.85–2.0 M (NH4)2SO4, 
180 mM C2H3NaO2, 5 mM 
EDTA, 100 mM MES or 

HEPES, pH 6.5–7.5 

22 °C C2, 
3.4 Å 
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Figures 

 

Figure 3. Bicelle Mixture Phases 
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Figure 4. Bicelle structure response to AG content 
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