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Abstract
INTRODUCTION—Non-enzymatic glycation (NEG) is a post-translational modification of the
organic matrix that results in the formation of advanced glycation end-products (AGEs). In bone, the
accumulation of AGEs play an important role in determining fracture resistance, and elevated levels
of AGEs have been shown to adversely affect the bone’s propensity to brittle fracture. It was thus
hypothesized that the suppression of tissue turnover in cortical bone due to the administration of
bisphosphonates would cause increased accumulation of AGEs and result in a more brittle bone
matrix.

MATERIALS AND METHODS—Using a canine animal model (n=12), we administered daily
doses of a saline vehicle (VEH), alendronate (ALN: 0.20 mg/kg, 1.00 mg/kg), or risedronate (RIS:
0.10mg/kg, 0.50 mg/kg). After a one-year treatment, the mechanical properties, intracortical bone
turnover, and the degree of non-enzymatic crosslinking of the organic matrix were measured from
the tibial cortical bone tissue of these animals.

RESULTS—There was a significant accumulation of AGEs at high treatment doses (+49 to +86%;
p<0.001), but not at doses equivalent to those used for the treatment of postmenopausal osteoporosis,
compared to vehicle. Likewise, post-yield work-to-fracture of the tissue was significantly reduced
at these high doses (−28% to −51%; p<0.001) compared to VEH. AGE accumulation inversely
correlated with post-yield work-to-fracture (r2=0.45; p<0.001), suggesting increased AGEs may
contribute to a more brittle bone matrix.
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CONCLUSION—High doses of bisphosphonates result in the accumulation of AGEs and a
reduction in energy absorption of cortical bone. The increased accumulation of AGEs in 4 of 28 these
tissues may help explain altered bone matrix quality due to the administration of BPs in animal models
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Bisphosphonates; alendronate; risedronate; non-enzymatic glycation; advanced glycation end-
products; animal models; osteoporosis

INTRODUCTION
Bisphosphonates, such as alendronate and risedronate, are a class of anti-remodeling drugs that
are commonly used for clinical treatment of osteoporosis [1]. Bisphosphonates specifically
inhibit osteoclastic activity during resorption by preventing attachment to the bone surface and
by inducing early apoptosis to reduce the amount of bone resorbed [2,3]. This suppression of
resorption in bone leads to a reduction in remodeling space, increased average tissue
mineralization, and altered tissue mineral density distribution [4], which, in turn, decreases
fracture risk [5]. Despite the reductions in fracture risk, previous studies have shown that
bisphosphonates-mediated alterations adversely affect the energy dissipation capabilities of
bone, reducing bone’s overall toughness [6–10].

Because bone is a composite consisting of organic and mineral phases, changes to either of its
constituents would inevitably alter tissue fracture resistance. Collagen, composing
approximately 90% of the organic matrix, is susceptible to the accumulation of advanced
glycation end-products (AGEs) created by a series of post-translational modifications, through
the process of non-enzymatic glycation (NEG). NEG occurs when reducing sugars
spontaneously condensate with free amino groups such as lysine and arginine, resulting in the
formation of AGEs. The accumulation of AGEs may be more pronounced in long-lived tissues
[11] because AGEs are removed from the extra-cellular matrix when the afflicted tissues are
remodeled [12–15]. Thus, the accumulation of AGEs may be a consequence of imbalanced
tissue turnover relative to the rate of NEG formation [16,17]. More importantly, the increased
accumulation of AGEs has been shown to modify the organic matrix by reducing the energy
dissipation mechanisms at the whole bone, apparent, and tissue levels [18–21].

Because bisphosphonates suppress turnover, leading to an overall increase in mean tissue age
[4], the reduction in remodeling also may result in the decreased removal of AGEs from the
extracellular matrix. Thus, we hypothesized that (1) bisphosphonate-mediated suppression of
tissue turnover would result in an increased accumulation of AGEs in cortical bone and (2)
this increased accumulation of AGEs would be associated with alterations in material-level
mechanical properties. In order to test these hypotheses, intact beagle dogs were treated with
daily doses of either vehicle, alendronate (ALN: 0.20mg/kg, 1.00mg/kg), or risedronate (RIS:
0.10mg/kg, 0.50mg/kg) for one year. Mechanical properties and the degree of non-enzymatic
crosslinking (e.g. AGEs) were measured from the tibial cortical bone tissue.

METHODS
Animals

Detailed methods regarding experimental design have been previously reported [8]. Briefly,
sixty skeletally mature female beagles (1.3 ± 0.02 years old) were assigned to five treatment
groups (n = 12/group) by matching body weights. All dogs were treated daily for 1 year with
oral doses of vehicle (VEH), risedronate sodium (RIS, 0.10 or 0.50 mg/kg/day; Procter and
Gamble Pharmaceuticals, Inc.), or alendronate sodium (ALN, 0.20 or 1.00 mg/kg/day; Merck
and Co., Inc). These doses were chosen to approximate, on a mg/kg basis, doses used for the
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treatment of post-menopausal osteoporosis (ALN 0.2 and RIS 0.1) or Paget’s disease (ALN
1.0 and RIS 0.5). Both risedronate and alendronate were dissolved in saline and administered
to the dogs orally with a syringe. Vehicle-treated animals received 1 mL/kg/day of saline. Prior
to necropsy, animals were injected with calcein (5 mg/kg, intravenously dosed on a 2-12-2-5
schedule) to allow histological measures of dynamic bone formation. At sacrifice, the distal
tibia was processed for histology while the remainder of the cortical shaft was processed for
mechanical testing and measurement of AGEs.

Histology
Using an automatic tissue processor (Shandon/Lipshaw, Pittsburgh, PA), distal tibia specimens
were cycled through a graded series of ethanols, cleared using xylene, and infiltrated with
methyl methacrylate (MMA; Aldrich, Milwaukee, WI) using routine embedding procedures.
Transverse sections (~100µm) were cut using a diamond wire saw (Histosaw; Delaware
Diamond Knives, Wilmington, DE). Histological measurements were made on a single cross-
section using a semiautomatic analysis system (Bioquant OSTEO 7.20.10; Bioquant Image
Analysis, Nashville, TN) attached to a microscope equipped with an ultraviolet light source
(Nikon Optiphot 2; Nikon, Tokyo, Japan). Intracortical bone remodeling was assessed by
counting the number of labeled osteons (L.On.N). This parameter was used as bisphosphonates
have consistently been shown to alter mineralizing surface, of which L.On.N is a corollary for
the intra-cortical envelope [8,22].

Mechanical testing
Cortical bone microbeams were sectioned longitudinally from the mid-diaphysis, near the
superior end in the anterior-medial quadrant, (1.5mm2 × 8mm) using an ISOMET 11–1180
low-speed diamond blade saw (Buehler Corp., Lake Bluff, IL). The microbeams were loaded
to failure in 3-point bending (Span: 4.9mm; 0.01mm/s) using a custom-made bending jig and
the Enduratec Bose ELF 3200 micromechanical test system (Enduratec Inc, Eden Prairie, MN).
Microbeam deflections were independently measured using a high-resolution Canon video
camera system (Canon USA, Lake Success, NY), and analyzed using a custom image analysis
program written in Matlab (Mathworks Inc, Natick, MA). The following parameters were
computed from the force-displacement data and the respective geometries: Bending modulus
(E - Eq. 1), ultimate stress (σUlt – Eq. 2), loss of tangent stiffness (Eq. 3 – Fig 1a), the elastic
work (defined as the area under the linear region of the force displacement curve; Fig 1a), and
the post-yield work-to-fracture (defined as the difference between total work and the elastic
work; Fig 1b). The transition from to yielding determined using an automated criteria (executed
in Matlab) that uses a 10% deviation from the initial stiffness.

(Eq. 1)

Where P is the applied load, y is the displacement, L is the length of the lower span, h is the
height of the specimen, and I is the bending moment of inertia (defined as

.

(Eq. 2)

Where Pult is the maximum load on the force-displacement curve.
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(Eq. 3)

Where kelastic and kfinal are the slopes between the origin and the end point of the linear region
force-displacement curve, and between the origin and ultimate point of the force-displacement
curve, respectively. A decrease in the loss of tangent stiffness is associated with a more brittle
fracture.

Measurement of Advanced Glycation End-products (AGEs)
After mechanical testing, the bone tissues were demineralized by incubating the specimens in
a 20% formic acid solution for seven days. The solutions were renewed every 24 hours.
Demineralization end-point determination assays (Polysciences, Warrington, PA) were used
to verify demineralization of each specimen. The demineralized bone tissues were digested
with papain collagenase (0.4mg/ml in 0.1 mM sodium acetate buffer, pH 6.0, 16 hours, 65°C).
AGEs content was determined using fluorescence readings taken with a Synergy-HT
Microplate reader at wavelengths of 370nm/440nm excitation/emission (Biotek USA.
Winooski, Vermont) against a quinine sulfate standard [18], and normalized by the collagen
content for the sample. The amount of collagen for each cortical bone specimen was
approximated based on the amount of hydroxyproline. Collagen is assumed to contain 14%
hydroxyproline by mass [23,24], and it was determined using the same plate reader as above
that recorded the absorbance of the digested samples against a commercially available
hydroxyproline standard (Sigma-Aldrich USA, St. Louis, MO) at the wavelength of 570nm.

Statistical analyses
ANOVA was used to determine the effects of bisphosphonates treatment on mechanical
behavior, AGE composition, and bone remodeling of the cortical bone tissue. Separate
ANOVAs were also used for clinical doses vs the VEH, and high doses vs the VEH to determine
whether the effects were present due to low- or high- doses. A Kolmogorov-Smirnoff test for
normality was performed on all data, and when found to be non-normally distributed, a
Kruskal-Wallis non-parametric ANOVA was used instead. Post-hoc comparisons between
treatments were done using Fisher’s protected-least-significant-difference (pLSD) for
parametric data, or Mann-Whitney U tests for nonparametric data, when overall p-values were
less than 0.05. The relationships between two measured parameters were evaluated with either
linear or nonlinear regressions. Groups were considered statistically significant when the p-
value was less than 0.05. All statistical analyses were performed using SigmaSTAT 3.0
(Chicago, IL, SPSS, Chicago, IL). Error bars in the figures represent standard errors of the
mean of the respective data.

RESULTS
At doses equivalent to those used for treatment of post-menopausal osteoporosis, there was no
significant effect of either risedronate or alendronate on AGEs accumulation (p=0.75; Figure
2) or mechanical properties of the cortical bone tissue at the tibial diaphysis (Table I). However,
higher bisphosphonates doses significantly increased AGEs accumulation (p<0.001; Figure 2),
including an 81% increase for risedronate, and a 49% increase for alendronate compared to
vehicle treatment (Figure 2). The high doses of alendronate and risedronate also significantly
decreased the post-yield work-to-fracture (p<0.001; Figure 3) and loss of tangent stiffness
(p=0.03; Figure 4) compared to vehicle. No differences were found in the bending modulus
(p=0.95) and ultimate stress (p=0.88) even at these higher doses of bisphosphonates treatment
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(Table I). There were no differences between RIS and ALN at equivalent doses for any
measured parameters.

The significant increase in AGEs was inversely correlated with post-yield work-to-fracture
(p<0.001; Figure 5) and with the loss of tangent stiffness (p=0.004; Figure 6).

Intracortical bone turnover was not significantly different with either the high (−51%, p=0.13)
or clinical (−8%, p=0.27) doses compared to VEH (Table 1). Error bars in all figures represent
the standard errors of the mean of the respective means.

DISCUSSION
The data presented here show that advanced glycation end-products (AGEs) do not accumulate
in cortical bone of the canine tibia following one year of risedronate or alendronate treatment
at doses comparable to those used for the treatment of postmenopausal osteoporosis. They do
demonstrate, however, that significant accumulation of AGEs occur with higher doses, similar
to those used for the treatment of Paget’s disease. This may contribute to the documented
observation of reduced tissue toughness, both in this study and others [8–10,25] using higher
doses. Our data clearly show that accumulation of AGEs is associated with reduced post-yield
energy dissipation of bone tissue prior to fracture. Therefore, any significant accumulation of
AGEs could have serious implications for the health of the bone tissue.

Modification of the organic matrix through nonenzymatic glycation (NEG) results in the
formation of AGEs that form cross-links such as pentosidine and vesperlysine (among others)
that can be detected by fluorescence of the bone tissue [12,26]. NEG occurs when extracellular
reactive sugars form Schiffs’ bases with free amino groups in lysine, hydrosylysine, or arginine
residues on the collagen molecule. The subsequent structure then undergoes Amadori
rearrangement and ultimately results in a family of molecules known as AGEs [12]. Because
there are numerous unstable and stable intermediates during this process, many of which are
not fully characterized, the use of florescence spectroscopy offers a more generalized means
of AGE assessment since multiple products will fluoresce at the characteristic wavelength
[27–29]. This technique is well-established and has been validated in a variety of tissues and
across anatomical locations [11,30]. AGE-formation occurs over a period of years [14], thus
proteins with long half-lives, such as collagen, can accumulate substantial AGEs with age
[16,19,21]. Because NEG of collagen occurs in the presence of extracellular sugars, diabetic
bone is known to be highly glycated and has been demonstrated to have poor fracture resistance
[32–33].

The accumulation of AGEs in the organic matrix may be regulated by bone turnover, which
removes the AGEs that are formed as a consequence of NEG [17]. In this study, labeled osteon
number (L.On.N.) was used as a metric of bone turnover and displayed a decreasing
relationship to AGE accumulation. The accumulation of AGE with reduced turnover is
consistent with a previous study using the same group of animals that showed activation
frequency, a measure of bone tissue turnover, significantly correlated in an inverse manner
with pentosidine at the vertebral body, that explained 36% of the variation in AGE
accumulation [34]. The lack of significant difference between bone turnover in this study may
be related to the inherently lower rate of turnover in cortical bone than in cancellous bone in
the control animals [35]. Taken together, these findings support the idea that increased
accumulation of AGEs in the extra-cellular matrix could be mediated by suppression of bone
remodeling.

Bone primarily derives its stiffness from its mineral phase, and its post-yield properties for its
organic phase [36]. Consequently, because NEG affects only the organic moiety of bone,
parameters that account for post-yield aspects of the force-displacement curve are the most
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sensitive to changes in the accumulation of AGEs. Increased post-yield work-to-fracture and
loss of tangent stiffness are indicators of the energy dissipation mechanisms in bone, and
increased quantities are desirable aspects of overall tissue mechanical behavior. It is important
to note that although these parameters are both related to the post-yield behavior at the material
level, post-yield work-to-fracture and loss of tangent stiffness are independently derived
parameters that reflect different aspects of bone behavior (p=0.02; r2 = 0.09). Post-yield work-
to-fracture is a parallel parameter to post-yield strain energy and represents bone’s ability to
sustain deformation without catastrophic failure. Thus the decrease in post-yield work-to-
fracture observed here is consistent with decreased energy dissipation due to the accumulation
of AGEs [18,21]. Loss of tangent stiffness represents the material’s ability to resist fracture
through toughening mechanisms. Therefore the decreased values of tangent stiffness found
here indicate that bisphosphonates treatment is associated with the reduction of bone’s
toughening mechanism [18,21].

AGEs are inversely correlated to bone toughness [18,21], and specific products such as
pentosidine explained up to 35% of the variation in cortical bone toughness in bending [19],
while fluorescent AGEs can explain up to 43% of loss of post-yield mechanical behavior
[21]. Increased AGE concentration in bone also has been shown to reduce the ultimate strain
[37] and post-yield deformation [19,21]. This is because crosslinks formed through non-
enzymatic glycation stiffen the organic matrix of bone and subsequently reduce the energy
dissipation characteristics of bone [21]. Consistent with previous studies, this increased
accumulation of AGEs due to bisphosphonates treatment can explain the 15–20% reduction in
bone toughness following one year of treatment [6–8], and the 27% following three years of
treatment with alendronate at doses used for the treatment of osteoporosis [10]. Because the
administration of bisphosphonates affects may alter fracture resistance in the bone tissue, such
tissue mineralization [8–10], microdamage accumulation [8–10], and AGEs, it is thus not
possible to isolate the effects of NEG due to BPs administration. Although changes in bone
toughness are often associated with increased microdamage accumulation in these animal
experiments, recent studies strongly suggest accumulated microdamage is not a key contributor
to changes in toughness [10,38]. Changes in mineralization have also been found to have no
significant correlation to changes in toughness in these experiments [39]. Furthermore, changes
in one aspect of matrix quality may affect other aspects of matrix quality. For example, NEG
has been demonstrated to alter microdamage formation in bone [40]. In this study we have
examined specific parameters that has been previously demonstrated to be associated with
increased AGEs [18,21]. Based on the regressions shown in this study, NEG may directly or
indirectly account for 45% of the decrease in tissue-level fracture resistance due to
bisphosphonates administration.

The use of non-ovariectomized beagle dogs in this study may limit the translation of these
results to rapid turnover and low bone mass conditions such as post-menopausal osteoporosis.
Although the higher doses used in the current study are equivalent, on a mg/kg basis, to those
used for treatment of Paget’s disease, the dosing at these high levels is not for a year. As such,
it is not clear to what extent AGEs would accumulate, and how the material properties would
be reduced, when high doses are administered for shorter periods of time.

In conclusion, one-year of daily oral bisphosphonates therapy at doses exceeding those used
to treat postmenopausal osteoporosis increased the level of advanced glycation end-products
and decreased tissue-level fracture resistance. These changes did not occur at dose-levels
equivalent to those used to treat postmenopausal osteoporosis. Overall, there was a significant
inverse correlation between AGE accumulation and tissue-level fracture resistance
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Fig 1.
Schematics for the calculation of the loss of tangent stiffness (Top -1a); and elastic and post-
yield work-to-fracture (Bottom –1b) on the force-displacement curve. Where kelastic and
kfinal are the slopes between the origin and the end point of the linear region force-displacement
curve, and between the origin and ultimate point of the force-displacement curve, respectively.
The elastic work (Welastic) is the area under the linear portion of the force displacement curve
and the post-yield work-to-fracture (Wpost-yield) is the difference between the total area under
the force-displacement and Welastic. The linear portion of the force displacement curve was
determined by an automated criteria (executed in Mathlab) that uses a 10% deviation from
initial stiffness to calculate the transition to non-linear behavior.
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Fig 2.
There was no significant effect of bisphosphonates at clinical doses on AGE accumulation.
High doses (5x clinical dose) resulted in significant AGE accumulation (p<0.001; ANOVA)
ALN and RIS-treated animals showed no significant difference between the drugs at dose-
equivalents. Asterisks denote significance when compared to the vehicle.
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Fig 3.
There was no significant effect of bisphosphonates at clinical doses on post-yield work-to-
fracture when compared with the vehicle. Higher doses (5x clinical dose) resulted in a
significant reduction in the post-yield work-to-fracture (p<0.001) in ALN and RIS-treated
animals with no significant difference between the drugs at dose-equivalents. Asterisks denote
significance when compared to the vehicle.
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Fig 4.
There was no significant effect of bisphosphonates at clinical doses on the loss of tangent
stiffness of the cortical beams compared with the vehicle. Higher doses 5x clinical dose resulted
in a significant reduction in the loss of tangent stiffness of the cortical bone tissue in ALN and
RIS-treated animals (p=0.03; ANOVA) with no significant difference between the drugs at
dose-equivalents. Asterisks denote significance when compared to the vehicle.
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Fig 5.
Post-yield work-to-fracture in cortical microbeams shows a significant negative correlation
with AGEs accumulation (p<0.001; Non-linear regression).
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Fig 6.
Loss of tangent stiffness in the cortical bone tissue shows a significant negative correlation
with AGE accumulation (p=0.004; Linear regression).
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Fig 7.
Intracortical remodeling of the tibia, as marked by L.On.N, was suppressed 51% with high-
dose bisphosphonates compared to VEH (p=0.13) while clinical doses had minimal effect (−8%
vs VEH; p = 0.27) after one year.
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