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Prehensile tails, capable of suspending the entire body weight of an animal, have 

evolved in parallel in New World monkeys (Platyrrhini): once in the Atelinae (Alouatta, 

Ateles, Brachyteles, Lagothrix), and once in the Cebinae (Cebus, Sapajus).  Structurally, 

the prehensile tails of atelines and cebines share morphological features that distinguish 

them from non-prehensile tails, including longer proximal tail regions, well-developed 

hemal processes, robust caudal vertebrae resistant to higher torsional and bending 

stresses, and caudal musculature capable of producing higher contractile forces.  The 

functional significance of shape variation in the articular surfaces of caudal vertebral 

bodies, however, is relatively less well understood.  Given that tail use differs 

considerably among prehensile and non-prehensile anthropoids, it is reasonable to 

predict that caudal vertebral body articular surface area and shape will respond to use-

specific patterns of mechanical loading.  We examine the potential for intervertebral 

articular surface contour curvature and relative surface area to discriminate between 

prehensile- and nonprehensile-tailed platyrrhines and cercopithecoids.   The proximal 

and distal intervertebral articular surfaces of the first (Ca1), transitional (TV) and longest 

(LV) caudal vertebrae were examined for individuals representing 10 anthropoid taxa 

with differential patterns of tail-use.  Study results reveal significant morphological 

differences consistent with the functional demands of unique patterns of tail use for all 

vertebral elements sampled.  Prehensile-tailed platyrrhines that more frequently use 

their tails in suspension (atelines) had significantly larger and more convex 
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intervertebral articular surfaces than all nonprehensile-tailed anthropoids examined 

here, although the intervertebral articular surface contour curvatures of large, 

terrestrial cercopithecoids (i.e. Papio) converge on the ateline condition.  Prehensile-

tailed platyrrhines that more often use their tails in tripodal bracing postures (cebines) 

are morphologically intermediate between atelines and nonprehensile tailed 

anthropoids.   

 

Keywords: Prehensile, Caudal Vertebrae, Curvature, Atelinae, Cebinae, Intervertebral 

disc articulation 

 

 

 

 

 

 

 

 

 

 

 

 
Author’s manuscript; final version published as:  
 
Deane AS, Russo GA, Muchlinski MN, Organ JM. Caudal vertebral body articular surface morphology correlates with 
functional tail use in anthropoid primates. Journal of Morphology. 2014 Jun 1. http://dx.doi.org/10.1002/jmor.20304 
 
  3 
 

http://dx.doi.org/10.1002/jmor.20304


 

 

 

Introduction 

Positional behaviors are one of the most basic functional parameters defining a 

primate species.  Behavioral studies establish that primates represent a greater diversity 

of locomotor adaptations than any other mammalian order (Hunt et al., 1996; Fleagle, 

2013).  Among primates, only members of the Atelinae (Alouatta, Ateles, Brachyteles, 

Lagothrix) and the Cebinae (Cebus, Sapajus) possess prehensile tails that may be used as a 

postural support and/or suspensory grasping appendage capable of supporting an 

animal’s entire body mass during feeding and locomotion (Emmons and Gentry, 1983).  

Although similar in structure and function (Lemelin, 1995; Organ et al., 2009; Organ, 

2010), prehensile tails in atelines and cebines are thought to have evolved in parallel 

(Napier, 1976; Rosenberger, 1983; Organ and Lemelin, 2011).   

The mammalian tail is subdivided into three regions based on caudal vertebral 

morphology: proximal, transitional, and distal.  Proximal caudal vertebrae articulate with 

one another by way of zygapophyseal and intervertebral disc joints. Depending on their 

orientation and shape, zygapophyses serve to govern spinal movements by permitting 

movement in some planes, while restricting it in others (Shapiro, 1993; Bogduk and 

Twomey, 2005; Russo, 2010). By contrast, distal caudal vertebrae articulate only through 

intervertebral disc joints (i.e., they lack zygapophyses), and are capable of more degrees 
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of freedom in movement compared to proximal caudal vertebrae. The proximal tail region 

includes all caudal vertebrae from the first caudal vertebra (Ca1) to the transition vertebra 

(TV). The morphology of the TV is distinct among caudal vertebrae by the presence of 

zygapophyseal and intervertebral disc articulations proximally, but only an intervertebral 

disc articulation distally (Schmidt, 1886; Ankel, 1962, 1965, 1972).  More recent analyses 

of anthropoid caudal vertebrae describe a third region of the tail, the transitional region, 

that includes all vertebrae between the TV and the craniocaudally longest vertebra (LV) in 

the tail sequence (German, 1982; Lemelin, 1995; Schmitt et al., 2005; Organ et al., 2009; 

Organ, 2010; Organ and Lemelin, 2011; Russo and Young, 2011).   

 Previous research has identified functionally significant differences in 

musculoskeletal morphology between prehensile- and nonprehensile- tailed platyrrhines. 

Compared to nonprehensile-tailed taxa, prehensile-tailed taxa have more craniocaudally 

expanded sacroiliac joints, longer proximal regions comprised of a greater number of 

vertebrae, craniocaudally shorter and transversely wider distal region vertebrae, more 

expanded transverse and hemal processes (sites of muscle attachment), caudal flexor 

musculature structured to produce higher contractile forces (i.e. muscle with greater 

physiological cross sectional areas [PCSA]), and vertebral cross-sectional geometry 

consistent with greater resistance to bending and torsion (Schmidt, 1886; Ankel, 1962, 

1965, 1972; German, 1982; Lemelin, 1995; Schmitt et al., 2005; Organ et al., 2009; 

Organ, 2010; Organ and Lemelin, 2011; Russo and Young, 2011).  The differences 

between prehensile- and nonprehensile-tailed platyrrhine muscle attachments, PCSA, 
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caudal vertebral robusticity, and resistance to bending and torsion are accentuated in 

the distal caudal region (Organ et al., 2009; Organ, 2010; Organ and Lemelin, 2011; 

Russo and Young, 2011).  Proximal caudal vertebrae are thought to be less divergent 

morphologically between prehensile- and nonprehensile-tailed taxa given the 

presumably similar functional demands in this region of the tail (i.e. both groups abduct, 

adduct, flex and extend their tails) (German, 1982).  Organ (2010), however, has more 

recently demonstrated that the cross-sectional geometric structure of proximal caudal 

vertebrae distinguishes prehensile-tailed platyrrhines from nonprehensile-tailed 

platyrrhines. The one exception in these results was Pithecia monachus, who exhibited 

more robust caudal vertebrae than expected, perhaps due to that taxon’s use of ‘tail 

draping’ postures where the proximal region is used as a brace during hind limb 

suspension (Walker, 1993; 1996; Meldrum, 1998; Organ and Lemelin, 2011).   

Prehensile-tailed platyrrhines differ in their frequency and mode of tail-use 

(Bergeson, 1992, 1995, 1996; Gebo 1992, Bezanson, 2012).  Cebines use their prehensile 

tails to brace themselves against a vertical substrate in a tripodal posture during feeding 

and resting, but infrequently use their tails to suspend their entire body weight 

(Bergeson, 1992, 1995, 1996; Bezanson, 2012).  Like cebines, atelines use their tails in 

postural and feeding behaviors, but also employ their tails in hindlimb-assisted tail 

suspension and during tail-only suspensory locomotor behaviors (Bergeson, 1996; 

Schmitt et al., 2005; Bezanson, 2012).  Despite these behavioural differences, ateline 

and cebine tails differ morphologically only by the presence of a hairless ventral friction 
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pad (Organ et al., 2011) and more well-developed dorsal caudal musculature in the 

former (Lemelin, 1999; Organ et al., 2009). In contrast, the cebine prehensile tail is 

completely covered with hair (Organ et al., 2011) and the dorsal caudal musculature is 

developed as in nonprehensile-tailed platyrrhines (Lemelin, 1999). Nonetheless, 

features such as the well-developed ventral caudal musculature, the strong estimated 

structural mechanical properties of the caudal vertebrae, and the relatively longer 

proximal tail region in cebines are convergent with those properties of the ateline 

prehensile tail (Organ et al., 2009; Organ, 2010). Therefore, cebine prehensile tails 

appear as a morphological intermediate between the tails of atelines and the tails of 

nonprehensile-tailed platyrrhines. 

Although there have been numerous studies examining the anatomy of prehensile 

and nonprehensile anthropoid tails with respect to function, none of these directly 

addresses the functional significance of articular surfaces of the caudal vertebrae.   This 

study will specifically address the scaling relationships and surface curvature of 

intervertebral disc joint articulations among prehensile- and nonprehensile-tailed 

anthropoids. Bones from closely related taxa with dissimilar positional behaviors should 

respond in unique ways to locomotor specific loading patterns.  One such adaptive 

response is the relative increase in joint surface area in response to increased mechanical 

loading (Jungers, 1988, 1991; Ruff, 1988; Godfrey et al., 1991; Ruff and Runstead, 1992; 

Rafferty and Ruff, 1994; Lieberman et al., 2001).  Joint stress is a function of the force 

applied to a joint relative to articular surface area. Larger joint surfaces effectively 
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minimize the concentration of these forces on the articular surfaces and preserve joint 

function by minimizing the potential for damage to the cartilaginous and osseous joint 

components (Currey, 1984; Jungers, 1988).  Similarly, the contour morphology of articular 

surfaces can significantly influence joint function and excursion (e.g., Organ and Ward, 

2006).  We hypothesize that intervertebral articular surface area and contour curvature 

are correlates of tail-use (e.g., prehensile-tailed versus nonprehensile-tailed).  This 

hypothesis will be validated by confirmation of the following predictions: 

 
1. Prehensile-tailed anthropoids have relatively larger intervertebral articular 

surfaces compared to their nonprehensile-tailed relatives, presumably as a 

consequence of the increased mechanical loading of the caudal vertebrae 

resulting from tail use during locomotion, suspension and/or support during 

tripodal postures.    

2. Prehensile-tailed anthropoids will have more pronounced intervertebral articular 

surface curvatures (i.e. greater convexity) compared to nonprehensile-tailed 

anthropoids consistent with increased dorsoventral and mediolateral tail 

flexibility.   

Methods and Materials 

Data sample 
The first caudal vertebra (Ca1), transition vertebra (TV), and longest vertebra (LV) 

were identified for a mixed taxonomic sample (n=56 individuals) representing ten 
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distinct anthropoid genera (Table 1).  Specimens were from the Field Musuem of 

Natural History (FMNH), the Department of Anthropology at the University of Texas at 

Austin, and the Department of Anatomy and Neurobiology in the College of Medicine at 

the University of Kentucky.  These vertebrae were chosen because they possess unique 

and consistent morphologies that make them readily identifiable.  Vertebral 

identification follows the descriptions of Ca1, TV and LV vertebral morphology in Organ 

(2010).  All genera were identified as belonging to one of two discrete tail function 

groupings (i.e. prehensile-tailed vs. nonprehensile-tailed).  Specimens identified as 

nonprehensile-tailed were further segregated into nonprehensile-tailed New World 

monkey (NWM) and nonprehensile-tailed Old World monkey (OWM) groupings (Table 

1).  Functional groupings are based on behavioral observations (Gebo, 1992; Garber and 

Rehg, 1999; Youlatos, 1999; Bezanson, 2004; 2005; 2006a, 2006b; 2009; 2012) and prior 

functional analyses of caudal musculoskeletal anatomy (Schmidt, 1886; Dor, 1937; 

Ankel, 1962, 1965, 1972; German, 1982; Lemelin, 1995; Youlatos, 2003; Schmitt et al., 

2005; Organ et al., 2009; Organ, 2010).  

TABLE 1 HERE 

Data collection 
3D surface models of the proximal and distal articular surfaces of Ca1, TV and LV 

vertebral bodies were generated using a NextEngine HD portable laser scanner and 

ScanStudio HD software or from available CT scan data using Mimics 11.0.  

Zygapophyseal articular surfaces, which are quite small in most study taxa, were not 
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considered in the present study due to the resolution limitations of the laser scanning 

equipment (but see below).  Geomagic 11.0 was used to isolate and measure the 

absolute surface area (mm2) of individual 3D models.  

Articular contour curvature was quantified for all isolated articular surface models 

using the quadric-based method described by Tocheri (2007; see also Marzke et al., 

2010).  This method fits a quadric surface to a 3D surface and then compares the 

coefficients describing that quadric surface.  In 3D, a quadric surface is defined by the 

equation  

z = ax2 + by2 + 2cxy + 2dx + 2ey +f 

Using the following rigid body transform       

�
𝑥�
𝑦�
𝑧̂
� =  𝑅 �

𝑥 − 𝑥𝑜
𝑦 − 𝑦𝑜
𝑧 − 𝑧𝑜

� 

 then 

𝑧̂ = 𝐴𝑥�2 + 𝐵𝑦�2 

A and B represent the magnitude of contour curvature of the quadric surface in 

perpendicular axes (i.e., A represents mediolateral [ML] contour curvature, B represents 

dorsoventral [DV] contour curvature) and are analogous to the fitted principle 

curvatures (kmax and kmin) of the fitted quadric surface (Tocheri, 2007).  A and B values 

derived from the fitting of a quadric surface to each vertebral specimen were used for 

direct comparisons among taxonomic and functional groupings.  In total, twelve 

articular contours were examined (i.e., ML and DV contours for the proximal and distal 
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articular surfaces of three individual skeletal elements).   

Data analysis   
All average body mass and articular surface areas were naturally log-transformed.  

Ordinary least squares (OLS) regression analysis of the log-transformed data was used to 

evaluate scaling relationships between vertebral body articular surface area and average 

body mass.  Slope, R2 fit statistics, and standardized residuals were recorded and 

bivariate plots of log-normalized average body mass and articular surface area values 

were generated.   One-way ANOVA with a post-hoc Bonferroni correction was used to 

evaluate the statistical significance of differences in mean standardized residual values 

among the three tail-use groupings (prehensile-tailed, nonprehensile-tailed NWM, 

nonprehensile-tailed OWM).  Although it has been suggested that ratios are better at 

identify shape similarities among individuals (Jungers et al. 1995), ratios are incapable of 

removing completely the effects of size related scaling in morphometric data (Albrecht 

et al. 1993).  Regression residuals, however, are independent of size and therefore not 

influenced by comparisons between sample taxa with dissimilar body masses.  The 

average body mass of the smallest taxon used in this study (Saimiri) is only 3% of the 

average body mass of the largest taxon (Papio).  Statistically significant differences 

(p<0.05) in coefficients A (ML contour curvature) and B (DV contour curvature) were 

evaluated with one-way ANOVA with a post-hoc Bonferroni correction.  

Results 
Articular Surface Area 
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OLS regression analyses demonstrate that only the TV proximal articular surface 

area scales with positive allometry (slope = 0.681) and that all other articular surfaces 

scale with slight negative allometry (i.e., the slope for all regression lines were < 0.667 

and range between 0.541 and 0.626).  Atelines are consistently positioned above the 

regression line, and most specimens fall outside the upper boundary of the 95% 

confidence interval for all articular surface samples. Sapajus, Cebus, and Saimiri cluster 

around the regression line and most specimens fall within the upper and lower 

boundaries of the 95% confidence interval.  In contrast, Aotus and most nonprehensile-

tailed OWM’s are typically positioned below the regression line and many specimens fall 

outside the lower boundary of the 95% confidence interval (Figures 1).   

FIGURE 1 HERE 

Results of a one-way ANOVA with a post-hoc Bonferroni correction reveal that the 

mean standardized regression residual values for prehensile-tailed taxa are significantly 

larger than those for either nonprehensile-tailed group (OWM and NWM) in the analysis 

of the Ca1 distal articular sample and the proximal and distal TV and LV articular 

samples (Figure 2; Table 2).  Although mean standardized regression residuals reported 

for the prehensile group were significantly different from the nonprehensile-tailed 

OWM group for the proximal Ca1 and distal LV samples, they were not statistically 

different from the nonprehensile NWM group (Figure 4; Table 2).  Likewise, the mean 

standardized regression residuals reported for atelines are significantly larger than those 
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reported for cebines in the proximal and distal Ca1, proximal TV and distal LV samples 

(Figure 3).    

FIGURE 2 HERE 

TABLE 2 HERE 

FIGURE 3 HERE 

Articular Surface Contour Curvature 
     The results of the analyses of articular surface contour curvature identify statistically 

significant differences in the coefficients describing a best-fit quadric surface for eight of 

the twelve articular contours examined in the present study (Figure 4; Table 3).  These 

include the ML and DV contours of the proximal TV and distal Ca1 and LV articular 

surfaces, the DV contour of the distal TV articular surface and the ML contour of the 

distal LV articular surface.  One-way ANOVA results reveal statistically significant 

differences among mean quadric coefficient values for each of the three tail-use 

groupings and a post-hoc Bonferroni correction reveals that prehensile-tailed taxa are 

significantly more curved (i.e their coefficient values are negative indicating convexity 

and further removed from 0.0 which indicates flatness) than are nonprehensile-tailed 

NWM for all eight articular contours.  Likewise, nonprehensile-tailed OWM’s are 

generally less curved than prehensile-tailed platyrrhines, however there are no 

significant differences between these groups for three of the eight variables (DV contour 

of the proximal and distal TV articular surfaces, ML contour of the distal LV articular 

surface).  There is little difference in the articular contour curvatures of nonprehensile-
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tailed OWM’s and NWM’s, however the former has significantly more curved ML 

contours for the distal Ca1 articular surface and DV contours for the proximal TV 

articular surface.     

FIGURE 4 HERE 

TABLE 3 HERE 

     Within the prehensile-tailed sample, independent samples T-tests identify statistically 

significant differences between atelines and cebines.  Atelines have greater ML and DV 

contour curvatures for both the proximal and distal articular surfaces of Ca1, ML 

contour curvatures for the proximal and distal TV and proximal LV articular surfaces and 

DV contours for the distal LV articular surface (Figure 5). 

FIGURE 5 HERE 

Discussion 
   
Intervertebral articular surface size and scaling  

The results described above demonstrate that prehensile-tailed platyrrhines have 

relatively larger distal Ca1, and proximal and distal TV and LV intervertebral articular 

surfaces than nonprehensile-tailed NWM’s and OWM’s  (Figure 1, 2; Table 2). Two of 

the vertebral elements used in this study to differentiate prehensile and nonprehensile-

tailed anthropoids (Ca1 and TV) are located in the proximal caudal region; the region 

that is most affected by mechanical loading during prehensile tail grasping and 

suspension. Prior research has identified numerous skeletal characteristics that 

distinguish prehensile tailed from nonprehensile-tailed anthropoids, however the 
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majority of these are accentuated in the distal caudal region (i.e. craniocaudally shorter 

and transversely wider distal vertebrae, expanded transverse and hemal processes, and 

higher vertebral torsional/bending strength in the former) (German, 1982; Organ, 2007, 

2010).  Although it has been suggested that the proximal caudal regions of prehensile- 

and nonprehensile-tailed anthropoids have a similar function and similar magnitude and 

pattern of mechanical loading (German, 1982), this is contra-indicated by the results of 

the present study.  Our results are consistent with a pattern of increased mechanical 

loading in prehensile-tailed platyrrhines relative to all nonprehensile-tailed anthropoids, 

presumably as a consequence of tail use in suspensory and tripodal support postures.   

Similarly, atelines included in the study sample (Ateles, Lagothrix) have larger 

relative proximal and distal Ca1, proximal TV and distal LV intervertebral articular 

surface areas than do cebines (Cebus, Sapajus) (Figure 3).  This result is consistent with 

the interpretation that, although atelines and cebines have convergent prehensile tail 

skeletal structure, differences in prehensile tail use have resulted in larger articular 

surface areas in the former.  Specifically, prehensile tail use in suspensory postures and 

locomotion may be mechanically more demanding than prehensile tail use during 

tripodal bracing support postures, and that difference in the magnitude of the 

mechanical loading is likely concentrated in the proximal tail segment.  Larger 

intervertebral articular surfaces would effectively provide a greater area over which to 

distribute the increased mechanical loading associated with suspensory tail-assisted 

postures.   
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Intervertebral articular surface contour curvature 
 The results of the analysis of intervertebral articular surface contour curvature 

confirm that prehensile-tailed platyrrhines have generally more pronounced (e.g. more 

convex) articular surface contour curvatures relative to nonprehensile-tailed NWM’s 

and OWM’s (Figure 4,5,6; Table 3). Relative to nonprehensile-tailed anthropoids, 

prehensile-tailed platyrrhines are likely afforded a greater range of ML and DV tail 

flexion as a consequence of the more pronounced contour curvatures of the distal Ca1 

articular surface and the proximal and distal articular surfaces of the TV and LV.    This is 

consistent with the conclusion that increased intervertebral articular surface contour 

curvatures are correlated with enhanced caudal mobility in the proximal and transitional 

caudal region and are more beneficial to primates that routinely support their entire 

body weight during locomotor and postural events.  Moreover, the observation that 

atelines have more pronounced caudal vertebral articular surface curvatures than no 

cebines supports the conclusion that prehensile tail-use during suspensory postural and 

locomotor activities requires additional ML and DV tail flexion, particularly between Ca1 

and Ca2, relative to prehensile tail-use in tripodal bracing support postures.   

Despite the broad discrimination between prehensile- and nonprehensile-tailed 

anthropoids, and between atelines and cebines, prehensile-tailed platyrrhines and 

nonprehensile-tailed OWM articular contour morphology overlaps for a limited number 

(n=3) of the eight study variables for which statistically significant variation was 

reported (Figure 4, Table 3).  These similarities likely represent a morphological 
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convergence resulting from similar selection pressures associated with unique and 

distinctive patterns of tail use.  Unlike prehensile-tailed platyrrhines, OWM tail structure 

and function is not directly related to locomotor and postural behaviours (Karrer, 1970, 

Ohja, 1974; Bernstein et al. 1978; Stevens et al. 2008).  Large and terrestrial OWM’s (i.e. 

Papio) often have a prominent tail kink that is located near the transition vertebra or 

subadjacent vertebra (i.e. the proximal caudal segment arches upward from the base of 

the sacrum and then quickly reverses direction on or near the level of the TV and the 

distal caudal segment is directed inferiorly) (Figure 7).  This tail configuration has the 

advantage of making the individual appear larger for agonistic display or defense 

purposes.  Likewise, it exposes the individual’s hindquarters that may be useful for 

mating related display behaviour and/or exposure of the ischial callosities for sitting.  

Alternatively the kinked tail morphology in large terrestrial OWM’s may function to 

stabilize an infant during transportation, also known as “rump riding” (Karrer, 1970, 

Ohja, 1974; Bernstein et al. 1978).  Increased intervertebral articular surface contour 

curvature of the vertebrae associated with the proximal and transitional caudal regions 

may be associated with the formation of this unique tail kink morphology and increased 

articular surface convexity may contribute to the abrupt change in tail orientation in this 

region.  In contrast, similar contour curvatures in prehensile-tailed platyrrhines are likely 

the result of enhanced joint mobility in the proximal and transitional caudal regions.    

Conclusion 
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     The results of the present study demonstrate that analyses of intervertebral articular 

size and articular contour morphology possess the necessary resolution to effectively 

discriminate prehensile-tailed anthropoids from nonprehensile-tailed anthropoids and 

confirm both study predictions.  In general, prehensile-tailed anthropoids have larger 

and more convex articular surfaces relative to nonprehensile-tailed anthropoids.  

Similarly, within the prehensile-tailed group, atelines that more frequently use their tails 

in suspensory locomotor activities have larger and more convex articular surfaces than 

cebines that more frequently use their tails in tripodal bracing postures and less often 

during locomotor events.  These findings are counter to the suggestion that, despite 

differential patterns of anthropoid tail use, the proximal caudal regions of prehensile- 

and nonprehensile-tailed anthropoids have a similar function, and presumably a similar 

magnitude and pattern of mechanical loading (German, 1982).  In light of these findings, 

it is recommended that analyses of the intervertebral articular size and articular contour 

morphology of vertebral elements in the proximal tail region be employed in future 

analyses of fossil platyrrhines to better understand the evolution of use-specific 

patterns of anthropoid functional tail use.  Nevertheless, intervertebral articulations are 

only one set of articulations found in the proximal tail region and must be considered 

with respect to zygapophyseal articular function.  Although not included in the present 

study owing to the resolution limitations of portable scanning equipment, future 

analyses of zygapophyseal articular surface casts using a higher resolution non-portable 

laser scanner are planned. 
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Figure Captions 

Figure 1. A). Relationship between proximal Ca1 articular area and body mass. B). 

Relationship between distal Ca1 articular area and body mass.  C). Relationship between 

proximal TV articular area and body mass.  D). Relationship between proximal TV 

articular area and body mass.  E). Relationship between proximal LV articular area and 

body mass. F). Relationship between proximal LV articular area and body mass. Linear 

regression lines of best fit are passed through the raw data space with the 95% 

confidence intervals indicated by the curved lines above and below.   

Figure 2. Boxplots of standardized residuals for individual locomotor groups from linear 

regression analyses of A) proximal Ca1 articular surface area, B) distal Ca1 articular 

surface area, C) proximal TV articular surface area and D) distal TV articular surface area, 

E) proximal LV articular surface area, and F) distal LV articular surface area against 

average body size. Darkened bars represent the median value for each group, while the 

boxes show the 50% confidence interval and the whiskers extend to the highest and 

lowest values for each taxon, excluding outliers.   
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Figure 3. Boxplots of standardized residuals for atelines and a group including Cebus and 

Sapajus from linear regression analyses of A). proximal Ca1 articular surface area and B). 

distal Ca1 articular surface area C). proximal TV articular surface area and D). distal LV 

articular surface area against average body size. Darkened bars represent the median 

value for each group, while the boxes show the 50% confidence interval and the 

whiskers extend to the highest and lowest values for each taxon, excluding outliers.   

Figure 4. Boxplots of articular surface contour curvature coefficients where statistically 

significant differences were identified among locomotor groupings.  Darkened bars 

represent the median value for each group, while the boxes show the 50% confidence 

interval and the whiskers extend to the highest and lowest values for each taxon, 

excluding outliers.   

Figure 5. Boxplots of articular surface contour curvature coefficients where statistically 

significant differences were identified between atelines and cebines.  Darkened bars 

represent the median value for each group, while the boxes show the 50% confidence 

interval and the whiskers extend to the highest and lowest values for each taxon, 

excluding outliers.   

Figure 6. 3D articular surface models of the i. proximal Ca1, ii. distal Ca1, iii. proximal TV, 

iv. distal TV, v. proximal LV and vi. distal LV for A) Lagothrix lagotricha, B) Sapajus apella, 

C) Saimiri sciurius, D) Colobus guereza, and E) Semnopithecus entellus. 

Figure 7. Papio anubis female with notable tail kink.  Photo by Andrew Deane  
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Table 1. Study sample and locomotor group designations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxon Locomotor group Ca1 LV TV 
Ateles fusciceps prehensile n=3 n=3 n=3 
Lagothrix lagotricha prehensile n=20 n=20 n=20 
Cebus capuchinus prehensile n=1 n=1 n=1 
Sapajus apella prehensile n=5 n=5 n=5 
Aotus lemurinus non-prehensile NWM n=1 n=1 n=1 
Saimiri sciurius non-prehensile NWM n=6 n=6 n=6 
Colobus guereza non-prehensile OWM n=3 n=3 n=3 
Semnopithecus entellus non-prehensile OWM n=1 n=1 n=1 
Trachypithecus obscura non-prehensile OWM n=2 n=2 n=2 
Papio cynocephalus non-prehensile OWM n=6 n=8 n=5 
Total  n=48 n=50 n=47 



Table 2. Bonferroni significance values; articular surface area 
 
 

 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ca1 prox. Nonprehensile-tailed NWM Nonprehensile-tailed OWM 
Prehensile 
Nonprehensile-tailed NWM 

p≤0.000  
p≤0.042 

   

Ca1 dist. Nonprehensile-tailed NWM Nonprehensile-tailed OWM 
Prehensile 
Nonprehensile-tailed NWM 

p≤0.043 p≤0.000 
p≤0.027 

   

TV prox. Nonprehensile-tailed NWM Nonprehensile-tailed OWM 
Prehensile 
Nonprehensile-tailed NWM 

p≤0.037 p≤0.000 
 

   

TV dist. Nonprehensile-tailed NWM Nonprehensile-tailed OWM 
Prehensile 
Nonprehensile-tailed NWM 

p≤0.024 p≤0.000 
 

   

LV prox. Nonprehensile-tailed NWM Nonprehensile-tailed OWM 
Prehensile 
Nonprehensile-tailed NWM 

p≤0.025 p≤0.000 
 

   

LV dist. Nonprehensile-tailed NWM Nonprehensile-tailed OWM 
Prehensile 
Nonprehensile-tailed NWM 

p≤0.012 p≤0.000 
 



Table 3. Bonferroni significance values; articular surface contour curvature 
 

 
 
 
 
 
 

Ca1 dist. mediolateral axis non-prehensile NWM non-prehensile OWM 
prehensile p≤0.000 p≤0.019 
non-prehensile NWM  p≤0.008 
   

Ca1 dist. dorsoventral axis non-prehensile NWM non-prehensile OWM 
prehensile p≤0.000 p≤0.007 
non-prehensile NWM    
   

TV prox. mediolateral axis non-prehensile NWM non-prehensile OWM 
prehensile p≤0.002 p≤0.018 
non-prehensile NWM   
   

TV prox. dorsoventral axis non-prehensile NWM non-prehensile OWM 
prehensile p≤0.007   
non-prehensile NWM    
   

TV dist. dorsoventral axis non-prehensile NWM non-prehensile OWM 
prehensile p≤0.029  
non-prehensile NWM    
   

LV prox. mediolateral axis non-prehensile NWM non-prehensile OWM 
prehensile p≤0.026 p≤0.011 
non-prehensile NWM    
   

LV dist. mediolateral axis non-prehensile NWM non-prehensile OWM 
prehensile p≤0.052   
non-prehensile NWM    
   

LV dist. dorsoventral axis non-prehensile NWM non-prehensile OWM 
prehensile p≤0.001 p≤0.039 
non-prehensile NWM    
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