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Abstract 
 

 Most empirical research in health economics is conducted with the goal of providing 

scientific evidence that will serve to inform current and future health policy.  The use of 

parametric nonlinear regression (NR) methods for empirical analysis in health economics 

abounds.  Studies that offer clear policy-relevant interpretations of NR results are, however, rare.  

We offer a comprehensive policy analytic framework within which the applied researcher can:  

1) clearly define the policy-relevant estimation objective; 2) consistently estimate that objective 

using NR methods designed to account for the possible endogeneity of the policy variable of 

interest; 3) conduct correct asymptotic inference; and 4) offer policy-relevant interpretations of 

the empirical results.  For binary policies, Rubin (1974, 1977) developed the potential outcomes 

framework (POF). We propose a generally applicable extension of the POF (EPOF) which 

covers a broad range of policy analytic contexts.  In particular, our EPOF accommodates: a) a 

non-binary policy variable of interest ( pX ); b) policy-relevant counterfactual versions of pX  that 

are not fixed values; and c) a policy-defining increment to pX  that is not constant. Moreover, our 

EPOF facilitates the use of extant nonlinear regression (NR) methods that correct for potential 

bias due to the endogeneity of pX .  As a case in point, we consider the analysis of potential 

gains in infant birth weight that may result from a prenatal smoking prevention and cessation 

policy which, if fully effective, would maintain zero levels of smoking for non-smokers 

(prevention) and convince smokers to quit before becoming pregnant (cessation).  In the context 

of our EPOF, using endogeneity-correcting NR methods, we re-analyze the data examined by 

Mullahy (1997) and estimate the potential effect of the smoking prevention/cessation policy 

described above.  The EPOF should serve as a useful guide to applied health policy analysts. 

  



 
 

1.  Introduction  

 Most empirical research in health economics is conducted with the goal of providing 

scientific evidence that will serve to inform current and future health policy.  Such policy 

analytic studies typically focus is on a particular variable (the policy variable -- Xp) that is at 

present, or will in the future be, under the control of a policy-making entity.  Broadly stated, the 

key policy analytic objective is estimation of the effect that a change in pX would have on a 

targeted policy relevant outcome of interest (Y) [henceforth the policy effect (PE)].  For contexts 

in which pX  is binary, Rubin (1974, 1977) developed the potential outcomes framework (POF) 

which facilitates clear definition and interpretation of various policy relevant treatment effects. 

The key concept in this framework is the potential outcome ( jY ) – the random variable 

representing the outcome as it would have manifested if the value of pX  were counterfactually 

fixed (i.e., exogenously mandated to be) at a specified value (j = 0 or 1) ceteris paribus.  In the 

POF, the policy effect is measured as the difference between the distributions of 0Y  and 1Y  or 

some particular aspect (parameter) thereof.  In many contexts relevant to health policy, however, 

two required features of the POF do not hold, viz.:  1) pX  is often non-binary -- i.e. it is a 

discrete (e.g. a count) or continuous variable; and 2) neither the policy relevant versions of pX  

nor the policy relevant increment to pX  are to be fixed in value – instead they would vary across 

the population (i.e., they are random variables rather than fixed values).  As a case in point, we 

consider the analysis of potential gains in infant birth weight (Y) that may result from effective 

prenatal smoking prevention and cessation policy.  Here, pX  represents smoking during 

pregnancy and the policy of interest, if fully effective, would maintain zero levels of smoking for 
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non-smokers (prevention) and convince smokers to quit before becoming pregnant (cessation).  

It is clear in this example that the relevant pre-policy version of pX  is not fixed in value – it is 

the random variable representing the pre-policy distribution of smoking levels across the 

population of pregnant women.  By the same token, the policy-driven increment required to 

bring individual prenatal smoking levels to zero must also vary across the population. We 

propose a generally applicable extension of the POF in which: a) pX  need not be binary; b) 

counterfactually imposed policy-relevant versions of pX  need not be fixed values; and c) the 

policy-defining increment to pX  need not be a constant.1  Moreover, our extended POF is 

designed to facilitate empirical policy analysis using extant nonlinear regression (NR) methods 

that correct for possible bias due to the endogeneity of pX . 

 We denote the potential outcome as *
pX

Y  and the counterfactually mandated version of 

the policy variable as *
pX  (possibly a random variable).  In our extended POF, the policy effect of 

interest can be broadly stated as the difference between the distributions of 
p1XY  and 

p2XY  [or 

some particular aspect (parameter) thereof], where p1X  and p2X  represent well-defined and 

distinct counterfactually imposed pre- and post-intervention versions of the policy variable, 

respectively.  Without loss of generality, we represent the policy increment and pre- and post-

policy scenarios as Δ, *
p1 pX X

 
and *

p2 pX X Δ  , respectively; all of which are, in general, 

                                                 
1 Angrist and Pischke (2009) extend the POF to analyses of policies in which pX

 
is non-binary.  

Their extended POF does not, however, explicitly accommodate features (b) and (c). 
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random variables (possibly degenerate).2,3  For the remainder of the discussion we focus on the 

following average incremental effect (AIE) as the policy effect of interest 

 
 

 
* *
p pX Δ X

AIE(Δ) E[Y ] E[Y ]


  .       (1) 

 
Expression (1) is, in fact, quite general.  For example, when the policy variable is binary, if we 

set *
pX 0  and Δ = 1 then (1) measures the average treatment effect (ATE).  When the policy 

variable is continuous and Δ approaches 0 then 
Δ 0
lim (AIE(Δ) /Δ)


 represents the average 

marginal effect (AME) of an infinitesimal change in the policy variable. Placing (1) in the 

context of our smoking and birth weight policy analysis, we have that *
pX  is the random variable 

representing the pre-policy distribution of smoking levels for pregnant women and *
pΔ = X  

(also a random variable). 

 The remainder of the paper is organized as follows.  In the next section, we discuss our 

general approach to the specification (estimation) of (1) [and all of its interesting variants] using 

extant NR models (methods) that are designed to account for the potential endogeneity of pX .  

Section 3, details the implementation of two such endogeneity-correcting NR models (methods) 

                                                 
2Henceforth we will adhere to the following notational conventions:  1)  uppercase letters for 
random variables (e.g., A); 2) lowercase letters for particular values in the support of the random 
variable in question (e.g., a); 3) lowercase with parenthetic omega (ω) for the realization of the 
random variable in question for a particular individual in the relevant population [e.g. a(ω)]; and 
4) uppercase letters with an “i” subscript for the sampled version of the random variable in 
question (e.g. Ai). 
3 The thought experiment underlying the “policy” is counterfactual (or at least partially 
counterfactual) in the sense that, for a given individual in the relevant population (ω), it may be 
the case that: p p1x (ω) x (ω) ; p p2x (ω) x (ω) ; or p p1x (ω) x (ω) and p p2x (ω) x (ω) . 
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for the analysis of the impact on birth weight of effective smoking prevention/cessation policy 

for pregnant women:  the generalized method of moments (GMM) estimator of Mullahy (1997) 

for exponential models; and the two-stage residual inclusion (2SRI) estimator of Terza et al. 

(2008) for the general NR case.  In section 4, we apply these methods to the analysis of prenatal 

smoking policy using the analysis sample examined by Mullahy (1997).4  For the purpose of 

comparison, we also conduct the analysis under a linearity assumption using the conventional 

linear instrumental variables (IV) method.  In addition, to set a baseline for comparison, we 

ignore the potential endogeneity of smoking during pregnancy and estimate (1) based on OLS (in 

the linear case) and NLS (in the exponential case) regression results. The results are discussed in 

section 5.  The final section summarizes and concludes. 

 
2. Specification and Estimation of the AIE: Potential Outcomes and Nonlinear Models 

 In the following we define the potential outcome concept, as discussed above, in a way 

that makes it amenable to the specification [estimation] of (1) and all of its interesting variants 

(e.g. ATE and AME) via nonlinear regression (NR) models [methods] that are designed to 

accommodate the possible endogeneity of the observed value of the policy variable.  We begin 

with some definitions.  Let Y and pX  denote the observable versions of the outcome and policy 

variables, respectively.  We define a confounder for a specified variate U to be any other variate 

that is correlated with both Y and U.  The conditional mean regression model 

  
 p pE[Y | X , V] μ(X , V, τ)         (2) 

                                                 
4 Mullahy (1997) applies his GMM method, but does not go on to use the results to analyze 
potential policy effects. 
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is said to be causal if V is comprehensive in that it comprises all possible confounders for pX  

and its own elements.  An implication of this definition is that, conditional on V, differences in 

the mean of the observed value of Y can be exclusively attributed to differences in the observed 

value of pX .5  We define the causal regression model as the following version of (2)  

 
 p o uY μ(X , X , X , τ) e          (3) 

 
 
where o uV [X X ] , pX  is the observable value of the policy variable, oX  denotes a vector of 

observable confounders that is exogenous in that there are no unobservable confounders for its 

elements, uX  represents a scalar comprising all of the unobservable (unobserved or omitted) 

confounders for pX , τ is a vector of parameters to be estimated; and 

p o u p o ue Y μ(X , X , X , τ) Y E[Y | X , X , X ]   
 
is the error term.6  Note that due to the 

                                                 
5 Strictly speaking, for any vector of conditioning variates (C), we can write a regression model 
of the form 
 pY E[Y | X , C] υ          (*) 

where pυ Y E[Y | X , C]   so that pE[υ | X , C] 0 . This implies that p[X C]  is not 

correlated with υ (i.e., pcov([X C],υ) 0 ).  Note that pE[υ | X , C] 0  [or

pcov([X C],υ) 0 ] is not enough to qualify (*)  as “causal.”  The key here is that, although the 

regressors p[X C]  are not correlated with the error term υ (which implies that consistent 

estimates of the parameters of pE[Y | X , C] can be obtained, if it is parametric), if C is not 

comprehensive in the sense that it does not include all of the confounders for pX
 
and its own 

elements, then pE[Y | X , C] cannot be used for causal analysis. 
6 Note that (3) is general in all relevant respects.  In particular, note that we could have begun the 
discussion with the following more primitive form 
 p o uY ψ(X , X , X ,ε,κ)         (**) 

where ε is a non-additive unobservable component that is mean independent of  pX , oX  and 

uX , and κ  is a vector of parameters.  The function μ(  ) in (3) could, therefore, be defined as the 
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presence of the unobservable confounder uX in (3), direct application of conventional NR 

methods for the estimation of τ is precluded.  Up to this point in the discussion, we have been 

using the term endogeneity without formal definition. Henceforth, we define a conditioning 

variate for Y to be endogenous if it has an unobservable confounder.  Including uX  in (3) serves 

two important and coincident purposes.  First, it accounts for the possible endogeneity of pX .  

Secondly, it guarantees that (3) is causal because, by design, the vector of conditioning variates 

o u[X X ] comprises all possible confounders for pX  and its own elements (i.e., o u[X X ]  is 

comprehensive). 

 We use (3) to develop an operational definition of the potential outcome, *
pX

Y .  We first 

draw the distinction between the observable value of the policy variable ( pX ) and the version of 

that variate as if it were exogenously mandated (say exog
pX ).  Next we assume that the observable 

value of the outcome for any individual in the relevant population (Y) is the same as it would 

have been if the observable value of the policy variable were exogenously imposed rather than 

the product of individual choice.7  In other words, for individual ω 

 
  exog

pX
y(ω) y (ω) .         (4) 

                                                                                                                                                             
result of integrating (**) with respect to ε conditional on pX , oX  and uX .  For example, 

suppose Y is binary and  
 p o u p p o o u uψ(X , X , X ,ε,κ) I(X κ X κ X κ ε > 0)     

and p o u(ε | X , X , X )  is standard normal distributed, then 

 p o u p p o o u uμ(X , X , X , τ) Φ(X κ X κ X κ )    

where p o uτ [κ κ κ ] . 
7 This is a standard assumption in the POF. 
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This assumption, combined with (3) implies that 

 
  exog

p

exog
p o uX

Y μ(X , X , X , τ) e  .       (5) 

 
 
We extend (5) to any counterfactually mandated version of the policy variable ( *

pX ) and thereby 

obtain the following general and practical definition of the potential outcome 

 
 *

p

*
p o uX

Y μ(X , X , X , τ) e  .        (6) 

 

In the context of our birth weight and smoking policy model discussed in the previous section, 

we can use Terza’s (2006) recast of Mullahy’s (1997) model and posit the following version of 

(3)8 

 
 p p o o u uY exp(X β X β X β ) e           (7) 

 
 
where p o uβ [β β β ]  is a vector of parameters to be estimated, and 

p p o o u ue Y exp(X β X β X β )   
 
is the error term.  The corresponding potential outcome at 

*
pX

 
 is 

 
 *

p

*
p p o o u uX

Y exp(X β X β X β ) e    .      (8) 

 
 

                                                 
8 Here and for the remainder of the discussion, wherever possible, we use the symbol “β” to 
denote regression coefficient parameters.  This is an abuse of notation because distinct model 
specifications warrant distinct parametric notation.  Given the multiplicity of models that we 
consider, however, we are compelled to adhere to this convention in order to conserve notation.    
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Returning now to the general case, using (6) and the law of iterated expectations it can be shown 

that  

 

 * *
p p o u

*
p o uX X ,X ,X

E[Y ] E μ(X , X , X , τ)    .      (9) 

       
Using (9) we can rewrite (1) as 

 

 
  * *

p o u p o u

* *
p o u p o uX Δ,X ,X X ,X ,X

AIE Δ E μ(X Δ, X , X , τ) E μ(X , X , X , τ)


         . (10) 

 
If for the moment, we assume the existence of a consistent estimator of τ (say τ̂ ) and an 

appropriate observable proxy value for the unobservable uX   [say u
ˆX̂ (W,δ)  -- which, as we 

discuss later, may require auxiliary estimation of a parameter vector δ using additional variables 

W] then (10) could be consistently estimated as9 

 

 
   n * *

pi i oi u pi oi u
i 1

1 ˆ ˆˆ ˆˆ ˆAIE Δ μ(X Δ , X , X (W,δ); τ ) μ(X , X , X (W,δ); τ )
n

     (11) 

 
 
where the i subscript denotes the ith individual in a sample of size n (i = 1, …, n).  In the context 

of our birth weight and smoking policy analysis, using (7) we can write (10) and (11) as10 

 

 
   *

p o u
o o u uX Δ,X ,X

AIE Δ E exp( X β X β )


   

      *
p o u

*
p p o o u uX ,X ,X

E exp(X β X β X β ))      (12) 

and 
                                                 
9 In an appendix that will be supplied upon request, we show that specifications and estimators 
similar to (10) and (11), respectively, can be devised for ATE and AME. 
10 Expressions (12) and (13) make use of the fact that, for the smoking prevention/cessation 
policy that we are considering, *

pi iX Δ 0  . 
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  n

oi o ui i u
i 1

1 ˆ ˆ ˆˆAIE Δ exp(X β X (W ,δ)β )
n

   

      *
pi p oi o ui i u

ˆ ˆ ˆ ˆˆexp(X β X β X (W ,δ)β )   . (13) 

 
 
Later, we will discuss methods for consistent estimation of τ and the construction of an 

appropriate proxy for uX [if needed for the estimation of (10)].  For now, we turn to the 

asymptotic properties of (11) [in particular, the formulation of its correct asymptotic standard 

error].  To simplify the notation, we rewrite (11) as 

 

   n
i

i 1

1
AIE Δ aie

n
          (14) 

where 

 
 *

i pi oi i
ˆˆaie aie(X , X , W ,τ, δ)  

  
and * * *

p o p o u p o uaie(X , X , W, τ, δ) μ(X Δ, X , X (W,δ),τ) μ(X , X , X (W,δ), τ)   . Terza (2012) 

shows that (14) can be cast as a two-stage optimization (2SOPT) estimator, and using standard 

asymptotic theory for 2SOPT he demonstrates that11  

 

 
      dn

(AIE Δ AIE(Δ)) n(0,1)
a var AIE Δ

  .    (15) 

where 

                                                 
11 For comprehensive discussions of 2SOPT estimators and their asymptotic properties see White 
(1994, Chapter 6); and Newey and McFadden (1994). These authors extend the results of 
Murphy and Topel (1985) for two-stage maximum likelihood estimators to the more general 
class of 2SOPT estimators. 
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  n n n 2
i i i[τ δ] [τ δ]

i 1 i 1 i 1
aie aie (aie AIE(Δ))

ˆˆa var AIE Δ AVAR([τ δ])
n n n

  
  

            
      
     
     

 

            (16) 
 

where 
i[τ δ]aie  denotes the gradient of paie(X , X, W, τ,δ)  [a row vector] evaluated at *

piX , oiX , 

iW   and ˆˆ[τ δ] ; and  ˆˆAVAR([τ δ])  is the estimated asymptotic covariance matrix of ˆˆ[τ δ] .12  

For the pseudo causal regression specification in (7) we have 

 

 
 *

i oi o u i u pi p oi o u i u
ˆ ˆ ˆ ˆ ˆ ˆ ˆaie exp(X β X (W ,δ)β ) exp(X β X β X (W ,δ)β )      

 
 
where p o u

ˆ ˆ ˆτ̂ = [β β β ] . 

 
 
3.  Parameter Estimation and Accommodating the Unobservable Confounder 
 
 Two issues related to the implementation of the estimator in (11) have yet to be resolved:   

1) consistent estimation of τ; and 2) an appropriate accommodation for the unobservable 

confounder uX .  We begin by noting that there are at least two special cases in which uX  can, 

as a practical matter, be ignored in the formulations of (10) and (11).  First, if the pseudo 

regression model in (3) is linear, i.e. 

 

 p o u p p o o u uμ(X , X , X , τ) X β X β X β         (17) 

 
then (10) and (11) can be written 

                                                 
12In an appendix that will be supplied upon request, we show that asymptotic properties similar 
to (15) and (16) can be derived for the ATE and AME variants of (11). 
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  pAIE Δ E[Δβ ]          (18) 

and 

 
  n

p i
i 1

1ˆAIE Δ β Δ
n

          (19) 

 
 
respectively.  Terza (2006) shows that, in this case, the conventional linear instrumental variables 

estimator can be used to obtain a consistent estimate of pβ  (say pβ̂ ) if we have at least one 

identifying instrumental variable (IV); i.e. a variable (or vector of variables) W that:13,14 

 i) is not included in the vector of observable confounders, 

 ii) is sufficiently correlated with pX  (i.e., the IVs are not weak), 

 iii) satisfies uE[X | W] ρ  (a constant), where oW [X W ] , 

and 
 iv) does not systematically affect Y; i.e., p u p p o o u uE[Y | X , W, X ] X β X β X β   . 

            (20) 

It is easy to see that, using (16), the true asymptotic standard error of (19) can be obtained as 

    


2n n 2
i p i

i 1 i 1
p

ˆΔ (β Δ AIE(Δ))
ˆa var AIE Δ a var(β )

n n
 
       

    
   
     

  (21) 

 
where p

ˆa var(β ) denotes the asymptotic standard error of the conventional linear IV estimator of 

pβ . 

                                                 
13 See Wooldridge (2010), Chapter 4, for a discussion of the conventional linear instrumental 
variables estimator. 
14Note that although uX can be ignored in the formulations of (18) and (19), it must be 

accounted for in the estimation of pβ  via the conventional linear IV method (see Terza, 2006). 
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 The other instance in which the unobservable confounder uX does not directly appear in 

(10) and (11) is the case in which the pseudo causal regression is specified as in (7).  This is, in 

essence, the model considered by Mullahy (1997).15  Suppose, IV conditions (i) and (ii) in (20) 

hold with (iii) and (iv) replaced by 

 iii*) u uE[exp(X β ) | W] κ  (a constant) 

and 
 iv*) p u p p o o u uE[Y | X , W, X ] exp(X β X β X β )   . 

 

Under these conditions Terza (2006) shows that (10) [(12)] can be rewritten as 

 

 
* *
p p o o p p o oAIE(Δ) E exp([X +Δ]β X β ) exp(X β X β )        

  

where oβ
  is the same as oβ  except for a shift of its intercept element by +ln(κ).  In the context 

of our birth weight and smoking policy analysis we have16 

 

 *
o o p p o oAIE(Δ) E exp(X β ) exp(X β X β )      .     (22) 

 
Therefore, a proxy value for the unobservable uX is not required in this case.  Under the above 

assumptions, Mullahy (1997) derives a very clever generalized method of moments (GMM) 

estimator that is consistent for pβ  and  oβ
 .  The relevant version of (10) in this case is17 

                                                 
15 Terza (2006) draws the connection between the approach we take in the present discussion and 
that of Mullahy (1997). 
16 Here again we use the fact that for the smoking prevention/cessation policy that we are 
considering *

pi iX Δ 0  . 
17 Mullahy (1997) does not extend his analysis to the estimation of policy effects like (12). 
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   n *
oi o pi p oi o

i 1

1 ˆ ˆ ˆAIE(Δ) exp(X β ) exp(X β X β )
n

 


  

     
(23) 

 
 

where pβ̂  and  oβ̂
  are the GMM estimates.  The correct asymptotic standard error for (23) is 

obtained using (16) with 

 

  *
i oi o pi p oi o

ˆ ˆ ˆaie exp(X β ) exp(X β X β )     

 

    
p o

i i i i[τ δ] β β β
aie aie [ aie aie ]       

 

 
p

* *
iβ pi p oi o pi

ˆ ˆaie exp(X β X β )X     

 

 
o

*
i oi o pi p oi o oiβ

ˆ ˆ ˆaie exp(X β ) exp(X β X β ) X
       . 

 
Similar methods for ATE (binary pX ) and AME (continuous pX  with infinitesimal and constant 

Δ) estimation can be derived.18 

 For the general case characterized by the pseudo causal regression (3) in which direct 

inclusion of uX in (10) and (11) cannot be avoided, Terza et al. (2008) suggest a two-stage 

residual inclusion (2SRI) estimator based on assumptions (i), (ii) and (iii) in (20) and the 

following 

 
 iv**)  p u p o uE[Y | X , W, X ] μ(X , X , X , τ)   

and 

 
v)  p uX r(W,δ) X           (24) 

                                                 
18 An appendix detailing these derivations will be supplied upon request. 
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where r(W,δ)  is a known function of W and a vector of parameters to be estimated, δ.  Under 

these conditions (10) can be rewritten as 

 

 
* *
p o u p o uAIE(Δ) E μ(X Δ, X , X , τ) μ(X , X , X , τ)       

  * *
p o p p o pE μ(X Δ, X , X r(W,δ), τ) μ(X , X , X r(W,δ), τ)        .  (25) 

 
The AIE in (25) can be consistently estimated using (11), with 

      

 ui i pi i
ˆ ˆX̂ (W ,δ) X r(W ,δ)          (26) 

 

where δ̂  is a consistent estimate of δ.  Under the above assumptions, Terza et al. (2008) show 

that the following 2SRI estimator is consistent for [τ δ]  

 
First Stage 

Obtain a consistent estimate of the vector δ ( δ̂ ) by applying the nonlinear least squares (NLS) 

method to (v) in (24).19  Next, compute the residual using (26). 

 
Second Stage 

Consistently estimate τ by applying NLS to the following version of (3) 

 
 Y = 2SRI

p o ui i
ˆˆμ(X , X , X (W ,δ); τ) e        (27) 

                                                 
19Any consistent estimator of δ can be used here.  The choice of estimator depends upon the 
available non-sample information.  For example, if p(X | W)  is known to be a member of a 

particular family of parametric distributions, then the full information maximum likelihood 
(FIML) method can be used to estimate δ. 
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where 2SRIe  is the regression error term.20,21  

 
The 2SRI estimator is consistent and asymptotically normal.  The asymptotic properties of this 

estimator can be derived as a special case of the generic 2SOPT estimator.22,23,24 

 
4. Smoking During Pregnancy and Infant Birth Weight 

 As a running illustration for the concepts and methods discussed above, we analyze the 

potential impact of effective smoking prevention/cessation policy on birth weight.  We apply the 

following three estimators to the same data and variable specification analyzed by Mullahy 

(1997) in this context:  (19) – using conventional linear IV estimates of the parameters of (17); 

(23) – using Mullahy’s (1997) GMM estimates of the parameters of (7); and (11) – using 2SRI 

estimates (Terza et al., 2008) of the parameters of a flexible-form version of (3).  All of these 

estimators account for the possible endogeneity of pX .  The analysis sample was taken from the 

                                                 
20See footnote 17.  A similar comment is true for second-stage estimation of τ. 
21 If (17) holds and the r(  ) function in condition (v) of (24) is also linear, 2SRI is identical to the 
conventional linear IV estimator. 
22 An appendix detailing these derivations will be supplied upon request. 
23 The 2SRI approach can similarly be used to estimate the parameters underlying an ATE or 
AME.  An appendix detailing these methods will be supplied upon request. 
24 There exists some controversy regarding the use of the 2SRI approach for the analysis of ATE 
(the case in which pX is binary); despite the clear consistency of 2SRI in this case under 

assumptions (i), (ii) and (iii) in (20); and (iv**) and (v) in (24).  The main criticism appears to be 
that these assumptions are “nonstandard” vis-a-vis, and difficult to reconcile with, the 
assumptions underlying conventional models involving endogenous binary variables [e.g., 
Heckman (1978) for linear models, Terza (1998) for count models, and the bivariate probit 
model for binary outcome models].  To avoid controversy when pX

 
is binary, practitioners can 

implement the general framework proposed by Terza (2009). This framework conforms to 
conventional behavioral assumptions for binary pX  and subsumes Heckman (1978), Terza 

(1998), and bivariate probit as special cases.  In fact, the modeling framework and estimation 
method of Terza (2009) accommodates any nonlinear regression model with an endogenous 
binary regressor.  
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Child Health Supplement to the 1988 National Health Interview Survey and has 1,388 

observations.  The definitions of the variables included in the regressions are given in Table 1.  

In estimating the AIE we take exog
pX  [defined in assumption (4)] as the value of *

pX .  In other 

words, we take the pre-policy distribution of the policy variable to be as it was at the time of 

sampling – i.e., the same as the observable policy random variable pX .  The linear IV and GMM 

based estimation results for AIE [(19) and (23), respectively] are displayed in the first and 

second rows of Table 2.25 

 To investigate the robustness of the GMM estimates, we consider the following flexible 

functional form for the pseudo causal regression model (3) 

 

 
 

 

1
2 γ

p p o o u u

p o u p o u

p p o o u u

γ
X β X β X β 1   if     γ 0

2
E[Y | X , X , X ] μ(X , X , X , τ) = 

exp X β X β X β               if     γ 0


             



  

 

            (28) 
 
where p o uτ [β β β γ] ,  and γ  (0,  2]  is a scalar parameter.  This is a variant of the 

inverse of the flexible functional form suggested by Box and Cox (1964) which was first 

considered and implemented by Wooldridge (1992) and has since been widely applied.26  The 

                                                 
25 Details of the conventional IV and the GMM parameter (β) estimates are shown in the first and 
second columns of Table 3.  In order to maintain comparability with the 2SRI estimates for a 
more general version of the model (discussed later), particularly with regard to the sum of 
squared residuals goodness-of-fit measure, we implemented the 2SRI version of the IV estimator 
(see Hausman, 1978; and Terza et al., 2008). 
26 See Abrevaya (2002), Abrevaya and Hausman (2004), Arvin-Rad (1997), Basu and Rathouz, 
(2005), Basu (2005), Basu et al. (2006), Berndt et al. (1990), Blackburn (2007), Gencay and 
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inverse Box-Cox (IBC) functional form in (28) approaches the exponential model as γ → 0; and 

when γ = 2 and p p o o u uX β X β X β 1    , it reduces to a simple linear regression model.27  With 

a view toward estimation of τ via the 2SRI method detailed in the previous section, we also posit 

the following IBC version of the auxiliary regression defined in condition (v) of (24) 

 

 
 

 

1
2 ηη

Wα 1   if     η 0
2r(W,δ) = 

exp Wα                  if     η 0


           






      (29) 

 
where δ [α η]  and ω  (0,  2]  is a scalar parameter.  The model defined by (28) and (29) 

subsumes the conventional linear IV model as the special case in which γ = η = 2.  We applied 

2SRI and found that the NLS optimizing value of the second-stage 2SRI-IBC estimate of γ is 

arbitrarily close to zero.  Therefore based on (28), we take (7) to be the appropriate specification 

for the pseudo causal regression model and apply NLS to the following version of (27) in the 

second stage of the 2SRI estimator 

 
 2SRI

p p o o u u
ˆˆY exp(X β X β X (W,δ)β ) e         (30) 

                                                                                                                                                             
Yang (1996, a and b), Kenkel and Terza (2001), Machadoa and Mata (2000), Showalter (1994),  
Taylor (2008), Terza-Basu-Rathouz (2008), Terza-Bradford-Dismuke (2008), Wooldridge 
(1994).            
27 When γ = 2, the pseudo regression (3) becomes p o uE[Y | X , X , X ] g(Z) | Z 1|   , where  

p p o o u uZ X β X β X β   .  In general, g(Z) is V-shaped with vertex (-1,0), but if Z  >  -1 then 

only the positively sloped linear portion of the function is relevant.  In this case (28) corresponds 
to the linear version of (3) given in (17). 
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where u
ˆX̂ (W,δ)  is defined as in (26) with  

1
2 ηη

r(W,δ) Wα 1
2

        
 and δ̂  is the first stage 

estimate of δ obtained by applying NLS to (24).  The results of this 2SRI re-estimation are given 

in the third and fourth columns of Table 3.  Under our assumption that * exog
p pX X , the relevant 

version of (25) in this 2SRI setup is   

 

 exog
o o p u p p o o p uAIE(Δ) E exp(X β [X r(W,δ)]β ) exp(X β X β [X r(W,δ)]β )          

 

        
 

   (31) 
 
 which we consistently estimated using the following variant of (11) 

 

 
( ) { }n

oi o ui u pi p oi o ui u
i 1

1 ˆ ˆ ˆ ˆ ˆˆ ˆAIE Δ exp(X β X β ) exp(X β X β X β )
n=

å= + - + +   (32) 

 
 
where ui pi i

ˆX̂ X r(W ,δ)= - .  The asymptotic properties of (32) follow (15) and (16) with 

 

 


i oi o u i u pi p oi o u i u
ˆ ˆ ˆ ˆ ˆ ˆ ˆaie exp(X β X (W ,δ)β ) exp(X β X β X (W ,δ)β )      

 

      
p o u

i i i i i i[τ δ] β β β α ηaie [ aie aie aie aie aie ]        

 

 


p
iβ pi p oi o ui u pi

ˆ ˆ ˆˆaie exp(X β X β X β )X      

 

 
o

iβ oi o u i u pi p oi o u i u oi
ˆ ˆ ˆ ˆ ˆ ˆ ˆaie exp(X β X (W ,δ)β ) exp(X β X β X (W ,δ)β ) X         

 

 
u

iβ oi o u i u pi p oi o u i u ui
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆaie exp(X β X (W ,δ)β ) exp(X β X β X (W ,δ)β ) X         

 

 


1 1

η 2
iα u oi o u i u pi p oi o u i u

ˆ ˆ ˆ ˆ ˆ ˆ ˆaie β [exp(X β X (W ,δ)β ) exp(X β X β X (W ,δ)β )]ξ W

æ ö÷ç ÷-ç ÷ç ÷çè ø = + -- + +  
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iη u oi o u i u

ˆ ˆ ˆaie β [exp(X β X (W ,δ)β ) = +        

    ( )pi p oi o u i u 2 1

2

1 Wαˆ ˆ ˆ ˆexp(X β X β X (W ,δ)β )]r(W,δ) ln ξ
η

ηξ

é ù
ê ú
ê ú- + + ê
ê
ë û

- ú
ú
 

 

 

  
p o u

ˆ ˆ ˆˆ ˆ ˆˆAVAR([τ α]) AVAR([β β β α η])  

 

 
 

2
η

ξ Wα 1
2

   
 

  

 
 

and  p o u
ˆ ˆ ˆ ˆ ˆAVAR([β β β α η]) denotes the estimated asymptotic covariance matrix of the 

2SRI estimator of p o u
ˆ ˆ ˆ ˆ ˆ[β β β α η] . The results for (32) are reported in the third row of 

Table 2.   

 As baselines for comparison, we estimate the linear and exponential models by applying 

OLS and NLS to the following restricted versions of (17) and (7), respectively 

 

 
o

p p o oY X β X β e           (33) 

 o
p p o oY exp(X β X β ) e           (34) 

 
 

 where oe  is the regression error term and o
p oE[e | X , X ] 0 .28  The unobservable confounder 

uX  is not included in (33) and (34) which, therefore, ignore the potential endogeneity of pX .

Here, as for the IV, GMM, and 2SRI estimates discussed above, we take the relevant pre- version 

of the policy variable ( *
pX ) to be exog

pX .  For the linear model in (33), the AIE is 

                                                 
28 The OLS results for (33) and the NLS results for (34) are given in the fifth and sixth columns 
of Table 3, respectively. 
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  exog

p pAIE Δ E[ X β ]          (35) 

 
and is estimated as 

 

 
  n

p pi
i 1

1ˆAIE Δ β X
n

          (36) 

 
 
where pβ̂  is the OLS estimate of pβ  and piX is the observed smoking level for the ith individual.  

The correct asymptotic standard error for (36) is obtained from (21) with pβ̂  and p
ˆa var(β )

replaced by pβ̂  and p
ˆa var(β ) , respectively.  The results for (36) are displayed in the fourth row 

of Table 2.   

 For the exponential model, we again take exog
pX  as the relevant value of *

pX  which, 

combined with (4), implies that the relevant version of the AIE For the exponential model in (34) 

is  

 

 exog
o o p p o oAIE(Δ) E exp(X β ) exp(X β X β )          (37) 

 
which can be consistently estimated using 

 

   n

oi o pi p oi o
i 1

1 ˆ ˆ ˆAIE(Δ) exp(X β ) exp(X β X β )
n

  
     

(38) 

 
 

where oβ̂  denotes the NLS estimate of oβ .  The correct asymptotic properties of (38) follow (15) 

and (16) with  
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i oi o pi p oi o

ˆ ˆ ˆaie exp(X β ) exp(X β X β )    
 

   
p o

i i i[τ δ] β βaie [ aie aie ]     

 

 


p
iβ pi p oi o pi

ˆ ˆaie exp(X β X β )X     

 

 
o

iβ oi o pi p oi o oi
ˆ ˆ ˆaie = [exp(X β ) exp(X β X β )]X    

 

  
p o

ˆ ˆˆˆAVAR([τ α]) AVAR([β β ])  

 

and  p o
ˆ ˆAVAR([β β ])  denotes the estimated asymptotic covariance matrix of the NLS estimator 

of p o
ˆ ˆ[β β ] .  The results for (38) are given in the fifth row of Table 2. 

 
5. Discussion 

 We first note that the 2SRI first-stage estimated value of η (1.404) was statistically 

significantly different from 2 (test of Ho: η = 2; tstat = 2.011, p-value = .044).  This result, 

combined with the fact that the apparently appropriate second stage (outcome) model is 

exponential (recall, the estimated value of γ approaches 0), points away from the linear model 

[specified in (17)] and the conventional IV estimator.  Between the two other endogeneity 

correcting methods – GMM and 2SRI, one might prefer the former because it does not require 

the specification and estimation of an auxiliary regression (reduced form) akin to (v) in (24).  On 

the other hand, 2SRI dominates all methods with regard to goodness-of-fit based on the sum of 

squared errors criterion (see the last row of Table 3).  Moreover, there are other important 

reasons for using the 2SRI method in this (and similar) contexts.  First, the 2SRI estimates afford 

a straightforward test for the endogeneity of pX  – viz. a simple t-test of the null hypothesis that 
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uβ , the coefficient of uX ,  in (7) is equal to zero.  As can be seen in the third column of Table 3, 

uβ̂  is statistically significant at nearly the 5% level, indicating that pX  is indeed endogenous.  

Secondly, we can use the first-stage 2SRI estimates to conduct a Wald-type test of the joint 

statistical significance of the IVs [EDFATHER, EDMOTHER, FAMINCOM, CIGTAX88 – the 

same IVs used by Mullahy (1997)].  Based on the results shown in the fourth column of Table 3, 

we find these IVs to be only marginally jointly significant (Wald-statistic = 7.283, p-value = 

.122).  Finally, we note that if the 2SRI model specification comprising (29) and (7) as its first 

and second stages, respectively, is indeed the true model, then based on the results in Table 2 the 

estimated bias for conventional linear IV is 21% [   
IV 2SRI 2SRI(AIE(Δ) AIE(Δ) ) / AIE(Δ) 100  ], 

and for GMM is 30% [similarly computed].  The corresponding estimated average birth weight 

increases attributable to the hypothesized smoking prevention/cessation policy are (in ounces):  

IV (2.6); GMM (2.29); and 2SRI ( 3.26).  To place these results in perspective, are we focused 

on the subsample of mothers with low birth weight (LBW) infants – i.e. those with birth weight 

less than 88 ounces.  LBW has been found to be contributory to perinatal morbidity, learning 

disabilities, and delayed motor and social development (Centers for Disease Control, 2012).  For 

the LBW subsample, using the 2SRI regression results, we estimated the AIE of our hypothetical 

prevention/cessation policy to be 5.94 oz.  Adding this increment to the birth weights of the 

infants of each of the 20 smokers in the LBW subsample would be enough to move 6 of them out 

of the LBW category.  
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6.  Summary and Conclusion 

 This paper offers a generic and unified framework for empirical policy analysis via NR 

estimation.  The discussion begins with a clear conceptual PO framework for specifying the 

policy-relevant estimation objective.  This framework accommodates any type of policy variable 

– binary, discrete or continuous – and does not require that either the policy values of interest or 

prospective policy increments be fixed in value across the relevant population.  Moreover, the 

approach we propose is designed to incorporate the use of NR methods that account for the 

potential endogeneity of the policy variable. As a case in point, we consider the analysis of 

potential gains in infant birth weight that may result from effective prenatal smoking prevention 

and cessation policy.  Here, the policy of interest, if fully effective, would maintain zero levels of 

smoking for the non-smokers (prevention) and convince the smokers to quit before becoming 

pregnant (cessation).  Clearly, the policy variable of interest is likely to be endogenous --  

unobserved health behavioral factors that are correlated with smoking during pregnancy may 

also affect infant birth weight.  The relevant pre-policy version of pX  is not fixed in value – it is 

the random variable representing the pre-policy distribution of smoking levels across the 

population of pregnant women.  By the same token, the policy-driven increment required to 

bring individual prenatal smoking levels to zero must vary across the population.  We follow this 

example throughout the discussion. 

 Two levels of estimation are detailed.  First, assuming an appropriate NR specification 

and the existence of corresponding consistent parameter estimates, we show how (and under 

what conditions) the assumed NR model and results can be used to formulate and estimate the 

policy effect of interest.  Secondly, in the context of the birth weight/smoking example, we 
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demonstrate the use of two NR modeling and estimation methods – GMM and 2SRI. For  

comparison, we also discuss the conventional linear IV model and estimator in this context.  Full 

details of the implementation of these methods is given; complete with correct formulations for 

the asymptotic standard errors.  The empirical analyses are conducted using the date from 

Mullahy (1997).  The results favor the use of GMM or 2SRI over IV in this context and, on the 

basis of goodness-of-fit and diagnostic testing capabilities, one might opt for 2SRI. All methods 

yielded positive and statistically significant estimates of the effect of the hypothesized smoking 

prevention/cessation policy on birth weight.  Based on the 2SRI results we estimate that the 

policy, if fully effective, would reduce the percentage of low birth weight babies born by 

mothers who smoke (and quit due to the policy) by 30%.29   

 The use of NR methods by empirical health policy researchers abounds.  Studies that 

offer clear policy-relevant interpretations of NR results are, however, rare.  In this paper, we 

offer a comprehensive PO-based policy analytic framework within which the applied researcher 

can:  1) clearly define the policy-relevant estimation objective; 2) consistently estimate that 

objective using NR methods designed to account for possible endogeneity; 3) conduct correct 

asymptotic inference; and 4) offer policy-relevant interpretations of the estimation and inferential 

results.  It is hoped that this work will serve as a useful guide to applied health policy analysts.    

                                                 
29 2SRI yielded the largest impact estimate of the three. 
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Table 1:  Birth Weight Model:  Variable Definitions and Means 
  

Variable Definition Mean 

Outcome Variable (Y)  

BIRTHWT birth weight (lbs.) 7.419 
Potentially Endogenous Policy Variable (Xp)  

CIGSPREG cigarettes smoked per day during pregnancy 2.087 
Observable Confounders (Xo)  

PARITY birth order 1.633 
WHITE 1 if white, 0 otherwise .746 
MALE 1 if male, 0 otherwise .521 

Instrumental Variables (W+)  

EDFATHER years of education of father 11.324 
EDMOTHER years of education of mother 12.927 
FAMINCOM family income (/1000) 29.027 
CIGTAX88 per pack state excise tax on cigarettes (cents) 19.553 

 

 
Table 2:  AIE Estimates 

 

Method 
AIE(Δ)  t-statistic p-value 

Linear IV 0.162 3.372 0.001 

GMM 0.143 3.135 0.002 

2SRI 0.204 2.569 0.010 

OLS 0.068 5.330 < .001 

NLS 0.071 5.014 < .001 
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Table 3:  Parameter Estimation* 
          Method 
 
Variable     

Linear IV GMM 
2SRI 

2nd Stage 
2SRI 

1st  Stage 
OLS NLS 

CIGSPREG 
-0.077 

(-3.491) 
[<.001] 

-0.010 
(-3.460) 
[0.001] 

-0.013 
(-2.937) 
[0.003] 

 
-0.033 

(-5.840) 
[<.001] 

-0.005 
(-5.620) 
[<.001] 

PARITY 
0.129 

(3.324) 
[0.001] 

0.018 
(3.330) 
[0.001] 

0.018 
(3.292) 
[0.001] 

0.215 
(0.873) 
[0.383] 

0.109 
(2.900) 
[0.004] 

0.014 
(2.990) 
[0.003] 

WHITE 
0.399 

(4.772) 
[<.001] 

0.054 
(4.440) 
[<.001] 

0.054 
(4.379) 
[<.001] 

0.679 
(1.377) 
[0.169] 

0.408 
(5.010) 
[<.001] 

0.056 
(4.750) 
[<.001] 

MALE 
0.194 

(2.910) 
[0.004] 

0.027 
(2.950) 
[0.003] 

0.027 
(2.930) 
[0.003] 

0.104 
(0.339) 
[0.734] 

0.194 
(2.900) 
[0.004] 

0.026 
(2.900) 
[0.004] 

CONSTANT 6.956 1.939 1.944 4.794 6.889 1.932 

IBC-2SRI 1st 
Stage Residual 

uX̂   
-- -- 

0.008 
(1.949) 
[0.051] 

-- -- -- 

EDFATHER -- -- -- 
-0.087 

(-1.455) 
[0.146] 

-- -- 

EDMOTHER -- -- -- 
-0.297 

(-2.220) 
[0.026] 

-- -- 

FAMINCOM -- -- -- 
-0.026 

(-2.232) 
[0.026] 

-- -- 

CIGTAX88 -- -- -- 
0.030 

(1.400) 
[0.162] 

-- -- 

Box-Cox 
Parameter 

η̂  
-- -- -- 

1.402 
(4.717) 
[<.001] 

-- -- 

Sum of Squared 
Residuals 

2127.312 2185.027 2120.781 -- 2244.577 2131.658 

 
*t-statistics in parentheses and p-values in square brackets. 


