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 ABSTRACT 18 

Reference point indentation (RPI) has emerged as a novel tool to measure material-level 19 

biomechanical properties in vivo.  Human studies have been able to differentiate fracture versus 20 

non-fracture patients while a dog study has shown the technique can differentiate drug 21 

treatment effects.  The goal of this study was to extend this technology to the in vivo 22 

measurement of rats, one of the most common animal models used to study bone, with 23 

assessment of intra- and inter-animal variability.  Seventy-two skeletally mature male Sprague-24 

Dawley rats were subjected to in vivo RPI on the region between the tibial diaphysis and 25 

proximal metaphysis.  RPI data were assessed using a custom MATLAB program to determine 26 

several outcome parameters, including first cycle indentation distance (ID-1st), indentation 27 

distance increase (IDI), total indentation distance (TID), first cycle unloading slope (US-1st), and 28 

first cycle energy dissipation (ED-1st).  Intra-animal variability ranged from 13-21% with US-1st 29 

and Tot Ed 1st-L being the least variable properties and IDI the most highly variable.  Inter-30 

animal variability ranged from 16% (US-1st) to 25% (ED-1st and IDI). Based on these data, group 31 

size estimates would need to range from 9-18/group to achieve sufficient power for detecting a 32 

25% difference in a two-group experiment. Repeat tests on the contralateral limb of a small 33 

cohort of animals (n=17) showed non-significant differences over 28 days ranging from -6% to -34 

18%. These results provide important data on RPI variability (intra- and inter-animal) in rats that 35 

can be used to properly power future experiments using this technique. 36 

 37 

38 
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INTRODUCTION 39 

Assessment of biomechanical properties has long been confined to pre-clinical studies and, 40 

more specifically, ex-vivo mechanical tests.  Recent technology, termed reference point 41 

indentation (RPI), has made it possible to assess biomechanical properties in vivo (Hansma et 42 

al., 2008).  In vivo studies have shown that RPI can differentiate between patients who have 43 

fractured versus non-fracture patients (Diez-Perez et al., 2010) as well as patients who have 44 

been treated with bisphosphonates versus those who were treatment naïve (Güerri-Fernández 45 

et al., 2012).  In vivo testing of dogs has shown RPI can differentiate raloxifene treatment from 46 

controls after six months of clinically relevant dosing (Aref et al., 2013).  In addition, a related 47 

device (Osteoprobe) that operates using slightly different technology revealed significant 48 

differences in the material properties of patients with diabetes versus healthy controls (Farr et 49 

al., 2014).  Collectively, these data show promise for RPI technology to allow minimally invasive 50 

measures of material-level biomechanical properties. 51 

 Rodents represent the most commonly used animal model to study bone and are often 52 

the model first used to evaluate novel interventions (Kalu, 1991; Thompson et al., 1995).  53 

Although several studies have assessed biomechanical properties of rodent bone ex vivo, there 54 

have been no reports of in vivo assessment of rodents.  The goal of this study was to determine 55 

the intra- and inter-animal variability, as well as the variability over time (in order to understand 56 

potential variability that might occur in control animals in future intervention studies), for in vivo 57 

measures with RPI in skeletally mature rats.  These data will be essential to understand the 58 

practicality of the technique for use in rats as well as to provide variability data to help design 59 

adequately powered experiments.    60 

METHODS 61 

Experimental design 62 
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Seventy-two skeletally mature male (6 month old) Sprague Dawley rats were purchased 63 

(Harlan) and acclimatized for one week prior to reference point indentation (RPI) testing. A 64 

subset of animals (n=17) underwent a second RPI test session 28 days after the first test.  65 

These repeat test sessions were performed on the contralateral limb to avoid any local tissue 66 

damage caused by the first test session.  Following each testing session, animals were returned 67 

to their cages.  These animals were part of a larger experiment that is outside the scope of this 68 

current report.  All procedures were approved by the Indiana University School of Medicine 69 

Animal Care and Use Committee prior to the start of the study.   70 

Reference point indentation (RPI) 71 

Material-level mechanical properties of the anterior surface of the tibial cortex were assessed in 72 

vivo using RPI (Biodent Hfc, Active Life Scientific, Santa Barbara, CA).  This site was chosen as 73 

it has been utilized previously in human and dog in vivo studies, and its limited soft tissue 74 

coverage facilitates easy access to the bone surface. The cortical thickness in this region is 75 

around 4 mm thick.  Rats were placed under general anesthesia using inhalation isoflurane, and 76 

a local anesthetic was injected just beneath the skin in the region of testing.   Skin overlying the 77 

region was pierced with a sterile BP1 probe contained within the measurement head unit (MHU) 78 

attached to a modified holder apparatus (Figure 1).  The MHU was lowered vertically, normal to 79 

the surface of the bone, until the probe assembly rested on the bone surface. As opposed to 80 

previous in vivo work in humans and dogs, we did not scrape the periosteum prior to testing due 81 

to challenges working in the small target area. Following positioning of the reference probe, a 82 

reference force of ~13 Newtons was applied to stabilize the MHU, and the measurement 83 

protocol was initiated. Measurements began with a series of four preconditioning cycles (1N 84 

force at 5 Hz) followed by a series of 10 testing cycles (10 N at 2 Hz).  This force was chosen to 85 

match in vivo levels used previously in humans and dogs. To achieve our goal of three usable 86 

tests for each animal, between three and seven measurements, within a few mm of each other, 87 



 

-Page 5 - 

were collected.  For the multiple tests on each animal an average was taken for a given 88 

parameter and that data-point was used to compare that parameter across animals.  All animals 89 

were conscious and mobile ~10 minutes post-testing.  There was no sign of post-test pain or 90 

discomfort as assessed by visual inspection of animals during normal cage activity. 91 

Raw data output from the RPI analysis software (version 2.0) were imported into a 92 

customized MATLAB code (Mathworks) (Aref et al., 2013). Primary variables of interest from the 93 

MATLAB program include first cycle indentation distance (ID-1st), which represents the depth 94 

the probe penetrated on the initial cycle; first cycle energy dissipation (ED-1st), which represents 95 

the energy dissipated in the first cycle; first cycle unloading slope (US-1st) which represents  96 

material stiffness (damage modulus) for the first cycle; indentation distance increase (IDI), which 97 

represents the penetration depth between the first and 10th cycle; total indentation distance 98 

(TID),) which represents the distance from the bone surface to the depth of penetration after the 99 

10th cycle; and total energy dissipation (Tot ED) which represents the total energy dissipation 100 

summed over all 10 cycles (Figure 1).  Our previous work has shown that parameters analyzed 101 

by the MATLAB software that were also generated by the manufacturer software yielded 102 

correlation coefficients of >0.96 (Aref).  The advantage of the MATLAB program over the 103 

manufacturer software is that additional data, specifically cycle-by-cycle and energy data are 104 

generated.   105 

Data Analyses 106 

Intra-animal variability was assessed by calculating the coefficient of variation (CV) for all tests 107 

within an animal.  Inter-animal variation was assessed by calculating CVs for each outcome 108 

parameter across all animals.  Paired t-test analyses were used to compare baseline and 28 109 

day data. 110 

RESULTS 111 
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A total of 319 tests were conducted in the 72 animals.  Of these, 49 tests were deemed 112 

unsuccessful during testing based on the operators noting various problems with the tests.  113 

These included the test having a negative IDI (probe final position is above original reference 114 

position), decreasing displacement in first few cycles (resulting in a negative loading slope), or 115 

the measurement unit shifting during test.  Upon removal of these unsuccessful tests, 71 116 

animals had between 2 and 5 measures, and these were used for subsequent analyses (one 117 

animal was removed because it had only one acceptable measure). 118 

 Intra-animal variation of RPI parameters ranged from between 13.3 and 20.6% (Table 1, 119 

Figure 2A).  The least variable parameters within animals were US 1st and Tot ED 1st-L, each 120 

with a coefficient of variation of 13%.  The most variable parameter within animals was IDI a CV 121 

of 20.6%.  Inter-animal variation ranged from 16-25% (Table 2, Figure 2B).  The least variable 122 

parameter among animals was US-1st (CV = 16%), while both ED-1st and IDI had the largest 123 

CVs of 25%. 124 

   One month following the initial RPI tests, a subset of animals (n=17) underwent a 125 

second RPI test on the contralateral limb.  In this smaller dataset, intra-animal variation ranged 126 

from 45-74% with TID and ID-1st being the least variable parameters and US-1st the most 127 

variable.  The inter-animal variability in this data set ranged from 13-23% with the least variable 128 

parameter being US-1st and the most variable being TID and ID-1st (data not shown). 129 

 Changes between baseline and one month measures were calculated to determine 130 

variability over time in untreated animals.  All six parameters were, on average, lower at the 131 

second measurement relative to the first, with decreases ranging from -6% to -18% (Table 3).  132 

For each parameter, there was a wide range of responses with some animals increasing, some 133 

decreasing, and others unchanged (Figure 3).  There was no significant difference in any 134 

parameter between baseline and day 28. 135 
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DISCUSSION 136 

There is significant experimental value in assessing outcome variables in vivo yet from the 137 

perspective of biomechanical properties this presents unique challenges.  Serum/urine 138 

biomarkers have long been used to track bone remodeling parameters over time, and recent 139 

advances in imaging have allowed for high resolution in vivo longitudinal measures of bone 140 

density and structure (Bouxsein and Delmas, 2008).  These measures allow individual variability 141 

to be accounted for in statistical analyses, allowing for the utilization of fewer subjects/animals 142 

compared to traditional cross-sectional designs.  The development of reference point 143 

indentation (RPI) technology has made it possible now to assess material-level biomechanical 144 

properties of bone in vivo (Aref et al., 2013; Diez-Perez et al., 2010).  Although studies have 145 

used RPI in rodent bone ex vivo (Gallant et al., 2013), no data exists on its in vivo application in 146 

this animal model. 147 

 Inter-individual variability of in vivo measures on human patients has been reported to be 148 

between 15% and 24% for IDI and 10-17% for Total ID (Diez-Perez et al., 2010; Güerri-149 

Fernández et al., 2012). Inter-individual variability of in vivo measurements in dogs ranged from 150 

5% (US-1st) to 27% (ID-1st and Energy-1st) (Aref et al., 2013).  Our current work in rats falls 151 

within these same ranges.  Because of the larger data set (n=71) and use of inbred rats, inter-152 

individual variability should be lower than previous studies in dogs and humans.  One potential 153 

explanation for this is size differences.  The test is being conducted over a larger percentage of 154 

the total bone length in rats compared to dogs and humans and thus may be incorporating more 155 

of the natural variability in properties that exist along the length of the bone.  The small size also 156 

presents challenges to orienting the test set-up that are not of concern in larger test subjects. 157 

Alternatively, the lack of periosteum scraping in the rats may increase the variation.  Due to the 158 

small target region we opted not to scrape periosteum as has been done in dogs and humans. It 159 
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is also possible that the inherent properties of the microstructure in rat bone are simply more 160 

variable than they are in dogs or humans. 161 

In an attempt to put the inter-animal variations into context, we calculated CVs for an 162 

archived set of untreated rat femoral whole bone three-point bending tests from our laboratory 163 

(Table 4). These values range from 7-30% for common parameters such as ultimate load, 164 

stiffness, and energy to failure, suggesting that RPI tests produce data that fall near the upper 165 

range of variability produced by traditional ex vivo mechanical tests.  Despite its variability, 166 

though, RPI is currently the only technique that provides in vivo measurements of skeletal 167 

material properties in rodents. This is valuable as it would allow for the reduction of animal 168 

numbers and, if the effect sizes are sufficient, the detection of changes in mechanical properties 169 

over time.  For example, in an experimental design of two groups, the number of animals 170 

needed to detect, with 80% power, a 25% difference in outcomes based on the inter-animal 171 

variation the study would need between 9-18 animals per group at any single time point of 172 

measure (Table 2).  173 

The presented data should be considered within the context of some limitations.  As this 174 

was the first attempt to extend this in vivo technology to rats, refinement in this technique could 175 

lower the variation in future studies.  Despite our previous experience with in vivo testing (Aref 176 

et al., 2013), the smaller length scale of the rat, relative to the dog, was challenging.  The 177 

development of hardware to help standardize position of test locations along the length of the 178 

tibia may help reduce intra-individual variability.  We also conducted repeated measures on the 179 

contralateral limb without knowledge of side-to-side variability in RPI properties.  Therefore, we 180 

are unable to determine whether decreases in the values of RPI parameters between time 181 

points is a product of time (and/or growth) or a product of variability between limbs.  Our 182 

rationale for not performing repeat tests on the same limb was based on the assumption there 183 

would be residual damage (or healing in response to damage) at the 28-day time point. Hence, 184 
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we aimed to avoid any influence of such damage on the second measure.  Whether or not such 185 

damage persists remains unknown and should be the focus of future work as testing of the 186 

same limb is likely to reduce variability.  Previous work on ex vivo specimens has shown that 187 

lower load values (5N versus 10N) yielded lower viability (Setters and Jasiuk, 2014) thus it’s 188 

possible that using lower loads in vivo would have benefit.  189 

In conclusion, we present data on the in vivo variability of reference point indentation 190 

testing in skeletally mature rats.  These data will provide a foundation for designing future 191 

studies using this technology by providing the intra-, inter-, and repeated measure variability in 192 

measures. 193 
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Table 1.  Intra-animal variation of RPI in skeletally mature male rats 201 

 

1st Cycle 
Indentation 
Distance 
(ID 1

st
) 

1st Cycle 
Energy 
Dissipated 
(ED 1st) 

1st Cycle 
Unloading 
Slope 
(US 1st) 

Indentation 
Distance 
Increase 
(IDI 1st-L)  

Total 
Indentation 
Distance 
(TID 1st-L) 

Total 
Energy 
Dissipated 
(Tot ED 
1st-L)  

Mean CV 
within 
animal, 
% 17.4 14.1 13.3 20.6 16.9 13.4 
Standard 
deviation, 
% 10.4 10.8 13.0 14.9 10.2 9.3 

 202 

Table 2.  Inter-animal variation of RPI in skeletally mature male rats 203 

 

1st Cycle 
Indentation 
Distance 
(ID 1st) - 

µm 

1st Cycle 
Energy 

Dissipated 
(ED 1st) - 

µJ 

1st Cycle 
Unloading 
Slope (US 
1st) - N/µm 

Indentation 
Distance 
Increase 

(IDI 1st-L) 
- µm 

Total 
Indentation 
Distance 

(TID 1st-L) 
- µm 

Total 
Energy 

Dissipated 
(Tot ED 

1st-L) - µJ 

Mean 116 342 0.42 10.68 121 885 
Standard 
deviation  25 86 0.07 2.71 25 206 
Coefficient 
of 
Variation 
(CV), % 21 25 16 25 21 23 
Animals 
needed in 
each of 
two group 
s to detect 
a 25% 
treatment 
effect 13 17 9 18 12 15 

 204 

  205 
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Table 3.  Percent difference of RPI parameters between baseline and 28-day test sessions. 206 

 

1st Cycle 

Indentation 

Distance (ID 1st)  

1st Cycle 

Energy 

Dissipated 

(ED 1st) 

1st Cycle 

Unloading 

Slope (US 

1st) 

Indentation 

Distance 

Increase (IDI 

1st-L) 

Total 

Indentation 

Distance 

(TID 1st-L)  

Total 

Energy 

Dissipated 

(Tot ED 

1st-L) 

MEAN, % -6 -9 -13 -13 -7 -18 

SD 36 30 29 42 35 34 

  207 

 208 

Table 4.  Inter-animal variability of traditional mechanical properties assessed by 3 point 209 

bending. 210 

 211 

 212 

 213 

  214 

 

Ultimate 
Force 

(N) 

Displacement 
to Yield (mm) 

Postyield 
Displacement 

(mm) 

Total 
Displacment 

(mm) 

Stiffness 
(N/mm) 

Work 
to 

Yield 
(mJ) 

Postyield 
Work 
(mJ) 

Total 
Work 
(mJ) 

Mean 230 447 305 752 510 41 64 105 
Standard 
deviation  21 61 91 52 47 9 17 13 

Coefficient 
of Variation 

(CV), % 9 14 30 7 9 22 27 13 
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Figure Legends. 215 

Figure 1.  In vivo testing set up and outcome parameters for RPI in skeletally mature rats.  (A) 216 

The animals lower limb was flexed at the knee joint and placed on an elevated support 217 

so that the proximal tibial plateau was perpendicular to the testing probe.  The foot was 218 

secured in place at the ankle and then a series of 10 cyclic indents were initiated where 219 

the test probe penetrates to a force of 10 N and then retracts.  (B) Following the first 220 

cycle of the cyclic test, key outcomes of 1st cycle indentation distance (1st cycle ID), 1st 221 

cycle unloading slope (1st cycle US) and 1st cycle energy dissipation (1st cycle ED) can 222 

be calculated.  Additional parmeters are obtained after the 10th cycle, including total 223 

indentation distance (Total ID), indentation distance increase (IDI) and energy 224 

dissipation (Total ED). 225 

Figure 2.  RPI variability within animal and among animals.  (A)  Intra-animal variation, 226 

presented as the mean and standard deviation of the coefficient of variation (%) within a 227 

given animal.  (B) Inter-animal variation, presented as the CV (%) for each variable 228 

across all animals. 229 

 Figure 3.  Percent difference of in vivo RPI measures taken 28 days apart, on contralateral 230 

limbs, in untreated skeletally mature male rats. Box plots represent the median, 10th, 231 

25th, 75th an 90th percentiles, as well as those individual data points outside this range.  232 

  233 
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