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ABSTRACT 

Hegde, Shweta. M.S.E.C.E., Purdue University, May 2014. Solar Micro Inverter. Major 
Professors: Afshin Izadian and Maher Rizkalla. 
 
 

The existing topologies of solar micro inverter use a number of stages before the DC 

input voltage can be converted to AC output voltage. These stages may contain one or 

more power converters. It may also contain a diode rectifier, transformer and filter. The 

number of active and passive components is very high.  

In this thesis, the design of a new solar micro inverter is proposed. This new micro 

inverter consists of a new single switch inverter which is obtained by modifying the 

already existing single ended primary inductor (SEPIC) DC-DC converter. This new 

inverter is capable of generating pure sinusoidal waveform from DC input voltage. The 

design and operation of the new inverter are studied in detail. This new inverter works 

with a controller to produce any kind of output waveform. The inverter is found to have 

four different modes of operation. The new inverter is modeled using state space 

averaging. The system is a fourth order system which is non-linear due to the inherent 

switching involved in the circuit. The system is linearized around an operating point to 

study the system as a linear system. The control to output transfer function of the inverter 

is found to be non-minimum phase. The transfer functions are studied using root locus. 

From the control perspective, the presence of right half zero makes the design of the 

controller structure complicated.  

The PV cell is modeled using the cell equations in MATLAB. A maximum power 

point tracking (MPPT) technique is implemented to make sure the output power of the 

PV cell is always maximum which allows full utilization of the power from the PV cell. 

The perturb and observe (P&O) algorithm is the simplest and is used here.
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 The use of this new inverter eliminates the various stages involved in the 

conventional solar micro inverter. Simulation and experimental results carried out on the 

setup validate the proposed structure of inverter. 
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CHAPTER 1. INTRODUCTION 

1.1 Need for Renewable Energy 

The rapid depletion of fossil fuel resources has created an urgent need for use of  

alternate and renewable energy sources to meet the coming scary future of rapid 

consumption and population growth [1]. Today’s world is excessively worried about 

fossil fuel exhaustion and environmental impacts, hence renewable energy sources such 

as wind energy, solar power, thermal gradients, biomass energy, etc. have become the 

hub of the  present generation for energy extraction. Green energy sources flourish in our 

surroundings. Among the diverse ambient energy sources available, solar energy has 

become the most popular one since it is clean, inexhaustible and free [2]. The use of the 

photovoltaic (PV) array as an electrical energy source is providing to be a critical solution 

to the long awaited answer to the growing energy demand [1]. 

Since the shortage of traditional fossil fuel is getting increasingly acute and thermal 

power generation is unfriendly to the environment, alternative and renewable energy is 

gaining more and more importance. Compared to other inexhaustible and clean source 

such as wind energy, solar energy can be easily developed with a wider range in the 

world. Recently, the photovoltaic (PV) power conversion development comes into 

people’s view due to a remarkable advancement [3]. 

Even though the availability of solar energy depends on the climatic conditions, it has 

higher power density compared to supplementary renewable energy sources which makes 

it more popular. Numerous methods exist for extracting solar energy. Many conventional 

methods include a dc-dc converter followed by an inverter for ac voltage applications [2]. 
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 Photovoltaic (PV) generation is gaining increased importance as a renewable source 

due to its advantages like absence of fuel cost, little maintenance, no noise and no wear 

due to absence of moving parts etc. In particular, energy conversion from solar cell array 

(SCA) received considerable attention in the last two decades [4]. The continuing 

decrease of the cost of the PV’s, the advancement of power electronic and semiconductor 

technology and favorable incentives in a number of industrial countries in general had a 

profound impact on the commercial acceptance of grid connected PV systems in the 

recent years. A core technology associated with these systems remains the inverter, which 

has evolved to quite mature technology offering a number of advantages to customers 

that were not possible many years ago. The technology has changed from line 

commutated inverters to switch mode ones mainly due to the availability of high 

frequency fully-controlled switching devices [5]. 

 

1.2 DC-AC Converters 

Switch-mode dc- ac inverters have been used in various types of applications, such as 

uninterruptible power supplies, communication ring generators, aerospace power systems, 

and variable-speed ac machine drives [6]. Traditionally, a bridge configuration is 

employed for the switch-mode dc-to-ac inverters. By using a pulse width modulation 

(PWM) switching technique, the input dc voltage is transformed into a high-frequency 

pulse waveform at the output of the bridge. Through a filter, this high-frequency pulsed 

voltage is smoothed into a sinusoidal waveform [6]. However, switch-mode dc-ac 

inverters which employ dc-dc converter topology have eliminated the use of a filter at the 

output [7].  

Conventional voltage-fed inverters (VSI) are subject to the inherent drawbacks that 

they can either step down or step up voltage. In addition the upper and lower devices of 

each phase leg cannot be gated on or off simultaneously in the conventional voltage-fed 

inverter, either by purpose or EMI noises [8]. As the number of levels of output required 

increases, the number of active and passive elements required in VSI increases which 

increases the cost and volume. A possible solution to improve power density while 
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keeping the cost low is to reduce the active and passive components. This led to interest 

among researchers to develop inverter topologies having reduced count of switches [9] - 

[15]. 

In recent years, the increase in medium and high voltage and power applications has 

led to development of voltage source inverters. The developments of flexible ac 

transmission system devices, medium voltage drives, and different types of distributed 

generations, have provided great opportunities for the implementations of medium and 

high power inverters. In these applications, the frequency of the pulse-width modulation 

(PWM) is often limited by switching losses and electromagnetic interferences caused by 

high dv/dt [16]. Since multilevel inverters have a large number of power devices, any 

device failure may cause the abnormal operation of the electrical drives, and require 

shutdown of the inverter and the whole system to avoid further serious damage. However, 

in some critical industrial processes with high standstill cost and safety-aspect concern, 

high reliability and survivability of the drive system is very important [17]. 

The DC-DC converters that can operate in both buck and boost modes are buck-boost, 

Cuk, and SEPIC converters. However, the buck-boost and Cuk converters, in their basic 

form, produce the output voltage, whose polarity is reversed from the input voltage [18]. 

On the other hands, the SEPIC (Single-Ended Primary Inductor Converter) converter is 

capable of operating in both step-up and step- down modes and does not suffer from the 

polarity reversal problem.   

Multilevel inverters have been preferred in high voltage and high power applications. 

The reason is the large number of advantages it has over two level inverters. They have 

the advantage of producing high-voltage, high-power capability with improved voltage 

quality. It also reduces the power ratings of the required power devices. As the number of 

voltage level increases, the output voltage waveform adds more steps and the output 

waveform has lower total harmonic distortion (THD) [13]. For a pure sinusoidal 

waveform as output, the numbers of levels required are infinite. In addition, the output 

filtering capacitors in the dc-to-dc converters can be a dc-type capacitor, e.g., an 

electrolytic capacitor which is smaller and less expensive than the ac-type capacitor for 
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the same capacity required in the bridge configuration. However, the inverters using 

bridge configuration must use an ac-type capacitor as a filter. More important is that, with 

a dc-dc converter topology, the advanced control techniques, such as current mode 

control, digital data sampling control, and sliding-mode control, etc., developed from the 

investigations of dc-dc converters can be directly applied to the dc-ac switch mode 

inverter. Therefore, a good dynamic performance can be achieved [6]. 

Compared to the bridge-type inverter, the inverter using a dc-dc converter 

configuration has several advantages. Only one switch operates at high frequency and, as 

a result, switching losses will be significantly lower [15]. In inverters, the total power 

losses can be divided into the following: switching losses, snubber losses, conduction 

losses and off-state losses. Generally, switching losses depend on switching frequency of 

power semiconductor devices and instantaneous value of device voltage and current 

during switching interval. Increasing the switching frequency reduces the need of 

filtering equipment but leads to high switching losses and decrease in efficiency. In low 

switching frequency applications, the proportion of switching losses is very less and can 

be neglected because total switching time is much less than the switching cycle. 

Switching losses become dominant part of the total power loss in high switching 

frequency applications [9]. In a multilevel inverter, large number of levels requires large 

number of switching devices which leads to large switching losses. Reducing the 

switching losses is an important issue to increase the power capability of standard 

inverters. Since a significant part of the losses is directly proportional to the switching 

frequency of the semiconductor devices, this should be reduced in order to increase the 

maximum rated load current. Unfortunately this will increase the current harmonics due 

to the lower effective PWM frequency and consequently the maximum fundamental 

current is reduced [19]. However, the major advantage of multilevel inverter is that their 

switching frequency can be lower than the conventional two level inverter for the same 

THD of the output voltage, which means lower switching losses [13]. The switching 

losses can also be reduced if the number of switches used in the inverter is reduced. 
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1.3 About this thesis 

In this thesis, a new topology for the solar micro inverter is introduced. The 

conventional bridge inverter is replaced by a new single switch inverter which is a 

modified version of the DC-DC SEPIC converter. The design and operation of the new 

inverter is studied. The inverter is modeled using state space averaging technique and 

small signal modeling. The control to output transfer function of the inverter is studied 

using root locus maps. The effect of varying component values on the operation of the 

inverter is studied in detail. On the basis of this study, a controller is designed for the 

inverter which enhances the capability of the inverter to produce a sinusoidal output 

waveform. A sizing procedure is developed for the new inverter. The advantage that this 

inverter possesses over conventional bridge inverters and multilevel inverters is that the 

efficiency is improved while the switch count is reduced. Also, the total harmonic 

distortion is reduced to a great extent. 

This inverter, along with a PV array will complete the new model of solar micro 

inverter. A maximum power point tracking (MPPT) method needs to be implemented to 

ensure that the maximum power is always harnessed. The perturb and observe (P&O) 

algorithm is used as it is the simplest algorithm. While the algorithm ensures that the 

panel operates at the voltage associated with maximum power, the inverter is capable of 

boosting and inverting the voltage to be compatible with the grid. Simulation and 

experimental results validate the operation of the proposed inverter. 
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CHAPTER 2.  SOLAR MICRO INVERTER 

2.1 Introduction 

With the draining of fossil fuel and increasingly serious pollution caused by 

traditional power generation methods across the world, renewable and pollution-free 

energy has gained much attention in economic and political fields. Majority of renewable 

energy sources include photovoltaic (PV) and wind power generation systems. Wide 

application of renewable energy is now impeded by cost and extensive researches shall 

be conducted in order to improve the cost effectiveness. PV converter systems, also 

known as solar inverters, have gained popularity in recent years as a convenient 

renewable energy with bright prospects [20]. 

A solar micro inverter is a device that is capable of converting the dc voltage obtained 

from the solar PV array into grid-compatible ac voltage. Typically, the micro inverter is 

attached to every single PV panel. As the name suggests, these inverters are designed for 

lower power ranges, usually 190-220 W. However, as the capacity of solar panels 

increases, the size of micro-inverters should increase as well.   

Micro inverters connected to a single PV panel are becoming the trend for the future 

of grid-connected PV systems due to the following reasons [21]: 

1) Improved energy harvest 

2) Improved system efficiency 

3) Lower installation costs 

4) Plug-N-play operation 

5) Enhanced flexibility and modularity
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2.2 Evolution of Solar Inverters 

1. Centralized Inverters: The PV modules are divided into series connections 

(called a string), where each string is capable of generating a sufficiently high 

to avoid further amplification. These series connections panels are then 

connected in parallel, through string diodes, in order to reach high power levels. 

This centralized inverter includes some severe limitations, such as high-voltage 

dc cables between the PV modules and the inverter, power losses due to a 

centralized MPPT, mismatch losses between the PV modules, losses in the 

string diodes, and a nonflexible design where the benefits of mass production 

cannot be reached. The grid-connected stage was usually line-commutated by 

means of thyristors, involving many current harmonics and poor power quality 

[22]. 

 

Figure 2.1 Centralized inverter 

Advantages of Centralized Inverters [23]: 

i. Low capital price per watt 

ii. High efficiency 

iii. Comparative ease of installation – a single unit in some scenarios 

 

Disadvantages of Centralized Inverters [23]: 

i. Size and Noise 

ii. A single potential point of entire system failure  
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2. String Inverters: The string inverter is a reduced version of the centralized 

inverter. In this type of inverter, a single string of the PV modules is connected 

to each inverter [22]. The input voltage may or may not be sufficiently high to 

avoid voltage amplification depending on the number of PV panels [3]. The 

choice of employing fewer number of PV modules in series also exists, if a dc–

dc converter or line-frequency transformer is used to provide voltage 

amplification. There are no losses associated with string diodes and separate 

MPPTs can be applied to each string. This increases the overall efficiency 

compared to the centralized inverter, and reduces the price. The device can now 

be used like a “plug and play” device, which can be used by person without any 

knowledge of electrical installations. On the other hand, the necessary high 

voltage-amplification may reduce the overall efficiency and increase the price 

per watt, because of more complex circuit topologies. On the other hand, the ac 

module is intended to be mass produced, which leads to low manufacturing cost 

and low retail prices [22]. Powers of such inverters are relatively low, which 

can result in the low internal temperature and prolong inverter operating life [3]. 

 

Figure 2.2 String inverter  

Advantages of String Inverters [23]: 

i. Allows for high design flexibility 

ii. High Efficiency 

iii. Robustness 



9 

 

 

iv. 3-phase variations available 

v. Low cost 

vi. Well supported 

vii. Remote system  monitoring capabilities 

 

Disadvantages of String Inverters [23]: 

i. No panel level MPPT 

ii. No panel level monitoring 

iii. High voltage levels present a potential safety hazard. 

 

3. Multi String Inverters: The multi-string inverter is the further development of 

the string inverter, where several strings are connected to their own dc–dc 

converter and then a common dc–ac inverter is used to interface the common 

dc-link to the AC grid. The advantage that this configuration offers over the 

centralized inverters is that every string can be controlled individually. The size 

of the system can be increased easily as a new string with a dc-dc converter can 

be plugged into the existing system [22]. Therefore, it can achieve a higher 

system efficiency and more flexible design scheme [3]. 

 

Figure 2.3 Multi string inverter 

4. Micro Inverters: A PV module composed of a PV panel with an individual DC-

AC inverter is called solar micro-inverter. In micro inverters, one inverter is 

connected to each solar panel. These inverters are connected to the back of 
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every solar panel [24]. This structure integrates the PV module and the inverter 

into a device. Each micro-inverter needs to harvest the optimum power by 

performing maximum power point tracking for its connected panel. Since there 

is only a PV module, it has several merits such as no mismatch of losses and 

easy realization of optimal adjustment between different units. With this 

modular structure, the system is easier to enlarge. Besides, even persons 

without relevant knowledge can use the device since it can be produced as a 

plug-and-play unit [3]. 

 

Figure 2.4 Micro inverter 

Advantages of Micro Inverter [23]: 

i. Panel level MPPT 

ii. Increase system availability – a single manufacturing panel will not have 

such an impact on entire array 

iii. Panel level monitoring 

iv. Lower dc voltage, increasing safety. No need for ~600V dc cabling 

requiring conduits 

v. Allows for increased design flexibility, modules can be oriented in 

different directions 

vi. Increased yield from sites that suffer from overshadowing as one 

shadowed module doesn’t drag down a whole string 

vii. No need to calculate string lengths – simple to design systems 

viii. Ability to use different makes/models of modules in one system, 

particularly when repairing or updating older systems 
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Disadvantages of Micro inverter [23]: 

i. Higher costs in terms of dollars per watt, currently up to double the cost 

compared to string inverters 

ii. Increased complexity in installation. 

iii. Given their positioning in an installation, some micro inverters may have 

issues in extreme heat. 

iv. Increased maintenance costs due to there being multiple units in an n 

array. 

However, all the advantages that micro inverters have come with additional 

design challenges. The two main challenges associated with micro inverters are 

achieving the high efficiency and keeping low cost-per-watt of generation. 

These challenges become much more significant due to several system 

constraints: high-voltage transformation ratio from low-voltage DC panel 

voltage to grid compatible AC-voltage, safety isolation requirements, extreme 

temperature variations  and uncontrolled environmental conditions due to its 

mounting to the solar panels, lower profile and expectation of very high 

reliability (comparable with the  solar panel itself). Due to these design 

challenges there is always a quest for newer and better topologies/techniques in 

solar inverter manufacturers [24].       

2.3 Types of Micro Inverters 

Traditionally two approaches for energy conversion are being used in the solar 

inverters. The first approach is to use a single-stage topology. In this approach, the solar 

panel DC-voltage is converted to AC-voltage in a single step or there is only a high 

frequency switching stage [24]. A DC-AC inverter forms the high frequency stage and a 

transformer is used at the inverter output terminals. The second approach is called as two-

stage or multiple-stage approach. In this type the solar panel, voltage is converted to AC 

voltage in multiple stages of power conversion. First, the low voltage from the panel is 

converted into a high-voltage DC and then the high-voltage DC is converted to a grid-
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compatible AC-voltage [24]. In this scheme, the PV system requires to have two power 

electronic converters which have power rating almost equal to the PV array power 

capability. Further, this scheme needs the synchronized control circuitry both for dc-dc 

converter and inverter. The only advantage of this scheme is that it reduces the 

transformer [4].  Since the single-stage architecture has a single high frequency switching 

converter, the number of power electronic converters requirement, in this scheme, is less 

and the problems arising due to them are also less [4]. It also leads to lower overall losses 

in the system. This leads to the conclusion that this is a better approach for achieving 

high efficiency [24]. 

Based on the electrical isolation between the input and output terminals, inverters can 

be classified as isolated inverters or non-isolated inverters. While electrical isolation is 

usually achieved using transformers, either line-frequency transformers as in Figure 2.5 

or high-frequency transformers as in Figure 2.6 can be employed. Depending on the input 

dc voltage range in comparison to the output ac voltage, inverters can be buck inverters, 

boost inverters, or buck-boost inverters [25]. 

 

Figure 2.5 Traditional buck inverter and line-frequency transformer 
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Figure 2.6 Multiple-stage inverter with high frequency transformer 

The inverters shown in Figures 2.5 and 2.6 function as buck inverters, but the entire 

topologies together represent either a boost or a buck-boost inverter owing to the PWM 

operations implemented and step up the voltage in low frequency or high frequency. 

Based on the number of power switches [25], single-phase inverters can be classified as 

1) Four-switch topologies 

2) Six-switch topologies 

In a multiple-stage power inverter, e.g., a two-stage inverter, boost and isolation (if 

necessary) are carried out in the first stage while the inversion is conducted in the second 

stage [25]. The controls for each stage can be implemented separately or a single 

synchronous control system can be designed to control all stages simultaneously. A 

number of multiple stage topologies have been found which would use the buck-boost 

nature of an inverter. For the buck or boost operation, either a dc–dc converter or dc–ac–

dc converter can be used in the first stage. For the choice of dc-link, the system can be 

configured with a dc-link followed by a PWM inverter or a pseudo-dc-link followed by a 

line-frequency operated inverter [25].  

Multiple-stage inverters can be classified as: 

1) DC-DC-AC topologies: In this topology, the power conversion process can be 

easily divided into two different stages – dc-dc and dc-ac conversions. In this case, 
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the dc-dc converter may be controlled to track the maximum power point of the 

PV module and the dc-ac converter may be controlled to produce ac power of 

unity power factor [26]. 

Many conventional methods include a dc-dc converter followed by an inverter 

for ac voltage applications [2]. In this topology, the dc voltage from the solar 

panel is stepped up to a higher level by a dc-dc converter and then the inversion is 

achieved by using a dc-ac converter stage. The first method is to the use 

transformerless inverters which have the advantage of reduced size and cost and 

high efficiency. In these inverters, the necessary boosting of voltage may not be 

obtained for the universal grid voltage range (85-265V ac). Also, in the absence 

of transformers, there are serious issues related to the grounding of the solar cell 

side of the inverter. The second method uses an isolated scheme which consists of 

one or more dc voltage boosting stages and an inverter with proper isolation using 

a line frequency or high frequency transformer. The problems of insufficient 

voltage boosting and grounding of solar cell can be eliminated by using this 

topology. Also the problem of leakage current caused by the earth parasitic 

capacitance is avoided using isolation transformer [2]. 

A two stage boost inverter can be formed by cascading a DC-DC boost 

converter before the buck inverter as shown in Figure 2.7. In this topology, the 

output of the first stage is raised dc voltage with tolerable ripple. A high 

frequency PWM buck inverter is used in the second stage to generate the required 

ac waveforms. In this topology, synchronization between the two stages is not 

required. The control of output power is usually implemented in the second stage. 

Also, controls can be implemented on the first stage so as to make the dc link 

voltage a rectified sine wave. Then the second stage would only need to convert 

the waveform into ac voltage of line frequency. This method would improve the 

efficiency by reducing the overall switching losses and saving the large 

intermediate dc-link capacitor [25]. 
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Figure 2.7 Two stage boost inverter 

According to the dc link configurations, the micro inverter topologies can be 

classified into three different arrangements: 

a) With dc-link: The dc-dc conversion may be achieved by using half bridge 

converter, full bridge converter, push-pull converter, buck boost converter, fly 

back converter, cuk converter, zeta converter, D2 converter or two inductor 

boost converter. The dc-ac conversion is obtained by using a full bridge 

inverter. 

 
Figure 2.8 Micro-inverter with dc-link 

In this topology, the power conversion process can be simply divided into two 

separate stages: dc-dc and dc-ac. Usually, the dc-dc converter is controlled in a way to 

track the maximum power point of the solar PV array. The dc-ac converter may be 

controlled to obtain desired ac power.  
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However, two major drawbacks do exist in this arrangement [26].  

o The dc–ac converter generally requires PWM control in order to meet the 

harmonic requirements by the grid but this control technique is 

comparatively complex to implement. The control circuitry can be greatly 

simplified by the modern microcontroller technology but complications do 

exist in the gate driver design in order to produce fast turn-on and turn-off 

transients under high frequencies.  

o If only the hard-switching topologies are used, the switching loss tends to 

be high as the semiconductors in both conversion stages switch at high 

frequencies. Power loss in the gate driving circuit can also be significant 

with the conventional totem-pole arrangement and this will further 

deteriorate the converter overall efficiency. To minimize the drawback of 

this arrangement, soft switching technique can be utilized in both 

conversion stages. However, the tradeoff could be higher components 

count therefore a higher cost and a lower reliability. 

In this arrangement, it is favorable to place the power balancing capacitor at the dc 

link. Since the dc link voltage is of the same level as the grid, the energy stored by the 

capacitor per unit volume is high and this allows a better and condensed overall design. 

b) Pseudo dc-link: In this topology, a rectified sinusoidal voltage is generated on 

the dc link by a modulated dc-dc converter or the cascade of a modulated dc-

dc converter and a non-modulated dc-dc converter.  A grid-commutated dc–ac 

converter with the square-wave control unfolds the link voltage to the 

sinusoidal form in phase with the grid [26].  
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Figure 2.9 Micro-inverter with pseudo dc-link 

Amongst all the existing topologies based on the dc-links, the micro inverter with a 

pseudo dc link has received the greatest interest and a large number of the reviewed 

topologies employ this arrangement [26]. Except the ease of design of controller for this 

micro inverter, the advantage that this topology offers is that the dc-ac inversion occurs at 

line frequency. Simple square-wave control can be employed and high switching losses 

can be avoided even with the hard-switched design. However, more challenging control 

techniques may be required in the dc–dc conversion stage due to the need for modulation 

[26]. In this topology, if a non-isolated dc-dc converter is employed, high frequency 

transformer can be removed to offer space and cost saving. 

Further size and cost reduction of the micro inverters can be achieved by using the 

single-stage converter topology. These topologies normally consist of two relatively 

independent converters with possible shared passive components and each converter 

produces a half cycle sinusoidal waveform 180 out of phase [26]. It has increased 

efficiency due to the smaller component count and lower power loss. This topology does 

suffer from the following drawbacks.  

• The transformerless inverters have limited ac peak voltages that are less 

than dc bus voltages. 

• The dual grounding becomes a difficult issue in the transformerless 

inverters. 
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• The working range of dc voltage in the single-stage inverters is more 

limited than the range of dc voltage in multi-stage inverters. 

In this arrangement, the most favorable place for the power balancing capacitor is at 

the converter input as it needs to provide a wide range of voltage for control. This would 

eliminate any large capacitors present in the system. Compared with the capacitive 

energy storage at the dc link, this solution has an obvious disadvantage of lower energy 

storage per unit volume [26]. 

c) Without dc-link: Fig 2.10 shows the micro inverter implementation without a 

dc link, where the dc voltage is transformed to a high frequency ac voltage 

and amplified to a higher level compatible with the ac grid. A frequency 

changer follows and directly translates the ac voltage or current of the high 

frequency to that of the grid frequency in the absence of any kind of the dc 

link [26]. 

 
Figure 2.10 Micro-inverter without dc-link 

The major advantage of the frequency-changer-based micro inverter is the reduction 

of the total power conversion stages to two. With the current technology, the construction 

of the bidirectional switches remains a challenge and this greatly hinders the development 

of the micro inverter topologies with frequency changers. However, this arrangement 

does open the possibility of lower component count and higher overall efficiency along 

with the technology advancement [26]. 
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However, the system now required more sophisticated and higher bandwidth controls 

as there is no intermediate energy storage stage. Also, the dc-dc and dc-ac stages of 

power conversion can no longer be identified separately. In this configuration, the power 

balancing capacitor needs to be connected at the input terminals of the converter as no 

dc-link is available. As the capacitor experiences an ac voltage, the capacitor can be 

easily implemented by a small non-polarized capacitor and the volume and the lifetime 

issues of the large electrolytic capacitors can be avoided. The obvious advantage is that 

the lifetime of the inverter can be significantly extended [26]. 

2) DC-AC-DC-AC topologies: Some topologies of inverters may require a high 

boosting ratio for the voltage. These inverters may consist of a high frequency dc-

ac-dc converter to obtain a controlled dc voltage from a variable dc voltage and a 

high frequency or line frequency inverter to generate the required ac output 

waveforms. A number of topologies have been studied and they can be classified 

into two categories depending on the intermediate dc-link. 

a) Dc-link between two stages:  A conventional topology consisting of an 

intermediate dc-link is shown in Figure 2.6. The first inverter is responsible 

for the boosting and control of the dc-link voltage. It also has a high frequency 

step-up transformer, a rectifier and a dc filter. However, both the inverter 

stages are operated at high switching frequency, thus leading to higher losses 

and cost. 

b) Pseudo dc-link between two stages: Figure 2.11 represents a multi stage boost 

inverter which has a PWM dc pulse train implemented in the “pseudo dc-link”. 

The pulse train consists of multiple pluses whose widths distribute in a 

sinusoidal or semi-sinusoidal way repeating in half of an ac output period. The 

advantage that this topology has over the former is that there are no dc filter 

components required. The last stage implements an inverter switching at line 

frequency to convert the train of dc pulses to required ac output waveform. A 

low pass filter may be needed at the output to ensure that the total harmonic 

distortion (THD) is within acceptable limits. 
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Figure 2.11 Multiple-stage boost inverter with pseudo dc-link 

3) DC-AC-AC topologies: For stand-alone or autonomous systems, a bidirectional 

power flow is required in inverter control. In this case, provisions must be 

provided for the power to flow from the output side to the input side [25]. For 

these applications, a bidirectional ac-ac converter is used in the second stage 

without an intermediate dc-link. This is done to eliminate the bulky intermediate 

dc-link filter components as seen in most of the multi stage boost inverters. The 

change in voltage level and isolation is provided by using a high frequency 

transformer.  

Review of multiple-stage topologies shows that it is desirable to use a high frequency 

transformer in the first stage so as to increase the boosting ratio and provide the required 

electrical isolation and a line-frequency inverter in the last stage to reduce total switching 

losses. However, a multiple-stage inverter has two or more stages of power conversion to 

achieve a wide input voltage range and a large power capacity as compared to a single-

stage inverter at the cost of additional power components and losses [25].   

In order to achieve good system performance, at least four issues must be considered 

in the micro inverter design [26]. 

1. Power Density:  The power density is a sole indicator of the compactness of a 

micro inverter. One of the highest power densities achieved to date in the 

prototype design is 0.6 ܹ ܿ݉ଷ⁄  for a 110-W inverter. The goal for the next 

generation  micro inverters aims at around  1ܹ ܿ݉ଷ⁄ . 
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2. Efficiency: A high efficiency is a must in obtaining a compact micro inverter 

design. However, compared with large converters, micro inverters have smaller 

power ratings and tend to have lower efficiencies. The highest reported micro 

inverter efficiency seen, for an isolated design, is 94% achieved by NKF OK4-

100 at 40% of the maximum input power. A “future” target of 95% was set in 

1998 to further decrease the temperature stress and increase the lifetime of the 

systems. It is not known if this has been achieved amongst the commercial micro 

inverters with isolated designs and less than 500-W power rating although larger 

PV inverters have achieved efficiencies higher than 98%. 

3. Reliability: Because micro inverters are mounted on the PV module, it is 

important that the lifetime of the micro inverter is comparable to that of the PV 

module, which lasts more than 20 years. 

4. Balance of System Cost: Balance of system (BOS) is defined as the parts of the 

PV system other than the PV array cost and will become increasingly important as 

the PV module costs drop. The major component of BOS cost in the micro 

inverter systems is the cost of the inverters due to the absence of the storage 

batteries. 

Recently, most of research works on micro inverters still focus on low cost, high 

efficiency, and new topologies. Typically, the micro inverter is attached to a single PV 

panel, which requires that the micro inverter should have a lifespan matching the PV 

panel’s one, namely 25 years. Therefore, achieving high reliability and long life span of 

the micro inverters is very crucial and should be one of the top priorities [21]. 

2.4 New Micro inverter using single switch inverter 

All existing models of micro inverters use either single stage or multiple stages of 

power converters. They also use more components like a high frequency transformer, 

filters, diode rectifier and a bridge inverter. A new single switch inverter is developed 

which is capable of generating a pure sinusoidal waveform from a fixed DC input voltage. 

The single switch inverter is a modified version of the existing SEPIC DC-DC converter. 
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The use of the SEPIC based inverter as the solar inverter will eliminate the high 

frequency switching converter, high frequency transformer, filter and diode rectifier. This 

would reduce the size and cost of the micro-inverters. 
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CHAPTER 3.  SOLAR PV MODULE 

3.1 Introduction 

While exhaustion of fossil fuels and green house effects have become a huge concern 

around the world, one of the most critical issues towards finding a solution for these 

problems is finding an alternate energy as a long-term solution. Green energy offers the 

promise of clean and abundant energy which can be harnessed from self-renewing 

sources such as solar energy, geothermal energy and wind energy [27]. Photovoltaic 

systems naturally harness the energy from the sun. Solar cells are capable of directly 

converting the incident solar irradiation into electricity. Photovoltaic (PV) power 

management concepts are essential to extract the maximum power from solar energy. PV 

energy systems are being extensively studied because of its benefits of environmental 

friendly and renewable characteristics [27]. 

Currently PV cells are one of the world’s fastest growing technologies to generate 

electrical power. This technique is being used in more than 100 countries [28]. The 

system has to be designed to be reliable and efficient. The system mainly consists of PV 

modules, inverter and switching point for utility. Different types of PV cells will yield 

different energy output; meanwhile the controlling technique of inverter is very important. 

Inverter design should consider the size and capacity of the plant. On the other hand, 

choosing the right controlling technique is needed in order to achieve an efficient 

renewable energy system [28]. 

PV cell is very similar to that of a classical diode with a p-n junction. When the 

junction absorbs light, the incident energy is absorbed by the photons. The absorbed 

energy is transferred to the electron-proton system of the material, thus creating charge 

carriers that are separated at the junction.  The charge carriers may be electron–ion pairs 
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in a liquid electrolyte or electron–hole pairs in a solid semiconducting material. The 

charge carriers in the junction region create a potential gradient, get accelerated under the 

electric field, and circulate as current through an external circuit. The square of the 

current multiplied by the resistance of the circuit is the power converted into electricity. 

The remaining power of the photon elevates the temperature of the cell and dissipates 

into the surroundings [29]. 

The solar cell described in the preceding subsection is the basic building block of the 

PV power system. Typically, it is a few square inches in size and produces about 1 W of 

power. To obtain high power, numerous such cells are connected in series and parallel 

circuits on a panel (module) area of several square feet. The solar array or panel is 

defined as a group of several modules electrically connected in a series–parallel 

combination to generate the required current and voltage [29]. 

Solar cells generate current in a large range independent from the load; thus, these 

cells are modeled as current sources [30]. They are designed with built-in -asymmetries 

to capture the photo-excited and released electrons and send them through an external 

circuit to build electric currents. The current generated from the cell is directly dependent 

on the illumination area and the probability that one photon can release one electron in 

the device. Under conditions where the illumination is zero, the solar cells behave like a 

diode. Therefore, their current in dark condition is a function of the cell’s voltage. In 

illumination, however, based on the light intensity, the cell generates a current that affects 

the diode characteristics at the terminal. In open circuit, the voltage is created based on 

the recombination of carriers in solar cell. The open circuit voltage is defined as the 

voltage at which the short circuit current and the forward bias diffusion currents become 

equal with opposite polarities. Open circuit voltage has also been defined as the 

separation of Fermi energies at the equilibrium of electron-hole generation [30]. 

3.2 Modeling of PV cell 

Generally, a photovoltaic cell models consists of a current source with a diode 

connected in anti-parallel. The output in parallel with them through a series resistor. In its 
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basic form, the current generated from the photocurrent source is directly conducted to 

the terminals. The diode connected across is used to model the I-V curve normally 

generated from the cells. The series resistance at the terminal of the cell is used to model 

the voltage drop. The parallel resistance is used to model the current leakage in the device 

proportional to the terminal voltage [30]. The Figure 3.1 shows the equivalent circuit of 

the solar cell with parallel and series resistors. 

 
Figure 3.1 Equivalent circuit of solar cell 

The I-V characteristics of solar cell with series and parallel resistors can be represented 

by  ܫ ൌ ௅ܫ െ ௢ܫ ቄ݁݌ݔ ቂ ௘௠௞் ሺܸ ൅ ௦ሻቃܴܫ െ 1ቅ െ ௏ାூோೞோೞ೓                                                               (3.1) 

Where, ܫ െ PV array output current ܸ െ PV array output voltage ݋ܫ െ Reverse saturation current of diode ܶ െ Cell temperature (K) ݁ െ Charge of an electron ݇ െ Boltzmann’s constant ݉ െ Ideality factor 

The photocurrent of the solar PV cell is defined by Equation (3.2) ܫ௅ ൌ ሾܫௌ஼ ൅ ݇௜ሺܶ െ 298ሻሿ ீଵ଴଴଴                                                                                         (3.2) 
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Where, ܫ௅ – Photo current of PV cell ܫௌ஼  – Short circuit current of cell ݇௜ – Short circuit current temperature co-efficient ܩ – Solar radiation  

The relation between the saturation current of the diode and temperature is given by 

Equation (3.3) 

௢ሺܶሻܫ ൌ ௢ܫ ቀ ்೙்೚೘ቁଷ exp ቂቀ ்೙்೚೘ െ 1ቁ ா೒ே௏೟ቃ                                                                         (3.3) 

Where, ݋ܫ െ Reverse saturation current of diode ௡ܶ௢௠ െ Nominal temperature (K) ܧ௚ – Band gap energy of the semiconductor 

௧ܸ – Thermal Voltage 

The solar cell is modeled in Simulink. The P-V and I-V graphs are plotted for 

standard conditions i.e. radiance ܩ ൌ 1000 ܹ ݉ଷ⁄  and temperature ܶ ൌ 25Ԩ as shown 

in Figures 3.2 and 3.3. 
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Figure 3.2 P-V characteristics of solar panel under standard conditions 

 
Figure 3.3 I-V characteristics of solar panel under standard conditions 
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From Equation 3.2, it can be seen that the photocurrent of the PV cell is dependent on 

the temperature and radiation. The P-V and I-V plots are studied for varying radiation 

and temperatures.  

From Equation 3.3, the reverse saturation current of the diode varies as the cube of 

the temperature. Figures 3.4 and 3.5 show the P-V and I-V plots for variation in 

temperature while the radiation is constant. The temperature is varied from 0Ԩ to 70Ԩ while the radiation is assumed to be 1000 ܹ ݉ଷ⁄ . 

 
Figure 3.4 P-V characteristics of solar panel under varying temperature conditions 
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Figure 3.5 I-V characteristics of solar panel under varying temperature conditions 

In general, when the temperature of the cell increases, for a given radiation, the open 

circuit voltage, ௢ܸ௖ drops slightly while the short circuit current, ܫ௦௖  increases. This is 

validated by figures 3.4 and 3.5. 

From Equation 3.2, the photocurrent is dependent directly on the solar radiation. 

Figures 3.6 and 3.7 show the P-V and I-V plots for variation in radiation while the 

temperature is constant. The radiation is varied from  600 ܹ ݉ଷ⁄  to 1000 ܹ ݉ଷ⁄  while 

the temperature is assumed to be 25Ԩ. 
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Figure 3.6 P-V characteristics of solar panel under varying radiance conditions 

 
Figure 3.7 I-V characteristics of solar panel under varying radiance conditions 
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It can be seen that when the radiation increases, the open circuit voltage, ௢ܸ௖ and the 

short circuit current, ܫ௦௖ increases.  The change in P-V and I-V curves is more prominent 

for change in radiation.  

3.3 Methods of MPPT 

The PV generation systems have two major problems: the conversion efficiency of 

electric power generation is very low (9-17%), especially under low radiation conditions 

and the amount of electric power generated by solar arrays changes continuously with 

weather conditions [31]. 

Moreover, the solar cell I-V characteristic is nonlinear and varies with radiation and 

temperature. In general, there is a unique point on the I-V or P-V curve, called the 

Maximum Power Point (MPP), at which the entire PV system (array, converter, etc…) 

operates with maximum efficiency and produces its maximum output power. The 

location of the MPP is not known, but can be located, either through calculation models 

or by search algorithms. Therefore Maximum Power Point Tracking (MPPT) techniques 

are needed to maintain the PV array’s operating point at its MPP [31].  

A typical solar panel converts only 30 to 40 percent of the incident solar irradiation 

into electrical energy. Maximum power point tracking technique is used to improve the 

efficiency of the solar panel [32]. According to Maximum Power Transfer theorem, the 

power output of a circuit is maximum when the thevenin impedance of the circuit (source 

impedance) matches with the load impedance. Hence, the problem of tracking the 

maximum power point reduces to an impedance matching problem. 

There are a number of methods used for MPPT. Depending on the time taken to track 

the MPP and the complexity of the algorithm, any one of the algorithms can be selected. 

Some of the techniques used to track the maximum power point are: 

1. Fractional Open circuit voltage: This method is based on the fact that the voltage 

at MPP, ܸܲܲܯ and the open circuit voltage, ܸܱܥ of the PV array are almost 
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linearly dependent on each other, under varying conditions of radiance and 

temperature. The relation between the two voltages is given by Equation (2.4). ܸܲܲܯ ൌ  (2.4)                                                                                                              ܥ1ܸܱ݇

Where ݇1 is a constant of proportionality. Since ݇ is dependent on the 

characterstics of the PV array being used, it is usually computed by empirically 

determining VMPP and VOC for the specific PV array at different radiance and 

temperature levels. The factor ݇ is found to be between 0.371 and 0.78 [32]. If the 

value of ݇1 is determined, the ܸܲܲܯ  can be calculated from periodical 

measurement of ܥܱܸ  . This can be done by switching the power converter off 

momentarily. However this leads to temporary loss of power. 

2. Fractional Short circuit current: This method is based on the fact that under 

varying atmospheric conditions, ܲܲܯܫ is approximately linear to the short circuit 

current, ܥܵܫ of the PV array. ܲܲܯܫ ൌ  (2.5)                                                                                                                ܥܵܫ2݇

Where ݇2 is a constant of proportionality. Similar to the fractional open circuit 

voltage method, the constant ݇2 can be determined from the PV array that is being 

used. The value of constant k2 is found to lie between 0.78 and 0.92 [32]. The 

measurement of ܥܵܫ needs an additional switch in the circuit which would short 

the PV array periodically. A current sensor is used to measure the current. 

3. Incremental Conductance: This method uses both the output voltage and current 

of the PV array. From the P-V plot of a PV array, it can be observed that at the 

MPP, the slope of the curve is zero. ቀܸ݀ܲ݀ቁܲܲܯ ൌ ܸ݀݀ ሺܸܫሻ                                                                                              (2.6) 0 ൌ ܫ ൅ ܸ ௗூௗ௏ಾುು                                                                                                 (2.7) ௗூௗ௏ಾುು ൌ െ ூ௏                                                                                                       (2.8) 
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The right hand side of Equation 2.8 is the instantaneous conductance while the 

left hand side is the incremental conductance. When the optimum operating point 

in the P-V plane is to the right of the MPP, we have ௗூௗ௏ಾುು ൅ ூ௏ ൏ 0  , where as 

when optimum operating point is to the left of the MPP, we have ௗூௗ௏ಾುು ൅ ூ௏ ൐ 0. 

Therefore, the sign of the term  ௗூௗ௏ಾುು ൅ ூ௏  indicates the correct direction of 

perturbation leading to the MPP [31]. Once the MPP is reached, the perturbations 

are stopped till any change in ܫ is observed to maintain the operation of the PV 

array at that point. 

4. Perturb and Observe (P&O): It is one of the simplest methods. In this method, the 

power of the PV array is measured and compared with the values at the previous 

instant. Depending on the sign of change in power, either the voltage or current of 

the PV array is increased or decreased. If the change in power is positive, the 

voltage/current is increased while if the change in power is negative, the 

voltage/current is reduced. Eventually, the algorithm reaches the MPP.  

5. Fuzzy logic: Microcontrollers have made using fuzzy logic control popular for 

MPPT over last decade. Fuzzy logic controllers have the advantages of working 

with imprecise inputs, not needing an accurate mathematical model, and handling 

nonlinearity [32].  

6. Neural networks: This is another technique that has been developed to implement 

MPPT using microcontrollers. Neural networks commonly have three layers: 

input, hidden, and output layers. The number of nodes in each layer varies and is 

user-dependent. In this technique, the PV array parameters like  ைܸ஼, ௌ஼ܫ   , 

atmospheric data like the amount of radiance, temperature or a combination of 

these parameters can be the input variables. The output signal could be one or 

more signals like the duty cycle which is used to drive the power converter so that 

the PV array operates at or close to the MPP [32]. 
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3.4 Perturb & Observe (P&O) 

The P&O method or hill climbing method operates by periodically perturbing i.e. 

incrementing or decrementing the array terminal voltage or current and comparing the PV 

output power with that of the previous perturbation cycle [31]. If a change in the 

operating voltage leads to increase in the power (i.e. ௗ௉ௗ௏ ൐ 0ሻ, then the control algorithm 

moves the operating point of the PV array in the same direction, or else the operating 

point is moved in the opposite direction. 

Figure 3.8 shows the plot of the output power of the array versus the array voltage at 

a given radiation. Consider two operating points A and B.  As seen in the figure below, A 

is on the left side of MPP. The MPP can be reached by positive perturbation of voltage i.e. 

increasing the array voltage. While B is on the right side of MPP, any increase in the 

array voltage will reduce the power. Thus, the MPP can be reached by negative 

perturbation i.e. decreasing the array voltage.  

 
Figure 3.8 P-V characteristic of solar cell 
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The flowchart of the P&O algorithm is shown in Figure 3.9 

 

Figure 3.9 Flowchart for Perturb & Observe algorithm 

This algorithm has some advantages. In this method, only one sensor is used i.e. the 

voltage sensor to sense the PV array voltage and so the cost of implementation is less. 

The complexity of this algorithm is less but when MP is reached, it doesn’t stop at the 

MPP and swings around that point creating perturbations in both the directions [32]. In 

this case, the step-size of array voltage plays a crucial role. If the step size is large, then 

the MPP might not be reached, while if the step size is too small, it would take longer 

time to track the MPP. When the algorithm has reached close to the MPP, an appropriate 
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error limit or a wait function can be used [32]. Thus, a trade off needs to be made 

between the time taken to reach MPP and the accuracy with which the MPP needs to be 

identified. Also, under conditions for varying radiation, the MPP also moves to the right 

side of the curve. The algorithm would consider this as a change due to the perturbation 

and would reverse the direction of perturbation in the next iteration. Thus, moving away 

from the MPP of the array. 
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CHAPTER 4. SINGLE SWITCH INVERTER 

4.1 Design and Operation 

The single switch inverter is derived by modifying the SEPIC converter to function as 

an inverter. Typically, the SEPIC converter consists of an active power switch, a diode, 

two inductors and two capacitors. Thus, it is a fourth order system. In the modified 

SEPIC converter, the diode is replaced by a set of polarity reversing switch component. 

This component consists of two reverse connected transistors to be synchronized to the 

polarity of the desired waveform. This circuit is capable of producing a pure sinusoidal 

waveform, when a DC input is given to the circuit. 

A schematic diagram of the new inverter has been shown in Figure 4.1. It consists of 

a switch Q which is operated at high frequency and switches T1 and T2 which are 

operated to generate positive and negative peaks of output voltage. When the switch Q is 

on, the inductor L1 is charged from the input source and inductor L2 takes energy from the 

capacitor C1. The output capacitor C2 provides the load current. When the switch Q is on, 

both inductors are disconnected from the load. When the switch Q is turned off, the 

inductor L1 charges the capacitor C1 and also provides current to the load. The inductor 

L2 is also connected to the load during this time. 

 
Figure 4.1 Schematic Diagram of SEPIC based Inverter
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Modes of operation are generated when the status of switches change. When the 

switch Q is on, the input voltage is applied across L1 and causes a linear increase of 

current to charge the inductor. The charged capacitor C2 discharges through the inductor 

L2. In this mode of operation, the transistor T1 does not conduct. Even though the gate 

receives the turn-on command, the transistor collector is not forward biased to conduct 

current. When the switch Q is off, the input voltage charges the capacitor C1 while 

maintaining the current through the inductor L1. The sum of currents through the 

inductors L1 and L2 form the output current that flows through the load to produce 

positive voltage in the output.  

In negative peak voltage, the same procedure occurs, but to reverse the load current 

direction, synchronizing switch T2 is turned on. This will introduce a transition mode to 

the system operation. When the switch Q is on, the input voltage is applied across L1 and 

causes a linear increase of current to charge the inductor. The charged capacitor C2 

discharges through the inductor L2. In this mode of operation, the transistor T2 does not 

conduct. Even though the gate receives the turn-on command, the transistor collector is 

not forward biased to conduct current. When the switch Q is off, the input voltage 

charges the capacitor C1 while maintaining the current through the inductor L1. The 

difference of currents through the inductors L1 and L2 form the output current that flows 

through the load to produce negative voltage in the output. 

In Continuous Conduction Mode (CCM), the input and output voltages of the 

converter are related as follows:  

௏௢௨௧௏௜௡ ൌ  േ ஽ଵି஽  ,                                                                                                                (4.1) 

where 0 < D <1 is the converter’s ideal duty cycle. The positive and negative signs are 

used for the positive peak and negative peak voltages respectively. In each half cycle, for 

values of D less than 0.5, the converter ideally operates in buck mode, and for values of 

D larger than 0.5 the converter ideally operates in boost mode. 
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4.2 Modeling of Inverter 

4.2.1 State Space Averaging 

State space averaging is a dynamic modeling technique used for mathematical 

representation of converters. State space averaging technique is used for better 

understanding of different modes of operation. In this technique, the state space 

representation of each mode of operation is obtained, and the overall system is 

represented as an averaged system over a cycle. Since this inverter has a positive and a 

negative mode of operation, the model will be provided in these conditions. 

When the inverter operates in mode I and mode II, positive cycle of output voltage is 

obtained. When it operates in mode III and mode IV, negative cycle of output voltage is 

generated. Therefore, two sets of equations can be written for this circuit, which includes 

the internal resistances of the inductors and capacitors as rL1, rL2, rC1 and rC2. 

The four modes of operation of the inverter circuit are shown in Figure 4.2. 

 
A) Mode I: Positive Peak, Q and T1 are synchronized, Q: Off, T1: On 
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B) Mode II: Positive Peak, Q and T1 are synchronized, Q: On, T1: Off 

 
C) Mode III: Negative Peak, Q and T2 are synchronized, Q: Off, T2: On 

 
D) Mode IV: Negative Peak, Q and T2 are synchronized, Q: On , T2: Off 

Figure 4.2. Modes of operation and transition from positive to negative peak voltage. 

Figure 4.2.A shows the rise in current through the inductor L1 and charging of 

capacitor C1 by the input voltage source. The current through the inductors flow to the 

output resistance R. Figure 4.2.B shows the rise in current through the inductor L1 and 
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discharge of capacitor C1 through inductor L2 and discharge of capacitor C2 through the 

load resistance and positive output voltage generation. Figure 4.2.C shows the transition 

from positive peak to negative peak by switching the synchronizing transistor T2 on. The 

current direction will change and the negative peak will be generated by circuit D. This 

mode of operation charges the inductor L2 with reverse current and provides a path to 

build up negative cycle of output voltage. 

A. Positive Peak Voltage Generation 

I. Mode I 

In this mode, the switch Q is off and T1 is on for duty cycle 1 െ dା. Each set of state 

space system consists of four equations representing the states iL1, iL2, vC1, vC2 and one 

equation to represent the output voltage, Vo. The equations describing mode I are as 

follows: 

ەۖۖۖ
۔ۖۖ
ۓۖۖۖ

ௗ௜ಽభௗ௧ ൌ  െ ൬௥ಽభା௥಴భା ೃכೝ಴మೃశೝ಴మ൰௅భ ݅௅ଵ െ ೃכೝ಴మೃశೝ಴మ௅భ ݅௅ଶ െ ଵ௅భ ஼ଵݒ ൅ ೃೃశೝ಴మ௅భ ஼ଶݒ ൅ ௏௜௅భௗ௜ಽమௗ௧ ൌ ି ೃכೝ಴మ൫ೃశೝ಴మ൯௅మ ݅௅ଵ െ ௥ಽమା ೃכೝ಴మೃశೝ಴మ௅మ ݅௅ଶ െ ೃೃశೝ಴మ௅మ ஼ଶ ௗ௩಴భௗ௧ݒ ൌ ଵ஼భ ݅௅ଵௗ௩಴మௗ௧ ൌ ೃ൫ೃశೝ಴మ൯஼మ ݅௅ଵ ൅ ೃ൫ೃశೝ಴మ൯஼మ ݅௅ଶ െ భ൫ೃశೝ಴మ൯஼మ ஼ଶݒ
௢ܸ ൌ ோכ௥಴మோା௥಴మ ݅௅ଵ ൅ ோכ௥಴మோା௥಴మ ݅௅ଶ ൅ ோோା௥಴మ                  ஼ଶݒ

                              (4.2) 

II. Mode II 

In this mode, the switch Q is on and T1 is off for duty cycle dା. Each set of state 

space system consists of four equations representing the states iL1, iL2, vC1, vC2 and one 

equation to represent the output voltage, Vo. The equations describing mode II are as 

follows:   
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ەۖۖۖ
۔ۖ
ௗ௜ಽభௗ௧ۓۖۖ ൌ ௏೔௅భ െ ௥ಽభ௅భ ݅௅ଵௗ௜ಽమௗ௧ ൌ െ ሺ௥ಽమା௥಴భሻ௅మ ݅௅ଵ ൅ ଵ௅మ ஼ଵ                        ௗ௩೎భௗ௧ݒ ൌ െ ଵ஼భ ݅௅ଶ   ௗ௩೎మௗ௧ ൌ െ ଵ஼మሺோା௥಴మሻ ௖ଶݒ

௢ܸ ൌ ோோା௥಴మ ஼ଶݒ
                                                                                                            (4.3) 

Considering x= [iL1, iL2, vC1, vC2], the averaged state space model of positive peak voltage 

can be obtained as: 

ቊݔሶ ൌ ௔௩௚ାܣ ݔ ൅ ܤ௔௩௚ା ௢ܸݑ ൌ ௔௩௚ାܥ ݔ  (4.4)  

The positive peak averaged model parameters can be obtained as: 

௔௩௚ାܣ ൌ
ێێۏ
ێێێ
ۍێێ
െݎ௅ଵሺܴ ൅ ஼ଶሻݎ ൅ ሺܦ െ 1ሻሺݎ஼ଵሺܴ ൅ ஼ଶሻݎ ൅ ଵሺܴܮ஼ଶሻݎܴ ൅ ஼ଶሻݎ ሺܦ െ 1ሻܴݎ஼ଶܮଵሺܴ ൅ ஼ଶሻݎ ܦ െ ଵܮ1 ሺܦ െ 1ሻܴܮଵሺܴ ൅ ܦ஼ଶሻሺݎ െ 1ሻܴݎ஼ଶܮଶሺܴ ൅ ஼ଶሻݎ ሺܦ െ 1ሻܴݎ஼ଶ െ ሺܴ ൅ ஼ଵݎܦ஼ଶሻሺݎ ൅ ଶሺܴܮ௅ଶሻݎ ൅ ஼ଶሻݎ ଶܮܦ ሺܦ െ 1ሻܴܮଶሺܴ ൅ ஼ଶሻ1ݎ െ ଵܥܦ െ ଵܥܦ 0 0ሺ1 െ ଶሺܴܥሻܴܦ ൅ ஼ଶሻݎ ሺ1 െ ଶሺܴܥሻܴܦ ൅ ஼ଶሻݎ 0 െ ଶሺܴܥ1 ൅ ۑۑے஼ଶሻݎ

ۑۑۑ
ېۑۑ
 

௔௩௚ାܤ ൌ ቂ ଵ௅భ 0 0 0ቃ்
                                                                                              

௔௩௚ାܥ ൌ ቂሺଵି஽ሻோ௥಴మ஼మሺோା௥಴మሻ ሺଵି஽ሻோ௥಴మ஼మሺோା௥಴మሻ 0 ோோା௥಴మቃ                                                                                 
B. Negative Peak Voltage Generation 

III. Mode III 

In this mode, the switch Q is off and T2 is on for duty cycle 1 െ dି. Each set of state 

space system consists of four equations representing the states iL1, iL2, vC1, vC2 and one 

equation to represent the output voltage, Vo. The equations describing mode III are as 

follows: 
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ەۖۖۖ
۔ۖۖ
ۓۖۖۖ

ௗ௜ಽభௗ௧ ൌ െ ൬௥ಽభା௥಴భା ೃכೝ಴మೃశೝ಴మ൰௅భ ݅௅ଵ ൅ ೃכೝ಴మೃశೝ಴మ௅భ ݅௅ଶ െ ଵ௅భ ஼ଵݒ ൅ ೃೃశೝ಴మ௅భ ஼ଶݒ ൅ ௏௜௅భ    
ௗ௜ಽమௗ௧ ൌ ೃכೝ಴మ൫ೃశೝ಴మ൯௅మ ݅௅ଵ െ ௥ಽమା ೃכೝ಴మೃశೝ಴మ௅మ ݅௅ଶ െ ೃೃశೝ಴మ௅మ ஼ଶௗ௩಴భௗ௧ݒ ൌ ଵ஼భ ݅௅ଵ 
ௗ௩಴మௗ௧ ൌ െ ೃ൫ೃశೝ಴మ൯஼మ ݅௅ଵ ൅ ೃ൫ೃశೝ಴మ൯஼మ ݅௅ଶ െ ଵ஼మሺோା௥಴మሻ   ஼ଶݒ

௢ܸ ൌ െ ோכ௥಴మோା௥಴మ ݅௅ଵ ൅ ோכ௥಴మோା௥಴మ ݅௅ଶ ൅ ோோା௥಴మ      ஼ଶݒ
                           (4.5) 

IV. Mode IV 

In this mode, the switch Q is on and T2 is off for duty cycle dି. Each set of state 

space system consists of four equations representing the states iL1, iL2, vC1, vC2 and one 

equation to represent the output voltage, Vo. The equations describing mode IV are as 

follows:  

ەۖۖۖ
۔ۖ
ௗ௜ಽభௗ௧ۓۖۖ ൌ ௏೔௅భ െ ௥ಽభ௅భ ݅௅ଵௗ௜ಽమௗ௧ ൌ െ ሺ௥ಽమା௥಴భሻ௅మ ݅௅ଶ െ ଵ௅మ ஼ଵ ௗ௩಴భௗ௧ݒ ൌ ଵ஼భ ݅௅ଶ   ௗ௩಴మௗ௧ ൌ െ ଵ஼మሺோା௥಴మሻ ஼ଶݒ

௢ܸ ൌ ோோା௥಴మ ஼ଶݒ
                                                                                           (4.6) 

Considering x= [iL1, iL2, vC1, vC2], the averaged state space model of negative peak 

voltage can be obtained as: 

൜ݔሶ ൌ ௔௩௚ିܣ ݔ ൅ ௔௩௚ିܤ  ௢ܸݑ ൌ ௔௩௚ିܥ ݔ                                                                                                       (4.7) 
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The negative peak averaged model parameters can be obtained as:                                

௔௩௚ିܣ

ൌ
ێێۏ
ێێێ
ۍێێ
െݎ௅ଵሺܴ ൅ ஼ଶሻݎ ൅ ሺܦ െ 1ሻሺݎ஼ଵሺܴ ൅ ஼ଶሻݎ ൅ ଵሺܴܮ஼ଶሻݎܴ ൅ ஼ଶሻݎ ሺ1 െ ଵሺܴܮ஼ଶݎሻܴܦ ൅ ஼ଶሻݎ ܦ െ ଵܮ1 ሺ1 െ ଵሺܴܮሻܴܦ ൅ ஼ଶሻሺ1ݎ െ ଶሺܴܮ஼ଶݎሻܴܦ ൅ ஼ଶሻݎ ሺܦ െ 1ሻܴݎ஼ଶ െ ሺܴ ൅ ஼ଵݎܦ஼ଶሻሺݎ ൅ ଶሺܴܮ௅ଶሻݎ ൅ ஼ଶሻݎ െ ଶܮܦ ሺܦ െ 1ሻܴܮଶሺܴ ൅ ஼ଶሻ1ݎ െ ଵܥܦ ଵܥܦ 0 0ሺܦ െ 1ሻܴܥଶሺܴ ൅ ஼ଶሻݎ ሺ1 െ ଶሺܴܥሻܴܦ ൅ ஼ଶሻݎ 0 െ ଶሺܴܥ1 ൅ ۑۑے஼ଶሻݎ

ۑۑۑ
ېۑۑ
 

௔௩௚ିܤ ൌ ቂ ଵ௅భ 0 0 0ቃ்
                                                                                                

௔௩௚ିܥ  ൌ ቂሺ஽ିଵሻோ௥಴మሺோା௥಴మሻ ሺଵି஽ሻோ௥಴మሺோା௥಴మሻ 0 ோோା௥಴మቃ                                                                    
 

The inverter can also be modeled as a complete system where the different modes are 

averaged over one complete cycle. In this case, the load current is modelled as a current 

source in the modeling of the inverter as shown in Figure 4.3. 

 

Figure 4.3 Schematic diagram of SEPIC based inverter with load current modeled as 

source 
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The four different modes of operation that are identified are depicted by the following 

figures. 

   
A) Mode I: Positive Peak, Q and T1 are synchronized, Q: Off, T1: On 

 
B) Mode II: Positive Peak, Q and T1 are synchronized, Q: On, T1: Off 

 
C) Mode III: Negative Peak, Q and T2 are synchronized, Q: Off, T2: On 
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D) Mode IV: Negative Peak, Q and T2 are synchronized, Q: On , T2: Off 

Figure 4.4. Modes of operation and transition from positive to negative peak voltage. 

I. Mode I 

In this mode, the switch Q is off and T1 is on for duty cycle 1 െ dା. Each set of state 

space system consists of four equations representing the states iL1, iL2, vC1, vC2 and one 

equation to represent the output voltage, Vo.  

ەۖۖ
۔ۖۖ
ௗ௜ಽభௗ௧ۓۖۖ ൌ െ ൬௥ಽభା௥಴భା ೃೝ಴మೃశೝ಴మ൰௅భ ݅௅ଵ െ ோ௥಴మ௅భሺோା௥಴మሻ ݅௅ଶ െ ଵ௅భ ஼ଵݒ െ ோ௅భሺோା௥಴మሻ ஼ଶݒ ൅ ଵ௅భ ௚ܸ ൅ ோ௥಴మ௅భሺோା௥಴మሻ              ௭ܫ

ௗ௜ಽమௗ௧ ൌ െ ோ௥಴మ௅మሺோା௥಴మሻ ݅௅ଵ െ ൬௥ಽమା ೃೝ಴మೃశೝ಴మ൰௅మ ݅௅ଶ െ ோ௅మሺோା௥಴మሻ ஼ଶݒ ൅ ோ௥಴మ௅మሺோା௥಴మሻ ௭ ௗ௩಴భௗ௧ܫ ൌ ௜ಽభ஼భ       ௗ௩಴మௗ௧ ൌ ோ஼మሺோା௥಴మሻ ݅௅ଵ ൅ ோ஼మሺோା௥಴మሻ ݅௅ଶ െ ଵ஼మሺோା௥಴మሻ ஼ଶݒ െ ோ஼మሺோା௥಴మሻ   ௭ܫ
௢ܸ ൌ ோ௥಴మோା௥಴మ ݅௅ଵ ൅ ோ௥಴మோା௥಴మ ݅௅ଶ ൅ ோோା௥಴మ ஼ଶݒ െ ோ௥಴మோା௥಴మ    ௭ܫ

         (4.8) 

II. Mode II 

In this mode, the switch Q is on and T1 is off for duty cycle dା. Each set of state 

space system consists of four equations representing the states iL1, iL2, vC1, vC2 and one 

equation to represent the output voltage, Vo.   
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ەۖۖۖ
۔ۖ
ۓۖۖ ௗ௜ಽభௗ௧ ൌ െ ௥ಽభ௅భ ݅௅ଵ ൅ ଵ௅భ ௚ܸ             ௗ௜ಽమௗ௧ ൌ െ ሺ௥ಽమା௥಴భሻ௅మ ݅௅ଶ ൅ ଵ௅మ ஼ଵௗ௩಴భௗ௧ݒ ൌ െ ௜ಽమ஼భ       ௗ௩಴మௗ௧ ൌ െ ଵ஼మሺோା௥಴మሻ ஼ଶݒ െ ோ஼మሺோା௥಴మሻ   ௭ܫ

௢ܸ ൌ ோோା௥಴మ ஼ଶݒ െ ோ௥಴మோା௥಴మ    ௭ܫ
                                                                          (4.9) 

III. Mode III 

In this mode, the switch Q is off and T2 is on for duty cycle 1 െ dି. Each set of state 

space system consists of four equations representing the states iL1, iL2, vC1, vC2 and one 

equation to represent the output voltage, Vo. 

ەۖۖ
۔ۖۖ
ௗ௜ಽభௗ௧ۓۖۖ ൌ െ ൬௥ಽభା௥಴భା ೃೝ಴మೃశೝ಴మ൰௅భ ݅௅ଵ ൅ ோ௥಴మ௅భሺோା௥಴మሻ ݅௅ଶ െ ଵ௅భ ஼ଵݒ ൅ ோ௅భሺோା௥಴మሻ ஼ଶݒ ൅ ଵ௅భ ௚ܸ െ ோ௥಴మ௅భሺோା௥಴మሻ              ௭ܫ

ௗ௜ಽమௗ௧ ൌ ோ௥಴మ௅మሺோା௥಴మሻ ݅௅ଵ െ ൬௥ಽమା ೃೝ಴మೃశೝ಴మ൰௅మ ݅௅ଶ െ ோ௅మሺோା௥಴మሻ ஼ଶݒ ൅ ோ௥಴మ௅మሺோା௥಴మሻ ௭ ௗ௩಴భௗ௧ܫ ൌ ௜ಽభ஼భ       ௗ௩಴మௗ௧ ൌ െ ோ஼మሺோା௥಴మሻ ݅௅ଵ ൅ ோ஼మሺோା௥಴మሻ ݅௅ଶ െ ଵ஼మሺோା௥಴మሻ ஼ଶݒ െ ோ஼మሺோା௥಴మሻ   ௭ܫ
௢ܸ ൌ െ ோ௥಴మோା௥಴మ ݅௅ଵ ൅ ோ௥಴మோା௥಴మ ݅௅ଶ ൅ ோோା௥಴మ ஼ଶݒ െ ோ௥಴మோା௥಴మ    ௭ܫ

       (4.10) 

IV. Mode IV 

In this mode, the switch Q is on and T2 is off for duty cycle dି. Each set of state 

space system consists of four equations representing the states iL1, iL2, vC1, vC2 and one 

equation to represent the output voltage, Vo.  

ەۖۖۖ
۔ۖ
ۓۖۖ ௗ௜ಽభௗ௧ ൌ െ ௥ಽభ௅భ ݅௅ଵ ൅ ଵ௅భ ௚ܸ             ௗ௜ಽమௗ௧ ൌ െ ሺ௥ಽమା௥಴భሻ௅మ ݅௅ଶ െ ଵ௅మ ஼ଵௗ௩಴భௗ௧ݒ ൌ ௜ಽమ஼భ   ௗ௩಴మௗ௧ ൌ െ ଵ஼మሺோା௥಴మሻ ஼ଶݒ െ ோ஼మሺோା௥಴మሻ   ௭ܫ

௢ܸ ൌ ோோା௥಴మ ஼ଶݒ െ ோ௥಴మோା௥಴మ    ௭ܫ
                                                                        (4.11) 
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The system is averaged over the full cycle. The averaged state space model of the inverter 

can be obtained as: 

൜ݔሶ ൌ ݔ௔௩௚ܣ ൅ ௢ܸݑ௔௩௚ܤ  ൌ ݔ௔௩௚ܥ ൅  (4.12)                                                                                                    ݑ௔௩௚ܧ

The state space matrices are averaged as: 

௔௩௚ܣ ൌ ݀௣ܣଵ ൅ ൫1 െ ݀௣൯ܣଶ ൅ ݀௡ܣଷ ൅ ሺ1 െ ݀௡ሻܣସ  ܤ௔௩௚ ൌ ݀௣ܤଵ ൅ ൫1 െ ݀௣൯ܤଶ ൅ ݀௡ܤଷ ൅ ሺ1 െ ݀௡ሻܤସ             ܥ௔௩௚ ൌ ݀௣ܥଵ ൅ ൫1 െ ݀௣൯ܥଶ ൅ ݀௡ܥଷ ൅ ሺ1 െ ݀௡ሻܥସ  ܧ௔௩௚ ൌ ݀௣ܧଵ ൅ ൫1 െ ݀௣൯ܧଶ ൅ ݀௡ܧଷ ൅ ሺ1 െ ݀௡ሻܧସ        

Where subscripts 1-4 represent the four modes of operation. 

The averaged state space matrices are given as: 

Aୟ୴୥ ൌ

ێێۏ
ێێێ
ۍێ Aଵଵ R୰Cమሺ௞೙ሺଵିௗ೙ሻି௞೛ሺଵିௗ೛ሻሻLభሺRା୰Cమሻ െ ሺ௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻሻLభ Rሺ௞೙ሺଵିௗ೙ሻି௞೛ሺଵିௗ೛ሻሻLభሺRା୰CమሻR୰Cమሺ௞೙ሺଵିௗ೙ሻି௞೛ሺଵିௗ೛ሻሻLమሺRା୰Cమሻ Aଶଶ ௞೛ௗ೛ି௞೙ௗ೙Lమ െ Rሺ௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻሻLమሺRା୰Cమሻሺ௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻሻCభ ௞೙ௗ೙ି௞೛ௗ೛Cభ 0 0Rሺ௞೛൫ଵିௗ೛൯ି௞೙ሺଵିௗ೙ሻሻCమሺRା୰Cమሻ Rሺ௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻሻCమሺRା୰Cమሻ 0 ିሺ௞೛ା௞೙ሻCమሺRା୰Cమሻ ۑۑے

ۑۑۑ
ېۑ
                   

 Bୟ୴୥ ൌ
ێێۏ
ێێێ
ሺ௞೛ା௞೙ሻLభۍ R୰Cమሺ௞೛൫ଵିௗ೛൯ି௞೙ሺଵିௗ೙ሻሻLభሺRା୰Cమሻ0 R୰Cమሺ௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻሻLభሺRା୰Cమሻ0 00 ିRሺ௞೛ା௞೙ሻCమሺRା୰Cమሻ ۑۑے

ۑۑۑ
ې
                                                                                        

Cୟ୴୥ ൌ ቂR୰Cమሺ݇݌൫1െ݀݌൯െ݇݊ሺ1െ݀݊ሻሻRା୰Cమ R୰Cమሺ݇݌൫1െ݀݌൯൅݇݊ሺ1െ݀݊ሻሻRା୰Cమ 0 Rሺ݇݌൅݇݊ሻRା୰Cమ ቃ                                                        
Eୟ୴୥ ൌ ቂ0 െ ଶR୰Cమ൫݇݌൅݇݊൯Rା୰Cమ ቃ   



49 

 

 

4.2.2 Small Signal Modeling 

Small signal analysis is a mathematical method for studying the dynamic response of 

the system when perturbed by a small disturbance. It is a technique of analyzing the 

behavior of a non-linear system with linear equations. The system is linearized around the 

DC operating point. The assumption made here is that the perturbation in the signal is 

small and is insufficient to cause any change in the operating point of the system. The 

small signal model can be derived by assuming each signal to be sum of a constant DC 

value and small AC perturbation. The DC quantities present in the model are considered 

to be constant and cancel of on either side of the voltage equations for inductors and 

current equations for capacitors, thus can be eliminated. In addition, the second order 

non-linear terms are eliminated as they are assumed to be negligible when compared to 

the first order AC terms. 

The SEPIC inverter shown in Figure 4.1 is a fourth order nonlinear system. The 

nonlinearity is originated from their inherent switching behavior, which makes the 

stability analysis, designing and evaluating controllers difficult [33]. The most common, 

systematic and successful approach to these tasks is linearization. Stability of the 

linearized model or small signal model indicates the system is stable when operating 

under nominal operating conditions for small perturbations [34]. System is linearized in a 

region around the operating point where the system response is assumed to be linear [35]. 

The state-space averaging (SSA) technique is applied to find small-signal linear 

dynamic model of the converter and its various transfer functions. As opposed to the 

PWM-switch model and averaged switch model, the SSA is a matrix-based approach in 

that all modeling steps in the SSA are performed systematically via matrices. Hence, 

mathematical software such as MATLAB can readily be used to aid the modeling process 

[36]. 

Consider a switching circuit containing one switch such that the circuit switches 

between two different states in one switching period. There are two circuit states when 

the switch is operated. One state is when the switch is closed for duration of dT where d 
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is the duty cycle and T is the switching time period. The other state is when the switch is 

open for duration of (1-d)T. 

Consider the state space model of the circuit with index 1 when switch is closed as: ൜ݔሶ ሺݐሻ ൌ ሻݐሺݔଵܣ ൅ ݕሻݐሺݑଵܤ ൌ ሻݐሺݔଵܥ ൅ ሻݐሺݑଵܧ                                                                                            (4.13.a) 

and with index 2 when the switch is open as: ൜ݔሶ ሺݐሻ ൌ ሻݐሺݔଶܣ ൅ ݕሻݐሺݑଶܤ ൌ ሻݐሺݔଶܥ ൅ ሻݐሺݑଶܧ                                                                                           (4.13.b) 

The operation of the circuit averaged over one switching cycle can be obtained as: ቊݔሶሺݐሻ ൌ ۄሻݐሺݔۃ௔௩௚ܣ ൅ ݕۄሻݐሺݑۃ௔௩௚ܤ ൌ ۄሻݐሺݔۃ௔௩௚ܥ ൅ ۄሻݐሺݑۃ௔௩௚ܧ                                                                                 (4.14) 

where in: ܣ௔௩௚ ൌ ଵܣ݀ ൅ ሺ1 െ ݀ሻܣଶ  

௔௩௚ܤ  ൌ ଵܤ݀ ൅ ሺ1 െ ݀ሻܤଶ ܥ௔௩௚ ൌ ଵܥ݀ ൅ ሺ1 െ ݀ሻܥଶ  ܧ௔௩௚ ൌ ଵܧ݀ ൅ ሺ1 െ ݀ሻܧଶ  

The terms in the brackets ۃ  are the average values. The Equation (4.14) is a nonlinear ۄ

continuous time equation and it can be linearized by small signal perturbation. Each 

signal is replaced by a sum of two terms a fixed DC quantity and a small ac variation. 

The assumption made is that the perturbation is very small compared to the DC values. 

This perturbation yields the steady state and linear small signal state space equations as: ൜ ሶܺ ൌ ܺܣ ൅ ܷܤ ൌ 0ܻ ൌ ܺܥ ൅  (4.15)                                                                         ܷܧ

and ቊݔሶ෠ ൌ ሻݐොሺݔܣ ൅ ሻݐොሺݑܤ ൅ ௗܤ መ݀ሺݐሻݕො ൌ ሻݐොሺݔܥ ൅ ሻݐොሺݑܧ ൅ ௗܧ መ݀ሺݐሻ                                                         (4.16) 

where ܣ ൌ ଵܣܦ ൅ ሺ1 െ  ଶܣሻܦ
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ܤ ൌ ଵܤܦ ൅ ሺ1 െ ܥ ଶܤሻܦ ൌ ଵܥܦ ൅ ሺ1 െ ܧ ଶܥሻܦ ൌ ଵܧܦ ൅ ሺ1 െ ௗܤ ଶܧሻܦ ൌ ሺܣଵ െ ଶሻܺܣ ൅ ሺܤଵ െ ௗܧ ଶሻܷܤ ൌ ሺܥଵ െ ଶሻܺܥ ൅ ሺܧଵ െ  .ଶሻܷܧ

The steady state solution of the inverter can be found by solving Equation (4.15) as: ൜ܺ ൌ െିܣଵܷܤ              ܻ ൌ ሺെିܣܥଵܤ ൅  ሻܷ                                                                          (4.17)ܧ

The small signal transfer function of the inverter can be obtained by applying Laplace 

transform to Equation (4.16). In matrix form, we have 

۔ۖەۖ
ሻݏොሺݔۓ ൌ ሾሺܫݏ െ ܫݏሺ     ܤሻିଵܣ െ ௗሿܤሻିଵܣ ൤ݑොሺݏሻመ݀ሺݏሻ൨                        ݕොሺݏሻ ൌ ሾܥሺܫݏ െ ܤሻିଵܣ ൅ ܫݏሺܥ    ܧ െ ௗܤሻିଵܣ ൅  ሻ൨                                    (4.18)ݏሻመ݀ሺݏොሺݑௗሿ ൤ܧ

The SEPIC inverter operates in four different modes. The voltage equations around 

loops and current equations at nodes, which govern every mode of operation, can be 

written using kirchoff’s laws (KVL and KCL) respectively. 

The system is considered to have two inputs namely: input voltage Vg and duty cycle 

d. The output of the system is the voltage across the load, V0. To derive the small signal 

model, each signal is assumed to be the sum of a fixed DC value and a small time varying 

perturbation. The input voltage becomes V୥ ൅ vො୥ሺtሻ and the duty cycle becomes  D ൅d෠ሺtሻ. The output voltage becomes V଴ ൅ vො଴ሺtሻ and the states become X ൅ xොሺtሻ where V୥, D, V଴ and X are the steady state operating point variables and the variables expressed with ^ 

are the small signal perturbations. 

  When the system is modeled separately for positive and negative half cycles, the 

small signal equations and models are presented below. 
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A. Positive Half Cycle 

The averaged state space representation of the system when operating to produce 

positive half cycle of output is: 

ቊݔሶ ൌ ௔௩௚ାܣ ݔ ൅ ܤ௔௩௚ା ݑ ൅ ௗା݀௢ܸܤ ൌ ௔௩௚ାܥ ݔ ൅ ௗା݀ܧ                                                          (4.19) 

The positive peak averaged model parameters can be obtained as: ܣ௔௩௚ା

ൌ
ێێۏ
ێێێ
ۍێێ
െݎ௅ଵሺܴ ൅ ஼ଶሻݎ ൅ ሺܦ െ 1ሻሺݎ஼ଵሺܴ ൅ ஼ଶሻݎ ൅ ଵሺܴܮ஼ଶሻݎܴ ൅ ஼ଶሻݎ ሺܦ െ 1ሻܴݎ஼ଶܮଵሺܴ ൅ ஼ଶሻݎ ܦ െ ଵܮ1 ሺܦ െ 1ሻܴܮଵሺܴ ൅ ܦ஼ଶሻሺݎ െ 1ሻܴݎ஼ଶܮଶሺܴ ൅ ஼ଶሻݎ ሺܦ െ 1ሻܴݎ஼ଶ െ ሺܴ ൅ ஼ଵݎܦ஼ଶሻሺݎ ൅ ଶሺܴܮ௅ଶሻݎ ൅ ஼ଶሻݎ ଶܮܦ ሺܦ െ 1ሻܴܮଶሺܴ ൅ ஼ଶሻ1ݎ െ ଵܥܦ െ ଵܥܦ 0 0ሺ1 െ ଶሺܴܥሻܴܦ ൅ ஼ଶሻݎ ሺ1 െ ଶሺܴܥሻܴܦ ൅ ஼ଶሻݎ 0 െ ଶሺܴܥ1 ൅ ۑۑے஼ଶሻݎ

ۑۑۑ
ېۑۑ
 

௔௩௚ାܤ ൌ ቂ ଵ௅భ 0 0 0ቃ்
  

௔௩௚ାܥ ൌ ቂሺଵି஽ሻோ௥಴మ஼మሺோା௥಴మሻ ሺଵି஽ሻோ௥಴మ஼మሺோା௥಴మሻ 0 ோோା௥಴మቃ  
ௗାܤ ൌ ሾܤௗଵଵା ௗଶଵାܤ   ௗଷଵାܤ   ௗସଵାܤ   ሿ்  ܧௗା ൌ ሾܧௗଵଵା ሿ   
Upon application of Laplace transform, Equation (4.19) is transformed as shown in 

Equation (4.20). 

۔ۖۖەۖۖ
ሻݏଵଓ̂௅ଵሺܮݏۓ  ൌ ሻݏො௚ሺݒ െ ଓ̂௅ଵሺݏሻݎ௅ଵ െ ஼ଵݎሻݏᇱ൫ଓ௅̂ଵሺܦ െ ሻݏො஼ଵሺݒ െ ሻ൯ݏො଴ሺݒ ൅ መ݀ሺݏሻሺܫ௅ଵݎ஼ଵ ൅ ஼ܸଵ ൅ ଴ܸሻܥݏଵݒො஼ଵሺݏሻ ൌ ሻݏᇱଓ̂௅ଵሺܦ ൅ ሻݏଓ̂௅ଶሺܦ ൅ መ݀ሺݏሻሺܫ௅ଶ െ ሻݏଶଓ̂௅ଶሺܮݏ௅ଵሻܫ  ൌ ሻݏො஼ଵሺݒሺܦ െ ଓ̂௅ଶሺݏሻݎ஼ଵሻ ൅ ሻݏො଴ሺݒᇱܦ ൅ መ݀ሺݏሻሺ ஼ܸଵ െ ஼ଵݎ௅ଶܫ െ ଴ܸሻ െ ଓ௅̂ଶሺݏሻݎ௅ଶܥݏଶݒො஼ଶሺݏሻ ൌ ሻݏᇱሺଓ̂௅ଵሺܦ ൅ ଓ̂௅ଶሺݏሻሻ െ መ݀ሺݏሻሺܫ௅ଵ ൅ ௅ଶሻܫ െ ௩ොబሺ௦ሻோݒො଴ሺݏሻ ൌ ோ௥಴మோା௥಴మ ൫ܦᇱଓ̂௅ଵሺݏሻ ൅ ሻݏᇱଓ̂௅ଶሺܦ െ መ݀ሺݏሻܫ௅ଵ െ መ݀ሺݏሻܫ௅ଶ൯ ൅ ோோା௥಴మ ሻݏො஼ଶሺݒ

       (4.20) 
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The small signal model for the system operating to produce positive cycle of output can 

be obtained from Equation (4.20) and is shown in Figure 4.5. 

 
Figure 4.5 Schematic diagram of Small Signal Model of the SEPIC Inverter when 

operating to produce positive half cycle of output 

 

B. Negative Half Cycle 

The averaged state space representation of the system when operating to produce 

negative half cycle of output is: 

൜ݔሶ ൌ ௔௩௚ିܣ ݔ ൅ ௔௩௚ିܤ  ݑ ൅ ௗିܤ ݀  ௢ܸ ൌ ௔௩௚ିܥ ݔ ൅ ௗିܧ ݀                                                                                                         (4.21) 

The negative peak averaged model parameters can be obtained as:                                         ܣ௔௩௚ା

ൌ
ێێۏ
ێێێ
ۍێێ
െݎ௅ଵሺܴ ൅ ஼ଶሻݎ ൅ ሺܦ െ 1ሻሺݎ஼ଵሺܴ ൅ ஼ଶሻݎ ൅ ଵሺܴܮ஼ଶሻݎܴ ൅ ஼ଶሻݎ ሺ1 െ ଵሺܴܮ஼ଶݎሻܴܦ ൅ ஼ଶሻݎ ܦ െ ଵܮ1 ሺ1 െ ଵሺܴܮሻܴܦ ൅ ஼ଶሻሺ1ݎ െ ଶሺܴܮ஼ଶݎሻܴܦ ൅ ஼ଶሻݎ ሺܦ െ 1ሻܴݎ஼ଶ െ ሺܴ ൅ ஼ଵݎܦ஼ଶሻሺݎ ൅ ଶሺܴܮ௅ଶሻݎ ൅ ஼ଶሻݎ െ ଶܮܦ ሺܦ െ 1ሻܴܮଶሺܴ ൅ ஼ଶሻ1ݎ െ ଵܥܦ ଵܥܦ 0 0ሺܦ െ 1ሻܴܥଶሺܴ ൅ ஼ଶሻݎ ሺ1 െ ଶሺܴܥሻܴܦ ൅ ஼ଶሻݎ 0 െ ଶሺܴܥ1 ൅ ۑۑے஼ଶሻݎ

ۑۑۑ
ېۑۑ
 

௔௩௚ିܤ ൌ ቂ ଵ௅భ 0 0 0ቃ்
௔௩௚ିܥ   ൌ ቂሺ஽ିଵሻோ௥಴మ஼మሺோା௥಴మሻ ሺଵି஽ሻோ௥಴మ஼మሺோା௥಴మሻ 0 ோோା௥಴మቃ  

ௗିܤ ൌ ሾܤௗଵଵି ௗଶଵିܤ   ௗଷଵିܤ   ௗସଵିܤ   ሿ்  ܧௗି ൌ ሾܧௗଵଵି ሿ   
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Upon application of Laplace transform, Equation (4.21) is transformed as shown in 

Equation (4.22). 

۔ۖۖەۖۖ
ሻݏଵଓ̂௅ଵሺܮݏۓ ൌ ሻݏො௚ሺݒ െ ଓ̂௅ଵሺݏሻݎ௅ଵ െ ஼ଵݎሻݏᇱ൫ଓ௅̂ଵሺܦ െ ሻݏො஼ଵሺݒ ൅ ሻ൯ݏො଴ሺݒ ൅ መ݀ሺݏሻሺܫ௅ଵݎ஼ଵ ൅ ஼ܸଵ െ ଴ܸሻܥݏଵݒො஼ଵሺݏሻ ൌ ሻݏᇱଓ̂௅ଵሺܦ െ ሻݏଓ̂௅ଶሺܦ െ መ݀ሺݏሻሺܫ௅ଵ ൅ ሻݏଶଓ௅̂ଶሺܮݏ  ௅ଶሻܫ ൌ െܦሺݒො஼ଵሺݏሻ െ ଓ̂௅ଶሺݏሻݎ஼ଵሻ െ ሻݏො଴ሺݒᇱܦ ൅ መ݀ሺݏሻሺ ଴ܸ െ ஼ଵݎ௅ଶܫ െ ஼ܸଵሻ െ ଓ௅̂ଶሺݏሻݎ௅ଶ  ܥݏଶݒො஼ଶሺݏሻ ൌ ሻݏᇱሺଓ̂௅ଶሺܦ െ ଓ̂௅ଵሺݏሻሻ ൅ መ݀ሺݏሻሺܫ௅ଵ െ ௅ଶሻܫ െ ௩ොబሺ௦ሻோ ሻݏො଴ሺݒ                ൌ ோ௥಴మோା௥಴మ ൫െܦᇱଓ̂௅ଵሺݏሻ ൅ ሻݏᇱଓ̂௅ଶሺܦ ൅ መ݀ሺݏሻܫ௅ଵ െ መ݀ሺݏሻܫ௅ଶ൯ ൅ ோோା௥಴మ                  ሻݏො஼ଶሺݒ

        (4.22) 

The small signal model for the system operating to produce negative cycle of output can 

be obtained from Equation (4.22) and is shown in Figure 4.6. 
 

 
Figure 4.6 Schematic diagram of Small Signal Model of the SEPIC Inverter when 

operating to produce negative half cycle of output 

C. Steady State Equations 

In Mode I, the switch Q is off and T1 is on for duty cycle 1-D. In Mode II, the switch 

is on and T1 is off for period of D. The averaged state space model of the system for 

positive cycle of output voltage is given as: 

1) Positive Half-Cycle: Given the averaged matrices in Equation (4.19), the steady state 

equations of this inverter are obtained from Equation (4.15) as: 



55 

 

 

൦ ௅ଶ஼ܸଵ஼ܸଶ൪ܫ௅ଵܫ ൌ
ێێۏ
ێێێ
ێێێ
ۍ ஽஽ᇲ൬ ವವᇲ௥ಽభା௥಴భା ೃೝ಴మವ൫ೃశೝ಴మ൯ା ವᇲೃమವ൫ೃశೝ಴మ൯ାವᇲವ ௥ಽమ൰ଵವವᇲ௥ಽభା௥಴భା ೃೝ಴మವ൫ೃశೝ಴మ൯ା ವᇲೃమವ൫ೃశೝ಴మ൯ାವᇲವ ௥ಽమ௥ಽమା஽௥಴భା ೃೝ಴మೃశೝ಴మା ವᇲೃమೃశೝ಴మ஽൬ ವವᇲ௥ಽభା௥಴భା ೃೝ಴మವ൫ೃశೝ಴మ൯ା ವᇲೃమವ൫ೃశೝ಴మ൯ାವᇲವ ௥ಽమ൰ோವವᇲ௥ಽభା௥಴భା ೃೝ಴మವ൫ೃశೝ಴మ൯ା ವᇲೃమವ൫ೃశೝ಴మ൯ାವᇲವ ௥ಽమ ۑۑے

ۑۑۑ
ۑۑۑ
ې

ൣ ௚ܸ൧

଴ܸ ൌ ൥ ೃೝ಴మೃశೝ಴మା ವᇲೃమೃశೝ಴మ஽ᇲ൬ ವವᇲ௥ಽభା௥಴భା ೃೝ಴మವ൫ೃశೝ಴మ൯ା ವᇲೃమವ൫ೃశೝ಴మ൯ାವᇲವ ௥ಽమ൰൩ ൣ ௚ܸ൧
                                                           (4.23) 

2) Negative Half-Cycle: Given the averaged matrices in Equation (4.21), the steady 

state equations of this inverter are obtained from Equation (4.15) as: 

൦ ௅ଶ஼ܸଵ஼ܸଶ൪ܫ௅ଵܫ ൌ
ێێۏ
ێێێ
ێێێ
ۍ ஽஽ᇲ൬ ವವᇲ௥ಽభା௥಴భା ೃೝ಴మವ൫ೃశೝ಴మ൯ା ವᇲೃమವ൫ೃశೝ಴మ൯ାವᇲವ ௥ಽమ൰ିଵವವᇲ௥ಽభା௥಴భା ೃೝ಴మವ൫ೃశೝ಴మ൯ା ವᇲೃమವ൫ೃశೝ಴మ൯ାವᇲವ ௥ಽమ௥ಽమା஽௥಴భା ೃೝ಴మೃశೝ಴మା ವᇲೃమೃశೝ಴మ஽൬ ವವᇲ௥ಽభା௥಴భା ೃೝ಴మವ൫ೃశೝ಴మ൯ା ವᇲೃమವ൫ೃశೝ಴మ൯ାವᇲವ ௥ಽమ൰ିோವವᇲ௥ಽభା௥಴భା ೃೝ಴మವ൫ೃశೝ಴మ൯ା ವᇲೃమವ൫ೃశೝ಴మ൯ାವᇲವ ௥ಽమ ۑۑے

ۑۑۑ
ۑۑۑ
ې

ൣ ௚ܸ൧

଴ܸ ൌ ൥ ି ೃೝ಴మೃశೝ಴మି ವᇲೃమೃశೝ಴మ஽ᇲ൬ ವವᇲ௥ಽభା௥಴భା ೃೝ಴మವ൫ೃశೝ಴మ൯ା ವᇲೃమವ൫ೃశೝ಴మ൯ାವᇲವ ௥ಽమ൰  ൩ ൣ ௚ܸ൧
                                                           (4.24) 

When the inverter is modeled as one system in all four modes of operation, the 

system is considered to have four inputs namely: input voltage Vg, load current Iz, duty 

cycles dp and dn describing the duty related to positive and negative half cycles 

respectively. The output of the system is the voltage across the load, V0. 

The averaged state space representation of the system when operating to produce a 

complete cycle of output is: 

ቊݔሶ ൌ ݔ௔௩௚ܣ ൅ ݑ௔௩௚ܤ ൅ ௗ௣݀ାܤ ൅ ௗ௡݀ିܤ
௢ܸ ൌ ݔ௔௩௚ܥ ൅ ݑ௔௩௚ܧ ൅ ௗ௣݀ାܧ ൅  ௗ௡݀ି                                                                 (4.25)ܧ
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Where 

Aୟ୴୥ ൌ
ێێۏ
ێێێ
ۍ Aଵଵ R୰CమሺୢశିୢషሻLభሺRା୰Cమሻ ୢశାୢషିଶLభ RሺୢశିୢషሻLభሺRା୰CమሻR୰CమሺୢశିୢషሻLమሺRା୰Cమሻ Aଶଶ ୢశିୢషLమ RሺୢశାୢషିଶሻLమሺRା୰CమሻଶିୢశିୢషCభ ିሺୢశାୢషሻCభ 0 0RሺୢషିୢశሻCమሺRା୰Cమሻ RሺଶିୢశିୢషሻCమሺRା୰Cమሻ 0 ିሺୢశାୢషሻCమሺRା୰Cమሻ ۑۑے

ۑۑۑ
ې
  

 Bୟ୴୥ ൌ
ێێۏ
ۍێێ

ଶLభ െ R୰Cమ൫ୢశିୢష൯LభሺRା୰Cమሻ0 R୰Cమ൫ଶିୢశିୢష൯LభሺRା୰Cమሻ0 00 ିଶRCమሺRା୰Cమሻ ۑۑے
  ېۑۑ

Cୟ୴୥ ൌ ቂR୰CమሺୢషିୢశሻRା୰Cమ R୰CమሺଶିୢశିୢషሻRା୰Cమ 0 ଶRRା୰Cమቃ  
Eୟ୴୥ ൌ ቂ0 െ ଶR୰CమRା୰Cమቃ  
ௗ௣ܤ ൌ ሾܤௗ௣ଵଵ ௗ௣ଶଵܤ ௗ௣ଷଵܤ   ௗ௣ସଵሿ்ܤ

ௗ௡ܤ ൌ ሾܤௗ௡ଵଵ ௗ௡ଶଵܤ ௗ௡ଷଵܤ ௗ௣ܧ  ௗ௡ସଵሿ்ܤ ൌ ሾܧௗ௣ଵଵሿ  
ௗ௡ܧ ൌ ሾܧௗ௡ଵଵሿ  
Upon application of Laplace transform, Equation (4.25) is transformed as shown in 

Equation (4.26). 

ەۖۖ
۔ۖۖ
ሻݏଵଓ̂௅ଵሺܮݏۓ  ൌ ሺ݇௣ ൅ ݇௡ሻ൫ݒො௚ሺݏሻ െ ଓ௅̂ଵሺݏሻݎ௅ଵ൯ െ ൫݇௣ܦ௣ᇱ ൅ ݇௡ܦ௡ᇱ ൯൫ଓ̂௅ଵሺݏሻݎ஼ଵ ൅ ሻ൯ݏො஼ଵሺݒ െ ሺ݇௣ܦ௣ᇱ െ ݇௡ܦ௡ᇱ ሻݒො଴ሺݏሻ ൅ ൫݇௣ መ݀௣ ൅ ݇௡ መ݀௡൯ሺܫ௅ଵݎ஼ଵ ൅ ஼ܸଵሻ ൅ ሺ݇௣ መ݀௣ ൅ ݇௡ መ݀௡ሻ ௢ܸܥݏଵݒො஼ଵሺݏሻ ൌ ൫݇௣ܦ௣ᇱ ൅ ݇௡ܦ௡ᇱ ൯ଓ̂௅ଵሺݏሻ െ ൫݇௣ܦ௣ െ ݇௡ܦ௡൯ଓ̂௅ଶሺݏሻ െ ൫݇௣ መ݀௣ ൅ ݇௡ መ݀௡൯ܫ௅ଵ െ ൫݇௣ መ݀௣ െ ݇௡ መ݀௡൯ܫ௅ଶܮݏଶଓ̂௅ଶሺݏሻ  ൌ ൫݇௣ܦ௣ െ ݇௡ܦ௡൯ݒො஼ଵሺݏሻ െ ሺ݇௣ ൅ ݇௡ሻଓ̂௅ଶሺݏሻݎ௅ଶ െ ൫݇௣ܦ௣ ൅ ݇௡ܦ௡൯ଓ̂௅ଶሺݏሻݎ஼ଵ െ ൫݇௣ܦ௣ᇱ ൅ ݇௡ܦ௡ᇱ ൯ݒො଴ሺݏሻ ൅ ൫݇௣ መ݀௣ ൅ ݇௡ መ݀௡൯ ௢ܸ ൅ ൫݇௣ መ݀௣ െ ݇௡ መ݀௡൯ ஼ܸଵܥݏଶݒො஼ଶሺݏሻ ൌ ൫݇௣ܦ௣ᇱ െ ݇௡ܦ௡ᇱ ൯ଓ̂௅ଵሺݏሻ ൅ ൫݇௣ܦ௣ᇱ ൅ ݇௡ܦ௡ᇱ ൯ଓ̂௅ଶሺݏሻ െ ൫݇௣ መ݀௣ െ ݇௡ መ݀௡൯ܫ௅ଵ െ ൫݇௣ መ݀௣ ൅ ݇௡ መ݀௡൯ܫ௅ଶ െ ሺ݇௣ ൅ ݇௡ሻሺ௩ොబሺ௦ሻோ െ ଓ̂௭ሺݏሻሻݒො଴ሺݏሻ ൌ ሺ݇௣ ൅ ݇௡ሻ ቀݒො஼ଶሺݏሻ ோோା௥಴మ െ ଓ̂௭ሺݏሻ ோ௥಴మோା௥಴మቁ ൅ ൫݇௣ܦ௣ᇱ െ ݇௡ܦ௡ᇱ ൯ଓ̂௅ଵሺݏሻ ோ௥಴మோା௥಴మ ൅ ൫݇௣ܦ௣ᇱ ൅ ݇௡ܦ௡ᇱ ൯ଓ̂௅ଶሺݏሻ ோ௥಴మோା௥಴మ െ ൫݇௣ መ݀௣ െ ݇௡ መ݀௡൯ܫ௅ଵ ோ௥಴మோା௥಴మ െ ሺ݇௣ መ݀௣ ൅ ݇௡ መ݀௡ሻܫ௅ଶ ோ௥಴మோା௥಴మ

        (4.26) 
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The small signal model for the system operating to produce a complete cycle of output 

can be obtained from Equation (4.26). 

 

Figure 4.7 Schematic diagram of Small Signal Model of the SEPIC Inverter when 

operating to produce complete cycle of output 

Given the averaged matrices in (4.25), the steady state equations of this inverter are 

obtained from Equation (4.15) as: 

൦ܫ௅ଵܫ௅ଶ஼ܸଵ஼ܸଶ൪ ൌ ൦ܵଵଵܵଶଵܵଷଵܵସଵ൪ ൣ ௚ܸ൧
଴ܸ ൌ ሾܵ଴ሿൣ ௚ܸ൧                                                                                                               (4.27) 

4.3 Transfer Functions of Inverter 

State space averaging techniques have been employed to derive the transfer functions 

and small signal model of the inverter after mathematical analysis.  

The AC output voltage ݒො଴ሺݐሻ  can be expressed as the superposition of the terms 

arising from the two inputs. 

ሻݏො଴ሺݒ  ൌ ሻݏௗ௩బሺܩ መ݀ሺݏሻ ൅  ሻ                                           (4.28)ݏො௚ሺݒሻݏ௩೒௩బሺܩ

The first term in (4.27) represents the control to output transfer function while the 

second term represents the line to output transfer function. The transfer functions ܩௗ௩బሺݏሻ 

and ܩ௩೒௩బሺݏሻ can be defined as: 

ሻݏௗ௩బሺܩ ൌ ሻݏሻመ݀ሺݏො଴ሺݒ ቤ௩ො೒ሺ௦ሻୀ଴ ሻݏ௩೒௩బሺܩ     ݀݊ܽ   ൌ  ሻቤௗ෠ሺ௦ሻୀ଴ݏො௚ሺݒሻݏො଴ሺݒ
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From (4.18), the various transfer functions can be determined as follows: 

The control to output and line voltage to output transfer functions can be determined 

using the equations shown in (4.29). 

ቊܩௗ௩బሺݏሻ ൌ ܫݏሺܥ െ ௗܤሻିଵܣ ൅ ሻݏ௩೒௩బሺܩௗܧ ൌ ܫݏሺܥ െ ܤሻିଵܣ ൅ ܧ                                                                                    (4.29) 

The transfer functions for the control to inductor currents, control to capacitor voltages 

can be derived from Equation (4.18) as follows: 

۔ۖەۖ
ሻݏௗ௜ಽభሺܩۓ ൌ ሾሺܫݏ െ ሻݏௗ௜ಽమሺܩௗሿଵଵܤሻିଵܣ ൌ ሾሺܫݏ െ ሻݏௗ௩೎భሺܩௗሿଶଵܤሻିଵܣ ൌ ሾሺܫݏ െ ሻݏௗ௩೎మሺܩௗሿଷଵܤሻିଵܣ ൌ ሾሺܫݏ െ ௗሿସଵܤሻିଵܣ

                                                                                      (4.30) 

The transfer functions of line voltage to inductor currents and capacitor voltages are 

determined from Equation (4.18) as: 

۔ۖەۖ
ሻݏ௩೒௜ಽభሺܩۓ ൌ ሾሺܫݏ െ ሻݏ௩೒௜ಽమሺܩሿଵଵܤሻିଵܣ ൌ ሾሺܫݏ െ ሻݏ௩೒௩೎భሺܩሿଶଵܤሻିଵܣ ൌ ሾሺܫݏ െ ሻݏ௩೒௩೎మሺܩሿଷଵܤሻିଵܣ ൌ ሾሺܫݏ െ ሿସଵܤሻିଵܣ

                                                                                        (4.31) 

The control to output transfer function is studied to determine if the system has any 

right half plane zeros. The presence of right half zeros implies system is non-minimum 

phase. Control of such systems is complicated compared to minimal phase systems. The 

values of the circuit components may be varied to check if the zeros can be moved from 

the right half plane to the left half plane. 

Various transfer functions of the inverter are derived in Equations (4.29) - (4.31). The 

transfer functions of the control to inductor currents and capacitor voltages are given in  
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Equation (4.30). The transfer function for the line voltage to inductor currents and 

capacitor voltages are given in Equation (4.31). However, only the control to output 

transfer function is analyzed.  

4.4 Analysis of transfer functions of Inverter 

1.  Positive Half Cycle: The structure of the control to output transfer function is: 

ሻݏௗ௩బሺܩ ൌ ே೛ర௦రାே೛య௦యାே೛మ௦మାே೛భ௦ାே೛బ஽೛ర௦రା஽೛య௦యା஽೛మ௦మା஽೛భ௦ା஽೛బ                                                                       (4.32)          

The system when operating to produce positive half cycle of output voltage has four 

zeros of which one is in the right half plane making the system non-minimal phase. All 

four poles of the system lie in the left half plane. It is important to study the movement of 

poles and zeros of the system in its entire operating range to keep satisfactory 

performance and stability [35]. The location of the poles and zeros are plotted and studied 

when one parameter is varied at a time. The values of the inductors L1, L2; capacitors C1, 

C2 and duty cycle D are varied separately while keeping all other parameters constant. 

The plots are analyzed to check the region in the operating range which would give 

satisfactory response.  

For the sizing parameters of the system, the system has three zeros in left half plane 

(LHP) and one zero in right half plane (RHP). All poles of the system are in the LHP. 

The inductance L1 value is varied from 1 µH to 100 µH. From Figure 4.8, it can be seen 

that one of the four zeros of the system does not move for any change in value of L1. As 

we increase the value of L1 more than 11 µH, the complex pair of zeros move from the 

LHP to the RHP and moves along the imaginary axis towards the origin. The zero which 

was already in the RHP moves towards the origin on the real axis but does not go into the 

LHP. From Figure 4.9, it can be seen that as we increase the value of L1, one pair of 

complex poles move slightly towards the RHP but remain in the LHP at all times while 

the other pair of complex poles moves further into the LHP. 
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Figure 4.8 Locations of zeros for variation in inductance L1 - Positive half cycle 

 
Figure 4.9 Locations of poles for variation in inductance L1 - Positive half cycle 

-20 -15 -10 -5 0 5

x 10
6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

5 Location of Zeros - Variation in Inductance L1

L1 increases

L1 increases

-6000 -5000 -4000 -3000 -2000 -1000 0
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

5 Location of Poles - Variation in Inductance L1

L1 increases

L1 increases

L1 increases



61 

 

 

For the sizing parameters of the system, the system has three zeros in the LHP and 

one zero in the RHP. The inductance value is varied from 1 µH to 100 µH. From Figure 

4.10 it can be seen that one of the zeros in the LHP does not move for any change in 

value of L2. As we increase the value of L2, the complex pair of zeros moves along the 

imaginary axis towards the origin. The zero which was already in the RHP moves 

towards the origin on the real axis but does not go into the LHP. From Figure 4.11, it can 

be seen that all poles of the system are in the LHP. As we increase the value of L2,one 

pair of complex poles move slightly towards the RHP but remain in the LHP at all times 

while the other pair of complex poles moves further into the LHP.  

 
Figure 4.10 Locations of zeros for variation in inductance L2 - Positive half cycle 
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Figure 4.11 Locations of poles for variation in inductance L2 - Positive half cycle 

From Figures 4.12, the system has three zeros in the LHP and one zero in the RHP. 

As the value of C1 is increased, the complex pair of zeros moves along the imaginary axis 

towards the origin. The other zero in the LHP and the zero in the RHP never move for 

any change in the value of C1. From Figure 4.13, all poles of the system remain in the 

LHP at all times. As the value of C1 is increased, one complex pair of poles moves 

further into the LHP while the other pair of poles moves towards the RHP. But the poles 

never cross over into the RHP. 
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Figure 4.12 Locations of zeros for variation in capacitance C1 - Positive half cycle 

 
Figure 4.13 Locations of poles for variation in capacitance C1 - Positive half cycle 
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The capacitance C2 is varied from 15 µF to 1000 µF. From Figure 4.14, it can be seen 

that the system has three zeros in the LHP and one zero in the RHP. The zero in the RHP 

does not move for any change in value of C2. One of the zeros in the LHP moves along 

the axis towards the origin but always remains in the LHP. The complex pair of zero does 

not move for any change in value of C2. From Figure 4.15, as the value of C2 is increased, 

the two pairs of complex poles moves slowly towards the origin but remains in the LHP. 

 
Figure 4.14 Locations of zeros for variation in capacitance C2 - Positive half cycle 
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Figure 4.15 Locations of poles for variation in capacitance C2 - Positive half cycle 

Figures 4.16 and 4.17 show the movement of the zeros and poles of the system when 

the duty cycle is varied, respectively. The duty cycle is varied from 0.1 to 0.9. For buck 

operation, 3 zeros are in the LHP and one in the RHP. When the operation shifts to boost, 

two zeros move from the LHP to the RHP. However, one zero remains in the LHP and 

doesn’t move for any change in value of duty cycle. The zero which was earlier in the 

RHP moves towards the origin but doesn’t go into the LHP. All the poles remain in the 

LHP for both buck and boost operation. 
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Figure 4.16 Locations of zeros for variation in duty cycle D - Positive half cycle 

 
Figure 4.17 Locations of poles for variation in duty cycle D - Positive half cycle 
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2.  Negative Half Cycle: The structure of control to output transfer function is: 

ሻݏௗ௩బሺܩ  ൌ ே೙ర௦రାே೙య௦యାே೙మ௦మାே೙భ௦ାே೙బ஽೙ర௦రା஽೙య௦యା஽೙మ௦మା஽೙భ௦ା஽೙బ                                                                       (4.33) 

When the system is operating to produce negative cycle of output voltage, it has four 

poles all of which are in the LHP ensuring stable operations. The system has four zeros. 

The root-locus has been plotted to study the movement of poles and zeros to determine a 

region of stable operation and satisfactory response. One parameter is varied at a time to 

check the movement of poles and zeros while other parameters are fixed. The values of 

the inductors L1, L2; capacitors C1, C2 and duty cycle D are varied separately while 

keeping all other parameters constant.  

For the sizing parameters of the system, the system has three zeros in the LHP and 

one zero in the RHP when the system is operating to produce negative half cycle. The 

inductance value is varied from 1 µH to 100 µH. From Figure 4.18, it can be seen that one 

complex pair of zeros moves along the imaginary axis towards the origin while the other 

zero in the LHP moves further into the LHP.  As the value of L1 is increased above 11 

µH, the complex pair of zeros moves into the RHP. The zero in the RHP  moves towards 

the LHP but never crosses over. From Figure 4.19, it can be seen that all poles of the 

system are in the LHP. One pair of complex poles moves towards the RHP but never 

moves into the RHP while the other pair of complex poles moves further into the LHP 

only. 
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Figure 4.18  Locations of zeros for variation in inductance L1 - Negative half cycle 

 
Figure 4.19 Locations of poles for variation in inductance L1 - Negative half cycle 
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The value of L2 is varied from 1 µH to 100 µH. The system has four zeros of which 

three are in the LHP and one in the RHP. The system has non-minimal phase behavior. 

From Figure 4.20, as the value of L2 is increased, the complex pair of poles in the LHP 

moves along the imaginary axis towards the origin. The zero in the LHP moves towards 

the RHP while the zero in the RHP moves towards the LHP but neither of them cross 

over the imaginary axis. From Figure 4.21, it can be seen that all the poles are in the LHP. 

One complex pair of poles moves towards RHP while the other complex pair moves 

further into the LHP. The poles remain in the LHP for all values of L2. 

 
Figure 4.20 Locations of zeros for variation in inductance L2 - Negative half cycle 
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Figure 4.21 Locations of poles for variation in inductance L2 - Negative half cycle 

The capacitance C1 is varied from 12 µF to 100 µF. From Figure 4.22, it can be seen 

that the system has four zeros of which three are in the LHP while one is in the RHP. The 

complex pair of zeros in the LHP moves along the imaginary axis towards the origin. The 

other zeros do not move for any change in value of C1. From Figure 4.23, the system has 

four poles, all of which are in the LHP. One complex pair of poles moves deeper into the 

LHP while the other pair moves towards the RHP but never crosses over. 
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Figure 4.22 Locations of zeros for variation in capacitance C1 - Negative half cycle 

 
Figure 4.23 Locations of poles for variation in capacitance C1 - Negative half cycle 
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The capacitance C2 is varied from 15 µF to 1000 µF. The system has three zeros in 

the LHP and one zero in the RHP. From Figure 4.24, it can be seen that as the value of C2 

is increased, the zero in the LHP moves towards the RHP while the zero in the RHP 

moves towards the LHP. The complex pair of zeros moves from the LHP into the RHP as 

the value of C2 increases beyond 170 µF. From Figure 4.25, it can be seen that the system 

has two complex pairs of poles which are in the LHP. The poles never move into the 

RHP. Both the pairs of poles move towards the RHP for an increase in value of C2. 

 
Figure 4.24 Locations of zeros for variation in capacitance C2 - Negative half cycle 
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Figure 4.25 Locations of poles for variation in capacitance C2 - Negative half cycle 

Figures 4.26 and 4.27 show the movement of the zeros and poles of the system when 

the duty cycle is varied, respectively. The duty cycle is varied from 0.1 to 0.9 to study the 

system in buck and boost operating modes. In the buck mode, the system has minimal 

phase behavior i.e. all zeros in the LHP for a duty cycle up to 0.2 while two zeros move 

into the RHP for duty between 0.2 and 0.5. All the poles remain in the LHP but move 

towards the RHP. In the boost mode, the all zeros of the system are in the LHP for duty 

cycle between 0.5 and 0.6. One of the zeros moves into the RHP for duty cycle greater 

than 0.6. All poles remain in the LHP but one pair moves deeper into the LHP while the 

other pair moves towards the RHP. 
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Figure 4.26 Locations of zeros for variation in duty cycle D - Negative half cycle 

 
Figure 4.27 Locations of poles for variation in duty cycle D - Negative half cycle 
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When the system is modeled as a complete system where the different modes are 

averaged over one complete cycle, the control to output transfer functions for the positive 

and negative half cycles have similar structure. These transfer functions are analyzed to 

validate the root locus maps obtained in the previous modeling. 

A. Positive Half-Cycle: The structure of the control to output transfer function is: 

ሻݏௗ௩బሺܩ ൌ ே೛ర௦రାே೛య௦యାே೛మ௦మାே೛భ௦ାே೛బ஽೛ర௦రା஽೛య௦యା஽೛మ௦మା஽೛భ௦ା஽೛బ                                                                         (4.34) 

The system when operating to produce positive half cycle of output voltage has four 

zeros of which three are in the left half plane and one in the right half plane. All four 

poles of the system lie in the left half plane. There is a need to study the movement of 

poles and zeros of the system to find regions of stable and satisfactory operation of the 

inverter [35]. The location of the poles and zeros are plotted and studied when one 

parameter is varied at a time. The values of the inductors L1, L2; capacitors C1, C2 and 

duty cycle D are varied separately while keeping all other parameters constant.  

The value of L1 is varied from 1 µH to 100 µH.  From Figure 4.28, the system is 

found to have four zeros of which three are in the LHP and one is in the RHP. One of the 

LHP zeros does not move for any change in value of L1. The complex pair of zero moves 

along the imaginary axis towards the origin and for a value of L1 greater than 11 µH,   

this pair of zeros moves into the RHP. The RHP zero moves towards the LHP along the 

real axis but never crosses over. From Figure 4.29, all poles of the system are in the LHP. 

One pair of complex poles moves further into the LHP while the other pair moves 

towards the RHP  but never crosses over. 
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Figure 4.28 Validation of movement of zeros for variation in inductance L1 - Positive half  

cycle 

 
Figure 4.29 Validation of movement of poles for variation in inductance L1 - Positive half  

cycle 
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The value of L2 is varied from 1 µH to 100 µH.  From Figure 4.30, the system has 

four zeros of which three are in the LHP and one in the RHP. One LHP zero does not 

move for any change in L2. The complex pair of LHP zeros moves along the imaginary 

axis towards the origin. The zero in the RHP moves along the real axis towards the origin 

but remains in the RHP. From Figure 4.31, the system has four poles all of which always 

remain in the LHP. One pair of the poles move towards the RHP  and the other pair of  

poles move into the LHP towards the real axis. 

 
Figure 4.30 Validation of movement of zeros for variation in inductance L2 - Positive half 

cycle 

-20 -15 -10 -5 0 5

x 10
6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

5 Location of Zeros - Variation in Inductance L2

L2 increases

L2 increases



78 

 

 

 
Figure 4.31 Validation of movement of poles for variation in inductance L2 - Positive half 

cycle 

The capacitance C1 is varied from 12 µF to 100 µF. From Figure 4.32, it can be seen 

that the system has four zeros, three of which remain in the LHP and one in the RHP. As 

the value of C1 is increased, the complex pair of zeros move along the imaginary axis 

towards the origin. The other zeros do  not move for any change in value of C1. From 

Figure 4.33, the poles of the system remain in the LHP. One pair of the complex poles 

moves further into the LHP while the other pair  moves towards the RHP but never 

crosses over. 
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Figure 4.32 Validation of movement of zeros for variation in capacitance C1 - Positive 

half cycle 
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Figure 4.33 Validation of movement of poles for variation in capacitance C1 - Positive 
half cycle 

The value of C2 is varied from 15 µF to 1000 µF. From Figure 4.34, the four zeros of 

the system of which three remain in the LHP and one zero is in the RHP at all times. The 

zero in the LHP move slowly towards the RHP along the real axis. The other three zeros 

do not move for any change in value of C2. From Figure 4.35, the poles remain in the 

LHP always. One complex pair of poles moves towards the RHP till a point and then 

move along the imaginary axis towards the origin. The other pair of poles also moves 

towards the RHP. 

 
Figure 4.34 Validation of movement of zeros for variation in capacitance C2 - Positive 

half cycle 
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Figure 4.35 Validation of movement of poles for variation in capacitance C2 - Positive 

half cycle 

Figures 4.36 and 4.37 show the movement of zeros and poles of the system 

respectively. The duty cycle is varied from 0.1 to 0.9 to cover buck and boost modes of 

operation. In the buck mode, the system has four zeros, three of which are in the LHP and 

one in the RHP. The system has non-minimal phase behavior in buck mode. In the boost 

mode, the complex pair of zeros in the LHP moves into the RHP. The system now has 

three zeros in the RHP and one zero in the LHP. The zero in the RHP moves along the 

real axis towards the origin but never moves into the LHP. The zero in the LHP does not 

move for any change in the duty cycle. All the poles remain in the LHP ensuring stable 

operation for all values of duty cycle. As the duty cycle is increased, the poles move 

further into the LHP. 
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Figure 4.36 Validation of movement of zeros for variation in duty cycle dp - Positive half 

cycle 

 
Figure 4.37 Validation of movement of poles for variation in duty cycle dp - Positive half 

cycle 
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B. Negative Half-Cycle: The structure of the control to output transfer function is: 

ሻݏௗ௩బሺܩ ൌ ே೙ర௦రାே೙య௦యାே೙మ௦మାே೙భ௦ାே೙బ஽೙ర௦రା஽೙య௦యା஽೙మ௦మା஽೙భ௦ା஽೙బ                                                                        (4.35) 

The system when operating to produce negative half cycle of output voltage has four 

zeros of which three are in the left half plane and one in the right half plane. All four 

poles of the system lie in the left half plane. There is a need to study the movement of 

poles and zeros of the system to find regions of stable and satisfactory operation of the 

inverter [35]. The location of the poles and zeros are plotted and studied when one 

parameter is varied at a time. The values of the inductors L1, L2; capacitors C1, C2 and 

duty cycle D are varied separately while keeping all other parameters constant.  

The value of L1 is varied from 1 µH to 100 µH.  From Figure 4.38, the system has 

four zeros of which three are in the LHP and one in the RHP. As the value of L1 is 

increased, the complex pair of zeros moves along the imaginary axis towards the origin. 

As the value of L1 is increased above 11 µH, the complex pair of zeros moves into the 

RHP. The other zero in the RHP moves towards the origin along the real axis but never 

moves into the LHP. The zero in the LHP does not move for any change in value of L1. 

From Figure 4.39, the poles of the system are in the LHP. As the value of L1 is increased, 

one complex pair of poles moves towards the RHP while the other complex pair of poles 

moves deeper into the LHP. All the poles of the system remain in the LHP at all times. 
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Figure 4.38 Validation of movement of zeros for variation in inductance L1 - Negative 

half cycle 

 
Figure 4.39 Validation of movement of poles for variation in inductance L1 - Negative 

half cycle 
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The value of inductance L2 is varied from 1 µH to 100 µH. From Figure 4.40, the 

system has four zeros of which three are in the LHP and one in the RHP. The zero in the 

RHP moves towards the origin along the real axis but never crosses over into the LHP. 

The complex pair of zero moves along the imaginary axis towards the origin while the 

other zero in the LHP does not move for any increase in L2. From Figure 4.41, all poles 

are always in the LHP. All the poles move towards the RHP for any increase in value of 

L2 but never cross over. 

 
Figure 4.40 Validation of movement of zeros for variation in inductance L2 - Negative 

half cycle 
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Figure 4.41 Validation of movement of poles for variation in inductance L2 - Negative 

half cycle 

The value of C1 is varied from 12 µF to 100 µF. From Figure 4.42, the system has 

four zeros of which three are in the LHP and one in the RHP. As the value of C1 is 

increased, the complex pair of zeros move along the imaginary axis towards the origin 

while the other zeros does not move. From Figure 4.43, all poles remain in the LHP 

always. One pair of complex poles moves further into the LHP while the other pair of 

poles move slightly towards the RHP. All poles remain in the LHP at all times. 
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Figure 4.42 Validation of movement of zeros for variation in capacitance C1 - Negative 

half cycle 

 
Figure 4.43 Validation of movement of poles for variation in capacitance C1 - Negative 

half cycle 
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The value of C2 is varied from 15 µF to 1000 µF. From Figure 4.44, the system has 

four zeros of which three are in the LHP and one in the RHP. The complex pair of zeros 

does not move for any change in value of C2. The other zero in the LHP moves towards 

the RHP but never crosses into the RHP. From Figure 4.45, all the poles remain in the 

LHP. All poles move in the LHP towards the RHP but never cross into the RHP. 

 
Figure 4.44 Validation of movement of zeros for variation in capacitance C2 - Negative 

half cycle 
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Figure 4.45 Validation of movement of poles for variation in capacitance C2 - Negative 

half cycle 

Figures 4.46 and 4.47 show the movement of zeros and poles of the system 

respectively. Duty is varied from 0.1 to 0.9 to cover buck and boost modes of operation. 

In buck mode i.e. for duty less than 0.5, the system has three zeros in the LHP and one 

zero in the RHP. As the duty is increased, the zero in the RHP moves along the real axis 

towards the LHP but never crosses over. When the duty is greater than 0.5, the complex 

pair of zero moves from the LHP to the RHP. As we increase the duty further, the 

complex pair of zero moves further into the RHP. The two complex pair of poles remains 

in the LHP at all times. When the duty is increased, one pair of poles moves deeper into 

the LHP while the other pair of poles moves towards the RHP. 
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Figure 4.46 Validation of movement of zeros for variation in duty cycle dn - Negative 

half cycle 

 
Figure 4.47 Validation of movement of poles for variation in duty cycle dn - Negative 

half cycle 
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4.5 Sizing Procedure 

The sizing of the inductors and capacitors in the inverter is of great importance. For 

the purpose of designing the sizing procedure, the operation of the inverter in buck mode 

for positive and negative cycles is combined and the operation in boost mode for positive 

and negative cycles is combined. This results in two sets of values for the inductors and 

capacitors.  

The design procedure is derived for a system to generate 110 V rms voltage and 10 A 

rms current in the output. This design would work for an output power of 110 – 1.1 KW 

for a power factor ranging from 0.1 to 1. The input voltage is assumed to be 34 V DC. 

The variation in input voltage is assumed to be from 24 – 44 V. 

A. Buck Mode 

In this mode, the output voltage is less than the input voltage i.e. the output voltage is 

assumed to be 20 V rms. When the inverter is operating in buck mode, the switching 

frequency of the transistor Q is assumed to be 10 KHz.  

Equation (4.1) describes the relation between the output voltage and input voltage.  

When the input voltage is 24 V i.e. ௚ܸ௠௜௡ ൌ 24 ܸ, the duty cycle is calculated as: 

௏೚௏೒೘೔೙ ൌ ஽೘ೌೣଵି஽೘ೌೣ ൌ ଶ଴√ଶଶସ                                                                                                  

Solving the above equation, gives the value of ݔܽ݉ܦ as 0.54. 

When the input voltage is 44 V i.e. ௚ܸ௠௜௡ ൌ 44 ܸ, the duty cycle is calculated as: 

௏೚௏೒೘ೌೣ ൌ ஽೘೔೙ଵି஽೘೔೙ ൌ ଶ଴√ଶସସ                                                                                                  

Solving the above equation, gives the value of ݊݅݉ܦ as 0.39. 
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The allowed ripple in the inductor current can be assumed to be 30% of the input current, 

Ig. The input current can be found using the following relation: 

௚ܫ ൌ ஽ଵି஽  ௢.                                                                                                                    (4.36)ܫ

For ݔܽ݉ܦ ൌ 0.54, the input current is calculated as: 

௚௠௔௫ܫ ൌ ஽௠௔௫ଵି஽௠௔௫ ௢ܫ ൌ ଴.ହସଵି଴.ହସ 10√2 ൌ   ܣ 16.60

For ݊݅݉ܦ ൌ 0.39, the input current is calculated as: 

௚௠௔௫ܫ ൌ ஽௠௜௡ଵି஽௠௜௡ ௢ܫ ൌ ଴.ଷଽଵି଴.ଷଽ 10√2 ൌ   ܣ 9.04

When the switch Q is on, the inductor L1 is charged by the input voltage source and 

L2 is charged by the capacitor C1. The inductors are charging in this mode. When the 

switch Q is off, the inductors L1 and L2 release the energy stored to the load. 

The charging of inductors can be represented as an equation to determine the size of 

the inductors. Also, assuming that the inductors L1 and L2 are closely coupled, the ripple 

current is divided between them and thus the required inductance value is halved. 

ଵܮ ൌ ଶܮ ൒ ଵଶ ஽೘ೌೣ௏೒೘೔೙∆ூಽ௙ೞೢ                                                                                                    (4.37) 

ଵܮ ൌ ଶܮ ൒ ଵଶ ଴.ହସכଶସ଴.ଷכଵ଺.଺଴כଵ଴଴଴଴ ൌ   ܪߤ 130

The series coupling capacitor is charged by the input current when the switch Q is off. 

The equation describing the charging of the capacitor can be used to determine the 

critical capacitance required. The ripple voltage is assumed to be 5% of the input voltage. 

ଵܥ ൒ ூ೒೘ೌೣሺଵି஽೘ೌೣሻ∆௏௙ೞೢ                                                                                                          (4.38) 

ଵܥ ൒ ଵ଺.଴଺ሺଵି଴.ହସሻ଴.଴ହכସସכଵ଴଴଴଴ ൌ   ܨߤ 335.8
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The output capacitor discharges to the load when the switch Q is on. This equation 

describing the discharge of the capacitor to the load can be used to determine the value of 

output capacitance required by the inverter. The ripple allowed is assumed to be 2 V. 

ଶܥ ൒ ூ೚஽೘ೌೣ∆௏௙ೞೢ                                                                                                                     (4.39) 

ଶܥ ൒ ଵ଴√ଶכ଴.ହସଶכଵ଴଴଴଴ ൌ   ܨߤ 381.83

B. Boost Mode 

In this mode, the output voltage is greater than the input voltage i.e. the output 

voltage is assumed to be 110 V rms. When the inverter is operating in boost mode, the 

switching frequency of the transistor Q is assumed to be 250 KHz.  

From Equation (4.1), when the input voltage is 24 V i.e. ௚ܸ௠௜௡ ൌ 24 ܸ, the duty cycle is 

calculated as: 

௏೚௏೒೘೔೙ ൌ ஽೘ೌೣଵି஽೘ೌೣ ൌ ଵଵ଴√ଶଶସ   

Solving the above equation, gives the value of ݔܽ݉ܦ as 0.86. 

When the input voltage is 44 V i.e. ௚ܸ௠௜௡ ൌ 44 ܸ, the duty cycle is calculated as: 

௏೚௏೒೘ೌೣ ൌ ஽೘೔೙ଵି஽೘೔೙ ൌ ଵଵ଴√ଶସସ   

Solving the above equation, gives the value of ݊݅݉ܦ as 0.78. 

The allowed ripple in the inductor current can be assumed to be 30% of the input current, 

Ig. The input current can be calculated from Equation (4.36). 

For ݔܽ݉ܦ ൌ 0.86, the input current is calculated as: 

௚௠௔௫ܫ ൌ ஽௠௔௫ଵି஽௠௔௫ ௢ܫ ൌ ଴.଼଺ଵି଴.଼଺ 10√2 ൌ   ܣ 91.63
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For ݊݅݉ܦ ൌ 0.78, the input current is calculated as: 

௚௠௔௫ܫ ൌ ஽௠௜௡ଵି஽௠௜௡ ௢ܫ ൌ ଴.଻଼ଵି଴.଻଼ 10√2 ൌ   ܣ 49.98

When the switch Q is on, the inductor L1 is charged by the input voltage source and 

L2 is charged by the capacitor C1. The inductors are charging in this mode. When the 

switch Q is off, the inductors L1 and L2 release the energy stored to the load. 

The charging of inductors can be represented as an equation to determine the size of 

the inductors. Also, assuming that the inductors L1 and L2 are closely coupled, the ripple 

current is divided between them and thus the required inductance value is halved. Similar 

to Equation (4.37), 

ଵܮ ൌ ଶܮ ൒ ଵଶ ஽೘ೌೣ௏೒೘೔೙∆ூಽ௙ೞೢ ଵܮ   ൌ ଶܮ ൒ ଵଶ ଴.଼଺כଶସ଴.ଷכଽଵ.଺ଷכଶହ଴଴଴଴ ൌ   ܪߤ 1.5

The series coupling capacitor is charged by the input current when the switch Q is off. 

The equation describing the charging of the capacitor can be used to determine the 

critical capacitance required. The ripple voltage is assumed to be 5% of the input voltage. 

Similar to Equation (4.38), 

ଵܥ ൒ ூ೒೘ೌೣሺଵି஽೘ೌೣሻ∆௏௙ೞೢ ଵܥ   ൒ ଽଵ.଺ଷሺଵି଴.଼଺ሻ଴.଴ହכସସכଶହ଴଴଴଴ ൌ   ܨߤ 22.27

The output capacitor discharges to the load when the switch Q is on. This equation 

describing the discharge of the capacitor to the load can be used to determine the value of 

output capacitance required by the inverter. The ripple allowed is assumed to be 2 V. 

Similar to Equation (4.39), ܥଶ ൒ ூ೚஽೘ೌೣ∆௏௙ೞೢ ଶܥ   ൒ ଵ଴√ଶכ଴.଼଺ଶכଶହ଴଴଴଴ ൌ   ܨߤ 17.35
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The values of L and C obtained in this procedure are the critical values which should 

be used to maintain continuous conduction operation of the inverter. The value of L and 

C can be selected from either mode. If the values are selected from the buck mode, then 

the operating frequency for the boost mode is re-scaled using the equation of L1 as the 

current through the inductor is more sensitive to changes in frequency than the voltage 

across the capacitors. Similarly, if the values are chosen from the boost mode, the 

operating frequency for the buck mode is re-scaled using the value of L1. 

4.6 Control of Single Switch Inverter 

 The new single switch inverter is introduced to generate a pure sinusoidal output 

voltage [37]. The system behaves like a non-minimum phase system in all operating 

ranges.  When addressed from a control perspective, the right half plane zeros or the non-

minimum phase zeros in the transfer function complicate the control design scheme [38], 

[39]. The response of such a system is characterized by undershoots and overshoots [40]. 

These systems can be controlled if they could be converted to minimum phase 

systems. Parallel feed-forward compensators can be used to convert any plant into a 

minimum phase system. Parallel compensators have been successfully implemented in 

[40]-[45] and are proven to be a more efficient way of controlling non-minimum phase 

systems compared to pole-zero cancellation techniques [46], [47]. For non-minimum 

phase systems, pole-zero cancellation can lead to having unstable structure of feedback 

controller. However, this method uses a compensator T(s) which is not a part of the plant 

but is derived to make the plant a minimum phase system. 

The Dual Feed forward Predictive Control structure can be used to solve the tracking 

problem of a non-minimum phase system.  In general the DFPC may provide perfect 

tracking for Biproper and strictly proper systems, Minimum and non-minimum phase 

systems [48]. 

In this case, the feed-forward controller is used to provide either the feed-forward 

prediction. The feed-forward controllers are based on the plant model [48]. The feedback 

controller is responsible for tracking reference signals. For perfect tracking, the reference 
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signal is divided into two signals namely a reference signal that can be inverted by the 

ballistic response and a prediction of the path that the plant output will follow based on 

the ballistic response. The feedback controller is designed to result in perfect tracking 

performance. A simple PI controller can be used for regulations. However, for reference 

tracking a gain adaptation is utilized to constantly tune the gains of the controller [49]-

[52].  

This method of feed-forward control is used to force the non-minimum phase system 

to behave like a minimum phase system. In this method, the plant is split into two parts to 

generate two signals. One signal is to make the plant track r୤୤ሺtሻ with a feed-forward 

control signal u୤୤ሺtሻ  that drives the plant to track the reference signal. The signals 

produced by the feed-forward transfer functions are assumed to contain bounded energy 

and have no influence on the closed loop stability [48]. For perfect tracking, the error 

should reach zero which can be accomplished using various types of controller including 

a simple gain [40]. However, in the new inverter circuit, an adaptive PI controller is 

required to adjust the gains continuously.  The block diagram, for the structure of a dual 

feed-forward predictive control (DFPC) is shown in Figure 4.48. 

 

Figure 4.48 Block diagram of Dual Feed-forward Predictive Control 
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The stable and causal blocks ܩ௡௢௜ሺݏሻ and ܩ௜ି ଵሺݏሻ are the non–invertible and invertible 

parts of the plant. The non-invertible part refers to the non-minimum phase and unstable 

part of the plant where as the invertible part refers to the minimum phase and stable part 

of the plant. ௗܲ௘௦ሺݏሻ is the design parameter that determines the reference signal and the 

feed-forward control signal. The conditions to be satisfied by the design parameter are: 

1. The steady state gain from ݎሺݐሻ to ݎ௙௙ሺݐሻ must be unity gain i.e. ௗܲ௘௦ሺ0ሻܩ௡௢௜ሺ0ሻ ൌ 1. 
2. The feed-forward transfer functions: 1ܨܨ ൌ ௗܲ௘௦ሺݏሻܩ௡௢௜ሺݏሻ& 2ܨܨ ൌ ௗܲ௘௦ሺݏሻܩ௜ି ଵሺݏሻ 

must be proper (i.e. number of zeros are less than or equal to number of poles). 

The first condition is required so that the steady state reference equals the actual 

reference: ሻݐ௙௙ሺݎ  ൌ ሻݐሺݎ . The second condition is required to make the feed-forward 

controller realizable from the hardware point of view. The conclusion drawn from the 

second condition is that ௗܲ௘௦ሺݏሻis stable and the relative degree of ௗܲ௘௦ሺݏሻ is greater than 

or equal to the relative degree of ܩ௜ሺݏሻ. 

Also, the controller ܭሺݏሻ  should be designed to guarantee internal stability. The 

nominal tracking requirements are satisfied by the feed-forward paths and the feedback 

controller focuses on correcting model inaccuracies and disturbance rejection. 

In particular, Pୢ ୣୱሺsሻG୬୭୧ሺsሻ determines the class of signal that has to be perfectly 

tracked and Pୢ ୣୱሺsሻG୧ି ଵሺsሻ  determines the associated feed-forward control signal to 

achieve perfect tracking. Consider the plant to have a transfer function as follows: 

ሻݏሺܩ ൌ ሻݏ஽஼ܰ௠௣ሺܭ ௡ܰ௠௣ሺݏሻܦ௦ሺݏሻܦ௨ሺݏሻ  

where ܭ஽஼ is the DC gain of the system, N୫୮ሺsሻ  is the minimum phase polynomial of 

the numerator whileN୬୫୮ሺsሻ is the non-minimum phase polynomial of the  numerator of 

the transfer function.  Dୱሺsሻ  is the stable denominator polynomial and D୳ሺsሻ  is the 

unstable denominator polynomial. 
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The transfer function is decomposed into two parts: ܩ௜ሺݏሻ and ܩ௡௢௜ሺݏሻ. ܩ௜ሺݏሻcontains 

the minimum phase numerator polynomial and the denominator polynomial and ܩ௡௢௜ሺݏሻ  

contains the non-minimum phase numerator polynomial. 

ሻݏ௜ሺܩ ൌ ௄ವ಴ே೘೛ሺ௦ሻ஽ೞሺ௦ሻ஽ೠሺ௦ሻ      and    ܩ௡௢௜ሺݏሻ ൌ ௡ܰ௠௣ሺݏሻ 

It is to be noted that the transfer functions ܩ௜ሺݏሻ and ܩ௡௢௜ሺݏሻ are not proper and 

cannot be realized as individual systems. This leads to the selection of the design 

parameter ௗܲ௘௦ሺݏሻ such that the feed-forward transfer functions FF1 and FF2 are proper 

and realizable.  

The control effort is a sum of the feed-forward control signal obtained at the output of 

the block ܩ௜ିଵሺݏሻ and the feedback control signal obtained at the output of ܭሺݏሻ.  

The feedback controller needs to be designed to provide zero tracking error. In some 

cases, a simple gain or simple PI controller can be very effective [40]. However, PI 

controllers give best results when the goal of control is regulation. Also, using a simple 

PI controller needs tuning of the gains offline. In our case, the signal to be tracked is 

continuously varying (sine wave) and thus an adaptive PI controller structure was 

considered suitable. Also, the gains of adaptive controller are tuned automatically online 

[42]. Any change in the control objectives or change in the plant parameters can be 

compensated by using online tuning of the gains of the controller [53]. 

The self-tuning PI controller is viewed as a non-linear controller as the gains K୮ and K୧ are varying continuously. It is not necessary for the gains to converge to a constant 

value as the gains may keep varying as the reference signal needed to track varies.  

The equations for the proportional gain K୮  and integral gain K୧  are obtained from 

[53] as: 

ቊK୮ሶ ൌ െγeyଵKనሶ ൌ െγeyଶ                                                                                                             (4.40) 
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where γ ൐ 0 is the adaption gain, e is the error between the plant output and the reference 

input, yଵ is the output of the proportional block and yଶ is the output of the integral block 

of the controller. 

A. Buck Operation  

When the inverter operates in buck mode to produce positive cycle of output voltage, 

the control to output transfer function has non-minimum phase behavior. The system has 

four zeros of which three are in LHP and one zero in RHP. 

For buck operation with duty cycle as 30%, and the following parameters:ܮଵ ൌ ଶܮ ,ܪߤ1 ൌ ଵܥ ,ܪߤ25 ൌ ଶܥ ,ܨߤ1 ൌ ܴ  and ܨ75݉ ൌ 5, the control to output transfer function is 

determined as follows: 

ሻݏௗ௩ሺܩ ൌ ሺെݏ ൅ 84.98ሻሺݏଷ ൅ ଶݏ0.0853 ൅ ݏ3.8475 ൅ 0.2050ሻݏସ ൅ ଷݏ0.0398 ൅ ଶݏ49.3610 ൅ ݏ0.1283 ൅ 0.0026   
The transfer function is decomposed as follows: ܩ௠௣ሺݏሻ ൌ ௦యା଴.଴଼ହଷ௦మାଷ.଼ସ଻ହ௦ା଴.ଶ଴ହ଴௦రା଴.଴ଷଽ଼௦యାସଽ.ଷ଺ଵ଴௦మା଴.ଵଶ଼ଷ௦ା଴.଴଴ଶ଺   ܩ௡௠௣ሺݏሻ ൌ ሺെݏ ൅ 84.98ሻ 

The minimum phase part is the stably and causally invertible ܩ௜ and the non-minimum 

phase part is considered to be causally non-invertible ܩ௡௢௜. ܩ௜ିଵሺݏሻ ൌ ସݏ ൅ ଷݏ0.0398 ൅ ଶݏ49.3610 ൅ ݏ0.1283 ൅ ଷݏ0.0026 ൅ ଶݏ0.0853 ൅ ݏ3.8475 ൅ 0.2050 ሻݏ௡௢௜ሺܩ  ൌ ሺെݏ ൅ 84.98ሻ 

Following the design requirements for the choice of ௗܲ௘௦ሺݏሻ  the relative degree of 

ௗܲ௘௦ሺݏሻ is chosen to be equal to 1 and has the structure as ௗܲ௘௦ሺݏሻ ൌ ௞ఈ௦ାଵ , where ߙ is 

varied to determine a suitable response in terms of the settling time and undershoot 

associated with the non-minimum phase zero. 

In addition, where ܩ௡௢௜ሺ0ሻ ൌ 84.98 yields  ௗܲ௘௦ሺ0ሻ ൌ ݇ ൌ 84.98ିଵ 
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Thus, ௗܲ௘௦ሺݏሻ ൌ ଼ସ.ଽ଼షభఈ௦ାଵ  

The presence of right half plane (RHP) zero means that the step response will have an 

undershoot that is related to the value of ߙ. The value of ߙ is determined such that the 

undershoot is reduced and the response is fast. It is a trade-off between the undershoot 

and the response time. For smaller values of ߙ, the response is fast but the undershoot is 

larger and for larger values of ߙ, the undershoot is less but the response is slower [47]. 

The step response of this system is shown in Figure 4.49 for various values of ߙ. The 

response for ߙ ൌ 5 is chosen to give the best result. 

 
Figure 4.49 Step Response of system for positive half cycle for duty cycle of 30% 

When the inverter operates in buck mode to produce negative cycle of output voltage, 

the control to output transfer function has minimum phase behavior. The system has three 

zeros in the RHP and one zero in the LHP which is associated to the value of C2. 
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For operation with duty cycle as 30%, the control to output transfer function is 

determined as follows: 

ሻݏௗ௩ሺܩ ൌ ሺݏ ൅ 1.373ሻሺെݏଷ ൅ ଶݏ79.73 െ ݏ104.433 ൅ 12.6479ሻݏସ ൅ ଷݏ0.0398 ൅ ଶݏ49.3610 ൅ ݏ0.1283 ൅ 0.0026  

The transfer function is decomposed as follows: 

ሻݏ௠௣ሺܩ ൌ ௦ାଵ.ଷ଻ଷ௦రା଴.଴ଷଽ଼௦యାସଽ.ଷ଺ଵ଴௦మା଴.ଵଶ଼ଷ௦ା଴.଴଴ଶ଺  

ሻݏ௡௠௣ሺܩ ൌ ሺെݏଷ ൅ ଶݏ79.73 െ ݏ104.433 ൅ 12.6479ሻ 

The minimum phase part is the stably and causally invertible ܩ௜ and the non-minimum 

phase part is considered to be causally non-invertibleܩ௡௢௜. 
ሻݏ௜ିଵሺܩ ൌ ସݏ ൅ ଷݏ0.0398 ൅ ଶݏ49.3610 ൅ ݏ0.1283 ൅ ݏ0.0026 ൅ 1.373  

ሻݏ௡௠௣ሺܩ   ൌ ሺെݏଷ ൅ ଶݏ79.73 െ ݏ104.433 ൅ 12.6479ሻ. 

The relative degree of ௗܲ௘௦ሺݏሻ is required to be greater than or equal to the relative 

degree of ܩ௜ሺݏሻ. Since the relative degree of ܩ௜ሺݏሻ is three, the relative degree of ௗܲ௘௦ሺݏሻ 

is assumed to be three. 

ௗܲ௘௦ሺݏሻ ൌ ݇ሺݏߙ ൅ 1ሻଷ 

In addition, ܩ௡௢௜ሺ0ሻ ൌ 12.6479 and thus ௗܲ௘௦ሺ0ሻ ൌ ݇ ൌ 12.6479ିଵ, Therefore, 

ௗܲ௘௦ሺݏሻ ൌ 12.6479ିଵሺݏߙ ൅ 1ሻଷ  

The value of ߙ  is determined from the step response of the system operating to 

produce negative peak as shown in Figure 4.50. The value of  ߙ is selected such that the 
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overshoot and settling time are not very large. From Figure 4.50, it is seen that the 

undershoot is largest for ߙ ൌ 1 and the settling time is highest for ߙ ൌ 10. When ߙ ൌ 5, 

the undershoot and settling time are best suited. 

 
Figure 4.50 Step Response of system for negative half cycle for duty cycle of 30% 

The system when operating to produce a complete cycle for duty cycle of 30% 

was simulated using the DFPC control and adaptive PI. Figure 4.51 shows the tracking of 

the plant output. The plant output follows the reference signal exactly at every instant of 

time. The output of the plant was made to track the reference signal exactly. 
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Figure 4.51 Perfect tracking for inverter operation with duty of 30% 

B. Boost Operation 

When the inverter operates in boost mode to produce positive cycle of output voltage, 
the control to output transfer function has non-minimum phase behavior. 

For boost operation with duty cycle as 70% and the following parameters:ܮଵ ൌ ଶܮ ,ܪߤ1 ൌ ଵܥ ,ܪߤ25 ൌ ଶܥ ,ܨߤ1 ൌ ܴ  and ܨ75݉ ൌ 5, the control to output transfer function is 

determined as follows: 

ሻݏௗ௩ሺܩ ൌ ሺെݏ ൅ 6.8207ሻሺݏଷ ൅ ଶݏ0.1969 ൅ ݏ3.7752 ൅ 0.2008ሻݏସ ൅ ଷݏ0.0236 ൅ ଶݏ10.96 ൅ ݏ0.0701 ൅ 0.0005  

The transfer function is decomposed as follows: 

ሻݏ௠௣ሺܩ ൌ ௦యା଴.ଵଽ଺ଽ௦మାଷ.଻଻ହଶ௦ା଴.ଶ଴଴଼௦రା଴.଴ଶଷ଺௦యାଵ଴.ଽ଺௦మା଴.଴଻଴ଵ௦ା଴.଴଴଴ହ  

ሻݏ௡௠௣ሺ ܩ ൌ ሺെݏ ൅ 6.8207ሻ 
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The minimum phase part is the stable and causally invertible part ܩ௜  and the non-

minimum phase part is considered to be causally non-invertible part ܩ௡௢௜. 
ሻݏ௜ିଵሺܩ ൌ ସݏ ൅ ଷݏ0.0236 ൅ ଶݏ10.96 ൅ ݏ0.0701 ൅ ଷݏ0.0005 ൅ ଶݏ0.1969 ൅ ݏ3.7752 ൅ 0.2008  

ሻݏ௡௢௜ሺܩ ൌ ሺെݏ ൅ 6.8207ሻ 

The design parameter ௗܲ௘௦ሺݏሻ is found to have the structure as 

ௗܲ௘௦ሺݏሻ ൌ ݏߙ݇ ൅ 1 

In addition, ܩ௡௢௜ሺ0ሻ ൌ 6.2520 and thus ௗܲ௘௦ሺ0ሻ ൌ ݇ ൌ 6.8207ିଵ  

Therefore,  ௗܲ௘௦ሺݏሻ ൌ 6.8207ିଵݏߙ ൅ 1  

The value of ߙ is determined from the step response of the system. The trade-off 

leads to selection of ߙ ൌ 5. The step response of the system is shown in Figure 4.52. 

 
Figure 4.52 Step Response of system for positive half cycle for duty cycle of 70% 
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From Figure 4.52, it can be seen that for value 1=ߙ, the undershoot is large while the 

time taken for the response to settle is very small. For ߙ ൌ 10, the undershoot is small but 

the response time is very large. The best response can be obtained for ߙ ൌ 5.  
When the inverter operates in boost mode to produce negative cycle of output voltage, 

the control to output transfer function has non-minimum phase behavior. 

For operation with duty cycle as 70%, the control to output transfer function is 

determined as follows: 

ሻݏௗ௩ሺܩ ൌ ሺെݏ ൅ 6.2520ሻሺݏଷ ൅ ଶݏ0.1433 ൅ ݏ1.6553 ൅ 0.2191ሻݏସ ൅ ଷݏ0.0236 ൅ ଶݏ10.96 ൅ ݏ0.0701 ൅ 0.0005  

The transfer function is decomposed as follows: 

ሻݏ௠௣ሺܩ ൌ ௦యା଴.ଵସଷଷ௦మାଵ.଺ହହଷ௦ା଴.ଶଵଽଵ௦రା଴.଴ଶଷ଺௦యାଵ଴.ଽ଺௦మା଴.଴଻଴ଵ௦ା଴.଴଴଴ହ  

ሻݏ௡௠௣ሺ ܩ ൌ ሺെݏ ൅ 6.2520ሻ 

The minimum phase part is the stably and causally invertible ܩ௜ and the non-minimum 

phase part is considered to be causally non-invertible ܩ௡௢௜. 
ሻݏ௜ିଵሺܩ ൌ ௦రା଴.଴ଶଷ଺௦యାଵ଴.ଽ଺௦మା଴.଴଻଴ଵ௦ା଴.଴଴଴ହ௦యା଴.ଵସଷଷ௦మାଵ.଺ହହଷ௦ା଴.ଶଵଽଵ ,  

ሻݏ௡௢௜ሺܩ ൌ ሺെݏ ൅ 6.2520ሻ.  

The structure of ௗܲ௘௦ሺݏሻ is selected to be as follows: 

ௗܲ௘௦ሺݏሻ ൌ ݏߙ݇ ൅ 1 

Considering, ܩ௡௢௜ሺ0ሻ ൌ 0.0009 and thus  ௗܲ௘௦ሺ0ሻ ൌ ݇ ൌ 6.2520ିଵ 

Therefore, 

ௗܲ௘௦ሺݏሻ ൌ 6.2520ିଵݏߙ ൅ 1  
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The value of ߙ is determined from the step response of the system as shown in Figure 

4.53. The value of ߙ which gives the best trade-off is selected. When ߙ ൌ 1, there is 

some steady state error in the step response. Thus, it is not desirable to consider this value 

of ߙ. For ߙ being 5 and 10, the undershoot is reduced, however the settling time for ߙ ൌ 5 is more desirable than for ߙ ൌ 10. 

 
Figure 4.53 Step Response of system for negative half cycle for duty cycle of 70% 

The simulation result for perfect tracking of this system when operating to boost the 

input voltage with duty cycle of 70% is shown in Figure 4.54. 
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Figure 4.54 Perfect tracking for inverter operation with duty of 70% 

A single structure of feedback controller was designed for the inverter operating to 
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designed using MATLAB/SIMULINK. The gains of the controller were taken from 
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CHAPTER 5. DISCUSSIONS 

5.1 Simulation Results 

The solar panel is designed with the following parameters:   ௢ܸ௖ 42 ܸ, ௦௖ܫ ൌ ௠ܸ ,ܣ 6.3 ൌ34 ܸ, ܫ௠ ൌ  The P-V and I-V characteristics of the solar panel are shown in Figures .ܣ 5.5

3.2 and 3.3. 

The perturb and observe method for MPPT is used and Figure 5.1 shows the results 

the maximum power tracking of the solar panel. 

 
Figure 5.1 Constant power (maximum) generation by the MPPT algorithm
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In this case, the MPPT algorithm is used to generate a reference voltage level instead of 

duty cycle. Figure 5.2 shows the constant voltage reference which is tracked by the 

MPPT algorithm. The SEPIC inverter uses this voltage as input voltage.  

 
Figure 5.2 Constant voltage generation by the MPPT algorithm 
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 through the inductor L2 becomes positive as the output voltage becomes negative.  In this 

mode, the current through the inductor L1 and voltage across capacitor C1 are positive. 

The value of inductor L1 is chosen so as to have continuous conduction i.e. the current 

through the inductor L1 never falls to zero. The current through the inductor L2 is 

negative for positive cycle of output voltage and is positive for negative cycle of output 

voltage. The voltage across the capacitor C1 remains positive. The voltage across the 

capacitor C2 is the output of the SEPIC inverter. 

 A switching between modes I and II generates stable operation of positive peak 

voltage and modes of III and IV generate a negative peak voltage. Figure 5.3 shows the 

sinusoidal voltage generated by the SEPIC based inverter. 

 
Figure 5.3 Load voltage and current of SEPIC based inverter 
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terminals of the inverter to maintain steady voltage. While the MPPT algorithm ensures 

that the output voltage corresponds to the MPP, the inverter converts the dc voltage of the 

solar panel into ac voltage. The output of the micro-inverter is shown in Figure 5.4. The 

maximum power from the PV panel is 187 W and the output power of the SEPIC based 

inverter is 180 W. 

 
Figure 5.4 Load voltage and current of the Solar Micro-inverter 
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Lଶ ൌ 3 m H,  Cଵ ൌ 3 µ F and Cଶ ൌ 70µ F. The dc source used is a 12V battery. The 

switching frequency of the main transistor, Q; input voltage and current and output 

voltage are tabulated in Table 5.1. 

Table 5.1 Effect of Variation of L1  

Inductance, L1 
(µH) 

Frequency 
(KHz) 

Input Voltage 
(V) 

Input Current 
(A) 

RMS Output 
Voltage (V) 

2.5 50 12 4.32 30 

11.2 45 12 3.62 37 

100 40 12 1.95 39 

285 30 12 1.4 40 

1000 20 12 1.25 44 

Selecting lower values of inductance L1 needs increase in the switching frequency of 

the transistor, Q. The transistor used in the setup, limits the working frequency of the 

inverter. For lower values of L1 like 2.5 µH, the working range of frequency is 60-70 

KHz, which is not in the working range of the transistor, Q. This leads to higher current 

being drawn by the inductor L1 from the battery. 

From Table 5.1, it can be seen that for lower values of L1 the output voltage is 

reduced while the input current is increased. The reason is the mismatch in the inductance 

L1 and the switching frequency. Also, lower switching frequency is better operating 

condition as the switching losses are lower and the heat generated by the transistor, Q is 

less which means less effort is required for cooling. Figure 5.5 and 5.6 show the output 

voltage of the inverter without controller plotted against a reference sine wave signal. The 

output voltage of the inverter can be made to follow the reference signal if active control 

is implemented.  Also, the positive and negative cycles are not symmetric because the 

inverter output is limited in boost mode. From Figures 5.5 and 5.6, the ripple in the 

negative peak increases for lower values of L1. Also, as the value of L1 is increased, the 

negative peak is reduced.  



113 

 

 

 
Figure 5.5 Experimental Result of Output Voltage of SEPIC Inverter when L1=2.5 µH 

 
Figure 5.6 Experimental Result of Output Voltage of SEPIC Inverter when L1=1 mH 
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The inductance Lଵ  is varied while the other components have fixed values. While 

inductance Lଶ  is varied from 100 µH to 7 mH, the other components used are: Lଵ ൌ100 µH, Cଵ ൌ 3 µF and Cଶ ൌ 70µF. The switching frequency of the main transistor, Q; 

input voltage and current and output voltage are tabulated in Table 5.2.  

Table 5.2 Effect of Variation of L2 

Inductance, L2 
(µH) 

Frequency 
(KHz) 

Input Voltage 
(V) 

Input Current 
(A) 

RMS Output 
Voltage (V) 

100 40 12 1.79 30 

285 40 12 1.44 35 

1000 40 12 1.45 38 

4000 40 12 1.62 32 

7000 40 12 1.64 30 

From simulations, it was observed that the inductance L2 should be equal or greater 

than the inductance L1. The range was chosen from 100 µH to 7 mH. In this case, 

changing the switching frequency of the transistor, Q with the change in inductance L2 

did not improve the output of the inverter. If frequency was reduced to 20 KHz when L2 

is 4 mH, the negative peak was distorted, while if the frequency was increased to 50 KHz 

when L2 is 100 µH, it did not reflect any change in the input current or output voltage. So, 

the switching frequency was maintained consistent at 40 KHz which gives best results. 

From Table 5.2, it is seen that the input current and the output voltage increase as the 

inductance L2 is increased from 100 µH till 1 mH. As we go for higher inductance values 

for L2, the input current increases slightly while the output voltage drops. From Figures 

5.7 and 5.8, the positive peak is slightly higher when L2 is 1 mH. From Figure 5.9, as the 

value of inductance L2 is increased to very large values, the negative peak is reduced by 

10V. The value of L2 is best in the range of 1-3 mH from the results for variations in L1 

and L2. It can be seen from Figures 5.6 and 5.8, that the matching of inductor sizes and 

frequency is very important to reduce the ripple in the output. The difference is size of L2 

in Figures 5.6 and 5.8 is 2 mH, but the ripple is significantly reduced when L2 is 3 mH. 
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Figure 5.7 Experimental Result of Output Voltage of SEPIC Inverter when L2=100 µH 

 
Figure 5.8 Experimental Result of Output Voltage of SEPIC Inverter when L2=1 mH 
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Figure 5.9 Experimental Result of Output Voltage of SEPIC Inverter when L2=7 mH
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APPENDIX 

 

ܵଵଵ ൌ െ ଵఈ ൫݇௣ ൅ ݇௡൯ ൤ ௞೛ௗ೛ି௞೙ௗ೙௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻ൨   

ܵଶଵ ൌ െ ଵఈ ൫݇௣ ൅ ݇௡൯ R 

ܵଷଵ ൌ ఉఈ ൫௞೛ା௞೙൯ோା௥಴మ   

ܵସଵ ൌ െ ଵఈ ቈ݇௣൫1 െ ݀௣൯ ൅ ݇௡ሺ1 െ ݀௡ሻ ൅ ൫௞೛ௗ೛ି௞೙ௗ೙൯ቀ௞೛൫ଵିௗ೛൯ି௞೙ሺଵିௗ೙ሻቁ௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻ ቉ ܴ  

Where, 

ߙ ൌ ቈି൫௞೛ା௞೙൯൫௞೛ௗ೛ି௞೙ௗ೙൯௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻ ሺܴݎ௅ଵ ൅ ஼ଶሻݎ௅ଵݎ െ ൫݇௣݀௣ െ ݇௡݀௡൯ሺܴݎ஼ଵ ൅ ஼ଶݎ஼ଵݎ ൅ ஼ଶሻݎܴ ൅
஼ଶݎ2ܴ ቀ݇௡ሺ1 െ ݀௡ሻ െ ݇௣൫1 െ ݀௣൯ቁ ൅ ൫௞೛ା௞೙൯ቀ௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻቁ௞೛ௗ೛ି௞೙ௗ೙ ሺܴݎ௅ଶ ൅ ஼ଶሻݎ௅ଶݎ െ
ቀ௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻቁయ൫௞೛ା௞೙൯൫௞೛ௗ೛ି௞೙ௗ೙൯ ܴଶ െ ଶ൫ሺ௞೛൫ଵିௗ೛൯ሻమିሺ௞೙ሺଵିௗ೙ሻሻమ൯൫௞೛ା௞೙൯ ܴଶ െ
൫௞೛ௗ೛ି௞೙ௗ೙൯ቀ௞೛൫ଵିௗ೛൯ି௞೙ሺଵିௗ೙ሻቁమ൫௞೛ା௞೙൯ቀ௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻቁ ܴଶ቉  

 

ߚ ൌ ቈ൬௞೙ሺଵିௗ೙ሻି௞೛൫ଵିௗ೛൯௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻ െ ௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻ௞೛ௗ೛ି௞೙ௗ೙ ൰ ஼ଶݎܴ െ ௞೛ା௞೙௞೛ௗ೛ି௞೙ௗ೙ ሺܴݎ௅ଶ ൅ ஼ଶሻݎ௅ଶݎ െ
௞೛ௗ೛ା௞೙ௗ೙௞೛ௗ೛ି௞೙ௗ೙ ሺܴݎ஼ଵ ൅ ஼ଶሻݎ஼ଵݎ െ ሺቀ௞೛൫ଵିௗ೛൯ା௞೙ሺଵିௗ೙ሻቁమ൫௞೛ା௞೙൯൫௞೛ௗ೛ି௞೙ௗ೙൯ ൅ ௞೛൫ଵିௗ೛൯ି௞೙ሺଵିௗ೙ሻ௞೛ା௞೙ ሻܴଶ቉  


