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SUMMARY 

Oxidative damage to mtDNA has been implicated as a causative factor in many disease 

processes and in aging. We have recently discovered that different cell types vary in their 

capacity to repair this damage, and this variability correlates with their ability to withstand 

oxidative stress. To explore strategies to enhance repair of oxidative lesions in mtDNA, we have 

constructed a vector containing a mitochondrial transport sequence upstream of the sequence for 

human 8-oxoguanine glycosylase. This enzyme is the glycosylase/AP lyase that participates in 

repair of purine lesions, such as 8-oxoguanine. Western blot analysis confirmed this recombinant 

protein was targeted to mitochondria. Enzyme activity assays showed that mitochondrial extracts 

from cells transfected with the construct had increased enzyme activity compared to cells 

transfected with vector only, while nuclear enzyme activity was not changed. Repair assays 

showed that there was enhanced repair of oxidative lesions in mtDNA. Additional studies 

revealed that this augmented repair led to enhanced cellular viability as determined by reduction 

of tetrazolium compound to formazan, Trypan blue dye exclusion, and clonogenic assays. 

Therefore, targeting of DNA repair enzymes to mitochondria may be a viable approach for the 

protection of cells against some of the deleterious effects of oxidative stress. 
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INTRODUCTION 

A variety of diseases have been associated with alterations in mitochondrial DNA 

(mtDNA) including diabetes mellitus (1,2), Alzheimer’s disease (3-6), and Parkinson’s disease 

(7-11). Additionally, deleterious phenotypes associated with the normal process of aging have 

been correlated with these lesions (12-17).  Because errors in mtDNA lead to erroneous 

translation of important subunits of the electron transport chain, the result can be a deficiency in 

the production of ATP along with the “leak” of electrons from the various protein complexes 

involved in oxidative phosphorylation.  These electrons cause damage to proteins, lipids, and 

DNA through formation of intermediate reactive oxygen species (ROS).  As more damage is 

sustained, the mitochondria become more dysfunctional, and a self-propagating detrimental cycle 

ultimately ensues.  Finally, if and when sufficient damage is produced, an apoptotic program can 

be initiated in the affected cell or the cell may die by necrosis (13, 18, 19). 

Mitochondrial DNA is particularly susceptible to damage by ROS because of its close 

proximity to the electron transport chain and its lack of protective histones.  Previous studies by 

our laboratory and others (20-24) show that this DNA is considerably more vulnerable to 

exogenously-generated damage than is nuclear DNA.  Oxidative damage to mtDNA can be 

repaired efficiently by some cell types (24-26). However, other cell types such as certain types of 

glial cells and neurons (24,27) are much less proficient at repairing this damage. To date, the 

mechanisms involved in this repair have not been well defined.  Since the discovery of 

mammalian 8-oxoguanine glycosylase (OGG) (28), variant splices of OGG, MYH (the human 

homolog of E.coli MutY, which excises mispaired adenine opposite 8-oxoguanine), and NTH1 

(the human homologue of E.coli endonuclease III) have been localized to mitochondria (29). 

Recent evidence shows that there is an increase in the level of 8-oxoguanine lesions in mtDNA 
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with age (16).  Another study shows that there is an age-associated increase specifically in OGG 

activity in mitochondria and not in other repair enzymes (30). Together, this suggests that the 

DNA repair system in mitochondria may be differentially regulated and that OGG enzyme may 

play a pivotal role in this regulation.  Still, there is much to be learned about the components and 

processes involved in mtDNA repair of oxidative damage. 

A plausible explanation for why various cell types possess different inherent capacities 

for repairing mtDNA (24-27) is that there are differences in the expression of specific 

components involved in DNA repair.  To explore this possibility, we sought to increase the DNA 

repair capacity of a cell line that we have found to be relatively inefficient at repairing oxidative 

damage to its mtDNA.  Because 8-oxoguanine has been considered to be one of the most 

mutagenic of oxidative lesions in DNA due to its strong tendency to mispair with adenine (31), 

we targeted the glycosylase/AP-lyase that repairs this lesion in the nucleus of human cells, 

hOGG, to the mitochondria. We investigated the effect of the targeted recombinant protein on 

mtDNA repair, cell survival, and the ability to proliferate.  The results indicate that this protein 

enhances the repair of oxidative damage to mtDNA and increases the capacity for cells to 

survive and continue to divide following an oxidative insult. 

EXPERIMENTAL PROCEDURES 

Cell Culture and Transfections:  HeLa cells were obtained from ATCC.  The cells were 

maintained in Eagle’s minimal essential medium with Earle’s salts (Gibco BRL), supplemented 

with 10% fetal bovine serum (HyClone Laboratories), 50 µg/mL penicillin/streptomycin 

(Sigma), and 2 mM L-glutamine (Gibco BRL) in 5% CO2 at 37ºC, and passaged every 3-4 days. 

For transfections, cells were grown in 75 cm2 flasks until they reached 75% confluence.  They 

were then transfected with Fugene 6 reagent according to manufacturer’s recommendations. 
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After 24 h, selection with 0.6 mg/mL G418 (geneticin) ensued.  After 2 weeks of selection, the 

cells were maintained in 0.4 mg/mL G418.     

OGG construct: Oligonucleotides were designed to serve as primers to amplify OGG1 

from a cDNA plasmid.  Additionally, the 5’ primer, 

GGAATTCATGTTGAGCCGGGCAGTGTGCGGCACCAGCAGGCAGCTGGCTCCGGCTTT

GGGGTATCTGGGCTCCAGGCAGATGCCTGAATTACCCGAAGTT, contained the 

mitochondrial targeting sequence (MTS from MnSOD, 32) and an EcoRI restriction site, and the 

3’ primer, CGCCGCTCGAGGCCTTCCGGCCCTTTGGA, contained an XhoI restriction site. 

The cDNA was amplified using a high-fidelity thermostable DNA polymerase by PCR in a 

thermal cycler under the following conditions: 30 sec denaturation (94º), 1 min annealing (55º), 2 

min extension (72º).  The resulting PCR fragment consisted of an EcoRI site, the MTS, the OGG 

coding region, and an XhoI site.  The PCR product was subjected to double restriction enzyme 

digest with EcoRI and XhoI overnight at 37ºC.  The restriction fragment was sub-cloned into the 

EcoRI and XhoI sites of pcDNA3.0neo and sequenced to confirm fidelity.  The predicted protein 

is approximately 39 kD.  

Preparation of Cellular Fractions:  Three 75 cm2 flasks of each cell type (MTS-OGG- 

and control vector-transfected) at confluence were harvested and treated with ice-cold digitonin 

(325 mM digitonin, 2.5 mM EDTA, 250 mM mannitol, 17 mM MOPS, pH 7.4) for 80 sec.  The 

lysed cells were then added to mannitol-sucrose buffer for a final strength of 1X (210 mM 

mannitol, 70 mM sucrose, 5 mM EDTA, 5 mM tris, pH 7.5).  The ice-cold suspension was then 

centrifuged for 10 min at 800 x g to pellet nuclei.  The supernatant was saved, the pelleted 

material was resuspended in 1X mannitol-sucrose, and centrifugation repeated.  This was 

repeated 3 more times.  The combined supernatants were then centrifuged to pellet any 
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remaining nuclei, and the resulting supernatant was centrifuged at 10,000 x g to pellet 

mitochondria.  The combined supernatants were concentrated (Amicon protein concentrators) for 

cytosolic fractions. Isolated mitochondria and nuclei were suspended in a buffer of 20 mM 

HEPES, pH 7.6, 1 mM EDTA, 5 mM dithiothreitol, 300 mM KCl, and 5 % glycerol.  These 

preparations were briefly sonicated on ice, and 5 μL of protease inhibitor cocktail from Sigma 

(for mammalian cell extracts, 100 mM AEBSF, 4 mM bestatin, 1.4 mM E 64, 2.2 mM leupeptin, 

1.5 mM pepstatin, and 80 μM aprotinin) was added per mL buffer.  The fractions were 

centrifuged once more at 5,000 x g to pellet any remaining cell debris, and supernatant protein 

was used for Western blots and OGG activity assays.  Protein concentrations were determined 

using the Bio-Rad protein dye micro-assay according to manufacturer’s recommendations 

(Bradford method).   

Western Blots:  The organelle-enriched fractions from each cell type were lysed and 

quantitated as described above.  Fifty µg of each sample was loaded onto 12% SDS-

polyacrylamide gels and electrophoresed to resolve proteins.  The proteins were then transferred 

to Immobilon P PVDF transfer membranes (Millipore) and blocked in 50 mM Tris-HCl, pH 7.5, 

150 mM NaCl, 6% nonfat dry milk.  Incubation with 1:1000 dilution of anti-hOGG primary 

antibody, which was kindly provided by Dr. S. Mitra, was overnight at 4ºC in the same solution. 

The membrane was then washed in 50 mM Tris-HCl, 150 mM NaCl, 0.05% Tween-20 4 times 

and then in the same solution without Tween-20 2 times.  The horseradish peroxidase-labeled 

anti-rabbit secondary antibody was incubated with the membrane for 4 hr at 4ºC, the washes 

were repeated as before, and the membrane was reacted with chemiluminescent reagents 

(SuperSignal, Pierce) and processed for autoradiography.  Monoclonal cytochrome C antibody 

was purchased from Pharmingen, and blotting procedures were as described above with anti-
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mouse secondary antibody. 

OGG Activity Assays:  A 24-mer oligonucleotide with 8-oxoguanine at the 10th position 

(Trevigen) was end-labeled. An identical 24-mer without 8-oxoguanine also was used in parallel 

reactions.  The labeling reaction contained:  5 pmol single strand 8-oxoguanine oligonucleotide, 

5 pmol γ-32P, T4 polynucleotide kinase, and appropriate kinase buffer in a total volume of 20 µL, 

37°C for 30 min, 90°C for 2 min.  Complementary oligonucleotide (also 5 pmol) was then added 

to form duplex DNA.  Equal amounts of protein from the fractions isolated from both cell types 

were then used in assays with labeled duplex oligonucleotide.  Activity assays contained:  0.2 

pmol labeled duplex oligonucleotide, 3 µL 10X REC buffer (100 mM HEPES, pH 7.4, 1 M KCl, 

100 mM EDTA, 1 mg/mL BSA), and organelle extracts or control formamidopyrimidine DNA 

glycosylase (Fpg) enzyme in a total volume of 30 µL, 37°C for 1 hr.  Organelle extracts 

contributed less than 20% of the total reaction volume (50 µg mitochondrial, 20 µg nuclear, 50 

µg cytosolic protein).  Bromophenol blue dye was then added, and reaction contents were 

resolved on 20% acrylamide, 8M urea gels in 1X TBE.   

Drug Exposure:  Menadione (Sigma), a redox cycler (33,34), was dissolved in Eagle’s 

minimal essential medium with Earle’s salts only (no serum), at a concentration of 400 µM for 

DNA repair studies. This was applied to MTS-OGG-transfected and control-transfected cells at 

approximately 75% confluence in 60 mm culture plates for 1 hr in 5% CO2 at 37ºC.  Cells were 

then either lysed immediately (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.5% SDS, and 0.3 

mg/mL proteinase K) or regular growth media was replaced and repair time allowed in the 

incubator before lysis of cells.  Control cultures were exposed to drug diluent only.  Lower doses 

of menadione were used in clonogenic assays due to higher sensitivity of sparsely plated cells. 

Southern Blots:  Cell lysates from the treatment described above were incubated 
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overnight at 37ºC, 0.2 volume of 5M NaCl was added, and high molecular weight DNA was 

extracted with equal volumes of chloroform 3 times, followed by precipitation with ammonium 

acetate and ethanol.  DNA was then resuspended in dH2O, treated with RNase (final 

concentration 1 mg/mL) for 2 hr, and digested with XhoI overnight at 37ºC.  Digested samples 

were precipitated, resuspended in TE buffer, and precisely quantified using a Hoefer TKO 100 

minifluorometer and TKO standard kit.  Samples containing 5 µg of total DNA were heated for 

15 min at 70ºC and cooled at room temperature.  NaOH then was added to a final concentration 

of 0.1 N, and samples were incubated at 37ºC for 15 min.  Samples were then mixed with 

alkaline loading dye and loaded onto a horizontal 0.6% alkaline agarose gel and electrophoresed 

at 30V (1.5V/cm gel length) for 16 hr.  After ethidium bromide staining to confirm even loading 

and standard gel washes, the DNA was transferred to Zeta-Probe GT nylon membranes (Bio-

Rad).  The membranes were cross-linked and hybridized with 32P-labeled human mtDNA 

specific PCR-generated probe.  Hybridization and subsequent washes were performed according 

to manufacturer’s recommendations.  DNA damage and repair were determined as previously 

described (25, 35).  The neutral Southern Blot was performed the same way except that there was 

no alkaline pretreatment of samples and no NaOH in the loading dye, the 0.6% agarose gel, or 

the electrophoresis buffer.  DNA samples were digested with XhoI and EcoRI, and hybridization 

was performed with 32P nick-translated MTS-OGG fragment. 

Viability studies:  The CellTiter 96 assay (Promega), which assesses mitochondrial 

function, was done according to manufacturer’s recommendations 24 h after 1 h exposure to 200, 

300, 400, and 500 µM of menadione.  Briefly, the reagent is added to culture wells, and the cells 

are incubated for 2 hours.  The tetrazolium compound is converted to a colored formazan product 

that is measured at 490 nm in a 96-well plate reader.  Trypan blue exclusion studies were also 
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performed on controls and samples treated with menadione and allowed 6 h recovery in growth 

media.  Additionally, a clonogenic survival assay also was employed to determine survival as 

well as the capacity of surviving cells to proliferate.  MTS-OGG transfectants and control vector 

(pcDNA3) transfectants were carefully counted with a hemocytometer and 400 cells were plated 

into each 60 mm culture plate.  These cells were allowed 24 hr in normal culture medium to 

adhere, and then they were exposed to menadione exactly as described above except that 

concentrations of 25, 50, 75, and 100 µM were utilized due to the increased sensitivity of cells to 

oxidative stress when plated at the low density required for the clonogenic assay.  Each cell type 

was assayed at control (no menadione) and all 4 concentration levels in triplicate.  After 

exposure for 1 hr, normal culture medium was replaced and plates were incubated (5% CO2 at 

37ºC) for 10 days.  Then plates were rinsed with warm phosphate-buffered saline and fixed with 

a solution of 3 parts methanol: 1 part acetic acid for 10 min.  Finally, the plates were stained with 

hematoxylin and colonies were counted. 

Data analysis:  All statistical analyses were performed using Student’s T-test to compare 

individual means with significant differences at a confidence level of p < 0.05. 

RESULTS 

MTS-OGG transfection – In order to increase repair of oxidative damage in mtDNA, a 

construct with the human 8-oxoguanine glycosylase (hOGG) gene fused to the mitochondrial 

targeting sequence from human MnSOD (32) was prepared (Figure 1a).  After transfection of 

HeLa cells with the MTS-OGG construct or control vector (pcDNA3) and 2 weeks of selection, 

DNA was isolated from pcDNA3- (vector only) transfected cells and MTS-OGG cells, and a 

neutral Southern blot was performed to check for integration of the transfected DNA.  Figure 1b 

shows that the MTS-OGG sequence was recognized only in the MTS-OGG-transfected cells, 
 
Figure 1

here 
9 
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where the predicted 1.1 kb band can be seen.  

Detection of additional OGG protein in mitochondria – Mitochondrial, nuclear, and 

cytoplasmic fractions were isolated from vector only transfectants and MTS-OGG transfectants 

by differential centrifugation, and Western blots were performed with a polyclonal antibody to 

human OGG1.  Figure 2 shows additional 39 kDa recombinant protein in the mitochondria of the 

MTS-OGG transfected sample.  No differences in protein bands were detected in lanes 

containing nucleus- or cytosolic-enriched fractions.  Even loading was confirmed with 

Coomassie staining. To further establish that the recombinant protein is in mitochondria, we also 

performed Western blot analysis for the mitochondrial protein cytochrome C and found it in the 

mitochondria (but not nucleus or cytosol) with equal amounts in both the vector and MTS-OGG 

samples (Figure 2). Thus, it can be concluded that the construct is functional in targeting 

additional human OGG to mitochondria.  

OGG Activity -  In order to analyze the enzymatic activity of the additional OGG protein 

in the mitochondria of stable transfectants, an oligonucleotide cleavage assay was used.  A 24-bp 

oligonucleotide with 8-oxoguanine at the 10th nucleotide was incubated with purified bacterial 

FPG (control) or extracts from isolated mitochondria or nuclei from MTS-OGG and vector-only 

transfectants, as described in the experimental procedures.  Figure 3 shows the intact DNA and 

cleavage products from each of these reactions.  Equal amounts of protein were used in each 

comparison between vector and MTS-OGG transfected cells.  The mitochondrial extracts from 

MTS-OGG-transfected cells are better able to cleave the DNA than the control cells.  The 

nuclear extracts, on the other hand, show equal enzyme activity levels.  None of the extracts or 

purified FPG were able to cleave an identical oligonucleotide duplex with normal guanine at 

position 10.  Based on this assay, we conclude that the additional OGG protein targeted to 

Figure 2 
here 

Figure 3  
here 
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mitochondria is indeed functional in removal of 8-oxoguanine and strand cleavage. 

DNA Repair Analysis – Because the MTS-OGG cells have an elevated level of 

mitochondrial human OGG, which contains lyase activity, it is possible that repair of damage to 

the sugar-phosphate backbone is enhanced. To test for this, dose response studies were 

performed using different concentrations of menadione, which redox cycles with complex I of 

the electron transport chain to form superoxide radical (33, 34).  A concentration of 400 µM 

menadione produced an appropriate amount of lesions (~1 lesion per 104 normal nucleotides) in 

mtDNA from both MTS-OGG transfectants and control pcDNA3 transfectants.  Damage to 

nuclear DNA was undetectable at this dose using Southern blots or quantitative extended length 

PCR (not shown).  Therefore, repair experiments were performed in which MTS-OGG 

transfectants and pcDNA3  transfectants were exposed to 400 µM menadione, followed by either 

immediate lysis or lysis after repair intervals up to 6 h in normal culture medium.  Control 

cultures were exposed to drug diluent only.  DNA was isolated from the lysed cells, and 

quantitative Southern blots were performed to check overall damage levels and the subsequent 

repair of this damage.  As shown in Figure 4a, the pcDNA3 transfectants did not repair an 

appreciable amount of the damage to their mtDNA within the initial 6 h following drug removal,  
Figure 4 
here 
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whereas the MTS-OGG transfectants repaired most of the damage in this time interval.  The 

average amount of repair for each cell type is shown in Figure 4b.  Based on these results, it can 

be concluded that the additional OGG targeted to the mitochondria is a functional enzyme, and 

that mtDNA repair in these cells is more efficient than in the control transfectants.   

Viability Analysis – To investigate whether the observed increase in mtDNA repair 

translates into enhanced viability after oxidative insult, three assays were employed to evaluate 

the MTS-OGG transfectants as compared to the pcDNA3 transfectants.  First, the mitochondrial 

 
Figure 5
 here 
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function of these cells was analyzed 24 h after exposure to the menadione diluent (serum free 

culture medium) or 200, 300, 400, and 500 µM menadione.  Figure 5a graphically demonstrates 

the average of three independent experiments.  A progressive decrease in the ability of 

mitochondria to reduce tetrazolium compound to formazan was seen with increasing dose of 

menadione.  A significant difference in conversion to formazan was observed between MTS-

OGG cells and those transfected only with the vector at the 500 µM dose.  A Trypan blue 

exclusion assay was performed on cells treated likewise followed by 6 h of recovery time.  A 

significantly greater percentage of the MTS-OGG cells were able to exclude the dye after 6 h 

(Figure 5b).  However, because Trypan blue dye exclusion and tetrazolium reduction are only 

transient measures of viability and not necessarily indicative of long-term cell survival, a 

clonogenic survival assay also was utilized.  Cells from the two transfected cell lines were 

carefully counted and 400 cells plated into 60 mm dishes.  Due to the sparse plating conditions, 

these cells were more sensitive to the menadione than confluent cells.  Therefore, the doses 

utilized in this assay were lower than the doses used for DNA repair studies.  After 24 h in 

culture medium, the plates were treated with various doses of menadione for 1 h and then 

cultured for 10 days in normal culture medium.  The resulting colonies represent cells that were 

not only viable, but also able to proliferate.  Figure 6 reveals that MTS-OGG cells were 

significantly better able to produce colonies at all concentrations tested.  These viability data 

establish that MTS-OGG transfectants are better able to survive an oxidative challenge than the 
 
Figure 6

 here 
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control cells. 

DISCUSSION 

To our knowledge, this is the first report to describe the targeting of a recombinant repair 

enzyme to mitochondria in an effort to correct deficient repair of oxidative damage in the DNA 
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in this organelle. The isolate of HeLa cells used for these studies was selected because it was 

discovered that these cells do not repair oxidative damage to their mtDNA proficiently, and that 

they grow well in culture so stable transfectants could be easily obtained.  The Western blot data 

from isolated mitochondria confirm that the targeted DNA repair enzyme OGG actually 

localized to mitochondria. The MTS-OGG-transfected cells contained a 39 kDa molecular 

weight protein, which is the predicted size of the protein produced by the MTS-OGG construct. 

There was not a corresponding protein band in the vector-transfected cells. Further evidence that 

the recombinant protein actually is present in mitochondria is supplied by the finding that the 

mitochondrial protein cytochrome C is also present in the mitochondrial protein preparations. 

Differences in protein bands were not seen in nuclear or cytoplasmic extracts for MTS-OGG- or 

vector-transfected cells.  

Because the transfected protein contains both mitochondrial and nuclear localization 

sequences, the compartmentalization of the recombinant protein is in question. We feel that the 

answer to this issue lies partially with the positioning of the targeting sequence. It has been 

reported that when multiple targeting sequences are present on a protein, the one closest to the 

N-terminus usually dominates. This was demonstrated for another repair protein, uracil 

glycosylase. When the MTS is at the N-terminal region, this protein localizes exclusively to 

mitochondria. However, when the MTS is deleted, the protein localizes to the nucleus (36). In 

our recombinant protein, the MTS is closest to the N-terminus. The targeting of proteins to 

mitochondria also seems to be dependent upon the strength of the MTS. OGG1-1a, which has 

been found to have a weak MTS, predominantly localizes to the nucleus. When the nuclear 

localization sequence is deleted, the protein goes to mitochondria (37). The MTS that we 

selected is from MnSOD, and has previously been found to be a strong MTS that effectively 
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directs other proteins to mitochondria (38). Thus, we believe that it is the combined effect of a 

strong MTS and a position near the N-terminus of the recombinant protein, which has selectively 

targeted this repair enzyme to mitochondria. 

The enzyme activity and DNA repair studies show that the targeted repair protein is 

functional. Mitochondrial extracts from MTS-OGG-transfected cells had markedly increased 

enzyme activity than did parallel extracts from vector-transfected cells, when normalized for 

protein content, as determined by the use of an assay employing a duplex oligonucleotide 

substrate containing 8-oxoguanine. Moreover, the MTS-OGG-transfected cells were significantly 

more proficient at repairing oxidative damage in their mtDNA. In contrast, the enzyme activity 

for cleaving the 8-oxoguanine substrate was the same in nuclear extracts from both MTS-OGG- 

and vector-transfected cells. Therefore, it can be concluded that the recombinant enzyme was 

selectively targeted to mitochondria in an active form and that it has a profound effect upon the 

repair of oxidative damage in the DNA in this organelle. Additionally, when combined with 

viability studies, it is readily apparent that increased repair of oxidative lesions in mtDNA 

renders cells more resistant to the lethal effects resulting from heightened oxidative stress. 

The difference in cellular viability following menadione-induced damage is surprising if 

hOGG1 acts only on 8-oxoguanine.  However, there have been reports of independent AP lyase 

activity associated with the human and murine forms of this enzyme (39,40).  A very recent 

study on the murine homologue, mOGG1, concludes that it is a “bifunctional DNA glycosylase 

with uncoupled AP lyase activity.”  A variety of lesions are shown to be substrates (40).  The 

authors also suggest possible “direction of assembly of an AP site complex” including AP 

endonuclease and DNA polymerase by the OGG enzyme.  While the independent lyase activity 

is lower than the glycosylase activity, overexpressed quantities of the enzyme may affect the 
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processing of AP sites in DNA.  We believe that this independent lyase activity is responsible for 

the repair data seen in Figure 4 in which the removal of alkali sensitive sites is enhanced in the 

MTS-OGG cells.  Because oxidative stress causes a variety of damages to DNA, many which are 

not substrates for OGG1, it can be questioned why increased expression of OGG1 is protective. 

We feel that the answer is that a variety of damages contribute to the demise of the cell. If one 

group of lesions is diminished, the cell does not cross the threshold into irreversible cell death. 

The present work does not rule out the possibility that other enzymes also may be protective or 

that combinations of enzymes may enhance viability even more. Indeed, these are currently 

active areas of investigation in our laboratory.   

We, and others subsequently, have identified a variety of cells that efficiently repair 

oxidative damage to mtDNA generated by several agents, including menadione (20,25,35). 

Therefore, the ability to proficiently repair oxidative damage does not appear to be dependent 

upon the type of damaging agent used. As can be seen from the present results, this repair is 

markedly enhanced by the overexpression of a DNA glycosylase/AP lyase.  We have converted a 

cell type with a mtDNA repair deficient phenotype to a proficient one, and the result is increased 

survival after menadione treatment. 

Although the identification of the exact mechanisms whereby an alteration in mtDNA 

repair affects cell viability remain to be fully elucidated, we believe that enhanced repair works 

to restore a normal lesion equilibrium in mtDNA. When oxidative stress increases, there is a rise 

in the oxidative lesions in mtDNA. At some point as this stress progresses, there will be more 

lesions in the mtDNA than the endogenous repair system can remove in order to keep the 

number of lesions in the mitochondrial genome at a manageable level. This will cause an 

alteration in the transcription of this genome, either through base mispairing to cause defective 
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transcripts or decreased transcription resulting from polymerase blocking. Either process will 

alter the flow of electrons by changing key electron transport complexes such that more ROS 

will be produced (41). This increased production of ROS will exacerbate the ongoing oxidative 

stress in the cell and lead to altered cellular functions due to elevated oxidative damage and 

decreased ATP production. As this process continues, increased cellular death will transpire 

through either apoptotic or necrotic mechanisms. By enhancing the ability of the cell to repair the 

increase in lesions in its mtDNA resulting from heightened oxidative stress, the lesion 

equilibrium in mtDNA can be maintained within normal limits and the vicious cycle initiated by 

elevated oxidative stress can be prevented. Our recent studies with glial cells have shown that the 

repair of oxidative damage in mtDNA correlates well with the ability of different glial cell 

populations to resist the induction of apoptosis (42). In a similar manner, we feel that the 

increase in mtDNA repair capacity in the present study works to keep the lesion equilibrium 

within a normal range following the oxidative stress induced by menadione. Because increased 

lesions in mtDNA have been associated with the pathogenesis of many chronic diseases, 

including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and noninsulin-

dependent diabetes mellitus (1-11), we feel that targeting of repair enzymes to mitochondria may 

be a feasible gene-therapy strategy for either preventing or delaying the onset of these diseases. 

Additionally, this approach may prove useful for protecting normal cells during certain forms of 

cancer chemotherapy, and for preventing deleterious phenotypes associated with the normal 

process of aging. The present work represents the initial steps in the development of this 

protective strategy. 

The authors wish to thank Dr. Sankar Mitra for a gift of hOGG1 antibody and Sean 
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FIGURE LEGENDS 

Fig. 1.   MTS-OGG DNA is transfected into HeLa cells.  A.  The construct was prepared with 

a mitochondrial targeting sequence from human MnSOD upstream (5’) from the human OGG 

gene in the pcDNA3 vector.  B.  The OGG sequence is detectable in transfected cells only.  A 

Southern blot was performed using total DNA isolated from untransfected cells, cells transfected 

with the MTS-OGG construct, or the vector alone.  The probe corresponds to the MTS-OGG 

segment of the construct. 

Fig. 2.  OGG protein is targeted to mitochondria.  After transfection and selection, the control 

and MTS-OGG transfectants were lysed with digitonin, and cell fractions were separated using 

differential centrifugation.  Mitochondrial, nuclear, and cytosolic protein was then analyzed in a 

Western blot with anti-OGG.  The OGG band observed in mitochondria of MTS-OGG cells but 

not vector controls is ~39 kD.  Also shown is a separate portion of the same blot probed with 

anti-cytochrome C (~15 kD).  SDS-Page gels were loaded with 50 µg of protein from:  lane 1, 

MTS-OGG mitochondrial extract; lane 2, control mitochondrial extract; lane 3, MTS-OGG 

nuclear extract; lane 4, control nuclear extract; lane 5, MTS-OGG cytosolic extract; lane 6, 

control cytosolic extract. 
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Fig. 3.  Mitochondrial extracts from MTS-OGG transfectants have additional OGG 

activity.  A labeled 24-mer with 8-oxoguanine at the 10th nucleotide (or identical 24-mer without 

8-oxoguanine in lanes 4, 6, 8, 10, 12, and 14) was incubated with FPG or cell fraction extracts 

from MTS-OGG or vector control cells.  The reactions contained 0.2 pmol of labeled duplex 

DNA along with:  lane 1, 0.5 U FPG; lane 2, water only; lanes 3 and 4, MTS-OGG 

mitochondrial extract; lanes 5 and 6, control mitochondrial extract; lanes 7 and 8, MTS-OGG 

nuclear extract; lanes 9 and 10, control nuclear extract; lanes 11 and 12, MTS-OGG cytosolic 

extract; lanes 13 and 14, control cytosolic extract.  Shown is a representative autoradiograph 

from four independent experiments. 

Fig. 4.  Mitochondrial DNA repair of oxidative damage is significantly enhanced in MTS-

OGG transfectants.  A. Vector only and MTS-OGG transfectants were drugged with 400 µM 

menadione for 1 h and either lysed immediately or allowed repair time in their normal media and 

then lysed.  Control samples were exposed to the drug diluent only.  Total DNA was isolated 

from the lysates and analyzed in quantitative alkaline Southern blots with a probe corresponding 

to part of the human mitochondrial genome.  A representative autoradiograph is shown here.  B. 

Solid line – MTS-OGG, and broken line – vector only.  Average results +/- S.E.M. from 4 

separate repair experiments.  An asterisk (*) indicates a significant difference (p<0.05).   

Fig. 5.  MTS-OGG mitochondria are more functional after oxidative challenge.  Cells were 

treated with 200, 300, 400, and 500 µM menadione for 1 h and then placed in their normal 

media.  A.  After 24 h, the CellTiter 96 assay for reduction of a tetrazolium compound to 
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formazan was then performed on each sample.  B.  After 6 h, the ability of the cells to exclude 

Trypan blue dye was assessed.  Shown are average results +/- S.E.M. from 3 separate repair 

experiments.  An asterisk (*) indicates a significant difference (p<0.05).   

Fig. 6.  MTS-OGG transfectants survive and multiply to form colonies after oxidative 

challenge.  Cells were plated sparsely (400 cells per 60 mm dish) and allowed 24 hr to adhere. 

They were then treated with 25, 50, 75, or 100 µM menadione for 1 h and then placed in their 

normal media for 10 days.  Colonies were then fixed, stained, and counted.  An average of the 

results +/- S.E.M. from 4 separate clonogenic assays is shown.  An asterisk (*) indicates a 

significant difference (p<0.05).   
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