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Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells
can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia.
Although they are different in structural design and basic function, they share common remodeling proteins such as integrins,
talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role
of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK,
Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these
tyrosine kinases from the perspective of human diseases.

1. Introduction

The extracellular matrix (ECM) is an insoluble supra-
structure comprised of a variety of matrix components
including fibronectin, glycosaminoglycans, chrondronectin,
osteonectin, collagens, laminin, proteoglycans, and growth
factors [1–6]. The ECM provides the scaffold for cell
attachment which is necessary for several diverse cellular
activities, including cytoskeletal remodeling, polarization,
differentiation, migration, and invasion [7–9]. Binding to the
ECM is regulated by various signaling pathways that control
the assembly and disassembly of three distinct, but function-
ally related actin and integrin-containing adhesion structures
known as focal adhesions, podosomes, and invadopodia.
In this review, we will discuss our current understanding
of the similarities and differences between focal adhesions,
podosomes, and invadopodia. We also will highlight several
important tyrosine kinases and other signaling proteins
that are known to control the formation and function of
these adhesion structures, and we will discuss their role in
pathophysiology.

2. Focal Adhesions

Focal adhesion formation and turnover has been used
as a model system for understanding the mechanisms of

cellular adhesion. Although focal adhesions, podosomes,
and invadopodia share common signaling proteins, they are
distinct in cellular architecture and function (summarized
in Table 1). Focal adhesions, also known as “focal contacts,”
were identified over 30 years ago by electron microscopy
and described as electron-dense plaques associated with actin
filament bundles [10]. Focal adhesions can be considered to
be large protein assembly complexes that spread mechanical
forces from sites of cell adhesion to the cell body. In
addition, focal adhesions regulate intracellular signaling
pathways necessary for cell migration, growth, proliferation,
embryogenesis, wound healing, and tissue repair [11–14].
Focal adhesions are comprised of a wide range of signaling
proteins [15], such as the tyrosine kinases Pyk2 [16, 17], FAK
[18, 19], Src [20, 21], Abl [22], and integrin-linked kinase
[23]; the phosphatases PTP-PEST [24] and PTP1B [25]; the
actin-binding proteins paxillin [26, 27], talin [23, 28–30],
vinculin [23, 28–30] and tensin [31], the GTPases dynamin
[32] and Cdc42/Rho [33, 34], as well as scaffolding proteins
p130Cas [35] and Crk [27]. Many of these proteins have been
shown to play predominantly a structural role or are involved
in signal transduction [36].

Several protein kinases are recruited to focal adhesions
upon cell attachment. These protein platforms recruit adap-
tor proteins and lead to the activation of complex network
of signaling cascades that regulate basic cellular functions
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Figure 1: Inhibition of dynamin increases focal adhesions. Calvarial-derived osteoblasts (OBs) were treated with dynasore (90 μM) or vehicle
for 1 hr and labeled for vinculin (green) or paxillin (red). Green and red channels were merged to form the composite image. Scale bar
indicates 10 μm. Arrows show location of focal adhesions.

[16, 36]. An important tyrosine kinase found in focal adhe-
sions is the focal adhesion kinase (FAK). FAK is a 125 kDa
cytoplasmic tyrosine kinase that is activated upon integrin
engagement and controls signaling pathways crucial for cell
proliferation, migration, and survival [37]. The C-terminal
domain of FAK is known as the focal adhesion targeting
domain (FAT). As its name implies, the FAT domain is
involved in directing FAK to focal adhesion complexes in a
variety of cells [38]. In contrast, the N-terminal domain of
FAK is known as the FERM domain (F for the 4.1 protein,
Ezrin, Radixin, and Moesin). The central kinase domain of
FAK, which itself is activated by phosphorylation, directs the
phosphorylation of several signaling protein such as paxillin,
Grb2 and p130Cas [39]. In vitro studies have shown that
the FERM binds directly to the intracellular domain of the
β1-integrin subunit and regulates FAK kinase activity [40].
It was also discovered that blocking β1-integrin function
leads to FAK dephosphorylation, which in turn increases the
sensitivity of malignant tumors to ionizing radiation and
delays the growth of human head and neck squamous cell
carcinoma cell lines [41].

FAK and the tyrosine kinase Src play a central regulatory
role in focal adhesion turnover, and deletion of either of these
kinases increases focal adhesion stability [42]. In addition,
it has been shown that FAK and Src work in concert
with the GTPase dynamin to regulate microtubule-induced
focal adhesion disassembly [43]. In studies by Ezratty and
colleagues, FAK−/− fibroblasts exhibited reduced dynamin
accumulation around focal adhesions compared to controls
[43], suggesting that FAK regulates dynamin localization and
recruitment to focal adhesions. In addition, Wang and others
demonstrated that Src phosphorylates dynamin at tyrosine
residues, which promotes the translocation of dynamin to
focal adhesions by FAK [32]. Disruption of the Src-FAK-
dynamin complex blocked focal adhesion disassembly and

fibroblast migration [32]. Using bone-forming osteoblasts as
our model system, we also found that dynamin is expressed
in osteoblasts and inhibition of its GTPase activity with
the chemical inhibitor dynasore, increased the number of
vinculin and paxillin-positive focal adhesions in osteoblasts,
compared to control cells (Figure 1). Interestingly, we found
that dynamin is also localized to actin-rich podosomes,
in bone-resorbing osteoclasts [44, 45]. Moreover, dynamin
knockdown with shRNA or overexpression of a GTPase-
inactive dynamin mutant increased podosome stability
and the thickness of the podosome belt and decreased
osteoclast bone resorbing activity [44]. Together, these
studies reveal that dynamin’s GTPase activity is necessary
for both focal adhesion turnover in osteoblasts as well
as podosome turnover in osteoclasts. Furthermore, these
findings suggest potential similarities in the mechanism
of turnover of focal adhesions and podosomes, which
is likely to be dependent on the complement of sig-
naling and scaffolding proteins present in different cell
types.

3. Podosomes

Podosomes are highly dynamic adhesion structures found
in a wide variety of migratory cells including macrophages,
osteoclasts, endothelial cells [46–50], transformed fibrob-
lasts [51], and carcinoma cell lines [52]. They were first
identified in the 1980s in v-Src-transformed fibroblasts
[53, 54]. Podosomes and focal adhesions are both cell-
matrix adhesion sites, but they differ in their structural
design and turnover rates [55–59] (Table 1) despite sharing
a large number of common signaling proteins, such as
FAK, dynamin, talin, paxillin, Wasp, and vinculin [60].
Podosomes turnover occurs very rapidly with an appar-
ent half-life of 2–12 min and involves the polymerization
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Figure 2: Dynamics of podosome organization in osteoclasts. Osteoclasts were generated from mouse bone marrow and plated on FBS-
treated coverslips for various times. Cells were fixed and stained with rhodamine phalloidin. Actin patches are found soon after osteoclast
attachment. Actin patches then reorganize into small rings and then into a peripheral podosome belt. The podosome belt is stabilized by the
microtubule network. Scale bar is 10 μm.

Table 1: Common and unique features of focal adhesions, podosomes, and invadopodia. See text for details.

Focal adhesion Podosomes Invadopodia

Appearance dense plaques of F-actin
F-actin bundle core surrounded by
actin cloud

F-actin bundle core surrounded by actin
cloud

Size width: 2–6 μm
width: 0.5–2 μm
length: 0.5–2 μm

width: 0.5–2 μm
length: >2 μm

Duration (half-life) hours minutes hours

Cell expression
numerous nonmigrating fibrob-
lastic cells

monocytic cells
osteoclasts
endothelial cells
smooth muscle cells
Src-transformed fibroblasts

carcinoma cells
Src-transformed fibroblasts

Location often found at leading edge of cell ventral side of the cellular membrane ventral side of the cellular membrane

Extracellular matrix
degradation

no yes yes

Common signaling
molecules

focal adhesion proteins
GTPases
actin regulators
motor proteins
tyrosine kinases
phosphatases
scaffolding molecules

focal adhesion proteins
GTPases
actin regulators
motor proteins
tyrosine kinases
phosphatases
scaffolding molecules

focal adhesion proteins
GTPases
actin regulators
motor proteins
tyrosine kinases
phosphatases
scaffolding molecules

Distinct Features integrin receptors
Integrin receptors
matrix-degrading enzymes

matrix-degrading enzymes

and depolymerization of the central F-actin core [50,
61]. Podosomes first appear as small actin dots which
are then reorganized into small rings or rosettes with a
diameter of 0.5–1 μm and a depth of 0.2–0.4 μm [62, 63]
(Figure 2). The assembly of podosomes in macrophages
and osteoclasts is dependent on an intact microtubule
system [49, 64]. The central core of F-actin is surrounded

by a ring of molecules that are involved in adhesion,
matrix degradation, or migration. These proteins include
the tyrosine kinases Pyk2 and Src [13], actin-associated
proteins [51, 65], integrins [66], and their associated proteins
[50], intermediate filaments [47], motor proteins [67] and
metalloproteases [50, 68]. In vitro studies demonstrated
that RhoA, Rac1, and Cdc42 are also involved in the
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regulation of podosomes turnover [69, 70] and perhaps in
recruiting podosomes to the leading edge of cells follow-
ing microtubule-dependent cell polarization [64, 69, 71–
73].

In contrast to focal adhesions, podosomes are found at
sites of ECM degradation [51, 74]. The metalloproteases
MT1-MMP and MMP-9 have been localized to podosomes,
strongly supporting a role for podosomes in ECM degra-
dation [56, 68, 75] in addition to adhesion [76]. This is
well illustrated in osteoclasts, the primary bone-resorbing
cells found in the body. In mature osteoclasts, podosomes
are organized into a ring or belt-like structure at the cell
periphery (referred to as the sealing zone) [50, 77]. This
unique actin- and integrin-rich structure functions to dock
osteoclasts to ECM proteins in bone and seals off the
bone-resorbing compartment. This allows for the localized
secretion of acidifying protons, chloride ions, and bone
matrix-degrading metalloproteases [70].

In response to integrin engagement, and in the presence
of intracellular calcium, Pyk2 is autophosphorylated at tyro-
sine residue Y402, which is essential for its catalytic activity
[37, 78, 79] and for downstream signaling via p130Cas, Src,
Cbl, integrins, gelsolin, and paxillin and the tyrosine phos-
phatase PTP-PEST [24, 80–82]. Pyk2 is expressed at high
levels in the nervous system and in various hematopoietic
cells [57, 83]. Pyk2 is expressed in osteoblasts [84, 85] and
osteoclasts [45, 64]. Deletion of Pyk2 in osteoblasts affects
differentiation, migration, and actin remodeling [84, 85]. In
osteoclasts, Pyk2 is localized to the podosome belt and dele-
tion of Pyk2 leads to a decrease in osteoclast bone resorption,
which contributes to the osteopetrotic phenotype observed
in Pyk2-deficient mice [64, 84]. Whereas deletion of Pyk2
in osteoblasts affects focal adhesion turnover (our unpub-
lished findings), osteoclasts lacking Pyk2 exhibit structurally
disorganized podosomes [64]. Src has also been shown to
be indispensable for osteoclast function and is necessary
for podosome assembly/disassembly [86, 87]. Osteoclasts
lacking Src exhibit abnormal podosome rings, resulting in
a dysfunctional sealing zone [88]. Leupaxin is a member of
the focal adhesion-associated adaptor proteins and has been
found to be associated with the podosome-belt (sealing zone)
in osteoclasts [89, 90]. It was also demonstrated that leupaxin
forms a signaling complex with Pyk2, c-Src, and PTP-PEST
which regulates the migration of prostate cancer cells [91].
Finally, as discussed above, the GTPase dynamin regulates
podosome assembly and dynamics in osteoclasts [44, 63,
92] in a process that involves Src [44]. These studies and
others demonstrate that distinct signaling proteins work in
concert to regulate podosome organization and turnover in
osteoclasts, and perhaps in podosome-containing migratory
cells.

The tyrosine kinase Pyk2 is a homolog of FAK and
shares 45% overall sequence identity and 60% amino acid
identity within the catalytic domain. Structurally, Pyk2 also
contains an N-terminal FERM domain, a central catalytic
core, several proline rich domains (PRDs), and a C-terminal
FAT domain [64, 79, 93]. The FERM domain is involved
in localizing Pyk2 to the plasma membrane and facilitates
Pyk2 binding to phosphatidylinositol bisphosphate (PIP2)

[94, 95]. Although structural similarities exist between FAK
and Pyk2, these proteins appear to exhibit unique effects
on adhesion structures in different cells. Recently, it was
reported that deletion of FAK in osteoclasts leads to the
formation of peripheral podosome belt, whereas deletion of
Pyk2 resulted in small podosome rings [96]. In addition,
deletion of FAK but not Pyk2, in lung carcinoma CL1-5
cells resulted in decreased formation of podosomes rosettes
[96]. These findings suggest that FAK and Pyk2 may regulate
different patterning of podosome organization in osteoclasts
[96]. Although the mechanism is unknown, the recruitment
of downstream effector proteins is likely to be important in
the differential roles of these kinases.

4. Invadopodia

Invadopodia appear as dynamic protrusions of the plasma
membrane, containing a central actin core surrounded
by adhesion proteins, signaling molecules, and scaffolding
proteins [59]. In addition, invadopodia are sites of ECM
degradation and are often observed in highly migratory
metastatic cancer cells [57]. Invadopodia share, overlapping
features with podosomes, especially with regards to their
intracellular localization, composition of proteins, and cell
types in which they are found [55, 59, 62, 97–99] (see
Table 1). However, differences between invadopodia and
podosomes do exist. In particular, podosomes are short lived
(minutes) and found in phagocytic cells such as osteoclasts,
whereas invadopdia persist for hours and found primarily
in cancer cells [97, 100]. Like podosomes, invadopodia are
regulated by a multitude of signaling proteins such as the
Src-family kinases, protein kinase C [55, 101–104], cdc42, N-
WASP, and Arp2/3 [105, 106]. Dynamin has also been shown
to participate in focal extracellular matrix degradation by
invasive cells [107]. Although integrin signaling in the
initiation of podosome formation is well established, the role
of integrins in invadopodia is not yet clear [108].

The life cycle of invadopodia involves initiation, exten-
sion, ECM degradation, and disassembly. Each of these steps
involves F-actin remodeling and the activation/deactivation
of signaling proteins around the central actin core. The
initiation of invadopodia is known to be stimulated by EGF,
PDGF and reactive oxygen species (ROS) [76]. Following
initiation by EGF receptor activation, Src and the tyrosine
kinase Abl (Abelson) are recruited and activated [102,
105, 109]. This results in an increase in actin polymeriza-
tion and cortactin phosphorylation within the elongating
invadopodium [102, 105, 109]. Microscopic imaging has
shown that cortactin accumulates in invadopodia prior
to F-actin nucleation [101], matrix metalloprotease accu-
mulation, and matrix degradation [55], suggesting that
cortactin isan early player in this process. In addition to the
filamentous actin network, microtubules and intermediate
filaments also participate in the elongation and extension
of invadopodia [110], with the resulting structure resem-
bling the arrangement of actin filaments in podosomes.
The growing protrusive membrane is supplied by vesicular
trafficking to sites of invadopodia extension and is controlled
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by the Golgi apparatus and by F-bar proteins such as CIP4
(cdc42 interacting protein) [107, 111] and the Ena/VASP
family protein, Mena [112–114]. Membrane fusion and actin
remodeling by dynamin have also been shown to be involved
in invadopodia formation [115, 116]. Like podosomes,
the formation and stabilization of invadopodia involves
microtubule-dependent transport [108, 110]. The third step
in the life cycle of invadopodia, and the major function
of these structures, is ECM degradation. This function is
shared with podosomes but is absent in focal adhesions.
ECM degradation is facilitated by secretion of a variety
of matrix metalloproteases and serine proteases [56, 112,
117, 118] and is thought to be regulated by cortactin, an
actin regulating protein [55]. The secreted proteases act to
degrade components of the ECM, thereby facilitating cellular
migration and invasion [119, 120]. Finally, the disassembly
of invadopodia involves depolymerization of the actin core
[121] and has been shown to be regulated by ERK, paxillin,
and the calcium-dependent cysteine protease, calpain, which
degrades cortactin [121, 122].

The Src family kinases have been demonstrated to
be critical for invadopodia formation and maturation.
However, several lines of evidence support a role for
Src in focal adhesion and podosome stability [123–125].
Similarly, as discussed above, FAK is important for focal
adhesion turnover [126] but deletion of FAK has been
also shown to increase invadopodia formation [6, 18] and
suppress podosomes rosettes formation n fibroblasts [96].
Moreover, FAK has been shown to regulate a switch from
phosphotyrosine-containing proteins at focal adhesions to
invadopodia through the temporal regulation of active Src
[6]. In the same study, it was shown that FAK-Src signaling
also plays a significant role in cancer cell invasion [6, 116].
The apparent overlapping role of FAK and Src in different
adhesion structures can be explained by the formation of
dynamic proteins complexes between these molecules. For
example, the major autophosphorylation site in FAK is Y397
(Y402 in Pyk2) which serves as an SH2-binding site, allowing
Src to bind FAK (or Pyk2) [127]. The binding of Src leads
to release of its own autoinhibitory catalytic domain, leading
to the full activation of Src and to the activation of distinct
downstream signaling cascades [128].

5. Adhesion Proteins and Human Disease

In the following section, and summarized in Table 2, we
provide an overview of the role of key focal adhesion proteins
and their potential link to human diseases.

5.1. Skeletal Disease. Bones provide structural rigidity to the
skeleton and are constantly remodeled to maintain calcium
and mineral homeostasis and repair skeletal damage. Bone
architectural integrity relies in part on the rate of apoptosis
of bone-forming osteoblasts. The activity of Pyk2 is also
linked with a variety of metabolic conditions, including the
regulation of bone mass. Deletion of Pyk2 leads to increased
bone mass in mice [64, 84] due in part to defects in focal
adhesion signaling in osteoblasts (our unpublished findings)

as well as changes in podosome dynamics in osteoclasts
[14, 87]. Src is also important for osteoclast function [129].
Deletion of Src impairs osteoclast bone resorbing activity
and mice lacking Src exhibit severe osteopetrosis and exhibit
defects in tooth eruption [129]. Studies have shown that
disruption of the interaction of α-actinin with integrins at
focal adhesions increases osteoblast apoptosis, which shifts
the balance in favor of osteoclast activity, resulting in bone
loss [130].

5.2. Role in Cancer. As discussed above, invadopodia forma-
tion is tightly linked with cancer metastasis. For example,
recently, it was demonstrated that the transcription factor
Twist1, a central regulator of the epithelial mesenchymal
transition, promotes invadopodia formation through upreg-
ulation of platelet-derived growth factor receptor expres-
sion and activity, which play significant role in human
breast cancer metastasis [120]. Invadopodia formation and
therefore cancer invasion also involves the adaptor proteins
TKS4 and TKS5 (tyrosine kinase substrate 4 and 5) [131].
It was also found that TKS5 colocalizes to invadopodia
in different human cancer cells and that decreased TKS5
expression leads to decreased podosome formation and to
reduced tumor metastasis [132]. Thus, TKS4 and TKS5 could
potentially be used as therapeutic targets for the treatment
of certain types of cancer. Other studies have demonstrated
that loss of function of the Fgd1 gene, which encodes a GTP-
exchange factor, was associated with a rare inherited human
developmental disease called faciogenital dysplasia. Fgd1
mutations in humans cause skeletal and neurological effects.
However, Fgd1 was also shown to be involved in invadopodia
biogenesis and ECM degradation [133], and to be expressed
in human prostate and breast cancer cells, suggesting it may
also be critical for cancer progression and tumorigenesis.

Several independent studies have demonstrated a critical
role for FAK in tumor progression and invasion. Elevated
FAK phosphorylation has been observed in several can-
cers, including breast, colon, thyroid, prostate, oral, neck,
and ovarian cancer [134, 135]. Deletion of FAK from
tumor cells or breast cancer cells resulted in decreased
tumor progression [136, 137], while in endothelial-specific
tamoxifen-inducible FAK knockout mice, tumor growth and
angiogenesis were reduced [138], indicating that FAK may
be important for tumorigenesis. In addition, quantitative
real-time PCR has shown an elevation of FAK expression in
malignant gastrointestinal stromal tumors [139]. Increased
FAK expression was also detected in esophageal squamous
cell carcinomas and was associated with cell differentiation,
tumor invasiveness, and lymph node metastasis [140]. Also,
it was found that FAK was overexpressed in esophageal
squamous cell carcinoma which have led to cell differ-
entiation, tumor invasiveness, and lymph node metastasis
[140]. In vitro evidence also demonstrates that Src-FAK
signaling is associated with elevated tumor cell metastases,
invadopodia formation, and promotes cell invasion [141,
142]. The Src family of tyrosine kinases are important for
embryonic stem cell self-renewal and are key regulators
of signal transduction in various cells, including cancer
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Table 2: Signaling proteins and their link to adhesion structures and disease. +Humans mutations are associated with disease. Mutations
in dynamin are linked to centronuclear myopathy and Charcot-Marie-Tooth neuropathy in humans. ∗Bone mass regulation is based on
knockout mice studies. Other disease indications are predicted based on animal studies and in vitro studies. n/d: not determined. See text
for details.

Adhesion protein Cell type Adhesion structure Disease indication

FAK

osteoblasts focal adhesions regulation of bone density∗

osteoclasts podosomes regulation of bone density∗

endothelial cells podosomes? angiogenesis

lung carcinoma cells podosomes cancer metastasis

various cancer cells invadopodia cancer metastasis

Pyk2

osteoblasts focal adhesions regulation of bone density∗

osteoclasts podosomes regulation of bone density∗

endothelial cells podosomes? angiogenesis

various cancer cells invadopodia cancer metastasis

Src
osteoblasts focal adhesions regulation of bone density∗

osteoclasts podosomes regulation of bone density∗

various cancer cells invadopodia cancer metastasis

Dynamin

fibroblasts focal adhesions n/d

osteoblasts focal adhesions regulation of bone density∗

osteoclasts podosomes regulation of bone density∗

neurons n/d neuropathy+

Twist1 epithelial cells invadopodia cancer metastasis

TKS4/5 human cancer cells invadopodia cancer metastasis

Leupaxin
osteoclasts podosomes regulation of bone density∗

cancer cells invadopodia cancer metastasis

Fgd1
osteoblasts focal adhesions? skeletal abnormalities+

cancer cells invadopodia prostate and breast cancer metastasis

cells [143, 144]. Collectively, these findings provide strong
evidence that overexpression of FAK and other proteins
localized to invadopodia are important for invadopodia
formation and tumor metastasis. Although there is a strong
correlation between the expression of FAK and Src in
invadopodia and the potential link of these kinases in cancer
progression and invasion, it is not yet clear if Src-FAK
signaling specifically in invadopodia is critical role for tumor
growth. Nevertheless, FAK may be a useful biomarker for
cancer cell metastasis and inhibitors to FAK or Src may be
useful to limit disease progression [145]. To this end, the
FAK inhibitor PND-1186 was found to dramatically decrease
FAK activity in breast carcinoma cells, resulting in tumor cell
apoptosis [146].

Lung cancer is considered to be one of the leading causes
of mortality among the malignant tumors worldwide. It has
been reported that small cell lung cancers (SCLCs) constitute
15–25% of all newly diagnosed primary lung cancers [147].
In the same study, it was shown that inhibition of Pyk2
by lentiviral RNAi or Src using a chemical inhibitor (PP2)
reduced SCLC survival and proliferation in liquid culture
and in soft agar [147]. In addition, it was demonstrated that
Pyk2 also plays an important role in human non-small cell
lung cancer (NSCLC) [148]. This was based on the detection
of higher levels of Pyk2, as determined by Western blotting
and immunohistochemistry, in NSCLC biopsies compared to
nontumors [148]. In other studies, FAK signaling was shown

to be important in the early stages of mammary adenocar-
cinoma lung metastasis [149]. It was further demonstrated
that the dominant-negative FAK inhibitor, FRNK, blocked
lung metastasis if added one day before tumor cell injection,
but had no effect if given several days after tumor cell
injection [149]. Furthermore, it was demonstrated that
depletion of FAK, but not Pyk2, in lung carcinoma CL1-5
cells, decreased the formation of podosome rosette structures
and decreased cell invasion [96]. Nevertheless, despite strong
in vitro and ex vivo evidence linking FAK, Pyk2, and Src
to various cancers, a direct link between kinase activity,
effects on podosome/invadopodia formation, and cancer cell
metastasis/function is currently lacking.

Several studies also suggest a link between the adhesion
kinases and prostate cancer. For example, it has been shown
that metastatic prostate cancer cells express elevated FAK
mRNA levels and protein phosphorylation [150]. More
recent studies also suggest that inhibition of Pyk2 and
FAK may be an important therapeutic strategy to decrease
prostate cancer progression [151]. Sun et al. used a mouse
xenograft model injected with a chemical inhibitor of FAK
and Pyk2 (PF-562,271) [151]. After two weeks of treatment
with PF-562,271 (25 mg/kg), the mouse xenograft model
showed a 62% decrease in tumor growth, compared to
control mice [151]. Leupaxin was found to associate with
Pyk2, c-Src, and PTP-PEST. In vitro studies also suggest
that the migration of prostate cancer cells (PC-3) may
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be regulated by protein complexes involving leupaxin,
Pyk2, and the tyrosine phosphatase PTP-PEST, which
dephosphorylates Pyk2 [91, 152]. Furthermore, it was
shown that invasion of PC3 cells in a gelatin matrix is
controlled by invadopodia and ECM degradation [153].

Astrocytomas represent the most common intracra-
nial neoplasms accounting for 60% of all primary brain
tumors. In separate studies, FAK and Pyk2 expressions
have been shown to elevated in human brain astrocytomas
[154–156]. In addition, a novel kinase inhibitor of FAK
(TAE226) has been shown to increase tumor cell apoptosis
in brain tumors [157]. Finally, others have demonstrated
that administration of Src family kinase inhibitors, PP1
and Dasatinib, results in a dramatic increase in apoptosis
of several pediatric brain tumor cell lines, compared to
control cell lines was observed [158]. Collectively, the above
findings suggest that inhibition of Pyk2 and FAK and other
signaling molecules impair tumor migration by blocking the
biogenesis of invadopodia which are important for ECM
degradation.

5.3. Pulmonary and Other Diseases. Pyk2 was identified as
a central regulator for angiogenesis of pulmonary vascular
endothelial cells [159]. Additional studies show that Pyk2 is
essential in regulating airway inflammation, Th2 cytokine
secretion, and airway hyper-responsiveness in ovalbumin-
sensitized mice during antigen challenge in vivo [160]. Inhi-
bition of Pyk2 blocked broncho-alveolar lavage, eosinophilia,
mucous gland hyperplasia, and airway hyper-responsiveness,
conditions that are also characteristic of the asthmatic state
in humans. In addition, deletion of Pyk2 leads to develop-
mental defects, abnormal macrophage activity, obesity, and
insulin resistance under a high-fat diet [161, 162]. Pyk2
activity in the heart may also protect against arrhythmia
[163]. Although the mechanism by which Pyk2 regulates
these physiological processes is still unknown, therapeutic
strategies that target Pyk2 might be a novel approach for
the treatment of a variety of metabolic and pathological
diseases. Finally, it has been shown that dynamin mutations
are associated with human centronuclear myopathy and
Charcot-Marie-Tooth neuropathy [164–166]. These diseases
are currently attributed to defects in dynamin-mediated
endocytosis. However, it is interest to note that dynamin
plays an important role in actin remodeling, which is linked
to its function in membrane endocytosis [115, 116]. There-
fore, it is possible that dynamin’s role in actin remodeling
and adhesion structure turnover [43, 44, 63, 92, 107] may
also be involved in these pathologies, although this remains
to be determined.

6. Summary and Perspectives

In summary, focal adhesions, podosomes, and invadopodia
facilitate adhesion to the matrix and cellular migration. In
addition to adhesion, podosomes and invadopodia have
evolved the unique function of ECM degradation. The focal
adhesion kinases, FAK and Pyk2, exhibit overlapping and
unique roles in the biogenesis, stability, and disassembly
of these different adhesion structures. There is currently a

growing body of evidence linking these and other kinases to
the biogenesis of different adhesion structures. In addition,
a great deal of studies suggests a link between the expression
levels of these kinases and several human diseases, especially
cancer (see Table 2). Finally, emerging evidence suggests
that disrupting the activity of the adhesion kinases not
only disrupts the formation of the adhesion structures, but
it may also be useful in the treatment of serious medical
conditions such as cancer and osteoporosis. A greater
understanding of the function of adhesion kinases and the
adhesion structures they control will offer future avenues for
therapeutic interventions against several human diseases.

Abbreviations

ECM: Extracellular matrix
OC: Osteoclast
OB: Osteoblast
FAK: Focal adhesion kinase
SCLC: Small cell lung cancer
NSCLC: Nonsmall cell lung cancer.
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[75] J. M. Delaissé, M. T. Engsig, V. Everts et al., “Proteinases in
bone resorption: obvious and less obvious roles,” Clinica
Chimica Acta, vol. 291, no. 2, pp. 223–234, 2000.

[76] S. Linder and M. Aepfelbacher, “Podosomes: adhesion
hot-spots of invasive cells,” Trends in Cell Biology, vol. 13, no.
7, pp. 376–385, 2003.

[77] S. Hu, E. Planus, D. Georgess et al., “Podosome rings generate
forces that drive saltatory osteoclast migration,” Molecular
Biology of the Cell, vol. 22, no. 17, pp. 3120–3126, 2011.

[78] I. Dikic, G. Tokiwa, S. Lev, S. A. Courtneidge, and J.
Schlessinger, “A role for Pyk2 and Src in linking G-protein-
coupled receptors with MAP kinase activation,” Nature, vol.
383, no. 6600, pp. 547–550, 1996.



10 Journal of Signal Transduction

[79] H. Avraham, S. Y. Park, K. Schinkmann, and S. Avraham,
“RAFTK/Pyk2-mediated cellular signalling,” Cellular
Signalling, vol. 12, no. 3, pp. 123–133, 2000.

[80] D. Davidson and A. Veillette, “PTP-PEST, a scaffold protein
tyrosine phosphatase, negatively regulates lymphocyte
activation by targeting a unique set of substrates,” The
EMBO Journal, vol. 20, no. 13, pp. 3414–3426, 2001.

[81] Y. Shen, G. Schneider, J. F. Cloutier, A. Veillette, and M. D.
Schaller, “Direct association of protein-tyrosine phosphatase
PTP-PEST with paxillin,” The Journal of Biological Chemistry,
vol. 273, no. 11, pp. 6474–6481, 1998.

[82] C. E. Turner, “Paxillin interactions,” Journal of Cell Science,
vol. 113, no. 23, pp. 4139–4140, 2000.

[83] S. Avraham, R. London, Y. Fu et al., “Identification and char-
acterization of a novel related adhesion focal tyrosine kinase
(RAFTK) from megakaryocytes and brain,” The Journal of
Biological Chemistry, vol. 270, no. 46, pp. 27742–27751, 1995.

[84] L. Buckbinder, D. T. Crawford, H. Qi et al., “Proline-rich
tyrosine kinase 2 regulates osteoprogenitor cells and bone
formation, and offers an anabolic treatment approach
for osteoporosis,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 104, no. 25, pp.
10619–10624, 2007.

[85] M. A. Kacena, P. P. Eleniste, Y. H. Cheng et al., “Megakary-
ocytes regulate expression of Pyk2 isoforms and caspase-
mediated cleavage of actin in osteoblasts,” The Journal of
Biological Chemistry, vol. 287, no. 21, pp. 17257–17268, 2012.

[86] L. T. Duong, P. T. Lakkakorpi, I. Nakamura, M. Machwate, R.
M. Nagy, and G. A. Rodan, “PYK2 in osteoclasts is an adhe-
sion kinase, localized in the sealing zone, activated by ligation
of α(v)β3 integrin, and phosphorylated by Src kinase,” Jour-
nal of Clinical Investigation, vol. 102, no. 5, pp. 881–892, 1998.

[87] A. Sanjay, A. Houghton, L. Neff et al., “Cbl associates with
Pyk2 and Src to regulate Src kinase activity, αvβ3 integrin-
mediated signaling, cell adhesion, and osteoclast motility,”
The Journal of Cell Biology, vol. 152, no. 1, pp. 181–195, 2001.

[88] O. Destaing, A. Sanjay, C. Itzstein et al., “The tyrosine kinase
activity of c-Src regulates actin dynamics and organization
of podosomes in osteoclasts,” Molecular Biology of the Cell,
vol. 19, no. 1, pp. 394–404, 2008.

[89] A. Gupta, B. S. Lee, M. A. Khadeer et al., “Leupaxin is
a critical adaptor protein in the adhesion zone of the
osteoclast,” Journal of Bone and Mineral Research, vol. 18, no.
4, pp. 669–685, 2003.

[90] S. N. Sahu, M. A. Khadeer, B. W. Robertson, S. M. Núñez,
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