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Abstract 

 
Mortality from extreme heat is a leading cause of weather-related fatality, which is expected to 
increase in frequency with future climate scenarios.  This study examines the spatiotemporal 
variations in heat-related health risk in three Midwestern cities in the United States between 
the years 1990 to 2010; cities include Chicago, Illinois, Indianapolis, IN, and Dayton, OH.  In 
order to examine these variations we utilize the recently developed Extreme Heat Vulnerability 
Index (EHVI) that uses a principal components solution to vulnerability.  The EHVI 
incorporates data from the U.S. Decadal Census and remotely sensed variables to determine 
heat-related vulnerability at an intra-urban level (census block group).  The results demonstrate 
significant spatiotemporal variations in heat-health risk within the cities involved. 
 
Keywords:  extreme heat; weather-related fatality; climate; heat-related health risk; remote 
sensing 

 
 
Introduction 

The scientific community is concerned over the growing threat from changes to Earth’s 

climate (Bird., Dorworth., & McCormick., 2010; Horton et al., 2010).  Independent of the 

current debate regarding anthropogenic forces on Earth’s climate, heat waves have consistently 

been ubiquitous across the globe and within many distinct climates.  Heat waves are not the only 

climate-related disasters that have been present in Earth’s climate signal; flooding, drought, 

extreme precipitation events, and cold waves are just a sampling of other disasters which appear 

to be increasing in duration and frequency.  However, heat waves are considered to be the 

phenomena most exacerbated by recent climate change (Jackson & Shields, 2008; Patz et al., 

2000).  Therefore, the expectation is that heat-related health impacts will become more 

widespread and more common within a changing climate scenario.  Regardless of the sensitivity 

and specificity of climate models, humans and agencies tasked with mitigating extreme heat 

disasters will undoubtedly need more information in which to drive decision processes. 

There has been a recent surge in research activity attempting to define vulnerability as it 

relates to climate risks.  Much of this research deals with extreme heat events, working to 



 
 

identify numerous factors which are most indicative of extreme heat health risks.  Aged 

populations, those with lower educational attainment, minority racial populations, and the 

economically disadvantaged are socio-demographic categories which appear to be predominantly 

indicative of extreme heat health risk (Browning, Wallace, Feinberg, & Cagney, 2006; Harlan, 

Brazel, Prashad, Stefanov, & Larsen, 2006; Uejio et al., 2011).  Additionally, there are 

environmental components to extreme heat health risk which can be effectively monitored with 

space-based satellite platforms.  The normalized difference vegetation index (NDVI) provides 

clues to the amount of photosynthetically active vegetation, the normalized difference built-up 

index (NDBI) provides utility for delineating urban built areas, and land surface temperature 

(LST) provides details concerning the environmental temperature (Jensen, 2005; D. P. Johnson 

& Wilson, 2009; D. Johnson, Wilson, & Luber, 2009).  Harlan et al. (2013) documented how 

vegetation could act as a protective variable (Harlan., Declet-Barreto., Stefanov., & Petitti., 

2013).  These socio-demographic and environmental variables have been combined into a 

Extreme Heat Vulnerability Index (EHVI), and have been tested in the context of the 1995 

Chicago heat wave (D. P. Johnson, Stanforth, Lulla, & Luber, 2012) and a NASA ROSES grant 

project involving multiple cities.  Documentation and results from the NASA ROSES project 

have not yet been made public, as the study is on going, but preliminarily results match those 

demonstrated from the Chicago analysis previously mentioned. 

One important aspect which is missing from studies on extreme heat in a spatial context 

is the addition of the temporal dimension.  Numerous studies have shown the temporal nature of 

mortality during heat waves, but little has been done for systemic studies across regions (Reid. et 

al., 2012).  In the present research we plan to compare the EHVI methods of identifying heat-

related health vulnerability through time in three Midwestern U.S. cities - Chicago, IL, 



 
 

Indianapolis, IN, and Dayton, OH- from 1990 to 2010.  This will be accomplished using NASA 

satellite imagery and census data from 1990, 2000, and 2010.  Such a spatio-temporal analysis 

will provide further guidance on vulnerability within these locations and demonstrate how 

vulnerability prevention plans require renewal for improved accuracy over time to compensate 

for population migration and changing physical environments. 

Background 

Heat is currently considered one of the primary causes of weather-related mortality in the 

United States, most specifically when it is accented by heat waves or extreme heat events (Luber 

& McGeehin, 2008; Wilhelmi & Hayden, 2010).  Heat is considered to be such a viable threat 

because it does not produce visual signs of inclement weather danger, such as high winds or 

storm clouds, and because it has a multitude of negative impacts on the human body.  Heat 

exacerbates pre-existing medical conditions, such as cardiovascular complications, renal 

conditions, mental illness, diabetes, and other thermoregulation complications (Hondula. et al., 

2012).  Prior studies have demonstrated populations age 65 and older consisted of up to 70 per 

cent of the heat-related fatalities during the 1995 heat wave in Chicago, IL.  Heat waves can also 

cause increased mortality amongst healthy individuals through dehydration and heat stroke, so 

the threat to vulnerable or at risk populations is greatly exacerbated by extreme heat (Changnon., 

Kunkel., & Reinke., 1996).  Therefore, socio-vulnerability indicating variables should be 

incorporated into more sophisticated warnings, which could prove beneficial to individual 

survivability during inclement heat weather. 

The ‘original’ heat warning system in use by the National Weather Service utilizes 

meteorological measurements to identify oppressive weather events, but do not incorporate 



 
 

environmental or vulnerable attributes.  One system currently implemented is the Heat Health 

Watch Warning System (HHWWS), which focuses on atmospheric conditions which have 

previously associated with heat-related mortality (Kalkstein, 1991; Kalkstein, Jamason, Greene, 

Libby, & Robinson, 1996).  The HHWWS’s limitations include a lack of spatial specificity, lack 

of vulnerable population consideration when determining risk and it focuses on larger spatial 

entities, such as city or county boundaries (Harlan et al., 2006; D. Johnson et al., 2009).  

Determining variations in vulnerability between localized areas is a developing functionality that 

should significantly contribute to future mitigation of heat-related health concerns (Harlan et al., 

2006; Kalkstein, 1991; Kalkstein & Greene, 1997; Kalkstein et al., 1996; Wilhelmi & Hayden, 

2010). 

Other heat vulnerability studies identify populations who were at higher risk by socio-

economic variables only.  Many sociologists are familiar with the ‘SoVI’ or the social 

vulnerability index pioneered by Cutter and associates (Cutter, Burton, & Emrich, 2010).  This 

approach utilizes numerous demographic variables to determine the level of social vulnerability 

for each county in the conterminous United States.  The SoVI is not specific to any particular 

natural phenomena or location, but rather is a global measure of vulnerability generalized to a 

variety of natural or societal hazards.  Furthermore, it maintains a larger spatial zone by utilizing 

county boundaries, even though it is applicable at a finer level of aggregation.  The SoVI does 

not incorporate physical attributes to its vulnerability index (Cutter et al., 2010).   

To consider how both social and environmental aspects of health risks correlate with 

extreme heat exposure requires the development of heat systems specific to vulnerability indexes 

and related to spatial variables.  One of the earlier known attempts was Harlan et al.’s (2006) 



 
 

Human Thermal Comfort Index (HTCI).  This index was designed to incorporate spatial 

relationships to environmental stress, thermal variations, and vulnerable populations.  

Extrapolating these ideas led to the creation of the previously mentioned EHVI, which 

further utilizes social and environmental aspects of health vulnerability to extreme heat.  Reid’s 

study did suggest local scale testing was a more optimal approach eluding that regional-scale 

analysis cannot account for minute discrepancies in vulnerable or physical attributes, as the 

EHVI procedures entail (Reid. et al., 2012).  The EHVI utilizes remote sensor platforms to focus 

within urban features to incorporate temperature and other environmental factors, such as the 

NDVI and NDBI, across  micro-environments to improve spatial specificity of the analysis and 

warnings beyond currently available systems (Dan Johnson, 2011).  Specific spatial warnings 

should improve warning utilization by civilians through decreased message fatigue (Shen, Howe, 

Alo, & Moolenaar, 1998).  These improvements also allow for enhanced disaster mitigation 

practices which focus preventative aid and assistance to areas at an increased risk (Hondula. et 

al., 2012).  If properly implemented, these techniques could save lives and reduce costs, through 

fiscally efficient mitigation plans and decreased hospitalization costs.  Improved prevention 

plans could guide the optimal placement and utilization of new cooling and community aid 

centres, so fewer would need to be built, and could even be used as documentation when 

applying for disaster prevention funding. 

In order to develop extreme heat vulnerability models that utilize satellite imagery, it is 

important to consider several relationships between the data and the local environment (Hondula. 

et al., 2012; D. P. Johnson et al., 2012).  During a heat wave, the intensity of the surface urban 

heat island can be disproportionally distributed across an urban landscape.  The following 



 
 

visualization was developed by utilizing 16 cloud free Landsat 5 images from the year 2011 and 

calculating the percentile ranks for each pixel (Unites States Geological Survey, 2009).  These 

are displayed as either:  below the 90th, 90th, 95th, and 97th percentile of LST, a similar procedure 

utilized by weather services to designate periods of heat wave intensity.  Composite images, such 

as the following figure, were utilized for this analysis to reduce the impact of cloud or aerosol 

confounding errors when identifying areas of normally higher LST measurements.  Even though 

the EHVI focuses on heat waves, it is believed that an association between extreme and normal 

temperature health impacts exists within discrete areas and therefore imagery acquired on non 

heat wave days can still identify areas of increased heat impact (Reid. et al., 2012).  This 

methodology is currently being developed and is not included in the spatial and temporal 

analysis of this study.   

Figure 1.  Landsat 5 Thermal Imagery Percentiles, Philadelphia 2011.  

[Figure 1 near here] 

Methods 

This study was conducted as an experiment in whether the EHVI’s ability to identify 

vulnerability changes across both space and time.  This article and the methods demonstrated 

here is not an attempt at justification for the EHVI, rather to understand the implementation of 

mitigation plans over time.  Therefore, although a brief outline of EHVI methodologies will be 

presented for background information, the main methods involved for this article reflect the 

procedure of spatial and temporal analysis utilizing the EHVI functions.  For a more precise 

description of the methodologies behind the EHVI, Johnson et al. (D. P. Johnson et al.) should be 

consulted. 



 
 

Demographic and Socioeconomic Data 

For EHVI analysis, raw demographic and socioeconomic data was collected at the block 

group level for the years of 1990, 2000, and 2010.  Data was obtained through the U. S. Census 

FTP web based portal at www2.census.gov.  The 1990 Census of Population and Housing 

Summary File 1 and Summary File 3 contain the necessary data to tabulate general demographic 

and socioeconomic information, such as total population, race, age, sex, educational attainment, 

income, poverty status, and age of householder.  The consistencies of these variables were 

closely maintained in the 2000 Summary Files 1 and 3 with only a few differences noted in the 

variables collected from the previous decennial census.  In 2000, educational attainment was 

subdivided by sex giving a total of two additional variables; total male and total female with no 

high school degree.   

The U.S. Census restructured their collection methods for several variables in the 2010 

dataset.  The 2010 Summary File 1 maintains continuity with the basic demographic counts, 

however the data previously recorded in Summary File 3 for 1990 and 2000 had been replaced in 

2010 with estimations obtained by the American Community Survey (ACS).  In previous 

decennial censuses, sample data are weighted to represent the total population, whereas the ACS 

data are based on one, three, and five years estimations.  In order to match as many variables 

from 2010 to previous decades, this study used ACS five-year estimations (2006-2010) at the 

block group level.  One and three year estimations either lacked the necessary variables or were 

not tabulated at the correct enumeration unit for this study.   

Air conditioning prevalence can be extrapolated from the census data, however it is only 

a survey variable rather than count and it does not demonstrate utilization.  Harlan et al.’s (2012) 



 
 

used an air conditioning variable in their desert study as use of the devises is high; incorporation 

of such a variable within the Midwest, however, cannot be quantified so easily.  If a household 

has an air conditioning system, it does not demonstrate their financial ability to use it, so such a 

variable has not been included for this study, nor for the EHVI.  This is one aspect which sets the 

EHVI apart from other research projects, such as the HVI (Reid. et al., 2012) which only studied 

areas where air conditioning was present. 

Remote Sensor Data 

Satellite imagery from the Landsat 5 TM instrument were collected for each of the cities.  

Individual cloud free scenes were selected during the summer months of each decade and 

converted to a LST.  The thermal band was changed to LST following emissivity correction 

procedures outlined by (Dousset & Gourmelon, 2003; Weng, Lu, & Schubring, 2004). The 

residential space within each census boundary was identified from the National Land Cover 

Dataset from 2001 and 2006, the most recent applications at the time of this writing, according to 

the USGS website.  The LST, NDVI, and NDBI pixels that spatially coincided with residential 

land use were then averaged and joined to the socioeconomic data, via ESRI Arcmap, to provide 

a metric for each within the residential areas. 

The socio-demographic variables were also normalized by the amount of residential land 

area within each census tract.  Therefore, the metric is a density measure based on the specific 

socio-demographic variables and total area of residential space; not the area of the census tract.  

This approach eliminates extraneous areas within the census tracts where there is no human 

settlement pattern, and reduces confounding errors which can be created by large industrial areas 

(Fry, 2011; Homer, 2007). 



 
 

 

Analysis through Principal Component Analysis 

Analysis of the previously mentioned input variables were statistically analyzed through 

the utilization of a Principal Component Analysis (PCA) statistical modeller.  The dependent 

variable utilized for the PCA was found through death certificates where heat was listed as a 

contributing factor.  The dependent variable was acquired for a NASA ROSES, and is not 

present here due to Institutional Review Board (IRB) restrictions.  The dependent variable was 

kept consistent for each study area through the three decades to accentuate the implementation of 

changes in environmental and socioeconomic changes.  The environmental and socio-

demographic variables were normalized to produce z-scores and used to create a principal 

components solution utilizing maximum variance between all incorporated variables.  This 

approach was used to develop the EHVI, further outlined in Johnson et al. 2012.  Parameters of 

the Principal Component Analysis (PCA) include varimax rotation and retention of components 

with eigenvalues in excess of 1 (Kaiser criteria).  The components are then summed and joined 

to census identifiers to create a risk assessment map at the census boundaries.  Categories are 

stratified into 6 groups based on z-scores of the EHVI.  Values range from greater than 2z, being 

the highest risk (HH), to less than -2z being the lowest risk (LL).   

In addition to mapping the variables, we also calculated Moran’s I for each decade and 

each city to determine the changes in spatial clustering of vulnerability (Moran, 1950).  Moran’s 

I, as utilized in this study, is a global measure of spatial autocorrelation and determines levels of 

perfect autocorrelation, or clustering, and levels of perfect dispersion.  Values for this index 

range from -1, which is perfect dispersion, to +1 which is perfect spatial autocorrelation.  Values 



 
 

near zero indicate a random process.  We utilized a polygon continuity matrix to determine 

proximity of values and assume lower values to be more dispersed in their spatial arrangement 

than higher values. 

Results 

Tables 1 – 3. EHVI Loadings by City  

Table 1 (a).  Chicago 1990 EHVI Loadings 

[Table 1a near here] 

Table 1 (b).  Chicago 2000 EHVI Loadings 

[Table 1b near here] 

Table 1 (c).  Chicago 2010 EHVI Loadings 

[Table 1c near here] 

Table 2 (a).  Indianapolis EHVI 1990 Loadings 

[Table 2a near here] 

Table 2 (b).  Indianapolis EHVI 2000 Loadings 

[Table 2b near here] 

Table 2 (c).  Indianapolis EHVI 2010 Loadings 

[Table 2c near here] 

Table 3 (a).  Dayton 1990 EHVI Loadings 

[Table 3a near here] 

Table 3 (b).  Dayton 2000 EHVI Loadings 

[Table 3b near here] 

Table 3 (c).   Dayton  2010 EHVI Loadings 

[Table 3c near here] 



 
 

Chicago EHVI  

Vulnerability factors related to the elderly population are weighted in the middle of the 

component matrix for 1990, whereas in 2000 and 2010 the aging population is weighted as being 

more vulnerable to extreme heat.  Children age five and below are weighted as being more 

vulnerable in 1990.  In 2000 and 2010 vulnerability factors related to youth are weighted in the 

middle of the component loadings.  Hispanic populations are consistently weighted in the middle 

of the component matrix.  In 2010 males age five and under are ranked as being more vulnerable 

than females age five and under.  For 1990 and 2000 the Asian population was ranked as less 

vulnerable, while in 2010 the Asian population is now trending towards being more at risk to 

extreme heat.     

Indianapolis EHVI 

In 1990 the most vulnerable are the elderly and black populations.  In 2000 vulnerability 

factors related to children age five and below, the total population, and those below poverty are 

ranked as being more vulnerable to extreme heat than the elderly and black populations.  Also, 

those without a high school degree are weighted as being more vulnerable in 2000.  In 2010 

children age five and below still retain high component loadings with the addition of the 

Hispanic population becoming more vulnerable as well.  Those without a high school education 

in 2010 tend to be ranked less vulnerable then from previous decades.   In 2010 LST, NDBI, and 

NDVI are ranked higher than in previous decades.  The elderly vulnerability factors and 

educational attainment values tend to factor less in the EHVI for 2010 then previous decades.      



 
 

Dayton EHVI 

In 1990 and 2000 vulnerability factors related to the elderly populations are weighted 

higher in the component loadings then the year 2010.  For the year 2010 vulnerability factors 

related to children age five and under are more strongly contributing to the EHVI then previous 

years.  Based on this analysis, the Hispanic population is becoming more at risk to extreme heat 

than in previous years observed.  In 1990 and 2000 Hispanic populations are weighted lower in 

the component matrices, whereas in 2010 the Hispanic population is weighted in the top five of 

the vulnerability factors.  For 1990 and 2000 median household income is observed as being 

weighted higher in the component matrices.  In 2010 median household income is weighted 

within the bottom five in the component loading matrix.    

Clustering of EHVI Values 

Table 4 shows Moran’s I for each city during each decade analysis.  Although, each value 

for I does indicate statistically significant clustering, comparing the values to the maps presented 

in Figure 2 provides some further clarification of the distribution of vulnerability to extreme 

heat.  In Chicago, the maps of vulnerability for 1990 and for 2000 look different and the Moran’s 

index calculates as 0.466 and 0.630 respectively.  For 2010 Moran’s provides a metric of 0.594, 

which indicates a further dispersion of vulnerability than in 2000.  In Indianapolis, the values for 

1990 and 2000 change dramatically with Moran’s I calculated as 0.412 and 0.271 respectively.  

This indicates tendency toward dispersal in the values for Indianapolis from 1990 to 2000.  The 

value for 2010 becomes slightly more clustered with a presentation of 0.396.  In Dayton, the 

value begins as more dispersed at 0.443 in 1990, becomes slightly more clustered in 2000 at 

0.480, and becomes more dispersed again in 2010 with a value of 0.402. 



 
 

Table 4.  Moran’s I index for each of the cities during each decade examined. 

[Table 4 near here] 

Discussion 

As previously mentioned, the number of variables factored into the principal components 

analysis varies through time due to changes in the U. S. Census data collection methods.  This is 

a limitation and a primary reason why the EHVI would need to be updated through time because 

utilization of similar census variables would not be available.  We attempted to use variables that 

were as close between study periods as possible (Reid. et al., 2012).  For the year of 1990, 24 

vulnerability factors are included in PCA analysis, in 2000 there are 26, and in 2010 there are 21 

in each city.  There are distinct patterns in the component loadings which can be observed across 

all cities in this study.  Physical variables in the component loading matrix (LST, NDBI and 

NDVI) are weighted lower than many socio-economic variables, such as populations under five 

and over 65 years of age, but should not be disregarded due to their significance in the loading 

tables.  This is particularly true when you consider the spatial resolution of the Landsat 5 sensor, 

which has larger spatial data recording than the utilized Census boundaries leading to a 

generalization.  Improved spatial resolution available through other sensing systems could 

provide better identification of at risk areas.  Asian, Black, Pacific Islander, and White 

populations show a pattern of being weighted lower in the PCA component matrices than other 

variables indicative of race.   All of the previously mentioned variables vary in significance 

between decades,  which demonstrates the necessity for improved and constantly updated models 

to account for the temporal changes.  The results reinforce the idea that vulnerability to extreme 

heat changes spatiotemporally, based on changes in demographics and the physical environment.  

Had the vulnerability variables remained constant, and the location of vulnerability remained 



 
 

locked, it would suggest that vulnerability assessments only need to be conducted once.  Rather 

the changing loading of vulnerability over time demonstrates vulnerable traits migrate 

throughout urban landscapes and need to be reassessed to identify populations of increased 

vulnerability.  Similarly, since different loadings occurred between different cities, even within 

the same decade, it demonstrates how precise vulnerability assessment needs to be conducted at 

a very local level.     

When using the EHVI to visualize the extreme heat vulnerability in each of the cities 

across each decade, some interesting patterns occur.  It is apparent from this analysis that 

vulnerability to extreme heat is not static, and there is significant variability to the spatial and 

temporal patterns of vulnerability.  For Chicago during this time period, the pattern of 

vulnerability tends to become slightly more clustered through the time periods; although less so 

than in 2000.  The pattern observed in Indianapolis becomes more dispersed, opposite of 

Chicago.  Dayton, similarly, tends to become more dispersed throughout the period.   These 

patterns have much to do with community-level determinants of heat-related health risk and the 

socio-demographic characteristics of the census boundaries examined.  The socio-demographic 

makeup of the census values changes from one decadal census to the other as migration from the 

central city is evident in the 20 years of the study.  This is mostly due to urban sprawl in 

Indianapolis and Chicago with different patterns of sprawl; Dayton does not experience the 

degree of sprawl as the other cities.  The urban heat island effect tends to follow the sprawl 

patterns of a city.  The temporal pattern of LST within this examination changed similarly.  In 

addition to LST, the satellite detected NDVI and NDBI, changes during the time period as 

witnessed in all the cities examined. 



 
 

The pattern of vulnerability changes within the loading matrices of the EHVI solutions as 

well.  In Chicago the environmental (LST, NDVI, and NDBI) metrics account for 12.23% 

(16.07% of total), 11.70% (15.48% of total), and 13.67% (17.68% of total) of the variance in 

vulnerability from 1990, 2000, and 2010 respectively.  Environmental variables in Indianapolis 

accounted for 12.87% (17.06% of total), 14.10% (18.45% of total), and 16.30% (20.40% of total) 

of variance in 1990, 2000, and 2010 respectively.  In Dayton, the same variables accounted for 

12.35% (16.06% of total), 11.91% (15.05% of total), and 14.99% (19.88% of total) of the 

variance similarly.  The percentage of variance as a total (in parentheses) consistently ranges 

around 16%-17% for the satellite-detected variables.  This accounts for a significant portion of 

the observed vulnerability and is further validation for the inclusion of satellite-based metrics in 

vulnerability analyses. 

There are implications for mitigation planning and response strategies for extreme heat 

events when there are significant variations in vulnerability observed over time.  As indicated by 

Stone, sprawling cities seem to be more prone to heat-related health issues than cities that display 

less sprawl (Stone., Hess., & Frumkin., 2010).  As is known, urban sprawl places increased strain 

on vital resources provided by city utilities and emergency services.  Furthermore, in the context 

of extreme heat events, a sprawling city is more likely to be a difficult city in which to plan 

mitigation and response strategies due to the migration of vulnerable populations and the 

spatiotemporal changes in the physical structure and environment.  This study alludes to the 

difficulty in identifying vulnerable population locations over time without consistent 

documentation, especially under an urban sprawl regime.  Although our study indicates varying 

levels of spatial dependence of vulnerability, the trend tends to become more dispersed through 

time, especially in the case of Indianapolis, IN.  It would be less strenuous for emergency 



 
 

planners to plan heat response plans if the vulnerable populations were clustered centrally in one 

intra-urban location and not dispersed in disparate communities; thereby delivering valuable 

resources to an overall smaller geographical area.  However, in the three cities analyzed this is 

not apparent and the locations of vulnerable populations tend to be significantly variable through 

time, apart from a few static locations (Figures 2 - 4). 

The analysis in this study further demonstrates how diverse local-scale variations in 

vulnerability are within each location.  As shown from the loading matrices, the weights of 

vulnerability are significantly different through time, but are perhaps even more different 

between the cities themselves.  For example, if we were to utilize the PCA output from Chicago 

in 1990 to assess risk for Indianapolis in 1990, there would be a drastic misidentification of risk.  

Rather, creating an assessment for each city demonstrated the unique interplay between variables 

of risk distinct between cities.  This is an important finding, because it demonstrates how 

inefficient previously utilized regional warning systems are, and how necessity local analysis is.  

Just as the temperature threshold warranting an extreme heat warning in Chicago is different 

from that of Indianapolis or Dayton due to variations in regional climate models, the unique mix 

of social and environmental variables create different assessments of vulnerability for each 

location.  This also indicates it may be unlikely that a universal extreme heat vulnerability model 

could be developed for a large regional or national study. 

Figure 2.  Chicago EHVI 1990, 2000, and 2010 Map 
 
[Figure 2 near here] 

Figure 3.  Indianapolis EHVI 1990, 2000, and 2010 Map 

[Figure 3] near here] 

Figure 4.  Dayton  EHVI 1990, 2000, and 2010 Map 



 
 

[Figure 4 near here] 

Conclusions 

This study demonstrates the unique spatiotemporal variability of extreme heat 

vulnerability in the cities of Chicago, Illinois, Indianapolis, Indiana, and Dayton, Ohio in the 

Midwestern United States from 1990 to 2010.  It underscores the local-scale nature of such 

vulnerability, and provides evidence for local scale vulnerability assessments such as is 

conducted by the Extreme Heat Vulnerability Index (EHVI) (D. P. Johnson et al., 2012).  

Further, the study represents the benefits of including satellite-based measures of the physical 

environment by utilizing measures of NDVI, NDBI, and LST.  The study demonstrated there are 

significant spatial and temporal variations in extreme heat vulnerability within each of the three 

cities examined, and supports previous studies which highlighted urban sprawl as a vulnerable 

factor itself (Stone. et al., 2010). 

The study also highlights the need for further studies projecting the future extent of 

extreme heat vulnerability.  The latest National Assessment on climate change in the United 

States indicates the Midwest as being particularly vulnerable to extreme heat events.  Utilizing 

methods demonstrated in this analysis, it could be possible to make projections of changes in 

land use and the physical environment to match future long-term climate forecasts, and make 

predictions on what kind of weather mitigation plans would be necessary within city planning 

projects.  This could be employed to develop future scenarios for individual cities, to assist in the 

assessment and preparation for future impacts of a changing climate at the local scale. 

The method outlined in this study is a developing methodology and as newer space borne 

and airborne sensors become available, they can readily be incorporated into such methodology.  



 
 

The continual development of newer more advanced sensor technology is an exciting trend for 

vulnerability analysis and should only make the efforts of researchers interested in vulnerability 

more accurate and precise.  This is vital for the future of research dealing with the social 

implications of climate change and its related phenomena.  
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Tables 1 – 3. EHVI Loadings by City  
 
Table 1 (a).  Chicago 1990 EHVI Loadings 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1 (b).  Chicago 2000 EHVI Loadings 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1 (c).  Chicago 2010 EHVI Loadings 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2 (a).  Indianapolis EHVI 1990 Loadings 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2 (b).  Indianapolis EHVI 2000 Loadings 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2 (c).  Indianapolis EHVI 2010 Loadings 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3 (a).  Dayton 1990 EHVI Loadings 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3 (b).  Dayton 2000 EHVI Loading 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3 (c).   Dayton 2010 EHVI Loadings 
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



Figure 1.  Landsat 5 Thermal Imagery Percentiles 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

	
  



 
Figure 2.  Chicago EHVI 1990, 2000, and 2010 Map 
 

 
 
 
 



 
Figure 3.  Indianapolis EHVI 1990, 2000, and 2010 Map 
 
 

 
 
 



 
 
Figure 4.  Dayton  EHVI 1990, 2000, and 2010 Map 
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