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Abstract 

 With a view towards lessening the analytic and computational burden faced by 

practitioners seeking to correct the standard errors of two-stage estimators, we offer a heretofore 

unexploited simplification of the conventional formulation for the most commonly encountered 

cases in empirical application – two-stage estimators that, in either stage, involving maximum 

likelihood estimation or the nonlinear least squares method.   Also with the applied researcher in 

mind, we cast the discussion in the context of nonlinear regression models involving endogeneity 

– a sampling problem whose solution often requires two-stage estimation. We detail our 

simplified standard error formulations for three very useful estimators in applied contexts 

involving endogeneity in a nonlinear setting (endogenous regressors, endogenous sample 

selection, and causal effects). The analytics and Stata/Mata code for implementing our simplified 

formulae are demonstrated with illustrative real-world examples and simulated data. 



1.  Introduction 

 Asymptotic theory for the two-stage optimization estimator (2SOE) (in particular, correct 

formulation of the asymptotic standard errors) has been available to applied researchers for 

decades [see Murphy and Topel (1985) for cases in which both stages are MLE; and Newey and 

McFadden (1994) and White (1994) for more general classes of 2SOE]. Despite textbook 

treatments of the subject [Cameron and Trivedi (2005), Greene (2012), and Wooldridge (2010)], 

when conducting statistical inference based on two-stage estimates, applied researchers often 

implement bootstrapping methods or ignore the two-stage nature of the estimator and report the 

uncorrected second-stage outputs from packaged statistical software.  In the present paper, with a 

view toward easy software implementation (in Stata), we offer the practitioner a heretofore 

largely unexploited simplification of the textbook asymptotic covariance matrix formulations 

(and their estimators – standard errors) for the most commonly encountered versions of the 

2SOE -- those involving MLE or the nonlinear least squares (NLS) method in either stage.  In 

addition, and perhaps more importantly from a practitioners standpoint, we cast the discussion in 

the context of regression models involving endogeneity – a sampling problem whose solution 

often requires a 2SOE. 

 We detail our simplified covariance specifications for three estimators that can be in 

applied in empirical contexts involving endogeneity -- the two-stage residual inclusion (2SRI) 

estimator suggested by Terza et al. (2008) for nonlinear models with endogenous regressors; the 

two-stage sample selection estimator (2SSS) developed by Terza (2009) for nonlinear models 

with endogenous sample selection; and causal incremental and marginal effects estimators as 

discussed by Terza (2012).  The analytics and Stata code for implementing our simplified 

formulae for correcting the asymptotic standard errors of each of these estimators are 
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demonstrated with specific illustrative real-world examples. 

 The remainder of the paper is organized as follows.   In the next section, we review the 

asymptotic theory of 2SOE and give the conventional textbook formulation of the corresponding 

correct asymptotic covariance matrix.  We also show how this formulation can be simplified 

when the second stage of the estimator implements either NLS or MLE.  In section 3, we detail 

the 2SRI, 2SSS, and causal effect estimators and, in light of the discussion in section 2, we 

derive their correct (and simplified) asymptotic standard errors.  Specific illustrations of the 

estimators given in section 3 (and their corrected asymptotic standard errors) are detailed in 

section 4, complete with corresponding Stata code and applications to real data.  The final 

section summarizes and concludes.  Technical details are given in appendices that will be 

supplied upon request.     

 
2.  Two-Stage Optimization Estimators and Their Asymptotic Standard Errors 

 The vast majority of estimators implemented in empirical health economics and health 

services research are optimization estimators (OEs) – statistical methods that produce estimates 

as optimizers of well specified objective functions.  The most prominent OE examples are the 

maximum likelihood estimator (MLE) and the nonlinear least squares (NLS) method.   Model 

design or computational convenience often dictates that an OE be implemented in two stages.  In 

such cases the parameter vector of interest is partitioned as ω [δ γ ]    and conformably 

estimated in two-stages.  First, an estimate of δ is obtained as the optimizer of an appropriately 

specified first-stage objective function 

 

 

n

1 i
i 1

q (δ, V )

           (1) 
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where 1q ( )  corresponds to a specific type of OE and iV  denotes the relevant subvector of the 

observable data for the ith sample individual (i = 1, ..., n).  Next, an estimate of γ is obtained as 

the optimizer of 

 

 

n

i
i 1

ˆq(δ, γ, Z )

           (2) 

 

where q( )  defines the relevant single-stage OE, iZ  is the full vector of observable data, and δ̂  

denotes the first-stage estimate of δ.   

 It is well established that under general conditions, this two-stage optimization estimator 

(2SOE) is consistent and asymptotically normal.1 Our interest here is in simplifying the 

formulation of the corresponding asymptotic covariance matrix of ˆˆ ˆω [δ γ ]   , where γ̂  

denotes the second-stage estimator obtained from (2).  For future reference and notational 

convenience, this matrix is denoted  

 

 11 12

12 22

D D
D

D D

 
   

 

 

where 11
ˆAVAD R(δ) denotes the asymptotic covariance matrix of δ̂ , 22 ˆAVAD R(γ) , and 

12D  is left unspecified for the moment.  For cases in which the ultimate estimation objective is γ, 

only 22D  is of interest.  In most cases, however, the full vector of parameter estimates ω̂  will be 

needed for an additional estimation step.  We will discuss one such example (causal effect 

estimation) later in this paper.  Hence our interest is in simplifying the details of the full 

formulation of D.  Before proceeding we establish the following notational conventions: 

                                                 
1 See Newey and McFadden (1994) or White (1994) for details. 
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 -- 1q  is shorthand notation for 1q (δ, V) as defined in (1)  

 -- q is shorthand notation for q(δ, γ, Z) as defined in (2)  

 -- sq  denotes the gradient of q with respect to parameter subvector s – a row vector.  
 

 -- stq  denotes the matrix whose typical element is 2
j mq / s t    -- its row dimension  

  corresponds to that of its first subscript and the column dimension to that of its  

  second subscript. 

 We now turn to the details of the elements of D.  We first note that 11D  warrants no 

discussion, because neither its formulation nor its estimation are affected by the two-stage nature 

of the estimator  -- γ does not appear in (1).  Therefore, the correct standard errors of, and other 

inferential statistics pertaining to, δ̂  can be obtained from the “packaged” output of the software 

used for first-stage estimation.  By the same token, we need only consider how the choice of 

method for the second-stage determines the formulation and estimation of 12D  and 22D .  

Because MLE and NLS are the most commonly implemented OEs, we focus on 2SOEs that 

implement these methods in the second stage.  Using the results of Murphy and Topel (1985) it is 

easy to show that when the second stage is MLE we have2   

 
 12 δδ 1 γ γ δ

1
δ 1

ˆE E AVAR *(γ) AVAR(δ) E AVAR *(D )q γq q q q                 

 22 γ δ γ δD q ˆAV qAR *(γ) E qAVAR(δ)E q           
 

    γ δ 1 δδ γ
1

δE E Eq q q q q
             

    γ δ δδ γ δ 1
1

E E E AVAR *(γ) AVAR *(γq q q q q )
              

 
 

           
 (3) 

 

                                                 
2 An appendix detailing this result will be supplied upon request. 
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where γ  denotes the second stage MLE estimate of γ, and AVAR*(   ) is the matrix to which the 

“packaged” asymptotic covariance estimator of the second stage converges in probability.3 

Likewise, using the results of White (1994), we can show that when the second stage is NLS we 

have4 

 

 
 12 δδ 1 γ δ 1 γγ γδ γ

1 1

γ
1 ˆE E E AVAR(δ)E ED q q q q q q

                      
 

 

 22 γγ γ

1

δ γδD q q qˆE E AVAR(δ)E '


          
 

    γ δ 1 δδ γδ
1

E E E 'q q q q
         

 

     γδ δδ γ δ 1

11
γγ ˆE E Eq q q q ' E AVAR *(γ)q

                . 

            (4) 
 
We can, however, also show that when the second stage estimator is MLE or NLS5 

 
 γ δ 1q qE 0     .         (5) 

 
This allows us to greatly simplify (3) and (4), respectively, as 

 

 12 γ δ
ˆAVAR(δ) ED q q AVAR *(γ)        

 22 γ δ γ δ
ˆAVAR *(γ)E AVAR(δ)E 'AVAR *(γ) AVAR *( )D q q q q γ             

 

           
 (6) 

 
when the second stage is MLE, and  

 12 γ

1

δ γγD qˆAVAR q(δ)E E
         

 
 

                                                 
3 By “packaged” we mean that which would be obtained from any econometrics computer 
package for the second stage estimator of γ, ignoring the two-stage nature of the estimator.  
4 An appendix detailing this result will be supplied upon request. 
5 An appendix detailing this result will be supplied upon request. 
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 22 γγ γδ γ

1

δ γγ

1ˆ ˆE E AVAR(δ)E ' E AVAR *D q q γ)q q (
 

                      (7) 

 
 
when the second stage is NLS.  

 The expressions in (6) and (7) are of practical use in that they served to highlight the 

covariance matrix components that can be directly obtained from packaged econometric software 

vs. those that require special programming.  It is clear that software implementation of the 

corrected covariance formulation is simpler in the second-stage MLE case.  Here the only 

component that must be analytically derived is γ δq qE     .  A consistent estimator of this 

component is 

 

n

γ i δ i
i 1

γ δ

ˆq(δ, γ,Z ) ' q(, γ,Z )
q q

n
E 


   

 
 

 
       (8) 

 

where δ̂  and γ  denote the first and second stage estimators, respectively.  Therefore, when the 

second stage is MLE, a consistent estimator of D is 

 

 

11 12

12 22

D D
D

D D

 
   

 


   

where 
 
 

11 AVAR )D δ(ˆ  

 

 
 

12 γ δ
ˆD δ qAVAR( ) E AVAR *(q γ)      

 
 

 
   

22 γ δ γ δAVAR *(γ) E AVAR( ) E 'AVAR *(γ) AVˆD q q δ q q AR *(γ)                

            (9) 
 

and AVAR(δ̂)  and AVAR *(γ) are the estimated covariance matrices obtained from the first and 

second stage packaged regression outputs, respectively.  So, for example, the “t-statistic” 
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k k 22(k)(γ - γ ) D/   for the kth element of γ is asymptotically standard normally distributed and 

can be used to test the hypothesis that 0
k kγ γ  for 0

kγ , a given null value of kγ .  

 On the other hand, when second stage is NLS, 2
i i iq(δ, γ, Z ) (Y J(δ, γ, V ))   and 

γδqE     and  γγqE     
can be consistently estimated using 

 

n

γ i δ i
i 1

γδ

ˆ ˆˆ ˆJ(δ, γ,V ) J(δ, γ,V )

n
Ê q 

  
          (10) 

and  

 

n

γ i γ i
i 1

γγ

ˆ ˆˆ ˆJ(δ, γ,V ) J(δ, γ,V )

n
Ê q 

  
    .      (11)  

respectively, where iV denotes the ith observation on V, and δ̂  and γ̂  denote the first and second 

stage estimators, respectively.  Therefore, when the second stage is NLS, a consistent estimator 

of D is 

 

 

11 12

12 22

ˆ ˆD D
D̂

ˆ ˆD D

 
  

  
 

 
where 
 

 
11

ˆAV )ˆ AR(D δ  

 

 


12 γδ γ

1

γ
ˆ ˆD̂ ˆAVAR( E Eq qδ)

         
 

 

 
 

22 γγ γδ γ

1

δ γγ

1ˆˆ ˆ ˆ ˆ ˆE E AVAR(δ)E ' ED̂ q q q AVAR *(γq )
 

                   (12) 

 
 

and  ˆAVAR(δ)  and  ˆAVAR *(γ) are the estimated covariance matrices obtained from the first and 

second stage packaged regression outputs, respectively.   
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3.  Some Useful Two-Stage Optimization Estimators 

 Here we discuss a few 2SOE that can be used in empirical contexts involving 

endogeneity.  These methods are designed to correct for endogeneity bias and, therefore, allow 

for causal interpretation of regression results.  These methods are particularly useful for 

retrospective and prospective empirical analysis of health policy because they produce results 

that are causally interpretable. 

  
3.1 Two-Stage Residual Inclusion 

 Suppose the researcher is interested in estimating the effect that a policy variable of 

interest pX  has on a specified outcome Y.  Moreover, suppose that the data on pX  is sampled 

endogenously – i.e. it is correlated with an unobservable variable uX that is also correlated with 

Y.  To formalize this, we follow Terza et al. (2008), and assume that the data generating process 

has the following components 

 
 p o u p o uE[Y | X ,X , X ] μ(X , X , X ;β)    [outcome regression]   (13) 

and 

p uX  r(W, α) + X  [auxiliary regression]      (14) 

 
where oX  denotes a vector of observable confounders (observable variables that are possibly 

correlated with both Y and pX ), β and α are parameters vectors, oW = [X W ] , W  is an 

identifying instrumental variable, and μ(   ) and r(    ) are known functions.  Because the set of 

confounders ( oX  and uX , respectively), is comprehensive (i.e. includes all possible 

confounders), we can show that as a special case of the extended potential outcomes framework 
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developed by Terza (2012), the model in (13) and (14) can be used for causal analysis. The true 

causal regression model corresponding to (13) is6 

 
  p o uY μ(X , X , X ;β) e          (15) 

 
where e is the random error term, tautologically defined as p o ue Y μ(X , X , X ;β)  .  The β 

parameters in expression (15) are not directly estimable (e.g. by NLS) due to the presence of the 

unobservable confounder uX .  The following 2SOE is, however, feasible.   

First Stage:  Obtain a consistent estimate of α by applying NLS to (14) and compute the residuals 

as 

 u p
ˆ ˆX = X  r(W, α)          (16) 

 
where α̂  is the first-stage estimate of α. 

 
Second Stage:  Estimate β by applying NLS to 

 
 Y = p o uμ(X , X , X̂ ;β)  + e2SRI        (17) 

 
where e2SRI denotes the regression error term.  Terza et al. (2008) call this method two-stage 

residual inclusion (2SRI). 

 In order to detail the asymptotic covariance matrix of this 2SRI estimator, we cast it in 

the framework of the generic 2SOE discussed above.  This version of the 2SRI estimator 

implements NLS in its second stage.  Therefore, expressions (10) through (12) are relevant, with 

α and β playing the roles of δ and γ, respectively, and i
ˆ ˆq(δ, γ, Z )  replaced by 

                                                 
6 See Terza (2012) for the strict definition of true causal model. 
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  2

p p o u
ˆX , W Yˆq(α, β μ(X , X ,Y β), ) X, ;   .     (18) 

 

Specific illustrations of (13) through (18) and (10) through (12) in this context will be given in 

the next section. 

 It should be noted here that MLE can be implemented in either of the stages of the 2SRI 

method.  For MLE to be implemented in the first stage, the primitive in (14) must be replaced by 

an assumption which specifies a known form for the conditional density of p(X | W) , say 

pg(X | W;α) .  Such an assumption would, of course, imply a formulation for the conditional 

mean pE[X | W], say r(W, α) .  Therefore, in this case, the first stage of the estimator would 

consist of maximizing (1) with 1 iq (δ, V )  replaced by pi iln[g(X | W ;α)]  and subsequently 

computing the residuals as in (16).  For MLE to be implemented in the second stage, the 

primitive in (13) must be replaced by an assumption which specifies a known form for the 

conditional density of p o u(Y | X ,X , X ) , say p o uf (Y | X ,X , X ;β) .  The second stage of the 

estimator would then consist of maximizing (2) with i
ˆq(δ, γ, Z )  replaced by 

i pi oi ui
ˆln[f (Y | X , X , X ;β)] .  To obtain the correct asymptotic covariance matrix, the expressions 

in (6), (8) and (9) would be appropriately specified to accommodate the log-likelihood form of  

q(   ). 

 
3.2 A Two-Stage Estimator for Nonlinear Models Involving Endogenous Sample Selection 

 Here again, we suppose the researcher is interested in estimating the effect that a policy 

variable of interest pX  has on a specified outcome Y.  In this case, structure of the model is 

nearly the same as that developed in section 3.1 above.  There are, however, two important 
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differences.  First, the observability of the outcome of interest (Y) for each member of the 

relevant population is assumed to be determined by a binary sample selection variable, sX , that 

is endogenous (correlated with the unobservable confounder uX ) and does not appear in the true 

causal regression specification for the outcome conditional on the confounders.  The outcome 

regression  in (13) is, therefore, replaced with 

 
  p o u s p o uE[Y | X ,X ,X ,X ] μ(X , X , X ; τ)          (19) 

 
where τ is a vector of unknown parameters.  Secondly, we formalize the correlation between sX  

and uX as 

 

s uX I(Wθ X 0)           (20) 

 

where p oW [X X W ] , W is a vector of identifying instrumental variables, and u(X | W)  

has a known distribution.  Note that pX  is included among the instruments here because it is 

assumed to be exogenous (the source of endogeneity in this case is sX ).  Terza (2009) shows 

that (19) and (20) imply 

 
p o u u u

Wθ
s

μ(X , X ,X ; τ)g(X | W) dX
E[Y | W, X 1]

1 G( Wθ | W)






 
 

    (21) 

 
where g(  ) and G(  ) denote the pdf and cdf of u(X | W) , respectively.  This motivates the 

following consistent two-stage estimator: 

First Stage:  

Estimate θ by applying appropriate MLE to  s uX I Wθ X 0    using the full sample. 
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Second Stage: 

Estimate τ by applying NLS to the following nonlinear regression model motivated by (21) using 

the subsample of observations for whom sX 1   

 
p o u u u

ˆWθ

μ(X ,X ,X ;τ)g(X | W) dX
Y υ

ˆ1 G( Wθ | W)






 
 

     (22) 

where θ̂  is the first-stage estimate of θ and υ is the regression error term.7 

 
In order to detail the asymptotic covariance matrix of this estimator, we cast it in the framework 

of the generic 2SOE discussed above.  Because NLS is implemented in the second stage, 

expressions (10) through (12) are relevant, with θ and τ playing the roles of δ and γ, respectively, 

and i
ˆ ˆq(δ, γ, Z )  replaced by 

 

  2

p s
ˆq(θ, τ, Y, ) ˆX , W Y E[Y | W, X 1]         (23) 

 

where sÊ[Y | W, X 1]  is the same as (21) with θ replaced with θ̂ .  Specific illustrations of 

expressions (10) through (12) in this context will be given in the next section.  Here, as for the 

2SRI estimator, the second stage can be MLE.  In this case, (19) must be replaced by an 

assumption which specifies a known form for the conditional density of p o u s(Y | X ,X ,X ,X ) , 

say p o uh(Y | X ,X , X ;β) .  The second stage of the estimator would then consist of maximizing 

(2) with i
ˆq(δ, γ, Z )  replaced by the appropriate log-likelihood form based on h( | ).  To obtain 

                                                 
7 The requisite integral for (20) can be evaluated using quadrature or simulation approximation. 
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the correct asymptotic covariance matrix, the expressions in (6), (8) and (9) would be 

appropriately specified to accommodate the log-likelihood form of q(   ). 

 
3.3 Multi-Stage Causal Effect Estimators 

 For contexts in which the policy variable of interest ( pX ) is qualitative (binary), Rubin 

(1974, 1977) developed the potential outcomes framework (POF) which facilitates clear 

definition and interpretation of various policy relevant treatment effects. Terza (2012) extends 

the POF to encompass contexts in which pX  is quantitative (discrete or continuous) and planned 

policy changes in pX  are incremental or infinitesimal.  Correspondingly, as counterparts to the 

average treatment effect in the POF, Terza (2012) defines the average incremental effect and the 

average marginal effect, respectively, as8 

 

 
 

p1 p1 p1p1 X Δ (X ) XAIE Δ(X ) E[Y ] E[Y ]        (24) 

and 

 
Δ 0

AIE(Δ)
AME lim

Δ
          (25) 

 
where p1X  denotes the pre-policy version if pX  (a random variable), p1Δ(X )  denotes the policy 

mandated exogenous increment to the policy variable, and *
pX

Y  denotes the potential outcome (a 

random variable) -- the version of the outcome that would obtain if the policy variable were 

exogenously and counterfactually set at *
pX .9 

 Terza (2012) shows that under a primitive regression assumption like (13) [or (19)], if we 

can consistently estimate the parameters of the model (τ) and can find an appropriate (consistent) 

                                                 
8 Note that AIE(Δ)  is defined as in (24) with

 p1Δ(X ) Δ , a constant. 
9 For details of the extended potential outcomes framework, see Terza (2012). 
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way to proxy uX  then (24) and (25) can be consistently estimated using 

 

   n

p1i p1i i p1i oi ui p1i oi ui
i 1

1 ˆ ˆˆ ˆAIE(Δ(X )) μ(X Δ (X ), X , X ; τ ) μ(X , X , X ; τ)
n

  
  

(26) 

  n p1i oi ui

i 1 p1i

ˆ ˆμ(X , X , X ; τ)1
AME

n X






       

 (27) 

where τ̂  is a consistent estimate of τ, uiX̂ is the proxy value for uX , and the i subscript denotes 

the observation for the ith individual in a sample of size n (i = 1, …, n).  In (26) and (27) we 

assume that we can directly proxy uX , as would be the case if we estimated the model via the 

2SRI method.  In the two-stage sample selection (2SSS) model detailed in section 3.2, no such 

direct proxy for uX can be implemented.  In the 2SSS model, however, the distribution of 

u(X | W)  is assumed to be known so we can write the relevant versions of (26) and (27) as, 

respectively 

 

  
  n

p1i p1i i p1i oi u p1i oi u u u
i 1

1
ˆ ˆAIE(Δ(X )) μ(X Δ (X ), X , X ; τ ) μ(X , X , X ; τ) g(X | W) dX

n



 
 

    
   

          
  (28) 

  n p1i oi u
u u

i 1 p1i

ˆμ(X , X , X ; τ)1
AME g(X | W) dX

n X



 
 

               

(29) 

 
where ug(X | W) is the known pdf of u(X | W) . 

 We now turn to the asymptotic properties of these estimators.  We use the notation “PE” 

to denote the relevant policy effect [(24) or (25)] and rewrite (26) and (27) in generic form as 

 

 
n

i

i 1

ˆˆpe (α, β)
PE

n
          (30) 
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where  i
ˆˆpe (α, β) is shorthand notation for p1i oi ui i

ˆˆ ˆpe(X , X , X (α,W ),β) .  In cases like 2SRI, wherein 

uX can be directly proxied using the first-stage estimate ( α̂ ) and the instrumental variables  

( iW ), we have 

    p1 p1 o u p1 o uμ(X Δ(X ),X ,X (α,W),β ) μ(X , X ,X (α,W),β) 
 

           
for (26) 

   p1 o upe(X ,X ,X (α,W),β) = 

    p1 o u

p1

μ(X , X , X (α,W),β)

X




.    for (27) 

 
Similarly, we rewrite (28) and (29) in generic form as 

 

 
n

i

i 1

ˆpe (τ)
PE

n
          (31) 

where  i ˆpe (τ) is shorthand notation for p1i oi ˆpe(X ,X , τ)  for cases like 2SSS in which uX cannot be 

directly proxied and 

    p1 p1 o u p1 o u u uμ(X Δ(X ),X ,X ; τ ) μ(X , X ,X ; τ) g(X | W) dX



    

           for (28) 
          p1 ope(X ,X , τ) = 

 

   p1 o u
u u

p1

μ(X , X , X ; τ)
g(X | W) dX

X





  
   

.   for (29) 

  
 
In order to derive the asymptotic properties of (30) and (31) we cast them as 2SOE. 

 The first stage of our 2SOE characterization of (30) comprises consistent estimation of α 

and β (e.g. via 2SRI).  The second stage of the estimator [i.e., (30) itself] is easily shown to be 

the optimizer of the following objective function 
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n

i
i 1

ˆˆq(α, β, PE, Z )

          (32) 

where 

  i

2

ipe ( ) PEˆ ˆˆ ˆq(α, β, PE, Z ) α, β,         (33) 

 

1i i p i i[Y XZ W ]  and τ̂  is the first-stage estimator of τ.  Because the second stage of this 

2SOE implements NLS, expressions (7) and (10) through (12) are relevant, with [α β ]   and PE 

playing the roles of δ and γ, respectively.  In this case (10) and (11) become, respectively 

 

 

n

PE[α β ] i [

n

α β ]
i 1

ˆˆPE [α β]

i
i 1

ˆ ˆˆ ˆq(α, β, PE, 2 peZ ) α,( )
Ê

n

β
q

n

   
 
  

   


    (34) 

and  

 

n

PE PE i
i 1

PE PE

ˆq(τ, PE, Z )
qE 2

n
ˆ 


  


  .      (35) 

  

where ˆˆ[α β ]   and PE  denote the first and second stage estimators, respectively.  Note also, that 

in this case 

   
  2n

i
i 1

ˆα̂pe ( ) PE
AVAR *(PE

n

,
)

β

 

 .      (36) 

 
Combining (34) through (36) with (12) we obtain a consistent estimate of the correct asymptotic 

variance of (30) as 
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 



   [α β ]

2n n n

i i i
i 1 1

]
i

α β
i 1

[pe ( ) pe ( ) pe ( ) PE
ˆˆAVAR([α β ])

ˆ ˆ ˆˆ ˆ ˆα, β α, β α, β
a var(PE)

n n n
 




    
        

     
  
  





            (37) 
 

where n

i
i 1

[α β ]
ˆˆpe ( )α, β


   denotes [α β ] p1 o upe(X ,X ,X (α,W),β)  evaluated at Xpi, Xoi, iW , and 

ˆˆ[α β ]   and  ˆˆAVAR([α β ])   is the estimated asymptotic covariance matrix of ˆˆ[α β ]  .  So, for 

example, the “t-statistic”    n (PE PE) / a var PE  is asymptotically standard normally 

distributed and can be used to test the hypothesis that 0PE PE  for 0PE , a given null value of 

PE.10 

 We can similarly establish a consistent estimate of the correct asymptotic variance of (31) 

as 

 
 




   2n n n

τ τi i i
i 1 i 1 i 1

ˆ ˆ ˆpe (τ) pe (τ) pe (τ) PE
ˆAVAR(τ)

n n
a var(PE)

n
  
  

        
   

   
   

  (38) 

where 
τ i ˆpe (τ)  denotes τ p1 ope(X ,X , τ)  evaluated at p1iX , oiX and τ̂ ; and  ˆAVAR(τ)  is the 

estimated asymptotic covariance matrix of τ̂ .  So, for example, the “t-statistic” 

   n (PE PE) / a var PE  is asymptotically standard normally distributed and can be used to 

test the hypothesis that 0PE PE  for 0PE , a given null value of PE. 

                                                 
10 The analysis in this section encompasses cases in which pX  is either endogenous or 

exogenous -- the latter is characterized by the absence of uX (no unobservable confounders).  

Therefore, the result obtained by Basu and Rathouz (2005) for the asymptotic standard error of 
the average marginal effect when pX  is exogenous can easily be shown to be a special case of 

the more general 2SOE approach taken here. 
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4. Illustrations 

 
4.1 Smoking During Pregnancy and Infant Birthweight:  Parameter Estimation via 2SRI 

 Using the 2SRI method, we re-estimate the regression model of Mullahy (1997) in which 

 
 Y = infant birthweight in lbs 
 

 
pX = number of cigarettes smoked per day during pregnancy 

 

and show, in detail, how to obtain the correct asymptotic standard errors for the parameter 

estimates.  In this illustration the relevant versions of the outcome and auxiliary regressions in 

(13) and (14) are 

 

 
p o u p p o o u uE[Y | X ,X , X ] exp(X β X β X β )        (39) 

 
p uX  exp(Wα) + X .        (40) 

 
We applied NLS in both of the stages of 2SRI so the first and second stage objective functions 

[(1) and (2)] are 

 

 
2

1 i pi iq ( ,α exp(WV ) (X ))α  
 

 

 
pi p o o pi i

2
i i uα exp(X β X β (X  exp(W α))β )q( , β, Z ) (Y )     . 

 
The first and second stage 2SRI parameter estimates ( α̂  and p o u

ˆ ˆ ˆ ˆβ [β β β ] , respectively) 

were obtained in Stata by applying the GLM procedure with the “family(gaussian)” and 

“link(log)” options.  After each of the stages, we then saved the parameter vectors ( α̂  and β̂ ) 

and their corresponding “packaged” covariance matrix estimators ( ˆAVAR(α)  and  ˆAVAR *(β) ) 
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in MATA.  Using MATA, we then calculated the n × dim( iW ) matrix whose ith row is 

 
 iα u ii i

ˆ ˆ ˆˆ ˆα β β exp(X β) exp(WJ( , , WZ ) 2 α)    

 
and the n × dim( iX ) matrix whose ith row is 

 
 iβ i iJ( , ,Z )ˆ ˆα̂ β exp(X2 β)X   

 
where dim(A) denotes the row dimension of the vector A, and i pi oi ui

ˆX [X X X ] .  Finally, 

we estimated the asymptotic covariance matrix of ˆˆ ˆω = [α β]   as 

 

 

11 12

12 22

ˆ ˆD D
D̂

ˆ ˆD D

 
  

  
 

where11 

 
11 ˆAV )ˆ AR(D α  

 

 
12 βα β

1

β
ˆ ˆˆAVAR(α)ED̂ q qE

           

 

 
 

22 ββ βα β

1

β

1

α β
ˆˆ ˆ ˆ ˆˆE E AVAR(α)E E AVAR *(βD̂ q q q q )

 
                    . 

 

 

2
u i i i i

n n

β i α i
i 1 i 1

βα

J( , ,Z ) J( ,ˆ ˆ ˆ ˆˆ ˆ ˆα β α β β exp(,Z )
q

n n

X β) exp(Wα)X W
Ê  

  
    

 
   (41) 

and  

 

n n

β i β i
i 1

2
i i i

i 1
ββ

ˆ ˆ ˆˆ ˆα β α β exJ( , ,Z ) p(XJ( , , β) X X
ˆ

Z )
q

n n
E  

  
    

 
 .   (42)  

 
The relevant lines of MATA code are: 
 

                                                 
11 Expressions (41) and (42) are the relevant versions of (10) and (11). 
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i ˆWα :       walpha=W*alpha   

i
ˆX β :        xbeta=X*beta 

α iJ( ,α )β̂,Zˆ : pJaq=2*bu*exp(xbeta):*exp(walpha):*W 

β iJ( ,α )β̂,Zˆ : pJbq=2*exp(xbeta):*X  

βαqÊ    : pbaq=pJbq’*pJaq  

ββqÊ    : pbbq pJbq’*pJbq  

11D̂ :  D11=avaralpha 

12D̂ :  D12= avaralpha*pbaq'*luinv(pbbq) 

22D̂ : 
  D22=luinv(pbbq)*pbaq*avaralpha*pbaq'*luinv(pbbq)+avarbetastar 
 

D̂ :    D=D11, D12 \ D12', D22. 
 

 
The 2SRI results are given in Table 1.  
 
 

Table 1:  GLM Exponential Condition Mean NLS Regression w/ Corrected St. Errors 
    +-------------------------------------------------+ 
  1 |   variable    estimate      t-stat     p-value  | 
  2 |                                                 | 
  3 |   CIGSPREG   -.0140086   -3.678995    .0002342  | 
  4 |     PARITY    .0166603    3.180623    .0014696  | 
  5 |      WHITE    .0536269    4.217293    .0000247  | 
  6 |       MALE    .0297938    3.130267    .0017465  | 
  7 |      xuhat    .0097786    2.557676    .0105374  | 
  8 |   constant    1.948207    117.6448           0  | 
    +-------------------------------------------------+ 

 
For comparison, the second stage estimates with packaged GLM standard errors are given in 

Table 2. 

 
Table 2:  GLM Exponential Condition Mean NLS Regression w/ Uncorrected St. Errors 

------------------------------------------------------------------------------ 
             |               Robust 

   BIRTHWTLB |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    CIGSPREG |  -.0140086   .0034369    -4.08   0.000    -.0207447   -.0072724 
      PARITY |   .0166603   .0048853     3.41   0.001     .0070854    .0262353 
       WHITE |   .0536269   .0117985     4.55   0.000     .0305023    .0767516 
        MALE |   .0297938   .0088815     3.35   0.001     .0123864    .0472011 
       xuhat |   .0097786   .0034545     2.83   0.005      .003008    .0165492 
       _cons |   1.948207   .0157445   123.74   0.000     1.917348    1.979066 
------------------------------------------------------------------------------ 
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Note the differences in the t-statistics. 

 
4.2 Depression and Income for US Adults:  Estimation via 2SSS 

 The underlying model is 

 
 hurdle: s p p1 o o1 uX I(X β X β X 0)= + + >       (43) 

 

 levels:
 

p p2 o o2 u u2 2Y exp(X β X β X β ε )= + + +

   
  (44) 

where 

 sX  ≡  1 if the individual is employed, 0 otherwise 

 Y ≡ income (latent if sX   =  0) 

 pX  ≡  number of depressive symptoms  

 oX ≡  the vector of observable control variables (observable confounders)  

 uX ≡ a scalar comprising the unobservable confounders 

 
*

1 p o u(ε | X ,X ,X ) ~ n(0, 1)
 

 

 
*

2 p o uE[exp(ε ) | X ,X ,X ] 1=  

 
 
and I(C) denotes the indicator function whose value is 1 if condition C holds and 0 otherwise.12   

 
THE REMAINDER OF THIS SECTION IS YET TO BE COMPLETED.  

 
4.3 Average Incremental Effect of Smoking During Pregnancy on Infant Birthweight 

                                                 
12 Note that the standard normality assumption for *

1 p o u(ε | X , X ,X )  is not required.  Any 

distributional assumption will suffice here.  The normal and logistic are typical. 



22 
 

 To follow up our analysis in section 4.1, we estimate the average incremental effect 

(AIE) of a policy that would cause current levels of smoking during pregnancy to fall to zero for 

everyone in the relevant population.  In the notation of section 3.3, we have that the pre- and 

post-policy versions of the policy variable are p1 pX X  and p2 p pX X Δ(X )  , respectively, 

where p pΔ(X ) X  .  Moreover, using (30) we have that the AIE estimator is 

 

 


n

i

i 1

ˆˆpe (α, β)
PE

n
          (45) 

 
 

 where  i
ˆα̂p ( ,e β)  is p1 o upe(X ,X ,X (α,W),β)

 
evaluated at Xpi, Xoi, iW ,  and ˆˆ[α β ]  , with  

 

p1 o u pi pi p o o u u pi pi p o o u u
ˆ ˆ ˆ ˆ ˆ ˆpe(X , X , X (α,W),β) exp([X Δ(X )]β X β X β ) exp([X Δ(X )]β X β X β ).       

 
Using (37), we obtain the correct asymptotic standard error of (45) as 
 
 

 
 

[α

n n

i i
i

β ] [
i

]
1 1

α βpe ( ) pe ( )
D̂

n

ˆ ˆˆ ˆα, β α, β
a var( )

n
PE

 





 
       

   
   
   


  2n

i
i 1

pe ( )ˆα̂, PEβ

n

 



  

     
p o uα β β βi i i i[α β i]pe ( ) [ pe ( ) peˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆα, β α, β α, β α( ) pe ( ) pe ( ), α, β ]β        

 

 
α i u pi pi p oi o ui ui

ˆ ˆ ˆ ˆˆˆpe ( ) = exp(Wα)β exp([X Δ(X )]β X β X β )ˆα̂, β       

       pi p oi o ui u i
ˆ ˆ ˆˆexp(X β X β X β ) W     

 

 


pβ pi pi p oi o ui ui
ˆ ˆ ˆˆpe ( ) exp([X Δ(ˆˆ X )]β X βα, ββ X )      

       pi p oi o ui u pi
ˆ ˆ ˆˆexp(X β X β X β )X  

 


oβ pi pi p oi o ui u pi p oi o ui u oii

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆpe ( ) exp([X Δ(X )]β X β X β ) exp(X β Xˆˆ β X β ) Xα, β            

 
uβ pi pi p oi o ui u pi p oi o ui u uii

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆpe ( ) exp([X Δ(X )]β X β X β ) exp(X β X β Xˆα̂ ) Xβ β,          
. 
The relevant lines of MATA code are: 
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pi pi p oi o ui u
ˆ ˆ ˆˆ[X Δ(X )]β X β X β   :    

   x1incb1=X1INC*beta 
 


i
ˆˆpe (α, β) :  pei=exp(x1incb1):-exp(x1b1) 

 
PE :   pe=mean(pei) 
 


α i

ˆˆe ( )α,p β :  palfa=-exp(walpha):*bxu:*pei:*W 
 


pβ ipe ( )ˆα̂, β :  pbetap=exp(x1incb1):*xpinc:-exp(x1b1):*xp 

 
 

o uβ βi i[ pe ( ) peˆ ( ˆˆ ˆα, )]β α, β  :  

    pbetao=pei:*X0 [NOTE THAT X0 INCLUDES Xu] 
 


[α β

n

i 1
] ipe ( )

n

ˆα̂, β


   
 
 
 

:  

   ppe=mean(palfa),mean(pbetap),mean(pbetao) 
 
 a var(PE) :  varpe=ppe*(n:*D)*ppe':+mean((pei:-pe):^2). 
 
 
The results are given in Table 3 

 
 

Table 3:  AIE of Eliminating Smoking During Pregnancy w/ Corrected St. Errors 
   +-----------------------------------------------------------------------+ 
  1 |  %smoke-decr   incr-effect       std-err        t-stat       p-value  | 
  2 |                                                                       | 

3 |          100      .2300237      .0726222      3.167401      .0015381   

 

The results indicate that a 100% decrease in smoking for every pregnant woman in the 

population would cause an average increase in birthweight of nearly a quarter of a pound. 

 

THE REMAINDER OF THE PAPER IS YET TO BE COMPLETED. 
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