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SYMBOLS

N the natural numbers

Z the integers

E∗ the dual space of E

BΓ the classifying space of Γ, the quotient of a topological space for

which all its homotopy groups are trivial by a free action of Γ

C(X) the space of complex valued, continuous functions onX

Cc(X) the space of complex valued, continuous functions on X with

compact support

C(X)+ the space of positive, continuous functions on X

C0(X) the space of continuous functions on X vanishing at infinity

C∗r (G) the reduced C∗ algebra of G

G(x) the stabilizer of x

G(2) the set of composable pairs of groupoid G

G(0) the unit space of groupoid G

H∗b (G,E∗) the bounded group cohomology of G with coefficients in E∗

I (C(X)W ) the space of integral operators with values in W

[J] the Johnson class

K∗(X) K-group of X

L∞(G) the set of all essentially bounded functions on G

N >> 1 for large enough N ∈ N

P (G) the set of all probability measures on G

Pd(X) Rips Complex

V the space of all functions f : G → C(X) with the norm ||f ||V =

sup
x∈X

∑
g∈G

|fg(x)|
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W00(G,X) subspace of all functions from X to C(X) with finite support and

such that for some constant c = c(f) ∈ R,
∑
g∈G

fg = c1X

W0(G,X) the closure of W00(G,X) in the V norm.

Bβ(G,X)+ the linear space of positive Borel functions on G such that β|f | is

bounded given β, a Borel system of measures β for a Borel map

f : G→ X

βG the Stone-Cech compactification

βµ(G) the universal compact Hausdorff left G-space

χA the characteristic function on A

1X the constant function 1 on X

A∆B (A ∩Bc) ∪ (B ∩ Ac)
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ABSTRACT

Harsy Ramsay, Amanda M. Ph.D., Purdue University, May 2014. Locally Compact
Property A Groups. Major Professor: Ronghui Ji.

In 1970, Serge Novikov made a statement which is now called, “The Novikov Con-

jecture” and is considered to be one of the major open problems in topology. This

statement was motivated by the endeavor to understand manifolds of arbitrary di-

mensions by relating the surgery map with the homology of the fundamental group

of the manifold, which becomes difficult for manifolds of dimension greater than two.

The Novikov Conjecture is interesting because it comes up in problems in many dif-

ferent branches of mathematics like algebra, analysis, K-theory, differential geometry,

operator algebras and representation theory. Yu later proved the Novikov Conjecture

holds for all closed manifolds with discrete fundamental groups that are coarsely em-

beddable into a Hilbert space. The class of groups that are uniformly embeddable

into Hilbert Spaces includes groups of Property A which were introduced by Yu.

In fact, Property A is generally a property of metric spaces and is stable under

quasi-isometry. In this thesis, a new version of Yu’s Property A in the case of locally

compact groups is introduced. This new notion of Property A coincides with Yu’s

Property A in the case of discrete groups, but is different in the case of general

locally compact groups. In particular, Gromov’s locally compact hyperbolic groups

is of Property A.
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1. INTRODUCTION

1.1 Motivation

In 1970, Serge Novikov made a statement which is now considered to be one of the

major open problems in topology and is called, “The Novikov Conjecture” [1]. The

motivation for this statement derived from the endeavor to “classify” manifolds of

arbitrary dimensions. More precisely, the Novikov conjecture states that the higher

signatures of manifolds with fundamental group G are homotopy invariant. This

“classification” becomes difficult for manifolds of dimension greater than two. This

partly has to do with the fact that there are too many possibilities for the fundamen-

tal group. The Novikov Conjecture helps with classification by relating the surgery

map with the homology of the fundamental group of the manifold. This conjecture is

interesting because it appears in problems in many different branches of mathematics

like algebra, C*-Algebras, K-theory, analysis, differential geometry, operator alge-

bras and representation theory [1]. We include the precise statement of the Novikov

Conjecture below.

Conjecture 1 (The Novikov Conjecture:) The higher signatures determined by

a discrete group Γ are homotopy invariant. That is, for every rational cohomology

class x ∈ H∗(BΓ;Q), for every orientation preserving homotopy equivalence of closed

oriented manifolds f : N →M , and for every map g : M → BΓ,

signaturex(M, g) =signaturex(N, g ◦ f) ∈ Q.

One example of the interesting connection between the Novikov Conjecture and

K-theory shows up in The Baum-Connes Conjecture. The Baum-Connes Conjecture

connects the K-homology of the corresponding classifying space of proper actions of



2

a group and the K-theory of the reduced C*-algebra of that group. The main result

of the Baum-Connes Conjecture is that it implies the Novikov Conjecture.

Conjecture 2 (Baum-Connes Conjecture:) The assembly map µ :KΓ
∗ (EΓ) →

K∗(C
∗
r (Γ)) is an isomorphism for any discrete group Γ, where EΓ denotes the univer-

sal proper Γ-space [2].

We also have a coarse version of the Baum-Connes Conjecture that involves dis-

crete metric spaces called the Coarse Baum-Connes Conjecture. This conjecture

connects the the locally finite K-homology group of the Rips complex with the C∗

algebra of the Rips Complex.

Conjecture 3 (The Coarse Baum-Connes Conjecture:) If X is a discrete met-

ric space with bounded geometry and Pd(X) is the Rips Complex for d > 0, then the

index map from lim
d→∞

K∗(Pd(X)) → lim
d→∞

K∗(C
∗Pd(X)) is an isomorphism.

In this case, K∗(Pd(X)) is the locally finite K-homology group of Pd(X). Recall for

a metric space X, and real number d > 0, the Rips Complex, Pd(X), is the simplicial

complex formed in which a simplex σ ∈ Pd(X) if and only if d(x, y) ≤ d for each pair

of vertices of σ. The main result of the Coarse Baum-Connes Conjecture is that it

implies the Novikov Conjecture.

Theorem 1.1.1 (Higson, Roe, & Yu) The Coarse Baum-Connes Conjecture im-

plies the Novikov Conjecture.

Yu later proved the Coase Baum-Connes conjecture (and therefore the Novikov

Conjecture) holds for any bounded geometry metric space which is coarsely embed-

dable into a Hilbert space. This is a part of coarse geometry, a geometry that looks

at the large-scale properties of spaces. Thus, in coarse geometry, we just need our

embedding to be close to structure preserving and isomorphic. We define coarse

embedding in the following way:
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Definition 1.1.1 ( [3]) Given metric spaces X and Y , we say f : X → Y is a coarse

embedding between X and Y if there exists nondecreasing functions ρ1, ρ2 : [0,∞)→

[0,∞) satisfying

1. ρ1(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ2(dX(x, y)), and

2. lim
t→∞

ρ1(t), ρ2(t) = +∞.

We can think of this in the following way, a space is coarsely embeddable into a

Hilbert space if, when we squint, our space looks like a Hilbert space. We now state

the following result from Yu:

Theorem 1.1.2 (Yu) If a discrete group Γ is coarsely embeddable into a Hilbert

space, then the Coarse Baum-Connes Conjecture holds for Γ.

Yu also introduced Property A for metric spaces that implies coarse embedding

of the space. Yu’s original definition for this property is for a discrete metric space

X and we state it below.

Definition 1.1.2 A discrete metric space X has Property A if for all positive R and

ε, there exists a positive number S and a family of finite non-empty subsets Ax in

X × N, with x ∈ X as the index, such that

1. for all x and x′ with d(x, x′) < R,
|Ax4A′x|
|Ax|

< ε, and

2. for all (x′, n) in Ax, d(x, x′) < S.

Property A is a metric space property, but if we can construct a metric on a

group by defining a length function on the generators of the group, we can think of

our group as a metric space. In fact, if a discrete group has Yu’s Property A, it is

coarsely embeddable into a Hilbert space and thus the Novikov Conjecture holds for

all closed manifolds with that fundamental group.

Theorem 1.1.3 (Yu) If discrete group Γ has Property A, then Γ can be coarsely

embedded into a Hilbert space.
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Theorem 1.1.4 (Yu) If discrete group Γ has Property A, then the Novikov Conjec-

ture is true for all closed manifolds with fundamental group Γ.

Basically Property A is coarse version of amenability. That is, in a large geometry

sense, our space does not change much with translation. Most of the work with

Property A so far has been with discrete metric spaces. In this thesis, we introduce

the concept of locally compact Property A groups. Recall that Property A is a metric

space property, but we can construct a metric on a group by defining a length function

on the generators of the group. Since we don’t have the discrete topology, we need a

few more conditions to define Property A for locally compact groups.

Definition 1.1.3 We say a locally compact group, G, has property A if there exists

a compact space X such that G acts amenably and continuously on X.

Our main example is a locally compact group G which acts continuously and prop-

erly on a locally compact hyperbolic space X. In this case, we can define the G action

on the boundary of X, ∂X in the following way: for x ∈ ∂X, g ∈ G, g ·x = lim
n→∞

g ·αn
where αn is a geodesic in X such that αn → x. In order to prove our theorem, we

first show that a continuous group action on a locally compact hyperbolic space can

be continuously extended to a group action on the Gromov boundary of that space.

We then show that G acts amenably on ∂X.

1.2 Outline

We start Chapter 2 with a basic introduction of amenable groups and include

a few definitions and examples of such groups. In particular, we discuss amenable

groupoids and transformation groups. We then introduce a non-equivariant gener-

alization of amenability called Yu’s Property A. Some basic definitions for metric

spaces with Property A will be given along with other characterizations of Property

A. We also discuss how we can define Property A for discrete groups. In particular,
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we discuss notions of amenable actions and groups that are amenable at infinity. We

close Chapter 2 with Monod’s cohomological characterizations for Property A.

Chapter 3 gives some basic definitions and properties of locally compact hyper-

bolic spaces and groups. We prove that if a group acts on a locally compact hyperbolic

space continuously, we can extend this action to a continuous action on the Gromov

boundary of the hyperbolic space. Chapter 3 closes with proofs of some geometric

properties of hyperbolic groups which will be used later in Chapter 5.

In Chapter 4, we discuss fundamental domains for group actions and show how

we can construct a fundamental domain for a locally compact group that acts con-

tinuously and properly on a space. We then show how we can use the fundamental

domain of a G-space to define a G-invariant measure on the space.

We begin Chapter 5 with introducing our definition of Locally Compact Property

A Groups. We then show that locally compact Gromov hyperbolic groups have Prop-

erty A. To do this, we prove that a locally compact group which acts continuously and

properly on a locally compact hyperbolic space, X, acts amenably on the Gromov

boundary of X, ∂X. We close Chapter 5 by showing that our definition for Property

A is equivalent to Deprez and Li’s definition of property A groups and Delaroche’s

concept of amenable at infinity.
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2. AMENABLE ACTIONS AND YU’S PROPERTY A

2.1 Amenability

2.1.1 Basics

Amenable groups were originally introduced by John von Neumann in the late 1920’s

in response to the Banach-Tarski paradox. This paradox states that given a solid

ball in a three dimensional space, you can decompose the ball into a finite number

of non-overlapping “pieces” (think disjoint subsets) so that you can reassemble the

ball without expanding or stretching in such a way that it yields two identical copies

of the ball. That is, we can find a countable subgroup of SO(3), the group of ro-

tation operators on R3, such that the subgroup can be dissembled into four disjoint

subgroups that can be reassembled into two copies of itself after rotation [4]. John

von Neumann wanted to explore the properties of groups which did not have this

pathological property. He found that these non-pathological groups did not change

that much under translation. He named these groups “amenable” which comes from

the German word, “measurable.” So we have that a group is amenable if and only if it

is not paradoxical [5]. In other words, an amenable group is a locally compact group

that does not change much under translation. During this same time, others were

asking the question whether there exists a finitely additive measure that is preserved

under group translations. We have a more precise definition of amenability is stated

below in terms of a left invariant linear functional. Notice that this left invariant

mean, M , can be defined on the characteristic functions of subgroups which allows

us to have such a measure.
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Definition 2.1.1 ( [6]) A locally compact group G is amenable if it admits a left-

invariant mean on L∞(G), the space of essentially bounded functions on G. That is,

there exists a linear functional M such that for all f in L∞(G),

1. M(χG) = 1,

2. M(f) ≥ 0, if f ≥ 0 , and

3. M(af) = M(f) ∀a ∈ G.

There are many other ways of characterizing amenable groups and one of the

most common characterizations is Følner’s Condition which demonstrates that an

amenable group does not change much under translation.

Definition 2.1.2 (Følner’s Condition for Amenability) G has Følner’s Condi-

tion if for any compact subset K ⊂ G and ε > 0, there exists a measurable subset

U ⊂ G, such that
|aU∆U |
|U |

< ε for all a ∈ K.

Often people say that a group is amenable if it admits a Følner sequence. This means

for any compact subset K ⊂ G, there exists a sequence < Un > of measurable subsets

such that 0 < |Un| <∞ for all n and lim
n→∞

|KUn∆Un|
|Un|

= 0.

Polynomial growth and exponentially boundedness also imply amenability. But a

group with unbounded growth is not amenable.

Definition 2.1.3 G has polynomial growth if for every compact neighborhood V of

e, the identity element of G, there exists a d ∈ N such that lim sup
n→∞

|V n|
nd

<∞.

Definition 2.1.4 G is exponentially bounded if for every compact neighborhood V of

the identity element e ∈ G, and for all t ∈ (1,∞), lim sup
n→∞

|V n|
tn

<∞.

There are many examples of amenable groups. Any locally compact abelian group

G is amenable. Every locally compact solvable group is amenable and all compact

groups have polynomial growth and thus are amenable. The free product Z2 ∗ Z2
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is also amenable since it has polynomial growth, and closed subgroups of amenable

groups are amenable. In addition to this, we have that if π is a continuous, surjective

homomorphism from amenable group G into locally compact H, then H is amenable.

Moreover, if H is a closed, normal subgroup of G and both H and G
H

are amenable,

then G itself is amenable. We also have if a locally compact group with the discrete

topology is amenable, then it is amenable for all weaker topologies. Yet the converse

for this statement is not true. The compact (amenable) rotation group SO(3,R) of

the unit sphere in R3 is not amenable with the discrete topology because we can find

a closed non-amenable subgroup [6].

Of course there are non-examples of amenable groups. The free group of two

generators has unbounded growth and is not amenable. In fact, a discrete free group

that is freely generated by {a1, a2, ..., an} ∈ G where n ≥ 2 of orders pi for i = 1, ..., n

is not amenable unless n = 2 and p1 = p2 = 2. SL(2,R) contains a free group of

two generators as a closed subgroup and thus is not amenable. This also means that

GL(2,R), SL(n,C), and GL(n,C) are not amenable [6]. And still there are some

groups in which we cannot yet determine whether they are amenable or not. For

example, it is still an open question whether Thompson’s Group F is amenable. We

already know it is not elementary amenable and if it is no amenable, then it will

give another counterexample to von Neumann’s Conjecture. This conjecture, which

was disproved in 1980, proposed that group is not amenable if and only if it contains

the free group of two generators as a subgroup. It was shown that both the Tarski

monster group and certain Burnside groups are non-amenable and do not have the

free group of two generators as a subgroup.

2.1.2 Amenable Groupoids and Transformation Groups

The notion of amenability has generalizations in many other branches of math-

ematics. We now can discuss amenable semi-groups, foliations, Banach algebras,



9

C*-algebras, quantum groups and more. In [5], Claire Delaroche discusses amenable

groupoids and their connection with the Novikov Conjecture for discrete groups. Re-

call the following definition of a groupoid:

Definition 2.1.5 (Groupoid [7]) Let G be a set and G(2) ⊂ G × G, where G(2) is

the set of composable pairs of G. We say G is a groupoid if there is a map from

G(2) → G with (x, y)→ xy and an involution G→ G with x→ x−1 such that

1. Our map from G(2) → G is associative, and

2. ∀x ∈ G, (x−1, x) ∈ G(2) and x−1(xy) = y and (xy)y−1 = x.

Corollary 2.1.1 (Amenable Groupoid Characterization [5]) A locally compact

groupoid, G, with a continuous Haar system λ and countable orbits is topologically

amenable if and only if there exists a sequence < fn > of Borel functions in Bβ(G, λ)+

with λ(fn) > 0 for all n and such that lim
n

∫
|fn(g−1g1)− fn(g1)|dλr(g)(g1)

λr(g)(fn)
= 0 for all

g ∈ G. Note that Bβ(G, λ)+ represents the linear space of positive Borel functions

on G such that β|f | is bounded given a Borel system of measures β. And we define

a continuous Haar system λ as a family of measures {λx} on G indexed by x ∈ G(0)

where G(0) is the unit space such that supp{λx} = Gx and for every f ∈ Cc(G), the

function λ(f) : x→ λx(f) is continuous and invariant.

Once we define amenable groupoids, it is a natural progression to discuss amenable

transformation groups. Recall that given a countable discrete or locally compact

group G, we can define a topological G-space to be a topological space X together

with a continuous group action on it.

Definition 2.1.6 (Transformation Group [8]) A transformation group (X,G) is

a left G − space, where G is a locally compact group, X is a locally compact space,

and (x, g)→ g.x is a continuous left action from X ×G to X.

Definition 2.1.7 (Amenable Transformation Group [8]) We have an amenable

transformation group, (X,G), if the G-action on X is amenable. That is, if there ex-

ists a net < fi >i∈I of continuous maps x → fxi from X → P (G), where P (G) is
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the set of all probability measures on G equipped with the weak* topology, such that

lim
i
||g.fxi − f

g.x
i ||1 = 0 uniformly on compact subsets of X ×G.

In [8], Delaroche proves several characterizations for amenable transformation

groups. We add the following theorem for the convenience of the reader.

Theorem 2.1.2 (Delaroche) The following are equivalent:

1. (X,G) is an amenable transformation group.

2. There exists a net < fi >∈ Cc(X ×G), the space of complex valued continuous

functions with compact support on G, such that

(a) lim
i

∫
G

|fi(x, t)|2dt = 1 uniformly on compact subsets of X, and

(b) lim
i

∫
G

|fi(sx, st)− fi(x, t)|2dt = 0 uniformly on compact subsets of X ×G.

3. There exists a net < hi > of positive type functions in Cc(X × G) such that

lim
i
hi = 1 on compact subsets of X ×G.

Ozawa has a similar definition for group acting amenably on a compact Hausdorff

space and we state it below.

Definition 2.1.8 ( [9]) Given a compact Hausdorff space X, we say G acts amenably

on X if there exists a sequence of continuous functions < µn > from X → Pc(G)

where x → µxn such that for each g ∈ G, lim
n→∞

sup
x∈X
||g.µxn − µg.xn || = 0. Note Pc(G)

is the probability space of G equipped with the point-wise convergence topology which

coincides with the norm topology.

Notice that when X is just reduced to a point, Ozawa’s definition coincides with say-

ing our group G is amenable. Thus, if G is amenable, then every G-space is amenable.

Furthermore if X is an amenable G-space that has an invariant Radon probability

measure, then G is also amenable [9].
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We can look at amenable actions in many different situations. We say a locally

compact group G is amenable at infinity if it admits an amenable action on a compact

space X. This would mean that the groupoid XoG is amenable. An amenable locally

compact group is amenable at infinity since we can take our compact space X to just

be a point. In fact, there are cases of non-amenable groups which are amenable at

infinity. For example, a discrete Gromov hyperbolic group is amenable at infinity

since it acts amenably on its compact Gromov Boundary [8].

We can also connect amenability with exactness of a group. We say that a count-

able, discrete group is exact if there is a compact G-space X which is amenable. So in

other words, the group, G, acts amenably on a compact space X. This is the definition

of a group being amenable at infinity [8]. In fact, a finitely generated discrete group

G is exact if and only if the Stone-Cech compactification βG is amenable [9].

2.2 Property A

2.2.1 Property A for Discrete Spaces

When exploring the Novikov Conjecture, Yu found that a bounded geometry

metric space which is coarsely embeddable into a Hilbert space satisfies the Coarse

Baum-Connes Conjecture. Yu introduced Property A which implies coarse embedding

and therefore the Coarse Baum-Connes Conjecture. Yu’s original definition for this

property is for a discrete metric space X, but we will discuss how it can be generalized

to groups with a length function as well.

Definition 2.2.1 (Property A for Discrete Spaces) A discrete metric space X

has Property A if for all positive R and ε, there exists a positive number S and a

family of finite non-empty subsets Ax in X × N, with x ∈ X as the index, such that
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1. for all x and x′ with d(x, x′) < R,
|Ax4Ax′|
|Ax|

< ε, and

2. for all (x′, n) in Ax, d(x, x′) < S.

Property A is a metric space property, but if we can construct a metric on a

group by defining a length function on the generators of the group, we can think of

our group as a metric space. In fact, if a discrete group has Yu’s Property A, as

we mentioned in the introduction, it is coarsely embeddable into a Hilbert space and

thus the Novikov Conjecture holds for all closed manifolds with that fundamental

group. Like amenability, there are many equivalent characterizations of Property A.

The following property gives an equivalent definition for Property A which is a little

more useful than the original definition:

Proposition 2.2.1 We say a metric space (X, d) has property A if for all ε > 0 and

R > 0, there is a S > 0 and a map f : X → P (X), such that

1. ||fx − fy|| ≤ ε ∀x, y ∈ X with d(x, y) < R and

2. the support of fx is a subset of {y : d(x, y) < S} for every x ∈ X.

Yu also found that a discrete metric space with bounded geometry and finite

asymptotic dimension has Property A. Recall that a metric space has bounded ge-

ometry if there exists a map N : R+ → R+ such that for all x ∈ X, the number of

elements in the R-ball, B(x,R) is less than or equal to N(R). In other words, every

ball of radius R is uniformly bounded [10].

2.2.2 Property A for Discrete Groups

We would like to look at how we can define a metric on a group. On one hand, we

can define a length function on G using a left translation invariant metric, d, on G.

We will assume that any subset of G with finite diameter is finite and, in this sense,

we say d is a proper metric. Now we can define a proper length function, `, on G by
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putting `(g) = d(g, e) where e is the identity element of G. On the other hand, we can

define a left translation invariant metric on a group G if we have a proper length func-

tion `. We can do this by defining d(g, h) = `(h−1g). Notice this metric is in fact left

invariant under the group action since d(g′g, g′h) = `(h1g′−1g′g) = `(h−1g) = d(g, h).

For example, if G is generated by a finite number of elements in a symmetric set

S = S−1 we can define the length of g ∈ G as `(g) = min
k∈N
{g = sk1sk2 . . . skn , si ∈ S}

which basically means that we count the number of generators it takes to write g.

This allows us to now think of our group G as a metric space.

Property A is a generalization of amenability. One can prove that amenability

implies Property A using the Følner characterization of amenability. Recall G has

Følner’s Condition if for any compact subset K ⊂ G and ε > 0, there exists a measur-

able subset F ⊂ G, such that
|aF∆F |
|F |

< ε for all a in K. To show that an amenable

group has property A, let R > 0, ε > 0. Let N = 1 and consider our finite family of

sets {Ag} to be our Følner sets {Fg}.

Property A is also connected to the exactness of a group. Ozawa proved that Prop-

erty A and exactness are equivalent for countable discrete groups with a proper left-

invariant metric [11]. Recall, a locally compact G is exact if for every G-equivariant

exact sequence 0 → I → A → A/I → 0 of G-C* algebras, the sequence 0 →

C∗r (G, I) → C∗r (G,A) → C∗r (G,A/I) → 0 is exact. Ozawa showed that Property A

is equivalent to exactness of the reduced C* algebra of G, C∗r (G). We now state the

following theorem from [9] which connects Property A with exactness.

Theorem 2.2.1 For a countable discrete group G, TFAE

1. G is exact.

2. Given the left translation invariant metric d on G, the metric space (G, d) has

Property A. That is ∀ε > 0 and R > 0, ∃S > 0 and a map f : G→ P (G) such
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that ||fx−fy|| ≤ ε ∀x, y ∈ G with d(x, y) < R and supp{fx} ⊂ {y : d(x, y) < S}

for every x ∈ G.

3. For every ε > 0 and R > 0, there exists an S > 0 and a Hilbert space H and

a map f : G → H such that |1− < fx, fy > | < ε for every x, y ∈ G with

d(x, y) < R, and < fx, fy >= 0 ∀x, y ∈ G with d(x, y) ≥ S.

We also have that if G is exact, then G is coarsely isomorphic to a subset of a Hilbert

space. Not all groups are exact though. It is an open problem to determine whether

Thompson’s group, OUT(Fr), 3-manifold groups, groups of homeomorphisms or dif-

feomorphisms on the circle, or Burnside groups are exact [9].

Some examples of Property A groups are amenable groups, discrete Gromov hy-

perbolic groups, relative hyperbolic groups, and coxeter groups. Notice that although

Gromov hyperbolic groups are not amenable, they are of Property A since they act

amenably on their Gromov boundary. Free groups are also of Property A. For exam-

ple the free group of two generators, F2 is of Property A. In [12], they show how we

can use the original definition from Yu and the Cayley graph of F2 to show that F2

is of Property A. Consider the Cayley graph of F2, which is a tree, and fix a geodesic

ray starting from e, the identity element of F2. We can now define our family of sets

in F2 × N in the following way. For a fixed n ∈ N, we define Ax to be the unique

geodesic segment of length 2n from x in the direction of our fixed ray. Then for each

ε and R > 0, we pick a “good” n in N such that for every x and x′ with d(x, x′) < R,
|Ax∆Ax′ |
|Ax|

< ε. We also have an S such that for every (x′, n) in Ax, d(x, x′) < S. In

this case our S is just 2n.

Nonexamples of Property A can be difficult to construct. Obviously, if a group

does not embed into a Hilbert space, it is not of Property A. One example is Gromov’s

Monster Group. Another example is a residually finite, countably infinite discrete

group with property T [13]. In [14], Arzhantseva, Guentner, and Spakula constructed
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the first example of a metric space with bounded geometry which does not have

Property A even though it coarsely embeds into a Hilbert space. They start with

a discrete group Γ and let Γ(2) represent the normal subgroup generate by all the

squares of elements of Γ. They show in [14] that the box space of F2 associated

with the family (Γn), X = t∞n=0Xn coarsely embeds into a Hilbert space but is not

of Property A. Here Xn is the Cayley graph of F2/Γn with respect to the image of

the canonical generators of the the free group of two generators, F2 and Γ0 = F2,

Γn = Γ
(2)
n−1 [14]. In [13] they also construct a group that embeds into a Hilbert space,

but does not have Property A. They starts with a non-trivial, finite (hence amenable)

group G and defines χG = t∞n=1G
n with a metric, d, that restricts to the `1 metric on

Gn. It turns out that χG coarsely embeds into `2, but does not have Property A [13].

2.2.3 Amenable Action Characterization for Property A

We can also use amenable actions to characterize Yu’s Property A.

Definition 2.2.2 (Amenable Group Action) The action of discrete group G on

X is amenable if there exists an invariant mean for the action. That is, there is a

function in the closure of the space of functions from G → C(X) with finite support

such that
∑
g∈G

fg = c1x for some constant c and such that f(gφ) = f(φ) ∀g ∈ G.

Higson and Roe proved that a finitely generated discrete group has Property A if and

only if the G action on its Stone-Cech compactification is topologically amenable.

In [8], Delaroche defines the notion of “amenable at infinity” which describes a locally

compact group acting amenably on a compact space.

Definition 2.2.3 (Amenable at Infinity) A locally compact group G is said to be

amenable at infinity, if there exists a compact space X such that G acts amenably on

X.

For example, we can see that a Gromov hyperbolic discrete group is amenable at

infinity since it acts amenably on its Gromov boundary. From this notion of amenable



16

at infinity, we can characterize groups that act on a compact space. Before we state

Delaroche’s theorem and include the proof, we first provide the definition of a tube.

Definition 2.2.4 Let G be a locally compact group with compact subset K, then we

have Tube(K)={(g, h) ∈ G×G : g−1h ∈ K}. And we say that a subset L ⊆ G×G is

a tube if {g−1h : (g, h) ∈ L} is precompact or if L is a subset of some other tube.

Theorem 2.2.2 ( [8]) Given a locally compact group G, the following are equivalent:

1. G is amenable at infinity.

2. G acts amenably on βµ(G). We define βµ(G) in the following definition.

3. There exists a net < fi > of nonnegative functions in Cb,θ(G×G) with support

in a tube such that for each i and each h,

∫
G

fi(h, g)dg = 1 and lim
i

∫
G

|fi(h, g)−

fi(h, s)|dg = 0 uniformly on tubes.

4. There exists a net < ξi > of functions in Cb,θ(G×G) with support in a tube such

that for each i and h,

∫
G

|ξi(h, g)|2dg = 1 and lim
i

∫
G

|ξ(h, g) − ξ(s, g)|2dg = 0

uniformly on tubes.

5. There exists a sequence < hi > of positive type kernels in Cb,θ(G × G) with

support in a tube such that lim
i
hi = 1 uniformly on tubes.

Before we provide the proof of this theorem, we first define some terminology.

Definition 2.2.5 ( [15]) We let βµ(G) denote the universal compact Hausdorff left

G-space equipped with a continuous G-equivariant inclusion of G as an open dense

subset with the following universal property. Any continuous G-equivariant map from

G into a compact Hausdorff left G-space X has a unique extension to a continuous

G-equivariant map from βµ(G) into X.

Definition 2.2.6 ( [8]) Given θ the homeomorphism of G × G such that θ(g, h) =

(g−1, g−1h), we define Cb,θ(G×G) to be the algebra of continuous, bounded functions

f on G×G such that f ◦ θ is the restriction of a continuous function on βµ(G)×G.
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Definition 2.2.7 A positive type kernel on G×G is a function k such that for every

positive integer, n, and every g1, ..., gn ∈ G, the matrix [k(gi, gj)] is positive.

We include the following proof of 2.2.2 for the reader’s convenience following [8]:

Proof (2)→ (1): By its definition, βµ(G) is a compact space, so we have (1).

(1)→ (2): Assume G acts amenably on a compact space X, so there exists an

amenable transformation group (X,G). Let x0 ∈ X and we know by the universal

property of the compactification Bµ(G), that the map f : G→ X where g → gx0 ex-

tends to a continuous map p : Bµ(G)→ X. p is G-equivariant by definition 2.2.5. Re-

call by 2.1.7, a transformation group (X,G) is amenable if there exists a net < fi >i∈I

of continuous maps x→ fxi from X → P (G) (where P (G) is the set of all probability

measure on G equipped with the weak* topology) such that lim
i
||g.fxi − f

g.x
i ||1 = 0

uniformly on compact subsets of X ×G. We can use this net to define a net for the

transformation group (βµ(G), G) by defining a net < φi > of maps y → f
p(y)
i where

f
p(y)
i is the map g → f

p(y)
i (g) = fi(p(y), g). Notice lim

i
||g.fp(y)

i − f g.p(y)
i ||1 = 0 by the

G-equivariance of p.

(4)→ (1): Suppose there exists a sequence < hi > of positive type kernels in

Cb,θ(G × G) with support in a tube such that lim
i
hi = 1 uniformly on tubes. Since

hi ∈ Cb,θ(G × G), there is a sequence of extensions to βµ(G). For (g, h) ∈ G × G,

denote ki = hi(g
−1, g−1h) where ki denotes its extension to βµ(G) × G. For x ∈ G,

t1, ..., tn ∈ G, we have by definition, ki(t
−1
i x, t−1

i tj) = hi(x
−1ti, x

−1tj). Notice that

< ki > is a net of continuous, positive type functions on βµ(G)×G with compact sup-

port. In fact, for any compact subset K ⊂ G, we have that sup
(x,t)∈βµ(G)×K

|ki(x, t)−1| =

sup
(x,t)∈G×K

|ki(x, t)−1| = sup
(x,t)∈G×K

|hi(x−1, x−1t)−1| = sup
(s,t)∈G×G,s−1t∈K

|hi(s, t)−1| = 0.

Thus we have found a net of positive type functions with compact support which tend

to 1 uniformly on compact subsets of βµ(G)×G and G is amenable at infinity.
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(1)→ (4): Suppose G is amenable at infinity, so by (2), (βµ(G), G) is an amenable

transformation group and by 2.1.2, we have that there exists a net < fi > of positive

type functions in Cc(β
µ(G) × G) which tend to 1 uniformly on compact subsets of

βµ(G)×G. Since βµ(G) is compact, this means we have uniform convergence on G.

Define a net < hi > on G×G by setting hi = fi|G ◦ θ−1. And thus we have (4).

(3) ⇐⇒ (1): We have similar arguments from 2.2.3 using similar methods of

changing variables for (3)⇐⇒ (1).

Some examples of groups that are amenable at infinity include discrete hyper-

bolic groups, closed subgroups of connected Lie groups, almost connected groups,

and, of course, amenable locally compact groups (reduce the space they act on to

a point). Delaroche also found that every σ-compact locally compact group which

is amenable at infinity is uniformly embeddable into Hilbert space [8]. Recall the

following definition:

Definition 2.2.8 ( [8]) A locally compact group G is uniformly embeddable into a

Hilbert space if there is a Hilbert space, H, and a map f : G→ H such that

1. for all compact subset K ⊂ G, there exists R > 0 such that g−1h ∈ K ⇒

||f(g)− f(h)|| ≤ R and

2. for all R > 0, there exists a compact K ⊂ G such that ||f(g) − f(h)|| ≤ R ⇒

g−1h ∈ K.

2.2.4 Cohomological Characterization

In [11], Brodzki, Niblo, Nowak, and Wright connect amenable actions and exact-

ness of a countable discrete group with the bounded cohomology of the group. First

we will go over a few definitions and notation before we discuss their cohomological

characterization following the same notation as [11] and [16]. First we denote V as
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the space of all functions f : G→ C(X) with the norm ||f ||V = sup
x∈X

∑
g∈G

|fg(x)| where

fg ∈ C(X) is the function obtained by evaluating f at g. From here we denote the

subspace of V consisting of all functions with finite support and such that for some

constant c = c(f) ∈ R,
∑
g∈G

fg = c1X , where 1X is the constant function with value

1 on X, as W00(G,X). We let W0(G,X) denote the closure of this subspace in the

V norm. W0(G,X) is basically an analogue of `1(G), which means that W0(G,X)∗

and W0(G,X)∗∗ are both analogous to `∞(G) and `∞(G)∗. µ ∈ W0(G,X)∗ is said

to be an invariant mean for the G action on X if µ(π) = 1 and µ(gf) = µ(f) for all

f ∈ W0(G,X)∗. We also introduce the submodule N0(G,X) of W0(G,X)∗ which is

analogous to the submodule `1
0(G) of all functions that sum up to 0. That is, we de-

note the kernel of the extension of the map π : W00(G,X)→ R where
∑
g∈G

fg = π(f)1X

as N0(G,X).

Now let G act isometrically on a Banach Space, E. Consider the cochain complex

Cm
b (G,E∗) which consists of the set of G-equivariant bounded cochains φ : Gm+1 →

E∗ equipped with the natural differential d as in the homogeneous bar resolution. We

denote the bounded cohomology with coefficients in E∗ by H∗b (G,E∗).

Definition 2.2.9 (Johnson Class) Given a countable, discrete group G acting by

homeomorphisms on a compact Hausdorff topological space X, consider the bounded

cohain of degree 1 with values in N00(G,X): J(g0, g1) = δg1 − δg0 which is a cocycle

and thus represents a class in H1
b (G,N0(G,X))∗∗. We denote this class by [J] and

call it the Johnson class. (Note that N00(G,X) is considered to be a subspace of

N0(G,X)∗∗.)

Theorem 2.2.3 (Brodzki, Niblo, Nowak, Wright [11]) Let G be a countable dis-

crete group acting by homeomorphisms on a compact Hausdorff topological space X.

TFAE:
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1. G acts on X topologically amenably

2. The Johnson class [J] ∈ H1
b (G,N0(G,X)∗∗) is trivial

3. Hn
b (G,E∗) = 0 for n ≥ 1 and for every `1-geometric G− C(X) module E.

In [17], Monod also discusses some of the characterization of topologically amenable

actions in terms of bounded cohomology. Again, first we have a few definitions.

Definition 2.2.10 Let E be a Banach space, then E is a C(X)-module if it is equipped

with a contractive unital representation of the Banach algebra C(X). That means for

f ∈ C(X) and v ∈ E, ||f · v|| ≤ ||f || · ||v||.

We say that E is a (G,X)-module if it is both a G and C(X) module (G acts on E

by isometries) and the representation of C(X) is G-equivariant. We need gfg−1 to

correspond to the action of g ∈ G on f ∈ C(X). That is, we need the G action on

C(X) to relate to both the G action on E and the C(X) action on E. We can do this

by defining g · f =: f̃ such that f̃ · v = g(f(g−1v)). In general not all (G,X)-modules

have a cross product algebra. We also denote I (C(X),W ) as the space of integral

operators with values in W .

Definition 2.2.11 A C(X)-module E is of type M if for all u ∈ E, and fi ∈ C(X)+,
n∑
i=1

||fiu|| ≤ ||
n∑
i=1

fi|| · ||u||. And we say that a C(X)-module E is of type C if for all

ui ∈ E, and fi ≥ 0, ||
n∑
i=1

||fiui|| ≤ ||
n∑
i=1

fi|| ·max
i
||ui||.

In [17], Monod proves that if G is a locally compact, second countable group

acting topologically amenably on a compact space X, then every dual (G,X)-module

of type C is a relatively injective Banach G-module. In Monod’s paper, he says that

G acts amenably on a compact space X if there is a net {uj}j∈J ∈ C(X, `1(G)) such

that every uj(x) is a probability measure on G and lim
j∈J
||guj−uj||C(X,`1(G)) = 0 for all

g ∈ G. Using Monod’s definition, E is a C(X) module if for all u ∈ E and φi ∈ C(X),

φi ≥ 0, then
n∑
i=1

||φiu|| ≤ ||
n∑
i=1

φi|| · ||u||. Monod also proves the converse of this

statement for discrete groups.
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Theorem 2.2.4 [Monod [17]]

Let G be a group acting on a compact space X. TFAE:

1. The G action on X is topologically amenable. That is, there is a net {uj}j∈J
∈ C(X, `1(G)) such that every uj(x) is a probability measure on G and

lim
j∈J
||guj − uj||C(X,`1(G)) = 0 for all g ∈ G.

2. Hn
b (G,C(X, V )∗∗) = 0 for every Banach G-module V and every n ≥ 1.

3. Hn
b (G,I (C(X),W ∗)) = 0 for every Banach G-module W and every n ≥ 1.

4. Hn
b (G,E∗) = 0 for every Banach G-module E of type M and every n ≥ 1.

5. Any of the previous three points hold for n = 1.

6. C(X, V )∗∗ is relatively injective for every Banach G-module V.

7. I (C(X),W )∗ is relatively injective for every Banach G-module W.

8. Every dual (G,X)-module of type C is a relatively injective Banach G-module.

9. There is a G-invariant element in C(X, `1(G))∗∗ summing to 1X .

10. There is a norm one positive G-invariant element in C(X, `1(G))∗∗ summing to

1X .

Monod mentions that his proof from 1 to 8 still holds for locally compact, second

countable groups [17].
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3. HYPERBOLIC SPACES AND GROUPS

3.1 Discrete Hyperbolic Spaces and Groups

One of the interesting classes of spaces that is of Property A is the class of discrete

hyperbolic spaces and groups. Often when dealing with hyperbolic groups, we con-

sider groups which are finitely generated with a metric relative to a finite generating

subset. In this section we will discuss such groups, but later we will generalize this

notion to compactly generated groups. First we review some of the common notions

for hyperbolic spaces. Recall that we define a geodesic between a and b in a hyper-

bolic space X to be an isometry g : [0, d(a, b)]→ X with g(0) = a and g(d(a, b)) = b.

We denote [[a, b]] as the set of all geodesics between a and b and we use the notation

]]a, b[[ to denote the geodesic with minimal length that starts at a and ends at b.

Definition 3.1.1 A space, X, is hyperbolic if there exists δ > 0 such that every

geodesic triangle is δ-thin. That is to say, each of the triangle’s sides is contained in

a δ-neighborhood of the union of the other two sides.

Definition 3.1.2 A discrete group Γ, is hyperbolic if it admits a finite generating set

such that the associated word metric in its Cayley graph is Gromov hyperbolic with

respect to the finite set of generators.

So for a discrete hyperbolic group Γ, we define our word metric in terms of our

finitely generating set. That is, for x, y ∈ Γ we define d(x, y) =length (g−1h), the

minimum number of generators from our finite generating set to generate g−1h. This

word metric is hyperbolic if every geodesic triangle in Γ’s Cayley graph is δ-thin.

With the word metric, we can treat our discrete hyperbolic groups like metric spaces.

Hyperbolic groups and spaces have some very nice properties which we will use later in
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this paper. One property is that each geodesic triangle has a number which measures

the distance for which two sides of the triangle stay close together. This number is

called the Gromov product.

Definition 3.1.3 (Gromov Product) We define the Gromov product between points

a and b, denoted as < a, b >x, as < a, b >x=
1
2
[d(a, x) + d(b, x)− d(a, b)], where x is

a fixed a basepoint in the Cayley graph.

We now have an alternative definition for a Gromov hyperbolic group using the Gro-

mov product.

Definition 3.1.4 (Gromov Hyperbolic Group) A discrete group Γ is δ-hyperbolic

if for all x, a, b, γ ∈ X, < a, b >x ≥ min{< a, γ >x, < b, γ >x} − δ.

We also have that any δ-word hyperbolic space satisfies the following inequality:

Definition 3.1.5 (Hyperbolic Inequality) Given x, y, z, t ∈ X, where X is a dis-

crete δ-word hyperbolic space, then d(x, y) + d(z, t) ≤ max{d(x, z) + d(y, t), d(x, t) +

d(y, z)}+ 2δ.

We use the Gromov product to define the boundary of a hyperbolic space.

Definition 3.1.6 (Boundary of Hyperbolic Space) Given a locally compact hy-

perbolic space X, the boundary of X, ∂X, is the set of equivalence classes of infinite

geodesics. Two infinite geodesics an and bm are equivalent if lim inf
n,m→∞

< an, bm >x=∞,

where x is a fixed base point. This equivalence is independent of the basepoint x [18].

It is nice that we can also define a metrizable topology on X, ∂X, and X∪∂X. We

first define a basis on X as {W (a, ε)}ε>0. Note that this basis is just the set of ε -balls

around a ∈ X. Defining a basis for ∂X is slightly tougher. We define a basis for ∂X,

{V (x,R)}R>0, in the following way. Let V (x,R) = {z ∈ X̄| lim inf
n,m→∞

< yn, bm >o≥ R

where o is a fixed basepoint in X and where yn is a geodesic whose endpoint is z

and bm is an infinite geodesic (possibly repeated) whose endpoint is x}. We can also

define convergence of a sequence of geodesics.
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Definition 3.1.7 (Converging Geodesics in X) Let < αn > be a sequence of

geodesics in X, we say < αn > converges to geodesic β, if for every ε > 0, there

exists N >> 1 such that for n > N , every point along αn is within ε of a point along

the geodesic β. That is, for n > N , αn is within an ε-tube of β.

Definition 3.1.8 (Converging Geodesics in X̄) Let < αn > be a sequence of

geodesics with endpoints in ∂X, we say < αn > converges to geodesic β with endpoint

z ∈ ∂X, if for every ε, R > 0, there exists N >> 1 such that for n > N , every point

along αn is within ε of a point along the geodesic β and lim inf
k,m→∞

< αn, βm >o> R where

o is a fixed basepoint in X and βm is a geodesic converging to x.

3.2 Locally Compact Hyperbolic Groups

We have gone over properties of discrete hyperbolic spaces and groups. Now we

will discuss the more general notion of locally compact hyperbolic groups.

Definition 3.2.1 ( [19]) A locally compact group, G, is hyperbolic if it admits a

compact generating set such that the associated word metric is Gromov hyperbolic.

We say G is compactly generated if there exists a symmetric, compact neighborhood

K of the identity element in G such that for every g ∈ G, g ∈ Kn for some n ∈ N.

The word metric measures the distance between two group elements g and h in G

which allows us to treat our group like a metric space. We define the word metric as

follows:

Definition 3.2.2 (Word Metric) Given g, h ∈ G, where G is a locally compact

hyperbolic group, we define the word metric d on X as d(g, h) = `(h−1g) in the

setting of the associated Cayley graph and compact generating set where `(h−1g) is

the length of the geodesic h−1g. Since we are in a compactly generated G, we define

this length function as length(g) = min
g∈Kn
{n}.
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Some examples of locally compact hyperbolic groups are SO(n, 1), SU(n, 1), and

Sp(n, 1). In addition to these, the class of groups of the form H oα Z and H oα Z

are also locally compact hyperbolic groups [20]. Note α(1) is such that there is a

compact subset of H such that for every x in H, there is a natural number ñ such

that for every n greater than ñ, α(n)(x) is in the compact set. Since a hyperbolic

group has a metric, our properties for hyperbolic spaces in 3.1 also are defined in the

same way for hyperbolic groups. In particular we have the same definitions for the

δ-thin triangles, the Gromov product, ∂G, Ḡ, geodesics, and convergence of geodesics.

Most of the properties of locally compact hyperbolic groups are in the same spirit

as discrete hyperbolic groups. Yet with this more general setting of locally compact

hyperbolic groups, we have more non-trivial results that generalize to these groups.

For example, we know that non-elementary finitely generated hyperbolic groups are

not amenable since they contain a closed non-amenable subset [20]. Yet Caprace,

deCornulier, Monod, and Tessera prove that we do have amenable non-elementary

locally compact hyperbolic groups [19] They also give a description of all locally

compact hyperbolic groups with cocompact amenable subgroups and prove that a

locally compact group is Gromov hyperbolic if and only if it admits a continuous

proper cocompact isometric action on a Gromov hyperbolic proper geodesic metric

space.

Corollary 3.2.1 (Caprace, Cornulier, Monod, Tessera [19]) A locally compact

group G is hyperbolic if and only if G has a continuous proper cocompact isometric

action on a proper geodesic hyperbolic space.

Another difference between discrete hyperbolic groups and locally compact hy-

perbolic groups is discussed by Dreesen in [20]. Dreesen shows that because non-

elementary discrete hyperbolic groups are countable, they cannot act transitively on

their boundary. Yet locally compact hyperbolic groups can act transitively on their

boundaries. This is possible even if the boundary is infinite [20]. We already know
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that discrete Gromov hyperbolic groups are of Property A and that a discrete hyper-

bolic group acts amenably on its compact Gromov Boundary and thus is amenable

at infinity. We ask whether this is also valid for locally compact hyperbolic groups?

3.3 Group Actions on Hyperbolic Spaces

We can now discuss group actions on hyperbolic spaces.

Definition 3.3.1 If a locally compact group G acts continuously on a locally compact

hyperbolic space X, we define the G action on the boundary of X, ∂X, as follows:

For x ∈ ∂X, g · x = lim
n→∞

g · αn where αn is a geodesic in X such that αn has an

endpoint x. We will sometimes write αn → x.

Lemma 3.3.1 Suppose a locally compact group G acts by isometries on a locally

compact hyperbolic space X continuously. Then we can continuously extend the group

action to the Gromov boundary of X, ∂X.

Proof Let g ∈ G, x ∈ ∂X, and αn ∈ X such that αn → x. Let U be an R neighbor-

hood of x. That is, U(x,R) = {z ∈ X̄ : lim inf
n,m→∞

< yn, βm >0> R, βm → x, yn → z}.

Recall < yn, βm >0 is the Gromov product. Because G is a locally compact group,

we just need to show continuity at the identity element of G, 1G. Let ε > 0. Now

if < gn > is a sequence in G and gn → 1G, then there exists an N large enough

such that d(gn, 1G) < ε
2

for n > N . Since αn → x, αn is in the equivalence class of

x and there is a Ñ such that for any βm → x, lim inf
n,m→∞

< αn, βm >0> R + 2ε. Let

N̄ = max{N, Ñ} and let n > N̄ . For each n, let Un(αn,
ε
2
) := {y ∈ X : d(y, αn) < ε

2
}

be a neighborhood of αn. We want to show that d(gny, αn) < ε for y ∈ U(αn,
ε
2
).

Let y ∈ U(αn,
ε
2
), so d(y, αn) < ε

2
. We also have that d(gn, 1G) < ε

2
, which implies

d(gαn, αn) < ε
2
. Thus, d(gny, αn) < d(gnαn, αn) + d(gny, αn)< ε

2
+ ε

2
= ε.

Now we want to show for y ∈ Un(αn,
ε
2
) and βm → x, < gny, βm >0> R for

n > N̄ . In other words, we want to show that gny ∈ U(x,R) for n > N̄ . By
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definition, < gny, βm >0= d(gny, 0) + d(βm, 0) − d(gny, βm). Now d(gny, αn) < ε

implies |d(gny, 0) − d(αn, 0)| < ε which implies that d(αn, 0) − ε < d(gny, 0) <

d(αn, 0) + ε. And d(gny, βm) < d(gny, αn) + d(βm, αn). Thus, d(gny, 0) + d(βm, 0) −

d(gny, βm) >d(αn, 0)−ε+d(βm, 0)−d(gny, βm) > d(αn, 0)−ε+d(βm, 0)−d(gny, αn)−

d(βm, αn) = < αn, βm >0 −ε− d(gny, αn).

From earlier, we have that lim inf
n,m→∞

< αn, βm >0> R+ 2ε and d(gny, αn) < ε. Thus

< gny, βm >0> R + 2ε − ε − ε = R. Which is what we wanted to show. Therefore

if gn → 1G, then gnx → x, and thus G acts continuously on ∂X. Thus, if a locally

compact group, G, acts continuously on a locally compact hyperbolic space, X, then

we can continuously extend the group action to the Gromov boundary of X, ∂X.

3.4 Geometric Properties of Hyperbolic Groups

Germain has proved some helpful geometric properties for hyperbolic groups which

we will use later in 5.2. First, we should note that the hyperbolic properties of a

hyperbolic group G are preserved on its compactification, G ∪ ∂G. Specifically, any

geodesic triangle which is extended to the boundary is 24-δ thin for the metric of

the group and two geodesics between the same two points are in a 8-δ neighborhood

of each other [5]. The following lemmas are from Appendix B in Delaroche’s book

Amenable Groupoids for a hyperbolic space with measure.

Lemma 3.4.1 Let K ∈ Z, then there exists an M, 0 < M ≤ K + 48δ such that for

all a, b ∈ X and x ∈ X ∪ ∂X with d(a, b) < K, we have d(p, q) < M for all p ∈]]a, x[[

and q ∈]]b, x[[ with d(a, p) = d(b, q).

Proof Let p be a points in the geodesic from a to x and q be a geodesic from b to

x with d(a, p) = d(b, q). We have that all triangles are 24δ-thin so, without loss of

generality, we have that either there exists a point q0 ∈]]b, x[[ such that d(q0, p) < 24δ

or both p and q are within 24δ from the geodesic between a and b. For the first
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case, we have |d(b, q0)− d(a, p)| = |d(b, q0)− d(b, q)| = |d(q, q0)| < d(p, q) + d(q0, p) <

M + 24δ < K + 24δ. Thus d(q, q0) < K + 24δ and then since d(a, p) = d(b, q),

we have that d(p, q) < d(q, q0) + d(p, q0) < K + 48δ. For the latter case, d(p, q) <

d(p, a) + d(b, q) + d(a, b) ≤ 48δ + d(a, b) which is what we want.

Lemma 3.4.2 Let K,L ∈ Z and L > 3K + δ. Let a, b, e, f be points in X such that

d(a, b) < K and d(e, f) < K. Also assume that d(a, e) > 3L and d(b, f) > 3L. Then

for all geodesics g0 between a and e and all geodesics g between b and f , any point p of

the segment g([L, 2L]) is at a distance at most 4δ of a point q in g0([L−K, 2L+K])

such that d(b, p) = d(b, q).

Proof Let a, b, e, f, p, q be points in X with the properties listed above. Recall the

hyperbolic inequality: given x, y, z, t ∈ X, then d(x, y) + d(z, t) ≤ max{d(x, z) +

d(y, t), d(x, t) + d(y, z)}+ 2δ.

Step 1: To show d(p, q) < 2δ + 4K:

Using our inequality, we have that d(b, f)+d(p, q) < 2δ+max{d(b, p)+d(q, f), d(b, q)+

d(p, f)}. Since d(b, p) = d(b, q) and d(p, f) < d(b, f) we have that d(p, q) < 2δ +

d(q, f) − d(p, f). It is clear that d(q, f) ≤ K + d(q, e) and d(a, q) ≤ d(b, a) + K.

And we have that d(p, f) = d(b, f) − d(b, p) = d(b, f) − d(b, q) because d(b, p) =

d(b, q). Therefore, d(p, f) ≥ d(b, f) − d(a, q) − K since d(b, q) ≤ d(a, q) + K which

implies that d(q, f) − d(p, f) < 2K + d(a, e) − d(b, f). We have this inequality

since d(q, f) ≤ K + d(q, e) and d(p, f) ≥ d(b, f) − d(a, q) − K, and so we have

d(q, f) − d(p, f) < K + d(q, e) − (d(b, f) − d(a, q) − K) = 2K + d(q, e) − d(b, f) +

d(a, q) = 2K + d(a, e) − d(b, f). Now |d(a, e) − d(b, f)| < 2K by the triangle in-

equality and since both d(e, f) and d(a, b) are less than K. Now we have that

d(q, f) − d(p, f) < 2K + d(a, e) − d(b, f) < 4K. Since from earlier, we have that

d(p, q) < 2δ+d(q, f)−d(p, f), we have that d(q, p) < 4K+ 2δ (*) and Step 1 is done.

We can rearrange our inequality in the following way: We have that d(b, f) +

d(p, q) < 2δ + max{d(b, p) + d(q, f), d(b, q) + d(p, f)} which implies d(p, q) < 2δ +
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max{d(b, p) + d(q, f), d(b, q) + d(p, f)} − d(b, f). This shows that d(p, q) < 2δ +

max{d(b, p)+d(q, f)−d(b, f), d(b, q)+d(p, f)−d(b, f)}. Now d(b, p)+d(q, f)−d(b, f) =

d(q, f) − d(p, f) since d(b, f) = d(b, p) + d(p, f). And similarly, d(b, q) + d(p, f) −

d(b, f) = d(b, q) − d(b, p). Thus, we now have another application of the inequality

and we see that d(p, q) < 2δ + max{d(b, q)− d(b, p), d(q, f)− d(p, f)}.

By symmetry, we also have d(p, q) < 2δ + max{d(a, p)− d(a, q), d(p, e)− d(q, e)}.

(Here we use the inequality d(a, e)+d(q, p) <2δ+max{d(a, q)+d(p, e), d(a, p)+d(q, e)}

and rearrange the inequality and use the same justification as we did for the other

inequality.) We also have d(a, p)+d(b, q) < 2δ+max{d(a, q)+d(b, p), d(a, b)+d(p, q)}.

Moreover, d(b, p) > L and because q is in the geodesic strip [L − K, 2L + K],

d(a, q) > L − K. Therefore d(a, q) + d(b, p) > 2L − K. Also since p is in the

geodesic strip [L, 2L], d(b, p) > L, thus d(a, q) > 2L − K − d(b, p) > L − K. Since

d(a, b) < K and since we have (*) from earlier, d(q, p) < 4K + 2δ. And we now have

d(a, b) + d(q, p) > 2δ + 5K.

Since L > δ + 3K, we have that 2L−K > 2δ + 5K which implies that d(a, q) +

d(b, p) > 2L − K > 2δ + 5K > d(a, b) + d(p, q). Thus d(a, p) + d(b, q) < 2δ +

d(a, q) + d(b, p). Since d(b, p) = d(a, q), we have d(a, p) − d(a, q) < 2δ. Similarly

d(p, e)− d(q, e) <2δ + d(p, f)− d(q, f) and d(p, q) < 2δ + max{2δ, d(p, f)− d(q, f)}.

This means d(p, q) < 2δ or d(p, q) < 4δ (depending on the sign of d(p, f) − d(q, f)).

Lemma 3.4.3 Let K ∈ Z, and let L > 3K + 150δ, then for any two points a, b ∈ X

with d(a, b) < K and x ∈ ∂X and for geodesic g0 =]]a, x[[ and g =]]b, x[[, any point

p ∈ g([L, 2L]) is at most 4δ from a point q ∈ g0([L−K, 2L+K]).

Proof Let L > δ + 3 sup{K,M}. By 3.4.1, there exists an M such that 0 < M ≤

K+48δ such that 3.4.1 holds. That is, d(p, q) < M for all p ∈]]a, x[[ and q ∈]]b, x[[ with

d(a, p) = d(b, q). Then we can define points e and f in 3.4.2 by setting e = g0(3L) and
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f = g(3L). Now we can apply 3.4.2 to these new points and thus we have the same

conclusion as 3.4.2, p ∈ g([L, 2L]) is at most 4δ from a point q ∈ g0([L−K, 2L+K]).



31

4. FUNDAMENTAL DOMAINS

4.1 Definition and Construction

Often when we talk about Property A, we require a space to have bounded geometry.

That is, we need the number of elements in a ball to be uniformly bounded. We don’t

necessarily have this property when we have a locally compact space. We also don’t

necessarily have a G-invariant measure. Fortunately, we can construct a fundamental

domain for a group action on a locally compact space and use this to construct a

G-invariant measure on X.

Definition 4.1.1 (Fundamental Domain) We say a set F ⊂ X is a fundamental

domain for the G-action on X if for every x ∈ X, there exists a g ∈ G such that

x.g ∈ F and every orbit meets F once [21].

A nice property of a fundamental domain F is that the projection map π : X →

X/G restricts to an injective map on F and a surjection map on the closure of F,

F̄ [22]. Following [23], we construct a fundamental domain for locally compact G

acting continuously and properly on a locally compact space X. Recall that a group

action is proper if the map from (x, g)→ (x, xg) is proper. And a function is proper

if the inverse images of compact sets are compact. For any x ∈ X, let G(x) be the

stabilizer of x and define the set F = {z ∈ X|d(z, x) ≤ d(z, xg),∀g ∈ G−G(x)}. We

let G(A|B) =: {g ∈ G|Bg ∩ A 6= ∅}.

Proposition 4.1.1 F has the following properties:

1. G(F |F ) = G(x), and

2. FG(x) = F .
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Proof (1): Let y ∈ G(F |F ), so Fy ∩ F 6= ∅. Therefore there exists f ∈ F such

that fy ∈ F . Suppose y /∈ G(x), then d(fy, xy) > d(fy, x) = d(f, xy−1) > d(f, x).

But by our isometric action, this cannot be so. Thus G(F |F ) ⊂ G(x). For the

other containment, suppose g ∈ G(x), so xg = x and x = xg−1. Let z ∈ F , then

d(zg, x) = d(z, xg−1) = d(z, x) < d(z, xh) for h ∈ G−G(x). Thus zg ∈ F . Therefore

G(x) ⊂ G(F |F ) and thus G(F |F ) = G(x).

(2): Let g ∈ G(x) and f ∈ F then by (1), g ∈ G(F |F ) and therefore there exists

a t such that t = fg and t ∈ F . So we have that FG(x) ⊂ F . Now suppose r ∈ F .

Since G(x) = G(F |F ), there exists g ∈ G(x) such that gF ∩ F 6= ∅. Therefore there

is f̃ ∈ F such that r = f̃ g. Thus F ⊂ FG(x) and so FG(x) = F .

Note that since X is a locally compact space, G(x) is closed and thus compact. Let

λ = min
g∈G−G(x)

d(xg, x). Because G acts continuously and properly, λ exists and λ > 0.

Proposition 4.1.2 F = {z ∈ X|d(z, x) ≤ d(z, xg),∀g ∈ G−G(x)} is a fundamental

domain.

Proof We want to check that every orbit meets our fundamental domain F. Suppose

z ∈ X and consider zG. Let g̃ be such that d(z, xg̃) = min
g∈G−G(x)

d(z, xg). Then

d(zg̃−1, x) = d(z, xg̃) < d(z, xg). Since zg̃−1 ∈ zG, zG intersects F. If zG intersects

F more than once, we can just pick a representative for each orbit.

When F is the fundamental domain for the group action, F̄ meets each G orbit

of the action once. That is, the G translates of F̄ cover X. In this case, we let F

be open with F̄ ◦ = F which means F has a relatively small boundary [24]. For F, a

fundamental domain, we have that any point of X is equivalent with respect to the

action of G to at least one point of the set F̄ . This means for the natural surjection

π : X → X/G, F̄ is mapped to all of X/G [25]. Since F̄ is a closed subset of a locally

compact space X, F̄ is compact.
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4.2 G-Invariant Measure on Fundamental Domain

Given a locally compact group G acting on a locally compact space and corre-

sponding fundamental domain F , we can construct a G-invariant measure on X.

Corollary 4.2.1 There exists G-invariant measure on X given a fundamental do-

main F̄ .

Proof F̄ is compact so we can find a nice finite Borel measure, µ, on F̄ . Since the

G translates of F̄ cover X and µ(∂F ) = 0, we can define the measure on F̄ × G as

the product measure of µ and the Haar measure, dmg, on locally compact G. Now

consider X̃ = {(x, g) : x ∈ X, g ∈ G, gx = x}. Since X̃ ⊂ F̄ ×G, we have a measure

µ̃ on X̃. Now we define a measure, m, on X in the following way. If S is a subset

of X and X is locally compact, we can assume S is bounded. Because of our proper

action, we can lift S to a bounded subset in X̃. So our lifted set is in F̄ ×K for a

compact subset K ⊂ G. We now define m(S) =

∫
g∈K

gµ(S ∩ gF̄ )dgm. Notice this

measure is G-invariant since M(g̃S) =

∫
g∈K

g̃gµ(S ∩ g̃gF̄ )dgm and translates of F̄

differ by a 0 measure set.
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5. LOCALLY COMPACT PROPERTY A GROUPS

5.1 Definition

Most of the work with Property A has been with discrete topological spaces. Our work

involves looking at the locally compact case. In this section, we introduce the concept

of locally compact Property A groups. As we have mentioned before, Property A is a

metric space property, but we can construct a metric on a group by defining a length

function on the generators of the group. Since we don’t have the discrete topology,

we need a few more conditions to define Property A for locally compact groups.

Definition 5.1.1 We say a locally compact group, G, has property A if there exists

a compact space X such that G acts amenably and continuously on X.

Definition 5.1.2 (Amenable Locally Compact Group Action) We say that a

locally compact group acts amenably on X, if there exists a sequence < fn > of

nonnegative, compactly supported Borel functions on G × X such that ∀x ∈ X,∫
G

fn(g, x)dg > 0 and lim
n→∞

sup
x∈X

(

∫
G
|fn(g, x)− h.fn(g, x)|dg∫

G
fn(g, x)dg

) = 0 uniformly for all

h ∈ K, where K is a compact subset of G. We define the group action as the action

induced by the diagonal action of G on G×X. That is, (h.f)(g, x) = f(h−1g, h−1x).

5.2 Groups Acting on Hyperbolic Spaces

Our main example is a locally compact group G which acts on a locally compact

hyperbolic space X. Suppose G is a locally compact group that acts continuously

and properly on a locally compact hyperbolic space X. Recall from 3.3.1, we can

continuously extend this group action to the boundary of X, ∂X. We also know from
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4.1, we can construct a fundamental domain for the G action on X. We will denote

the closure of this fundamental domain as F̄ .

We now show that a locally compact group G which acts on a locally compact

hyperbolic space X acts amenably on ∂X. Suppose a ∈ X, x ∈ ∂X, and k ∈ N.

For each y ∈ F̄ ⊂ X. We define Iy(a, x, k) =: {g : gy ∈ [[a1, x[[, d(a, a1) < k}.

Let {yi}i∈I ⊂ F̄ be the set of representatives of the fundamental domain and let

l > 0. We define the following function on G, F (a, x, k, l)(g) =

∫
y∈F̄

χA(gy)dm,

where A={∪a1∈B(a,k)q
x
a1

[l, 2l]} in which q is the geodesic from a1 to x, and dm is the

g-invariant measure on X, which exists by 4.2.1. Notice we only look at the strips from

l to 2l. Note also that since G is a locally compact group, G is equipped with the Haar

measure. Now we define our averaging function H(a, x, l)(g) =
1√
l

∑
k≤
√
l

F (a, x, k, l)(g)

and we give H the L1 norm.

Proposition 5.2.1 ||H(a, x, l)|| ≥ c · l for all a ∈ X and x ∈ ∂X where c is a

constant.

Proof For some g ∈ G and y ∈ F̄ , gy ∩ A 6= 0. Let U be a neighborhood of g of

measure c > 1. Let T be the tube T around U of length l. Then

∫
y∈F̄

χA(gy)dm≥∫
y∈F̄

χT (gy)dm. And

∫
y∈F̄

χT (gy)dm ≥ l · c.

Proposition 5.2.2 Given a compact subset K of G, sup
x∈∂X,g∈K

||H(ga, x, l)−H(a, x, l)||

= o(l) for fixed g ∈ K where K is a compact subset of G and a ∈ X.

Before we prove this, we will state and prove the following lemma:

Lemma 5.2.1 For every k ∈ N, c ∈ Z+, a ∈ X, x ∈ ∂X, g ∈ K ⊂ G (K a compact

subset of G), we have sup
x∈∂X

(
∑
k<
√
l

||F (a, x, k + c, l)− F (a, x, k, l)||) = O(l).

Proof If we increase the value of k, F (a, x, k, l)(g) increases since we are increasing

the size of the k-ball centered at a. Thus the map k 7→ F (a, x, k, l) is an increasing
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map and therefore we can write
∑
k<
√
l

||F (a, x, k+c, l)−F (a, x, k, l)|| =
∑
k<
√
l

||F (a, x, k+

c, l)|| − ||F (a, x, k, l)|| ≤
∑

√
l≤k<

√
l+c

||F (a, x, k, l)||. Now, for l large enough, we will

have l > 3(
√
l + c) + 150δ. By 3.4.3 with K =

√
l + c and L = l, we know that

the set A in the definition of F (a, x, k, l) is in a 4δ neighborhood of a geodesic with

length L + 2K =l + 2(
√
l + c). Now let B(x0, 4δ) be a ball of radius 4δ and let

B = m(B(x0, 4δ)), the measure of the 4δ ball. Since the measure on X is G-invariant,

the measure of this ball will not change with translation. We also have that there

exists a compact set V ⊂ G such that A ⊂ V · F̄ . Let mG(V ) represent the measure

of V . Thus, ||F (a, x, k, l)|| =
∫
G
|F (ax, k, l)(g)|dmg ≤ mG(V ) · B · (l + 2(

√
l + c)).

Therefore we have
∑

√
l≤k<

√
l+c

||F (a, x, k, l)|| ≤ c · B · (l + 2(
√
l + c)) ·mG(V ) . Thus

sup
x∈∂X

(
∑
k<
√
l

||F (a, x, k + c, l)− F (a, x, k, l)||) = O(l).

Now we prove 5.2.2:

Proof Let c = d(ga, a). Since g ∈ K and K is compact, c is finite. Then ||H(ga, x, l)

−H(a, x, l)|| = 1√
l

∑
k<
√
l

||F (ga, x, k, l)−F (a, x, k, l)+F (a, x, k+c, l)−F (a, x, k+c, l)||

≤ 1√
l

∑
k<
√
l

||F (ga, x, k, l)−F (a, x, k+c, l)||+ 1√
l

∑
k<
√
l

||F (a, x, k+c, l)−F (a, x, k, l)||=

1√
l

∑
k<
√
l

||F (a, x, k + c, l) − F (ga, x, k, l)|| + 1√
l

∑
k<
√
l

||F (a, x, k + c, l) − F (a, x, k, l)||.

Let A=:
1√
l

∑
k<
√
l

||F (a, x, k+ c, l)−F (ga, x, k, l)|| and B=:
1√
l

∑
k<
√
l

||F (a, x, k+ c, l)−

F (a, x, k, l)||. By 5.2.1,
√
lB is O(

√
l) so B is o(l). Now let’s look at A. A=

1√
l

∑
k<
√
l

||F (a, x, k + c, l)− F (ga, x, k, l)||= 1√
l

∑
0≤k<c

||F (a, x, k + c, l)− F (ga, x, c, l)||

+
1√
l

∑
c<k<

√
l

||F (a, x, k+c, l)−F (ga, x, k, l)|| ≤ 1√
l

∑
0≤k<c

||F (a, x, 2c, l)−F (ga, x, c, l)||

+
1√
l

∑
c<k<

√
l

||F (a, x, k+ c, l)−F (ga, x, k, l)||. The first term can be bounded because

k 7→ F (a, x, k, l) is increasing and k ≤ c for the first part of the summation and

thus we can bound the first term by
1√
l

∑
0≤k<c

||F (a, x, k + c, l) − F (ga, x, k, l)||≤
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1√
l

∑
0≤k<c

||F (a, x, 2c, l)−F (ga, x, c, l)||= c√
l
(||F (a, x, 2c, l)||+ ||F (ga, x, c, l)||). More-

over, because k > c for the second part of the summation and c = d(ga, a), the sec-

ond term
1√
l

∑
c<k<

√
l

||F (a, x, k + c, l)− F (ga, x, k, l)|| ≤ 1√
l

∑
c<k<

√
l

||F (a, x, k + c, l)−

F (a, x, k − c, l)|| since F (a, x, k − c, l) ≤ F (ga, x, k, l) ≤ F (a, x, k + c, l).

Now if we let K = 2c, we know by by 3.4.1 that there exists an M independent of

x such that for A = ∪a1∈B(a,2c)q
x
a1

[l, 2l], A is contained in a tube with radius M along

a geodesic of length l. Let c̃ be the measure of a ball with radius M, m(B(x0,M)),

which does not change under translation by G. Like in our proof of our lemma, 5.2.1,

we also have a compact subset V ⊂ G such that A ⊂ V · F̄ . Thus, there exists a con-

stant c̃ such that for all (a, x) ∈ X × ∂X, ||F (a, x, 2c, l)|| =
∫
G
|F (a, x, 2c, l)(g)|dmg

≤ mg(V ) · c̃ · l = O(l). This implies that
c√
l

sup
x∈∂X

(||F (a, x, 2c, l)||+ ||F (ga, x, c, l)||) is

o(l) as well since ||F (ga, x, c, l)|| ≤||F (a, x, 2c, l)||. And
1√
l

sup
x∈∂X

∑
c<k<

√
l

(||F (a, x, k +

c, l)− F (a, x, k − c, l)||) is also o(l) by 5.2.1 with our “k” in the lemma as k − c and

our “c” in the lemma as 2c.

Notice our lemma gives that sup
x∈∂X

∑
c<k<

√
l

(||F (a, x, k + c, l) − F (a, x, k − c, l)||) is

O(l), so
1√
l

sup
x∈∂X

∑
c<k<

√
l

(||F (a, x, k+c, l)−F (a, x, k−c, l)||) is o(l). Thus ||H(ga, x, l)−

H(a, x, l)|| is also o(l) since both sets A and B are o(l).

Proposition 5.2.3 (x, t) 7→ H(a, x, l)(t) is Borel for x ∈ ∂X, a ∈ X, t ∈ G.

Proof It is enough to show that (x, t) 7→ H(a, x, l)(t) is upper semi-continuous.

That is, we want to show for every net (xn, tm) → (x, t), lim sup
n,m→∞

F (a, xn, k, l)(tm) ≤

F (a, x, k, l)(t). First we have a lemma.

Lemma 5.2.2 Let xn → x, x ∈ ∂X, and r ∈ N, a ∈ X, and r1, r2 < r < 2l,

then there exists a neighborhood V of x such that for n large enough, xn ∈ V and

∪g∈[[a,xn[[g([r1, r2])⊂ ∪g∈[[a,x[[g([r1, r2]).
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Proof Because we are just looking at geodesics, we just want to show for all k ≤ r,

there exists an ñ large enough such that ∪g∈[[a,xn[[g(k) ⊂ ∪g∈[[a,x[[g(k) for n ≥ ñ. This

would give us F (a, xn, k, l)(t) ≤ F (a, x, k, l)(t).

Assume this is not true. Suppose there exists a net of geodesics < gn > of geodesics

starting at a with endpoints converging to x where this is not true. Consider the se-

quence < gn(k) > where {g1 := [a, x1], g2 := [a, x2], g3 := [a, x3], ..., gn := [a, xn], ...},

where xn → x and such that gn(k) /∈ ∪g∈[[a,x[[g(k). We have that k ≤ r and so

∪g∈[[a,x[[g(k) ⊂ B(a, r). Since X is a locally compact hyperbolic space and B(a, r), the

open ball of radius r centered at a, is bounded, B(a, r) is compact. Thus |∪g∈[[a,x[[g(k)|

is bounded. By Arzela Ascoli’s Theorem, if < fn > is a net of continuous functions

on a compact space into a metric space and |fn(x)| ≤ M , that is, fn is uniformly

bounded and equicontinuous, then there exists a subsequence < fnk > that converges

uniformly [26].

Now for k > 0, the gn(k)’s are continuous on a compact space with values in

a metric space. We have that |gn(k)| is bounded because it is in an r-ball. That

is, the length of each geodesic is bounded. So by Arzela Ascoli’s theorem, there

exists a subsequence gnm → g∞ from a to x and g∞(k) /∈ ∪g∈[[a,x[[g(k). But this is a

contradiction since g∞ would be a geodesic from a to x. Thus, our lemma is true, and

so for xn → x, F (a, xn, k, l)(t) ≤ F (a, x, k, l)(t). Therefore lim sup
n→∞

F (a, xn, k, l)(t) ≤

F (a, x, k, l)(t) and F is upper-semi-continuous in X.

We can now finish the proof of 5.2.3 by showing F is upper-semi-continuous in G.

Suppose tn → t in G. We already have a continuous group action which is uniformly

continuous on compact sets, so F is continuous in G. Therefore, lim sup
n→∞

F (a, x, k, l)(tn)

≤ F (a, x, k, l)(t). therefore, if (xn, tm) → (x, t), then lim sup
n,m→∞

F (a, xn, k, l)(tm) ≤

F (a, x, k, l)(t). And so, F is upper-semi-continuous in X and G and therefore is a

Borel function.
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Theorem 5.2.3 A locally compact group that acts continuously on a locally compact

hyperbolic space, X, acts amenably on ∂X.

Proof Define fn on G × ∂X by fn(g, x) = H(y0, x, n)(g), where y0 is fixed base-

point for X. Since H is a nonnegative Borel function that is compactly supported by

B(y0, 3n), so is fn. By 5.2.1, ||H(y0, x, n)|| ≥ n. Therefore,

∫
G

fn(g, x)dg > 0 for

all x ∈ ∂X and n > 0. Let K ⊂ G, be a compact subset of G. By our diagonal

group action, for h ∈ K ⊂ G, h.fn(g, x) = fn(h−1g, h−1x)= H(y0, h
−1x, n)(h−1g).

By shifting the basepoint y0, we get H(y0, h
−1x, n)(h−1g) = H(hy0, x, n)(g). Note

we can do this by translating the geodesics from y0 to h−1x by h. Since we are

in a space with a G-invariant measure, this will not change the function H. Now,

lim
n→∞

sup
x∈∂X

(

∫
G
|fn(g, x)− h.fn(g, x)|dg∫

G
fn(g, x)dg

) =

lim
n→∞

sup
x∈∂X

(

∫
G
|H(y0, x, n)(g)−H(y0, h

−1x, n)(h−1g)|dg∫
G
H(y0, x, n)(g)dg

) =

lim
n→∞

sup
x∈∂X

||H(y0, x, n)(g)−H(hy0, x, n)(g)||
||H(y0, x, n)(g)||

≤ lim
n→∞

o(n)

n
= 0 uniformly on K ⊂ G.

Thus, G acts amenably on a compact space ∂X.

Our theorem shows that a group G that acts continuously on a locally compact

hyperbolic space satisfies 2.2.3 and therefore is amenable at infinity. We also now

have the following corollary since locally compact Gromov hyperbolic groups act

continuously on their compact Gromov boundaries.

Corollary 5.2.4 Locally compact Gromov hyperbolic groups have Property A.

5.3 Other Definitions of Property A

In the fall of 2013, Steven Deprez and Kang Li introduced an equivalent notion

of locally compact Property A Groups in [15]. In this section, we will show that our

definition is equivalent.

Definition 5.3.1 [Deprez, Li] Given a locally compact, second countable group G,

we say G has Property A if for any compact subset K ⊂ G and ε > 0, there exists
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a compact subset L ⊂ G and a family of Borel sets {Ag}g∈G ⊆ G × N with finite

measure (0 < µ(Ag) <∞) such that

1. for all (g, t) ∈Tube(K),
µ(Ag∆Ah)

µ(Ag ∩ Ah)
< ε, and

2. if (g′, n) ∈ Ag, then (g, g′) ∈Tube(L).

Note that the measure on G × N is the product measure of the Haar measure on G

and the counting measure on N. Also recall our definition of a tube from 2.2.4. For

a compact subset K of G, Tube(K)={(g, h) ∈ G× G : g−1h ∈ K}. And we say that

a subset L ⊆ G×G is a tube if {g−1h : (g, h) ∈ L} is precompact or if L is a subset

of some other tube.

Although we defined the following terms in 2.2.3, we will restate a few definitions

and notations. Recall we let βµ(G) represent the universal compact Hausdorff left

G-space equipped with a continuous G-equivariant inclusion of G as an open dense

subset. This space has the universal property that any continuous G-equivariant map

from G into a compact Hausdorff left G-space X has a unique extension to a continu-

ous G-equivariant map from βµ(G) into X. This notion is basically analogous to the

Stone Cech compactification.

We also recall that Cb,θ(G × G) is the algebra of continuous, bounded functions

f on G×G such that f ◦ θ is the restriction of a continuous function on βµ(G)×G,

where θ is the homeomorphism of G×G such that θ(g, h) = (g−1, g−1h). We can also

identify C(βµ(G)) with the C∗-algebra of bounded, left-uniform continuous functions

on G. That is, C(βµ(G)) is the algebra of all bounded continuous functions on G such

that f(t−1s)− f(s) uniformly goes to 0 as t→ e ∈ G, where e is the identity element

of G [15]. And we have that a positive type kernel on G×G is a function k such that

for every positive integer, n, and every g1, ..., gn ∈ G, the matrix [k(gi, gj)] is positive.

We now include the definition of a cut-off function for G and note that every locally

compact second countable group has cut-off functions [15].



41

Definition 5.3.2 f is a cut-off function for G if f ∈ Cc(G) such that

1. f ≥ 0,

2. f(g−1) = f(g) ∀g ∈ G,

3. supp{f} is a compact neighborhood of the identity element of G, and

4.

∫
G

f(g)dµ(g) = 1.

Proposition 5.3.1 [Deprez, Li [15]] Let f be a continuous function from G×G→ C.

We have that f ◦ θ extends to a continuous function on βµ(G) × G if and only if f

satisfies the following two conditions:

1. sup
v∈G
|f(v, vt)| <∞ for all t ∈ G, and

2. sup
v∈G
|f(vsn, vtn)− f(vs, vt)| → 0 for all sn → s and tn → t.

Proof Assume we have a continuous function f : G × G → C such that we

have conditions (1) and (2) from above. So by (1), we have that f is bounded.

And for sn → e and tn → e, where e is the identity element of G, we have that

sup
v∈G
|f(vsn, vtn) − f(ve, ve)| → 0 and thus sup

v∈G
|f(vsn, vtn) − f(v, v)| → 0 by (2).

Since θ is an homeomorphism, we have that sup
v∈G
|f ◦ θ(vsn, vtn) − f ◦ θ(v, v)| →

0. This implies, by our definition of θ, that sup
v∈G
|f ◦ θ(vsn, vtn)− f ◦ θ(v, v)| =

sup
v∈G
|f(s−1

n v−1, s−1
n v−1vtn)− f(v−1, v−1v)| =sup

v∈G
|f(s−1

n v−1, s−1
n tn)− f(v−1, e)|.

We want to show that f is in C(βµ(G)) is the algebra of all bounded continuous

functions on G such that f(t−1s) − f(s) uniformly goes to 0 as t → e ∈ G. In our

case, we want to show that f(t−1
1 s1, t

−1
2 s2)−f(s1.s2) uniformly goes to 0 as t1, t2 → e.

So for f(s−1
n v−1, s−1

n tn)− f(v−1, e), we have t1 = sn, s1 = v−1, s2 = e, and t2 = t−1
n sn

which implies t−1
2 = s−1

n tn. Thus, we have that f(t−1
1 s1, t

−1
2 s2) − f(s1, s2) uniformly

goes to 0 as t1, t2 → e and therefore f ∈ C(βµ(G)).
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On the other hand, suppose f ◦ θ extends to a continuous function on βµ(G)×G,

say F , so F is in C(βµ(G)×G). We look at the restriction of F on G×G, which is

f ◦ θ. Since F is bounded, so is the restriction, thus sup
v∈G
|f ◦ θ(v−1, t)| <∞. We also

have that sup
v∈G
|f ◦ θ(v−1, t)| = sup

v∈G
|f(v, vt)| and therefore (1) is satisfied. Similar to

the argument above, F (t−1
1 s1, t

−1
2 s2)−F (s1, s2) uniformly goes to 0 as t1, t2 → e ∈ G

and so the restriction f ◦ θ does as well. So we have f ◦ θ(t−1
1 s1, t

−1
2 s2)− f ◦ θ(s1, s2)

uniformly goes to 0 as t1, t2 → e. This gives us, f(s−1
1 t1, s

−1
1 t1t

−1
2 s2)− f(s−1

1 , s−1
1 s2)=

f(vsn, vtn) − f(vs, vt) where v = s−1
1 and t1 = sn → e and tn = t1t

−1
2 s2 → s2 and

thus we have (2).

Deprez and Li also prove the following characterization for their definition of

Property A:

Theorem 5.3.1 [Deprez, Li] Let G be a locally compact second countable group, then

the following are equivalent:

1. G has Property A as in 5.3.1.

2. For ε > 0 and for any compact subset K of G, there exists a compact subset

L ⊆ G and a continuous map f : G→ L1(G) such that ||fg|| = 1, supp{fg} ⊆ gL

for every g ∈ G and sup
(g,h)∈Tube(K)

||fg − fh||1 < ε.

3. For ε > 0 and for any compact subset K of G, there exists a compact subset

L ⊆ G and a weak* continuous map v : G → C0(G)∗+ such that ||vg|| = 1,

supp{vg} ⊆ gL for every g ∈ G and sup
(g,h)∈Tube(K)

||vg − vh|| < ε.

4. For ε > 0 and for any compact subset K of G, there exists a compact subset

L ⊆ G and a continuous map φ : G→ L2(G) such that ||φg|| = 1, supp{φg} ⊆

gL for every g ∈ G and sup
(g,h)∈Tube(K)

||φg − φh||2 < ε.
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5. For ε > 0 and for any compact subset K of G, there exists a compact subset

L ⊆ G and a continuous type kernel k : G×G→ C such that supp{K} ⊆Tube(L)

and sup
(g,h)∈Tube(K)

|k(g, h)− 1| < ε.

Continuous functions are standard for locally compact groups, but [15] shows that

we can relax this condition. They prove the following two lemmas:

Lemma 5.3.2 [Deprez, Li] Suppose G is a locally compact, second countable group

such that if for any ε > 0 and compact subset K of G, there exists a compact subset

L ⊆ G and a map f : G → L1(G) such that ||fg|| = 1, supp{fg} ⊆ gL for every

g ∈ G and sup
(g,h)∈Tube(K)

||fg − fh||1 < ε, then the map g → fg is continuous and thus

G satisfies condition 2 of 5.3.1.

Lemma 5.3.3 [Deprez, Li] Given a locally compact, second countable group G, a

measurable kernel k0 : G × G → C which is bounded on every tube, and a cut-off

function f : G→ [0,∞) for G (which exists for any locally compact second countable

group [15]), we can now define a new kernel from G × G → C in the following

way: let k(s, t) =

∫
G

∫
G

f(v)f(w)k0(sv, tw)dµ(v)dµ(w) and we an show that k has

the following properties:

1. k is bounded on every tube.

2. k is continuous and satisfies the following uniform continuity property: when-

ever sn → s and tn → t, then sup
v∈G
|k(vsn, vtn)− k(vs, vt)| → 0.

3. If supp{k0} is in a tube, so is the support of k.

4. If k0 is a positive type kernel, then so is k.

Now we are ready to provide the proof to 5.3.1 for the convenience of the reader.

Proof We prove 1 ⇐⇒ 2, 2 ⇐⇒ 4, and 4 ⇐⇒ 5 and we omit the proof of 2 ⇐⇒

3 since we will not use property 3 below in 5.3.4.
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1⇒2: Assume G has Property A in the sense of Deprez and Li. Let K ⊆ G

be a compact subset and let ε > 0. By 5.3.2, we don’t necessarily need to find a

continuous map. Since G has Property A, we can find a compact subset L ⊆ G and

a family of Borel subsets, {As}s∈G in G×N with 0 < µ(As) < ∞. Recall µ is the

product measure of the Haar measure, µ′, and the counting measure on N. We have

the following properties now from our definition of Property A:

• for all (x, t) ∈Tube(K), we have
µ(As∆At)

µ(As ∩ At)
<
ε

2
, and

• if (t, n) ∈ As, then (s, t) ∈Tube(L).

Given s, t ∈ G, put At,x := ({s} × N) ∩ At. By Tonelli’s theorem, we can determine

that

∫
G

|At,s|dµ′(s) =

∫
G×N

χA(s, n)dµ(s, n)= µ(At). We now define an almost ev-

erywhere measurable map for each t ∈ G, ηt : G → C where ηt(s) =
|At,s|
µ(At)

. This

map is clearly nonnegative and in L1(G). Since

∫
G

|ηt(s)|dµ′(s) =

∫
G

|At,s|
µ(At)

dµ′(s) =

µ(At)

µ(At)
= 1, ||ηt||1 = 1 for every t. Also notice that ||ηs · µ(As) − ηt · µ(At)||1 =∫

G
||As,x| − |At,x||dµ′(x). ||As,x| − |At,x|| = ||({x}×N)∩As| − |({x}×N)∩At|| which

is less than or equal to |({x} × N) ∩ (At∆As)| Thus again using Tonelli’s theorem,

||ηs ·µ(As)−ηt ·µ(At)||1 =
∫
G
||As,x|−|At,x||dµ′(x) ≤

∫
G
|({x}×N)∩(At∆As)|dµ′(x) =

µ(As∆At).

Now for all (s, t) ∈Tube(K), ||ηs − ηt||1 = ||ηs − ηt ·
µ(At)

µ(As)
+ ηt ·

µ(At)

µ(As)
− ηt||1 ≤

||ηs − ηt ·
µ(At)

µ(As)
||1 + ||ηt ·

µ(At)

µ(As)
− ηt||1=

ηsµ(As)− ηtµ(At)

µ(As)
+ ||ηt||1|

µ(At)

µ(As)
− 1|≤

µ(As∆At)

µ(As)
+|µ(At)

µ(As)
−1|= µ(As∆At)

µ(As)
+|µ(At)− µ(As)

µ(As)
| ≤ 2

µ(As∆At)

µ(As)
≤ 2

µ(As∆At)

µ(As ∩ At)
< ε. Furthermore, if ηt(s) 6= 0, then (s, n) ∈ At for some n, which by definition of At

means (t, s) ∈Tube(L). Thus, supp{ηt} ⊆ tL.

2⇒1: Let K ⊆ G be a compact subset and let ε > 0. Choose 0 < ε′ < 1 such

that
6ε′

2− 5ε′
< ε. By assumption we have a compact subset L ⊆ G and continu-

ous map f : G → L1(G) such that ||f ||1 = 1, supp{f} ⊆ tL for every t ∈ G and
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sup
(s,t)∈Tube(K)

||fs − ft||1 < ε′. We identify ft with a representation function ft : G→ C

and we can see that support of this representation function is a subset of tL since

{s ∈ G : ft(s) 6= 0} ⊆ tL. Since |||fs| − |ft|||1 ≤ ||fs − ft||1, we can assume ft is

nonnegative.

We have that µ′(L) > 0 since otherwise, ||ft||1 = 0 for every t ∈ G. Put

M :=
µ(L)

ε′
> 0, and for each t ∈ G put At := {(s, n) ∈ G × N : n ≤ ft(s) ·M}.

We note At is a Borel subset of G × N for each t ∈ G. For s, t ∈ G, we put

At,s := {n ∈ N : (s, n) ∈ At} and for every t ∈ G, we define a measurable map

θt : G→ [0,∞) where θt(s) =
|At,s|
M

=
|At,s|ε′

µ′(L)
.

Notice θt satisfies the following two properties:

• µ(At) = M · ||θt||1 by the definition of At, θt, and At,s, and

• ||θt − ft||1 <
µ′(L)

M
= ε′ for all t ∈ G.

Since |||θt|−|ft|||1 ≤ ||θt−ft||1 < ε and ||ft||1 = 1, we have that |µ(At)

M
−1| < ε′ which

implies 1− ε′ < µ(At)

M
< 1 + ε′ which implies M(1− ε′) < µ(At) < M(1 + ε′). Thus,

µ(At) is finite. In fact, µ(At∆As) =

∫
G

|At,x∆As,x|dµ′(x) =

∫
G

||At,x|−|As,x||dµ′(x) =

M · ||θt − θs||1. Therefore,
µ(As∆At)

µ(As ∩ At)
=

2µ(As∆At)

2µ(As ∩ At)
=

2µ(As∆At)

µ(As) + µ(At)− µ(As∆At)
(since µ(As) + µ(At)− µ(As∆At) = 2µ(As ∩ At)).

Moreover, we have
2µ(As∆At)

µ(As) + µ(At)− µ(As∆At)
=

2||θs − θt||t
||θs||1 + ||θt||1 − ||θs − θt||1

. We

also have that ||θt||1 > (1 − ε′) for each t ∈ G and that ||θs − θt||1 < 3ε′ for every

(s, t) ∈Tube(K). We can see that
µ(As∆At)

µ(As ∩ At)
<

6ε′

2(1− ε′)− 3ε′
=

6ε′

2− 5ε′
< ε for

every (s, t) ∈Tube(K). And lastly, we have that (t, s) ∈Tube(L) since if (s, n) ∈ At,

then ft(s) 6= 0.
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2⇒4: Let f : g → L1(G) be the map we have in (2). For each t ∈ G, define

φt = |ft|
1
2 . Now we have ||φt − φs||22 =

∫
x∈G
|φt(x) − φs(x)|2dµ′(x) ≤

∫
x∈G
|φ2
t (x) −

φ2
s(x)|dµ′(x) =

∫
x∈G
||φt(x)| − |φs(x)||dµ′(x)≤ ||φt − φs||1.

Now since ||ft||1 and supp{ft} ⊆ tL and φt = |ft|
1
2 , we have that ||φt||2 = 1 and

supp{φt} ⊆ tL. Furthermore, we see that sup
(s,t)∈Tube(K)

||fs − ft||1 < ε which implies

sup
(s,t)∈Tube(K)

||φs − φt||2 < ε and gives us (4).

4⇒2: Let φ : G→ L2(G) be the map in (4). For each t ∈ G, define nt = |φt|2. By

the Cauchy -Schwarz inequality, we have ||ft − fs||1 =

∫
G

||φt(x)|2 − |φs(x)|2|dµ′(x)=∫
x∈G

(|φt(x)| + |φs(x)|)||φt(x)| − |φs(x)||dµ′(x)≤ (|||φt| + |φs|||2) · (|||φt| − |φs|||2) ≤

2||φt − φs||2. And thus we have (2).

5⇒4: Let K be a compact subset of G, 0 < ε < 1
2
, and let f be a cut-off func-

tion for G. Since the support of cut-off functions are in compact sets, (supp{f} ·

(K ∪ {e}) · supp{f}) is a compact subset of G. By assumption, there exists a

compact subset L ⊆ G and a continuous positive type kernel k0 on G such that

supp{k0} ⊆Tube(L) and sup{|k0(s, t) − 1| : (x, y) ∈ Tube(supp{f} · (K ∪ {e}) ·

supp{f})}< ε. Since k0 is a positive type kernel, k0 is bounded. In fact k0(s, s) <

(1 + ε) for all s ∈ G, since, by our work above, we have |k0(s, s) − 1| < ε. By

5.3.3, we can construct a continuous, bounded, positive type kernel supported in a

tube,say L′, k : G×G→ C given by k(s, t) =

∫
G

∫
G

f(v)f(w)k0(sv, tw)dµ′(w)dµ′(v).

If (s, t) ∈Tube(K ∪{e}), then |k(s, t)−1| =|
∫
G

∫
G

f(v)f(w)k0(sv, tw)dµ′(w)dµ′(v)−∫
G

f(v)dµ′(v)

∫
G

f(w)dµ′(w)| ≤
∫

supp{f}

∫
supp{f}

f(w)f(v)|k0(sv, tw)−1|dµ′(v)dµ′(w) ≤

sup{|k0(x, y)− 1| : (x, y) ∈Tube(supp{f} · (K ∪ {e}) · supp{f})} < ε.
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Now let Tk0 be the integral operator induced by k0 on L2(G) which is defined

by Tk0(f)(s) =

∫
G

k0(s, t)f(t)µ′(t). Tk0 is bounded and positive and k(s, t) =:

< Tk0ft, fs > in which ft(x) = f(t−1x). And we consider a positive polynomial p

such that |p(t) − 1| < ε

||f ||22
for t ∈ [0, ||Tk0 ||]. Let η be a continuous map from

G → L2(G) defined by ηt = p(Tk0)ft. Now we have | < ηt, ηs > −k(s, t)| =

| < p(Tk0)ft, p(Tk0)fs > −k(s, t)|= | < p2(Tk0)ft, fs > − < Tk0ft, fs > | (since

k(s, t) =< Tk0ft, fs >). By our inner product properties, this is equal to | <

p2(Tk0)ft − Tk0ft, fs > | ≤||p2(Tk0)− Tk0|| · ||ft||2 · ||fs||2 < ε for all s, t ∈ G.

Now we have | < ηt, ηs > −1| = | < ηt, ηs > −k(s, t) + k(s, t) − 1| ≤ | < ηt, ηs >

−k(s, t)| + |k(s, t) − 1| < 2ε for every (s, t) ∈Tube(K ∪ {e}). This now implies

1 − 2ε < Re(< ηt, ηs >) < 2ε + 1 for every (s, t) ∈Tube(K ∪ {e}). Since ε < 1
2

and

|||ηt||22 − 1| < 2ε, then 0 <
√

1− 2ε < ||ηt||2 <
√

1 + 2ε.

We now define a continuous map φ : G → L2(G) by φt =
ηt
||ηt||2

which satisfies

the following: 1 − Re(< φt, φs >) = 1 − Re(< ηt, ηs >)

< ηt, ηt >
1
2< ηs, ηs >

1
2

≤ 1 − 1− 2ε

1 + 2ε
=

4ε

1 + 2ε
< 4ε for all (s, t) ∈Tube(K ∪ {e}). And thus, we have that ||φs − φt|2 =√

2− 2Re(< φt, φs >) <
√

8ε for all (s, t) ∈Tube(K). Moreover, if p is of degree

n, supp{φt} ⊆ t · supp{f} · ((Ln)−1 ∪ · · · ∪ L−1 ∪ {e}) which gives us our support

requirement for (4).

In the same paper, Deprez and Li show that their definition of Property A is

the same as Delaroche’s notion of amenable at infinity groups. Recall our theorem

in Section 2.2.2 in which Delaroche lists several characterizations for amenable at

infinity. Since our definition of property A requires a group to act amenably on a

compact set, our definition is equivalent to amenable at infinity. We now show that

our definition is equivalent to Deprez and Li’s definition for Property A groups.

Theorem 5.3.4 (H) Given a locally compact, second countable group G, the follow-

ing are equivalent:
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1. There exists a compact space X such that G acts amenably and continuously on

X.

2. G is amenable at infinity.

3. There exists a sequence < hi > of positive type kernels in Cb,θ(G × G) with

support in a tube such that lim
i
hi = 1 uniformly on tubes.

4. For any compact subset K ⊂ G and ε > 0, there exists a compact subset L ⊂ G

and a family of Borel sets {Ag}g∈G ⊆ G× N with finite measure (0 < µ(Ag) <

∞) such that

• for all (g, t) ∈Tube(K),
µ(Ag∆Ah)

µ(Ag ∩ Ah)
< ε, and

• if (g′, n) ∈ Ag, then (g, g′) ∈Tube(L).

5. For ε > 0 and for any compact subset K of G, there exists a compact subset

L ⊆ G and a continuous type kernel k : G×G→ C such that supp{k} ⊆Tube(L)

and sup
(g,h)∈Tube(K)

|k(g, h)− 1| < ε.

Proof Both (2)⇐⇒ (3) and (4)⇐⇒ (5) were listed for convenience and proved in

2.2.2 and 5.3.1 respectively. Since G is locally compact, we must have a continuous

group action. Thus we have (1)⇐⇒ (2).

(3)⇒ (5): Let ε > 0 and let K be a compact subset of G, and suppose there exists

a sequence < hi > of positive type kernels in Cb,θ(G × G) with support in a tube

such that lim
i
hi = 1 uniformly on tubes. Since for any i ∈ I, hi has its support in a

tube, say L, and converges to 1 uniformly on tubes, we can find an i ∈ I such that

sup
(g,h)∈Tube(K)

|hi(g, h)− 1| < ε. Therefore we have (5).

(5)⇒ (3): On the other hand, suppose for any ε > 0 and compact subset K of

G, we have a continuous type kernel k0 : G × G → C such that {K} ⊆Tube(L) and

sup
(g,h)∈Tube(K)

|k0(g, h)− 1| < ε. By 5.3.3, we can define a kernel that is also of positive
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type, supported in a tube, bounded on every tube, and satisfied the uniform continuity

property. That is, for any sequence sn → s and tn → t in G, then sup
v∈G
|k(vsn, vtn)−

k(vs, vt)| → 0. Notice that this uniform continuity is the same requirement needed

in 5.3.1, and since k is bounded on every tube, we have the requirements of 5.3.1.

Therefore our k is in Cb,θ(G×G). Thus we have lim
i
ki = 1 uniformly on tubes which

is enough to show (3).

Deprez and Li show that a locally compact, second countable Hausdorff group

which is of Property A satisfies the Baum Connes Conjecture. Thus, our locally

compact Property A groups have the same result.

Corollary 5.3.5 (Deprez, Li) If G is a locally compact, second countable, Haus-

dorff group which has Property A, then the Baum-Connes assembly map with coeffi-

cients for G is split-injective.
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6. CONCLUSION

6.1 Further Work

Since we have expanded the notion of Property A to locally compact groups, we can

now ask whether we have similar results for properties we know to be true for discrete

Property A groups. For example, we can ask whether we can generalize [16]’s work

with relative Property A groups to the locally compact case. We can also connect our

locally compact Property A groups with the cohomology of groups. As we mentioned

in 2.2.4, we can connect amenable actions and Property A with the cohomology of

a group. In [11], Brodzki, Niblo, Nowak, and Wright relate amenable actions and

exactness of a countable discrete group with the bounded cohomology of the group.

And in [17], Monod examines some of the characterization of topologically amenable

actions in terms of bounded cohomology. The next step for our definition of locally

compact Property A groups is to show similar results for the continuous bounded

cohomology of a group.

Whereas [11] and [16] use the analogue of `1(G), W0(G,X), we should use an ana-

logue of L1(G). We now denote by V , the Banach space of all functions f : G→ C(X)

endowed with the sup-L1 norm of f defined as ||f ||∞,1 = sup
x∈X

∫
G

|fg(x)|dg. Note for

a function f : G → C(X), fg denotes the continuous function on X obtained by

evaluating f at g ∈ G where G is a locally compact group. We now define W00(G,X)

to be the subspace of V which contains all functions f : G → C(X) which have

compact support and such that for some c ∈ R which depends on f ,
∫
G
fg = c1X .

Notice we have compact support instead of finite support like in [11] since we have a

locally compact group. We denote the closure of W00(G,X) in the sup-L1 norm by
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W0(G,X). And we let π : W00(G,X) → R be defined so that
∫
G
fg = π(f)1X . As

with the finite support case, we can extend this map to the closure W0(G,X) and we

denote the kernal of this extension by N0(G,X). And the continuous group action

on X gives an isometric action of G on C(X). That is, for g ∈ G and f ∈ C(X), we

define the action (g · f)(x) = f(g−1x). G also acts isometrically on V. For g, h ∈ G,

x ∈ X, f ∈ V , we have (gf)h(x) = fg−1h(g
−1x) = (g · fg−1h)(x).

In 2.2.4, we stated Monod’s Theorem from [17] about the connection between a

discrete group acting on a compact space X and the cohomology of the group. We

will state it again for convenience.

Theorem 6.1.1 (Monod) Let G be a group acting on a compact space X. TFAE:

1. The G action on X is topologically amenable. That is, there is a net {uj}j∈J
∈ C(X, `1(G)) such that every uj(x) is a probability measure on G and

lim
j∈J
||guj − uj||C(X,`1(G)) = 0 for all g ∈ G.

2. Hn
b (G,C(X, V )∗∗) = 0 for every Banach G-module V and every n ≥ 1.

3. Hn
b (G,I (C(X),W ∗)) = 0 for every Banach G-module W and every n ≥ 1.

4. Hn
b (G,E∗) = 0 for every Banach G-module E of type M and every n ≥ 1.

5. Any of the previous three points hold for n = 1.

6. C(X, V )∗∗ is relatively injective for every Banach G-module V.

7. I (C(X),W )∗ is relatively injective for every Banach G-module W.

8. Every dual (G,X)-module of type C is a relatively injective Banach G-module.

9. There is a G-invariant element in C(X, `1(G))∗∗ summing to 1X .

10. There is a norm one positive G-invariant element in C(X, `1(G))∗∗ summing to

1X .
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Monod mentions in [17] that the proof from 1 to 8 still holds for locally compact,

second countable groups. Our next step in our research is to determine whether the

whole proof works for locally compact, second countable groups. And thus locally

compact Property A groups would follow under this characterization. In doing so, we

would possibly have a locally compact version of Monod’s theorem which may look

something like the following:

Conjecture 4 Let G be a group acting on a compact space X. TFAE:

1. The G action on X is topologically amenable.

2. Hn
cb(G,C(X, V )∗∗) = 0 for every Banach G-module V and every n ≥ 1.

3. Hn
cb(G,I (C(X),W ∗)) = 0 for every Banach G-module W and every n ≥ 1.

4. Hn
cb(G,E

∗) = 0 for every Banach G-module E of type M and every n ≥ 1.

5. Any of the previous three points hold for n = 1.

6. C(X, V )∗∗ is relatively injective for every Banach G-module V.

7. I (C(X),W )∗ is relatively injective for every Banach G-module W.

8. Every dual (G,X)-module of type C is a relatively injective Banach G-module.

9. There is a G-invariant element f ∈ C(X,L1(G))∗∗ such that
∫
G
|f(g)|dg = 1X .

10. There is a norm one positive G-invariant element f in C(X,L1(G))∗∗ such that∫
G
|f(g)|dg = 1X .
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6.2 Conclusion

In conclusion, locally compact Property A groups broadens the scope of Yu’s

Property A which in turn expands the scope of coarse embedding, the Baum-Connes

Conjecture, and the Novikov Conjecture. Since these notions and conjectures appear

in many different fields in mathematics including cohomology, differential geometry,

and K-theory, our research could show up in a variety of applications.
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