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Nicholas J. Stoffel 

LYMPH NODE AND PERI-LYMPH NODE STROMA: PHENOTYPE AND INTERACTION WITH T-CELLS 

 

The non-hematopoietic, stationary stromal cells located inside and surrounding skin-draining 

lymph nodes play a key role in regulating immune responses.  We studied distinct populations of 

lymph node stromal cells from both human subjects and animal models in order to describe 

their phenotype and function.  In the mouse model, we studied two distinct populations: an 

endothelial cell population expressing Ly51 and MHC-II, and an epithelial cell population 

expressing the epithelial adhesion molecule EpCAM. Analysis of intra-nodal and extra-nodal 

lymph node (CD45-) stromal cells through flow cytometry and qPCR provides a general 

phenotypic profile of the distinct populations.  My research focused on the EpCAM+ epithelial 

cell population located in the fat pad surrounding the skin draining lymph nodes.  The EpCAM+ 

population has been characterized by surface marker phenotype, anatomic location, and gene 

expression profile.  This population demonstrates the ability to inhibit the activation and 

proliferation of both CD4 and CD8 T cells.  This population may play a role in suppressing 

overactive inflammation and auto-reactive T cells that escaped thymic deletion.  The other 

major arm of my project consisted of identifying a novel endothelial cell population in human 

lymph nodes.  Freshly resected lymph nodes were processed into single cell suspensions and 

selected for non-hematopoietic CD45- stromal cells.  The unique endothelial population 

expressing CD34 HLA-DR was then characterized and analyzed for anatomic position, surface 

marker expression, and gene profiles.  Overall, these studies emphasize the importance of 

stationary lymph node stromal cells to our functioning immune systems, and may have clinical 

relevance to autoimmune diseases, inflammation, and bone marrow transplantation.                        

Christopher E. Touloukian, M.D., Chair 
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INTRODUCTION 

Stromal cells inside and surrounding the lymph node play a major role in T cell stimulation and 

regulation.  Lymph nodes are the major site of antigen presentation by antigen presenting cells 

(APCs) to T cells [1].  The lymph node stromal cells have been previously described in detail [2, 

3], but the stromal cells surrounding the lymph node have not been clearly characterized.  Our 

lab has analyzed both human and mouse lymph nodes and the surrounding tissue to identify 

and phenotype cell populations of interest, characterized these populations, and to investigate 

the functional properties of these cell populations.   

 

To understand how we identified our populations of interest one must look at our original focus 

of research.  Initially, we wanted to compare the thymic stromal cells to the intra-follicular and 

extra-follicular lymph node stroma.  Thymic stromal cells are responsible for the education and 

maturation of developing T cells.  The thymic stromal cells are capable of presenting a variety of 

promiscuously expressed tissue-specific self-antigen and presenting it to self-reactive T cells for 

deletional tolerance [4].  We speculated that self-reactive T cells which escape the thymus 

without deletional tolerance need a mechanism of control in the periphery.  We hypothesized 

that the lymph node stromal cells could serve a similar role as the thymic stromal cells in 

regulating or deleting self-reactive T cells in the peripheral blood. 

 

T Cell Development and Self-Antigen Tolerance 

During T cell development, hematopoietic stem cells (HSCs) originating in the bone marrow 

(BM) differentiate into T-lineage progenitors such as the early T-lineage progenitor (ETPs) or the 

common lymphoid progenitor (CLP) [5].  ETPs express a surface phenotype similar to the BM 

multipotent progenitors, Lin
-
Sca-1

High
c-Kit

High 
(LSK), but express low levels of IL-7Rα [6] and the 
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majority lack FMS-like tyrosine kinase 3 (Flt3) expression [7, 8].
 
These T cell progenitors then 

migrate to the thymus for proliferation and development.   

 

Thymic Cortex Stroma’s Role in T Cell Positive Selection 

In the thymic cortex, early T cells lack CD4, CD8, and T cell Receptor (TCR) and are termed 

double negative (DN) T cells [9].  DN T cells are named according to their progression in 

development.  DN1 T cells have the surface markers CD44+CD25-; DN2, CD44+CD25+; DN3, 

CD44-C25+; DN4, CD44-CD25- [10].  DN4 T cells become double positive (DP) T cells expressing 

genetically rearranged heterodimeric TCR-αβ and both CD4 and CD8 [11].  The notch delta 

homologs DLL1 and DLL4 (Delta-like ligand), present on thymic stromal cells, play a major role in 

T cell maturation and development[12].  They contribute to the environment and signaling 

processes necessary for immature T cells to undergo maturation.  Zúñiga-Pflücker et al. in 2002 

demonstrated that the bone marrow stromal cell line OP9, ectopically expressing DLL1, could 

inhibit B cell differentiation and stimulate T cell differentiation from hematopoietic progenitor 

cells[13].   

 

T cells undergo positive selection in the thymic cortex: T cells that have functional TCRs and are 

capable of interacting with MHC (major histocompatibility complex)/HLA (Human leukocyte 

antigen) are positively selected for survival and become single positive (SP) T cells, either CD4 or 

CD8; while those T cells with nonfunctional TCRs or TCRs that do not recognize or bind only 

weakly to MHC/HLA complexes undergo apoptosis[14].  The cortical thymic epithelial cells 

(cTECs), which characteristically express surface markers CD45-EpCAM+ Ly51+ MHCII+[15], are 

responsible for presentation of MHC/HLA complexes to the developing T cell and signaling with 
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tyrosine kinase Lck molecules for positive selection and survival of the MHC/HLA reactive SP T 

cell[16].  

 

Thymic Medula Stroma’s Role in T Cell Negative Selection and Education 

Following positive selection in the thymic cortex, SP T cells migrate to the thymic medulla, via 

CCR7 dependent signaling, to undergo further education and tolerance to self-antigen[17]. An 

important stromal cell contained in the thymic medulla is the medullary thymic epithelial cell 

(mTEC).  The surface profile of mTECs is CD45- EpCAM+ Ly51- MHCII+ [15].  The autoimmune 

regulator gene AIRE, expressed in mTECs, drives the expression of a multitude of peripheral-

tissue restricted antigens [18, 19].  These peripheral-tissue restricted antigens are presented in 

the cleft of the mTECs’ MHC/HLA complexes to maturing T cells.  When a T cell is auto-reactive 

against the self-antigen a signaling cascade involving Bcl-2 is activated, resulting in apoptosis of 

the auto-reactive T cell [20].  This process of negative selection is essential for limiting the 

number of auto-reactive T cells that escape the thymus into the periphery.  Another method of 

eliminating self-reactive T cells enrolls thymic dendritic cells (DCs) which are also capable of 

signaling apoptosis of self-reactive T cells based on presentation of self-antigen to specific TCRs 

[21].   

 

Escape of Auto-reactive T Cells from the Thymus 

Despite the positive and negative selection measures of the thymus, in healthy individuals self-

reactive T cells do escape the thymus and migrate to the periphery[22].  The exact mechanism 

of self-reactive T cell escape is unknown.  It is possible that not all self-antigens are presented to 

T cells via DCs or mTECs, or that the self-antigens presented are not sufficient in deleting self-

reactive T cells[23].  The self-reactive T cells that escape thymus negative selection may not 
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have TCRs with strong enough affinity to self-antigen, this being supported by the study showing 

that auto-reactive T cells in the periphery have a tendency to bear low affinity TCRs to self-

antigen[24].  Since auto-reactive T cells escape the thymus and travel to the periphery, there 

must be a mechanism for suppressing the immune response against self-antigen. 

 

Peripheral Tolerance Mechanisms 

Peripheral tolerance can take many shapes and forms including circulating T regulatory cells, 

anergy through lack of costimulation, and expression of promiscuous self-antigen by lymph 

node stromal cells.  The key to these mechanisms is inhibiting auto-reactive T cells by making 

them functionally inactive or outright killing or inducing apoptosis.   

 

T cells require a two-step stimulation in order to be fully active and functional.  The first signal 

necessary is the engagement of the TCR with an APC’s MHC complex in conjunction with the 

TCR’s specific antigen, and the second signal is a nonspecific interaction between co-stimulatory 

molecules such as the T cell’s CD28 and the APC’s CD80 or CD86.  Without this co-stimulation, 

the T cells are anergized, made functionally inactive, and are unable to proliferate leading to a 

lack of IL-2 production and a suppression of the immune response[25].  With normal T cell co-

stimulation IL-2 is released from the T cell and proliferation occurs.   

 

Another method of inhibiting T cells in the periphery is induction of apoptosis.  One signaling 

pathway that leads to apoptosis is the Fas-FasL pathway.  Select populations of APCs have the 

Fas-ligand (FasL) protein present on their surface[26] which can then bind Fas present on T cells 

inducing T cell suicide.  When inactive Fas on T cells ligates with FasL on APCs, Fas reorganizes 

forming the death-inducing signaling complex (DISC) which contains the Fas-associated death 



5 

 

domain protein (FADD) and caspases 8 and 10, which are responsible for the cascade leading to 

apoptosis of T cells[27].   

 

T cells can also be inhibited by ligand binding to the immune-inhibitory receptor PD-1 found on 

the surface of select T cell populations.  PD-1 will down-regulate T cell responses and when 

knocked-out can lead to auto-immune type diseases such as lupus[28].  PD-1 can bind molecules 

in the B7 family (CD80/CD86/PD-L1) present on APCs leading to down-regulation of the immune 

response[29]. 

 

Regulatory T cells (Tregs) also play a major role in peripheral tolerance of self-antigen.  Naturally 

occurring Tregs mature in the thymus and express the following surface profile: CD4+ CD25+ 

Foxp3+ (transcription factor forkhead box p3)[30].  When released into the periphery, Tregs are 

responsible for the negative regulation and suppression of immune reactions.  They also play a 

major role in prevention of autoimmune diseases[31]. 

 

Thymic stromal cells are not the only cell type to express the transcription factor AIRE, which is 

responsible for driving the expression of many promiscuous self-antigens.  The auto-reactive T 

cells that escape thymic negative selection could travel to the periphery where stromal cells 

located in the lymph node can present self-antigen and mediate deletion of auto-reactive T cells 

[32].  It has also been shown that self-reactive T cells located in the periphery and presented 

with self-antigen can be induced to down-regulate TCRs [33].  This secondary network of self-

antigen presentation and negative selection may play a major role in peripheral tolerance. 
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Lymphotoxin β Receptor (LtBR) is present in lymph node stroma and plays a key role in the 

development of lymph nodes with their interaction with lymphotoxin β and α present on 

lymphocytes[34].  LtBR signaling can induce stromal cells to produce IL-8, an inducer of 

inflammation and a chemotactic factor for neutrophils [35].  We hypothesized that the LtBR 

present on lymph node stromal cells may play a role in suppressing T cells in the periphery 

through an unknown mechanism. 

 

Two additional suppressive mechanisms that may be responsible for suppression of T cell 

activation and/or proliferation are indoleamine 2, 3-dioxygenase 1 (IDO1) and inducible nitric 

oxide synthase (iNOS).  When T cell activation occurs in the presence of co-stimulation IFN-λ 

production can be induced [36].  When T cells are activated IFN- λ  is released and can induce 

nearby cells to upregulate IDO1 [37] and iNOS [38].  IDO1 catalyzes the conversion of 

tryptophan, an essential amino acid necessary for T cell proliferation, to kynurenine.  This 

depletion of tryptophan inhibits T cell proliferation [39] while the kynurenine can induce 

apoptosis [40].  Human bone marrow stromal cells and dendritic cells have both been shown to 

inhibit T cells through this mechanism [39, 41].  iNOS is an inducible nitric oxide synthase 

encoded by the NOS2 gene.  iNOS produces nitric oxide (NO) as a byproduct when converting L-

arginine to citrulline.  iNOS upregulation and enhancement can occur by signaling from TNF-α 

[42] and IFN-γ [43].  NO is toxic due to its ability to combine with superoxides to form 

peroxynitrites; a free radical capable of damaging DNA, lipids, and proteins [44].  NO is also 

capable of suppressing T cell proliferation [45]. 
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Lymph Node Stroma and Their Current Classification 

Lymph nodes are secondary lymphoid organs found throughout the body and are important to 

the immune system.  The lymph nodes are essentially scaffolds and filters for collecting lymph 

fluid containing antigens, APCs, T cells, and B cells from the circulating lymphatic system.  

Circulating APCs such as dendritic cells or B cells will phagocytize invading bacteria, process and 

present antigen, and migrate to the lymph node to present antigen to T helper lymphocytes 

causing activation.  Activated T helper cells will bind antigen presented by B lymphocytes in the 

context of MHCII, activating the B lymphocyte and causing the B cell to mature into an antibody 

producing plasma cell.  Virus infected cells or damaged cells will also migrate to the lymph node 

and present antigen in the context of MHCI to T cytotoxic lymphocytes, causing the T cells to be 

activated.  Activated T cytotoxic lymphocytes will then proliferate, migrate, and target cells 

(with the specific antigen their TCRs recognize) for destruction [46].   

 

The structure of the lymph node can be divided into two main regions: the medulla and the 

cortex.  Lymph fluid enters the lymph node via afferent lymphatic vessels and then drains 

through cellular filters to collect cells and antigens before exiting the lymph node via the 

efferent lymphatic vessels located at the hilum near the medulla [1].  B cells are initially 

activated in the T cell rich zones in the paracortex of the lymph node, and migrate to the outer 

cortex to form germinal centers.  Here, B cells undergo maturation into plasma cells to produce 

antibodies to the specific antigen in question[46].   

 

The four main groups of stromal cells located within the lymph node: fibroblastic reticular cells 

(FRCs), lymphatic endothelial cells (LECs), blood endothelial cells (BECs), and the follicular 

dendritic cells (FDCs) have been classified by other investigators.  These CD45- cells can be 
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differentiated by the presence or absence of two surface markers: gp38 and CD31.  FRCs, 

gp38+CD31-; LECs, gp38+CD31+; BECs, gp38-CD31+; FDCs, gp38-CD31- [47].  These four 

classifications of stromal cells will be used as guidelines, but our lymph node preparation 

includes the surrounding fat, which have characteristically larger number of stroma and 

different characteristics. 

 

The fibroblastic reticular cells (located in the lymph node cortex) are responsible for secreting 

chemotactic factors such as IL-7, CCL19, and CCL21 to assist T cell migration through the lymph 

node [48].  FRCs also express LtBR, an essential molecule in lymph node development and 

maturation[49].  

 

LECs form the afferent and efferent lymphatic vessels that allow the flow of lymph fluid into and 

out of the lymph node.  They have the surface markers VEGFR-3 (the receptor for vascular 

endothelial growth factors VEGF-C and VEGF-D), LYVE-1 (a receptor for hyaluronan), and express 

Prox-1 (a homeobox transcription factor essential for remodeling vascular endothelial cells into 

LECs [50])[51]. 

 

BECs constitute the vascular system inside the lymph node as well as specialized high 

endothelial venules (HEVs) responsible for trafficking naïve T cells into the lymph node for 

adhesion [47, 52].   

 

FDCs are different than normal DCs: they are not hematopoietically derived, they lack CD45, and 

they organize germinal centers inside the lymph node.  FDCs also directly sustain the growth and 

differentiation of B cells located in the germinal centers [53].   
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EXPERIMENTAL PLAN 

Isolation of distinct lymph node stromal populations in both mouse and human tissues helped 

us to understand the role lymph node stromal cells play in regulating the immune system.  In 

the murine model, we have isolated two distinct populations, a T cell activating Ly51+ MHC-II+ 

cell population (further referred to as Ly51+ cells) and a population of EpCAM+ cells capable of 

inhibiting T cell proliferation and activation.  We believe these cells form a tight-knit regulatory 

system for controlling how T cells are activated and for the suppression of an overactive 

immune response.  This duel control over T cell stimulation and proliferation is necessary to 

defend against hyper-inflammation and possibly auto-reactive T cells leading to auto-immune 

diseases.   

 

We described, phenotypically and functionally, the role that lymph node stromal cells play.  Our 

goals were fourfold: 1) Refine the protocol for isolating lymph node stromal cells.  2) Give a clear 

phenotypic profile of human and mouse lymph node stromal cells along with a gene expression 

profile.  3) Determine if the lymph node stromal cells were capable of up-taking foreign antigen, 

presenting this antigen to T cells and activating said T cells. 4) Determine if the epithelial 

(EpCAM+) cell population of interest plays a role in inhibiting T cell proliferation and activation; 

and if so, what is the mechanism of this inhibition?   

 

Reproducible isolation of lymph node stromal cells has been described in detail previously [54], 

but we believe that our preparation (see Materials and Methods) releases more stromal cells 

than other protocols – benefiting yield and proportions of distinct populations.  By using the 

novel classifications, EpCAM+ or Ly51+, of peri-lymph and lymph node stromal cell populations, 

the role of the differing populations can be better understood.  The isolation of human lymph 
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node stroma and its characterization is poorly described in literature.  We successfully 

phenotypically describe the populations found in the human lymph node based on the surface 

markers CD34 and HLA-DR. 

 

With the Ly51+ MHC-II+ population found in the mouse, one must analyze the possible role this 

cell has in uptake and presentation of antigen to CD4 T cells.  The MHC-II positivity denotes that 

this cell may be capable of up-taking exogenous antigen and stimulating CD4 T cells.  Upon 

further investigation, we discovered that this cell is also capable of cross-presenting antigen in 

the context of MHC-I to CD8 T cells. 

 

T cell activation and inhibition was determined using a co-culture with either Ly51+ or EpCAM+ 

cells to elicit the effect of these stromal cells on T cells (Figure 1).  Activation, proliferation, and 

inhibition were measured with flow cytometry of surface marker known for activation (CD62L, 

CD44, CD25), and by measuring the proliferation using carboxyfluorescein succinimidyl ester 

(CFSE), a marker that is inherited to daughter cells after cell division.  Proliferative and inhibitory 

effects were also measured by ELISAs detecting cytokine release into the supernatant of co-

cultures.  These experiments are designed to better elucidate the role of distinct lymph node 

stromal populations in regulating T cells. 

 



 

Fig 1.  Lymph node stroma vs T cell co

demonstrates the method of co

activation, proliferation, cytokine release, gene up

placed in 96 well plates (U-bottom or transwell

(CD4, CD8, OT-I, or OT-II) were placed into the same wells with the lymph node stromal cells.  T 

cells were activated with either CD3/CD28/CD137 Dynabeads® (Life Technologies, Carlsbad, CA) 

or CD11c+ dendritic cells pulsed with the appropriate peptide to stimulate a recall response 

from ovalbumin sensitized OT

conducted prior to co-culture.  The co

the experiment in question.  Supernatants were harvested for ELISA analysis and cells were 

analyzed for mRNA up-regulation with qRT

cytometry. 
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Fig 1.  Lymph node stroma vs T cell co-culture setup and analysis.  The above diagram 

demonstrates the method of co-culturing sorted stromal cells with T cells to demonstrate 

activation, proliferation, cytokine release, gene up-regulation, and inhibition.  Sorted cells were 

bottom or transwell) at varying concentrations.  CFSE

II) were placed into the same wells with the lymph node stromal cells.  T 

cells were activated with either CD3/CD28/CD137 Dynabeads® (Life Technologies, Carlsbad, CA) 

itic cells pulsed with the appropriate peptide to stimulate a recall response 

from ovalbumin sensitized OT-I or OT-II T cells.  Flow analysis of T cell activation markers was 

culture.  The co-culture was incubated at 37°C for 3-7 days

the experiment in question.  Supernatants were harvested for ELISA analysis and cells were 

regulation with qRT-PCR or T cell activation and proliferation by Flow 

 

The above diagram 

culturing sorted stromal cells with T cells to demonstrate 

regulation, and inhibition.  Sorted cells were 

) at varying concentrations.  CFSE-labeled T cells 

II) were placed into the same wells with the lymph node stromal cells.  T 

cells were activated with either CD3/CD28/CD137 Dynabeads® (Life Technologies, Carlsbad, CA) 

itic cells pulsed with the appropriate peptide to stimulate a recall response 

II T cells.  Flow analysis of T cell activation markers was 

7 days depending on 

the experiment in question.  Supernatants were harvested for ELISA analysis and cells were 

PCR or T cell activation and proliferation by Flow 
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CHAPTER 1. MOUSE LYMPH NODE STROMA 

Introduction 

Two unique populations of lymph node stromal cells were identified in the tissue inside and 

surrounding the skin-draining lymph node follicles of the mouse.  The skin-draining lymph nodes 

effectively pool APCs, T cells, and antigen into the same site to mount an effective immune 

response (Figure 2).  Inguinal, axillary, and brachial skin draining lymph nodes along with their 

surrounding fat pads were removed from each mouse for analysis.  Mechanical separation using 

the GentleMACS C tube along with the GentleMACS Dissociator (Miltenyi Biotec, Bergisch 

Gladbach, Germany) was essential for separating the tissue sufficiently enough for the digest to 

separate all stromal cells.  Using the knowledge of surface markers present in the thymic 

epithelial cells, we used similar markers to identify and isolate two unique CD45- non-

hematopoietic stromal cell populations within the lymph node and surrounding tissue (Figure 3).  

The viable CD45- population, which only represents approximately 20% of the cells in and 

around the lymph node, characterizes the lymph node and peri-lymph node stromal cells.  When 

further gating on Ly51+ and EpCAM+ cell populations, three distinct populations of interest 

arise: the Ly51+ population (also found to be MHCII+, EpCAM+ population, and the Ly51-

EpCAM- population.  We focused our research on the Ly51+MHCII+ population and the EpCAM+ 

population.  The Ly51+ population is roughly 70% of the CD45 negative stromal cells found in 

our tissue, while the EpCAM+ population is less frequent at approximately 15% of the total 

CD45- stromal cells.  These are the populations of interest that will be the focus of the mouse 

lymph node experiments and analysis.  While not containing the same populations as the 

thymus stroma, the lymph node stroma cells share some of the surface markers present in the 

invaluable eTEC and mTEC populations.   

 



 

Fig 2. Methylene blue injection of mouse foot pad.  

flow of lymph fluid from peripheral sites to specific lymph n

methylene blue tracking to the lymph node follicle in 20 minutes.  Our studies included excising 

both the lymph node follicle and the surrounding fat.  Shown above is the inguinal lymph node; 

the brachial and axillary lymph nodes 

all studies. 
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Fig 2. Methylene blue injection of mouse foot pad.  Skin draining lymph nodes demonstrate the 

flow of lymph fluid from peripheral sites to specific lymph nodes.  Shown above is the 

methylene blue tracking to the lymph node follicle in 20 minutes.  Our studies included excising 

both the lymph node follicle and the surrounding fat.  Shown above is the inguinal lymph node; 

the brachial and axillary lymph nodes were also excised along with their surrounding fat pads in 

 

 

Skin draining lymph nodes demonstrate the 

odes.  Shown above is the 

methylene blue tracking to the lymph node follicle in 20 minutes.  Our studies included excising 

both the lymph node follicle and the surrounding fat.  Shown above is the inguinal lymph node; 

were also excised along with their surrounding fat pads in 



 

Fig 3.  Flow cytometry of two distinct mouse lymph node stromal cell populations: EpCAM+ 

and Ly51+ cells. Following lymph node and peripheral lymph node fat excision, tissue was 

digested with collagenase D (Roche, Basel Switzerland) for 1 hour followed by RBC lysis and flow 

cytometry staining.  20% of the tissue is living CD45

Violet (Ca Violet) is a viability stain which stains positive i

intracellular esterase activity.  Gating on the living CD45

populations of cells based on Ly51 and EpCAM staining: Ly51

Ly51- EpCAM+.  Our studies focused on 

populations and the less frequent
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Fig 3.  Flow cytometry of two distinct mouse lymph node stromal cell populations: EpCAM+ 

Following lymph node and peripheral lymph node fat excision, tissue was 

gested with collagenase D (Roche, Basel Switzerland) for 1 hour followed by RBC lysis and flow 

cytometry staining.  20% of the tissue is living CD45- cells (non-hematopoietic origin.)  Calcein 

Violet (Ca Violet) is a viability stain which stains positive in living cells, demonstrating their 

intracellular esterase activity.  Gating on the living CD45- cell population, there are 3 main 

populations of cells based on Ly51 and EpCAM staining: Ly51- EpCAM-, Ly51+ EpCAM

EpCAM+.  Our studies focused on the characteristics of the prevalent single positive Ly51+ 

less frequent single positive EpCAM+ populations.   

 

 

Fig 3.  Flow cytometry of two distinct mouse lymph node stromal cell populations: EpCAM+ 

Following lymph node and peripheral lymph node fat excision, tissue was 

gested with collagenase D (Roche, Basel Switzerland) for 1 hour followed by RBC lysis and flow 

hematopoietic origin.)  Calcein 

n living cells, demonstrating their 

cell population, there are 3 main 

, Ly51+ EpCAM-, and 

the characteristics of the prevalent single positive Ly51+ 
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In order to differentiate between the lymph node follicle and the surrounding fat, experiments 

were performed excising the lymph node follicle from the surrounding fat and processing the 

two tissues separately.  Analysis of the lymph node follicle CD45- population (Figure 4) 

demonstrates that stromal cells are very sparse within the actual lymph node populations, at 

approximately .5% of the total number of cells.  This small number of cells represents the 

stromal component of the lymph node.  The surrounding fat pad around the follicle showed a 

large percentage of stromal cells at approximately 46% of the total number of cells.  We 

hypothesized that this large number of stromal cells immediately surrounding the follicle must 

play a major role in the immune system and specifically in T cell activation and inhibition.  

Further analysis of the follicle and fat determined that the majority of the EpCAM+ cells reside 

extra-nodally, while the Ly51+ cells exist in both the lymph node follicle and extra-nodally.  

Further experiments combined lymph node follicle and fat to analyze the complex stroma as a 

whole.  When sorting or isolation of EpCAM+ or Ly51+ cells occurred, the cells can be considered 

to be taken from the respective area with the higher concentration of this cell type.  This was 

done because the percentage of EpCAM+ stromal cells in the lymph node was too low to have 

any representative effect on co-cultures or analysis and to elucidate the role of the stroma, as a 

whole, in effecting immune response.   

 

EpCAM+ cells were the focus of my mouse stromal cell studies, while most research into the 

function of Ly51+ cells was being conducted by others in the laboratory. 

 

 

 

 

 

 

 



 

 

 

 

 

Fig 4.  Fat versus follicle analysis in mouse skin draining lymph nodes. 

cells of nonhematopoietic origin (CD45

actual lymph node follicle.  46% of the cells in the fat are CD45

lymph node are CD45-.  This demonstrates that

fat surrounding the follicle and that for experimental purposes and consistency, fat and follicle 

were excised and processed together to identify all stromal cell populations present.

16 

Fig 4.  Fat versus follicle analysis in mouse skin draining lymph nodes.  Lymph node stromal 

cells of nonhematopoietic origin (CD45-) are much more prevalent in the fat surrounding the 

actual lymph node follicle.  46% of the cells in the fat are CD45- while only 0.48 of cells in the 

.  This demonstrates that the lymph node stromal cells are mostly in the 

fat surrounding the follicle and that for experimental purposes and consistency, fat and follicle 

were excised and processed together to identify all stromal cell populations present.

 

Lymph node stromal 

) are much more prevalent in the fat surrounding the 

while only 0.48 of cells in the 

the lymph node stromal cells are mostly in the 

fat surrounding the follicle and that for experimental purposes and consistency, fat and follicle 

were excised and processed together to identify all stromal cell populations present. 
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Materials and Methods: 

 

Mice 

C57Bl/6, OT-I, and OT-II mice were purchased from Jackson Laboratory (Bar Harbor, ME) and 

housed in the Indiana University School of Medicine (IUSM) Animal Facility. All mouse 

experiments were approved by the Institutional Animal Care and Use Committee (IACUC). 

 

Preparation of Lymph Node 

Axial, brachial, and inguinal skin draining lymph nodes were excised along with the surrounding 

fat pads unless otherwise indicated.  Tissue was kept on ice unless otherwise indicated.  Tissues 

from three mice were placed into one GentleMACS C tube (Miltenyi Biotec Inc., Auburn, CA) 

containing 3 mL of cold Hyclone RPMI (Thermo Scientific, Waltham, MA) supplemented with 

10% Hyclone FBS, 100 I.U./mL Penicillin, 100 ug/mL Streptomycin, 1mM Sodium Pyruvate, 1x 

MEM Nonessential Amino Acids ((Mediatech, Manassas, VA), 2mM L-Glutamine, 20mM HEPES 

(Lonza, Walkersville, MD), and 1x 2-Mercaptoethanol (Gibco, Grand Island, NY) and dissociated 

using the GentleMACS Dissociator (Miltenyi Biotec Inc.) on default setting “spleen 02” (14 

seconds).  Any tissue remaining in the blades of the GentleMACS C tube was removed using 

forceps and placed into the remaining dissociated tissue.  10 ug Collagenase D (Roche, Basel, 

Switzerland) was dissolved in 2mL of supplemented RPMI and added to the 3 mL of RPMI 

containing the dissociated tissue for a final w/v of 0.2%.  Lymph node tissue was incubated at 

37°C (5% CO2) for 30 minutes, and then dissociated for 60 seconds with the GentleMACS 

Dissociator default setting “Spleen 01”, again incubated for 30 minutes at 37°C, and finally 

dissociated again for 60 seconds using the “Spleen 01” setting.  45 mL of supplemented RPMI 

added to digested lymph node and transferred to a 50 mL conical tube and centrifuged at 400 
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RPM for 10 minutes.  Supernatant was disposed and pellet was resuspended in 2 mL of 1x RBC 

Lysis Buffer (eBioscience) for 60 seconds and inactivated with 30 mL cold FACS buffer (2% FBS in 

Thermo Scientific PBS.)  Suspension then filtered through a 40 um cell strainer (Thermo 

Scientific) and strainer rinsed with an additional 20 mL of FACS buffer.  Cell suspension 

centrifuged at 350 RPM for 5 minutes and resuspended in FACS buffer for flow cytometry 

analysis or supplemented RPMI for growth studies or selected for CD45- cell populations using 

CD45 MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany.) CD45 microbeads were added 

to the disaggregated cell populations, incubated at 4°C for 30 minutes, followed by 2 washes 

with MACS buffer and then a run through an LS column attached to a magnet and magnetic 

stand (Miltenyi Biotec.)  Run through was collected and selected for Ly51+ or EpCAM+ cell 

populations using Ly51-biotin and EpCAM-biotin antibodies respectively, followed by a FACS 

buffer wash and staining with anti-biotin microbeads (Miltenyi Biotec, Bergisch Gladbach, 

Germany.)  Cells were then positively selected LS columns from Miltenyi Biotec. 

 

Flow Cytometry Analysis 

Antibodies were purchased from eBioscience (San Diego, CA) unless otherwise noted.  Events 

were collected with the LSRII flow cytometer (BD Biosciences) at IUSM’s Flow Cytometry Core.  

Antibodies were diluted at 1:100 of the tube volume with a minimum of 1uL of antibody and 

100 uL of FACS buffer for every 1e6 cells. Antibodies were incubated at 4°C for 30 minutes and 

subsequently washed two times with FACS buffer and centrifuged for 5 minutes at 350RPM.  

Analysis was performed using FlowJo (Tree Star Inc., Ashland, OR.)  Isotype controls and 

compensation controls used for every analysis.  CellTrace™ Calcein Violet, AM (Invitrogen, 

Carlsbad, California), diluted 1:1000 used for cell viability.  Intracellular staining was conducted 

using eBioscience intracellular staining protocol A with IC Fixation Buffer and Permeabilization 
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Buffer.  CellTrace Carboxyfluorescein succinimidyl ester (CFSE) Proliferation Kit (Molecular 

Probes, Eugene, Oregon) was used for proliferation quanitification.  Cell sorting was conducted 

using the BD FACSAria (BD Biosciences) located at IUSM’s Flow Cytometry Core.  List of 

antibodies used (Figure 5). 

Epitope Species Isotype Fluorophore Clone 

Ly51 Mouse IgG2a PE 6C3 

Ly51 Rat IgG2a FITC 6C3 

Ly51 Rat IgG2a AF-647 6C3 

EpCAM Rat IgG2a APC test2 

EpCAM Rat IgG2a FITC G8.8 

EpCAM Rat IgG2a PE-Cy7 G8.8 

EpCAM Rat IgG2a Biotin G8.8 

Ly51 Rat IgG1 Biotin FG35.4 

CD45 Rat IgG2b PE-Cy7 30-F11 

PCK Mouse IgG1 AF-488 AE1/AE3 

α-SMA Mouse IgG2a FITC 1A4 

CD31 Rat IgG2a PE 390 

CD31 Rat IgG2a eF450 390 

CD31 Rat IgG2a APC 390 

CD31 Rat IgG2a AF-488 390 

gp38 Hamster IgG PE 8.1.1 

gp38 Hamster IgG AF-488 8.1.1 

CD69 Hamster IgG1 FITC H1.2F3 

CD69 Hamster IgG1 APC H1.2F3 

CD4 Rat IgG2a PE H129.19 

CD4 Rat IgG2b APC I3/2.3 

CD4 Rat IgG2b PE-Cy7 GK1.5 

CD4 Rat IgG2b FITC GK1.5 

CD8 Rat IgG2a FITC 53-6.7 

CD8 Rat IgG2a PE 53-6.7 

CD8 Rat IgG2a PacBlue 53-6.7 

CD44 Rat IgG2b PE IM7 

CD44 Rat IgG2b APC IM7 

CD62L Rat IgG2a APC MEL-14 

CD62L Rat IgG2a FITC MEL-14 

CD62L Rat IgG2a eF450 MEL-14 

CD25 Rat IgG1 AF-488 PC61.5 

CD25 Rat IgM FITC 7D4 
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CD25 Rat IgM PE 7D4 

CD25 Rat IgG1 PE-Cy7 PC61 

CD273 (PDL2) Rat IgG2a None 122 

CD274(PDL1) Rat IgG2b APC 10F.9G2 

LtBR (CD18) Rat IgG1 Biotin eBioC38 

LYVE-1 Rat IgG1 eF660 ALY7 

CD40 Rat IgG2a APC 1C10 

CD54 (ICAM-1) Hamster IgG1 APC 3.00E+02 

CD80 (B7-1) Hamster IgG APC 16-10A1 

CD86 (B7-2) Rat IgG2a AF-647 GL-1 

CD106 (VCAM-1) Rat IgG2a AF-647 429 

CD275 (ICOS-L) Rat IgG2a None HK5.3 

CD38 Rat IgG2a AF-700 90 

CD140a Rat IgG2a APC APA5 

CD157 Mouse IgG2b APC BP-3 

CXCR4 Rat IgG2b APC 2B11 

Sca-1 Rat IgG2a APC D7 

c-Kit Rat IgG2b APC-eF780 2B8 

CD9 Rat IgG2a FITC KMC8 

CD29 Hamster IgG APC HMb1-1 

MHC-I Mouse IgG2a APC AF6-88.5.5.3 

MHC-II Rat IgG2b FITC M5/114.15.2 

MHC-II Rat IgG2b APC M5/114.15.2 

CD11c Hamster IgG1 PE HL3 

CD3 Rat IgG2b None 17A2 

 

Fig 5. Antibodies used for mouse analysis. 

 

qRT-PCR Analysis 

Quantitative real time PCR was performed using lymph nodes and surrounding tissues digested 

and prepared as described.  Cells were sorted for CD45- Calcein Violet+/EpCAM+ and CD45-

Calcein Violet+/Ly51+MHCII+.  200,000 cells were used for preparation of each RNA sample.  

RNA was prepared using RNeasy Plus Mini Kit to the manufacturers specifications (Qiagen, 

Venlo, Limburg.)  cDNA was reverse transcribed from isolated RNA using the High Capacity cDNA 
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Reverse Transcription Kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol.  

SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA) or TaqMan Real Time PCR 

Master Mixes (Life Technologies, Carlsbad, CA) were used for the qPCR reaction according to the 

manufacturer’s protocol.  Samples were run on the STEPOne PLUS Real Time qPCR System 

(Applied Biosystems).  All primers were designed using PrimerBlast software (NIH) using the 

following requirements: PCR product size, 70-150; primer melting temperatures minimum, 58.0; 

optimum, 60.0; maximum, 60.0; maximum temperature melting difference, 2; exon should span 

an exon-exon junction; Guanine Cytosine (GC) content, 30-36; maximum polynucleotides, 3; 

maximum self-complementation, 5, 3 in a row; concentration of monovalent cations, 60; both 

primers need the same melting temperature[55]. The following 25 nmol oligonucleotide DNA 

primers were ordered from Integrated DNA Technologies: mIL-10, 5'- ACT TTA AGG GTT ACT 

TGG GTT GC -3’ and 5'- CAG CTT CTC ACC CAG GGA AT -3'; mTGFB1, 5'- ACG TCA CTG GAG TTG 

TAC GG -3' and 5'- GGG CTG ATC CCG TTG ATT TC -3' ; mPDL1, 5'- TCA CTT GCT ACG GGC GTT TA 

-3' and 5'- CCC AGT ACA CCA CTA ACG CA -3' ; mPDL2, 5'- GCT GCA TGT TCT GGA ATG CT -3' and 

5'- TTG GGT TCC ATC CGA CTC AG -3'; mIDO1, 5'- AGT GCA GTA GAG CGT CAA GA -3' and 5'- GGT 

CCA CAA AGT CAC GCA TC -3'; mCTLA-4, 5'- CCC AGT CTT CTC TGA AGC CAT -3' and 5'- TTT GGT 

CAT TTG TCT GCC GC -3'; miNOS, 5'- AGG CCA CAT CGG ATT TCA CT -3' and 5'- TAG GCT TGT CTC 

TGG GTC CT -3'; mARG1, 5'- GTA CAT TGG CTT GCG AGA CG -3' and 5'- TTT CTT CCT TCC CAG CAG 

GT -3'; mARG2, 5'- GCA AAT TCC TTG CGT CCT GA -3' and 5'- TCC ACT CCT AGC TTC TTC TGT C -3'; 

mIFNg, 5'- ACA CTG CAT CTT GGC TTT GC -3' and 5'- GCT TTC AAT GAC TGT GCC GT -3'; mDLL1, 

5’-ACT GCA CTG ACC CAA TCT GT-3’ and 5’-GGA GAC AAC CTG GGT ATC GG-3’; mDLL4, 5’-AGT 

GAG AAG CCA GAG TGT CG-3’ and 5’-TGC CTT ATA CCT CTG TGG CAA-3’; mFLT3L, 5’-TCA ATC TTC 

AGG ACG AGA AGC A-3’ and FGF5’- TTT GCA TCT TAG ACC CTG CCA-3’; mKITL, 5’-GGT CCC GAG 

AAA GAT TCC AGA-3’ and 5’-CCA TTG TAG GCC CGA GTC TT-3’; mIL7, 5’-AGG AAC TGA TAG TAA 
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TTG CCC GA-3’ and 5’-AGC AGC TTC CTT TGT ATC ATC AC-3’; mIFNGR1, 5’TGC CTG TAC CGA CGA 

ATG TT-3’ and 5’-TCC AGG AAC CCG AAT ACA CC-3’; mTNFRSF1A, 5’-CAG TGA GGT AGT CCC AAC 

CC-3’ and 5’-ATC GCA AGG TCT GCA TTG TC-3’; mTNFRSF1B, 5’-GTT CTT CCT GTA CCA CTG ACC 

A-3’ and 5’-CAA GCA CAC ACT CGG TTC TG-3’; mEGFR, 5’-TAC CTA TGG ATG TGC TGG GC-3’ and 

5’-ACT GCC ATT GAA CGT ACC CA-3’; mIGF1R, 5’-GCG AGC TTC CTG TGA AAG TG-3’ and 5’-GAT 

GAG ATC CCG GTA GTC CG-3’; mFGF1R, 5’-ATG ACG ACG ACG ATG ACT CC-3’ and 5’-GGG AGC 

TAC AGG GTT TGG TT-3’; mLIFR, 5’-ACT GTG TTC ATT TGG AGG CAT-3’ and 5’-TCA GTC AGC CCT 

CTC ACA AG- 3’; mKIT, 5’- ACT GGT GGT TCA GAG TTC CA-3’ and 5’-GGC CTG GAT TTG CTC TTT 

GT-3’; mMYC, 5’-CCT GTA CCT CGT CCG ATT CC-3’ and 5’-TGC TCT TCT TCA GAG TCG CT-3’; 

mNANOG, 5’-AAA GGA TGA AGT GCA AGC GG-3’ and 5’-GTG CTG AGC CCT TCT GAA TC-3’; 

mKLF4, 5’-CAC CTG GCG AGT CTG ACA T-3’ and 5’-TTC CTC ACG CCA ACG GTT A-3’; mCXCR4, 5’-

AGC TAA GGA GCA TGA CGG AC-3’ and 5’-TCC CAA AGT ACC AGT CAG CC-3’; mSOX2, 5’-AAA CTA 

ATC ACA ACA ATC GCG G-3’ and 5’-GAT CTG GCG GAG AAT AGT TGG-3’ ; mGAPDH, 5’-GCG AGA 

CCC CAC TAA CAT CA-3’ and 5’-GAGTTGGGATAGGGCCTCTCTT-3’.  Results were analyzed using 

StepONE (Applied Biosystems) and Excel (Microsoft) software and interpreted as %GAPDH in 

reference to each sample. 

 

Immunohistochemistry Analysis 

Immunohistochemistry was conducted by the IU Pathology IHC Core Laboratory.  Mouse lymph 

node tissue along with the surrounding fat was excised and immediately placed in 

paraformaldehyde for fixation.  After fixation, the tissue block was embedded in paraffin and 

sliced with a microtome to approximately 5um thickness and fixed to slides for staining.  PCK, α-

SMA, and Ly51 antibodies were used with varying secondary antibodies according to Pathology 

IHC Core titrations of antibody. 
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Immunofluorescent Microscopy Analysis 

Immunofluorescents was conducted using fresh and cultured mouse EpCAM+ cells.  Antibodies 

were diluted at 1:100 of the tube volume with a minimum of 1uL of antibody and 100 uL of FACS 

buffer for every 1e6 cells. Antibodies were incubated at 4°C for 30 minutes and subsequently 

washed two times with FACS buffer and centrifuged for 5 minutes at 350RPM.  Cells were then 

placed into Lab-Tek 8 well Glass Chamber Slides (Thermo, Rochester, NY) for viewing on the 

Olympus 2 confocal microscope located in the Indiana Center for Biological Microscopy, Division 

of Nephrology, IUSM.  4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) (Life technologies, 

Carlsbad, CA) was used for nuclear staining of all cells at a concentration of 3uM and an 

incubation of 15 minutes at room temperature.  DAPI visualization was collected using Laser 405 

with a voltage of 450 kV and an 8% laser.  PCK (Mouse, IgG1,Alexa Fluor-488, clone AE1/AE3) 

and gp38 (Hamster, IgG,Alexa Fluor-488) were collected using Laser 488 with a voltage of 750 kV 

and a 10% laser.  EpCAM (Rat, IgG2a, APC, clone test2) was collected using Laser 647 with a 

voltage of 8%.  Images were collected and combined using a 60x lens and imaging software 

ImageJ (National Institute of Health.) 

 

ELISAs 

Supernatant was collected from co-culture experiments and frozen or freshly analyzed using the 

mouse IFNγ and IL-6 Quantikine ELISA kits (R&D Systems, Minneapolis, MN).  ELISAs were 

conducted using the protocol described by the manufacturer.   

 

Primary Culture of Unique Mouse Populations 

Multiple techniques were used to grow primary cultures of mouse populations.  The first 

condition attempted was complete RPMI with 10 %FBS in 6 well plates.  Further attempts to 
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grow the EpCAM+ population included using DMEM with 10% FBS in 6 well plates.  Further 

attempts included using irradiated (4000 rads) NIH fibroblast 3T3s from the American Type 

Culture Collection (ATCC) as feeder cells to provide growth factors and a niche for the epithelial 

cell growth.  Successful cultures of EpCAM+ cells used LA7 rat tumor mammary epithelial cell 

purchased from ATCC (CRL 2283) irradiated at 6000 rads and plated at concentrations of 1.04 

x10
5
 cells/cm

2
 in six-well plates.  LA7 cells were maintained using DMEM media with 10 ug/mL 

insulin, 50nM hydrocortisone, and 5% FBS.  For growth of EpCAM+ cells the paper concerning 

rodent mammary epithelial cell growth according to Ehmann et al. 2003 was used [56].  EpCAM+ 

growth on LA7’s was conducted using DMEM/Ham’s F12 1:1 ratio supplemented with 10ug/mL 

insulin, 5ug/mL transferrin, 10% FBS, and 20mM HEPES.   
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Results 

 

Introductory phenotypic analysis of mouse EpCAM+ cells and Ly51+ cells by flow cytometry 

In order to better understand the role that the EpCAM+ and Ly51+ cells play in the immune 

system, a full analysis of surface and internal markers was conducted.  This analysis gave us 

further insight into the origin and possible function of the cells of interest.  Initial analysis 

consisted of the canonical markers for endothelium and epithelium, α-smooth muscle actin 

(SMA) and pan-cytokeratin (PCK) respectively (Figure 6).  The Ly51+ cell population is α-smooth 

muscle actin positive (α-SMA) which is characteristic of endothelial cells [57] and the Ly51+ 

MHCII+ cell population is LYVE-1+ which is characteristic of lymphatic endothelial cells [58].  The 

EpCAM+ population is entirely pan-cytokeratin (PCK) positive which is characteristic of epithelial 

cells [59].  The EpCAM+ population can be further subdivided into two distinct populations: 

gp38+ cells and gp38- cells.   

 

Phenotypic analysis of mouse EpCAM+ cells by confocal immunofluorescent microscopy 

Immunofluorescence (IF) studies also demonstrate the PCK positivity of EpCAM+ cells (Figure 7). 

Analysis using confocal IF shows that approximately 50% of the EpCAM+ cells are gp38+, 

coinciding with the flow cytometry data.  Gp38 is a marker for lymphatic endothelium and 

fibroblastic reticular cells.  This data helps to further characterize the EpCAM+ cell population as 

epithelial in origin, while the α-SMA+ Ly51 + population exhibits the phenotype of a lymphatic 

endothelial cell.  

 



 

Fig 6.  Introductory descriptive analysis of Ly51+ and EpCAM+ cells.  

is α-smooth muscle actin positive (α

LYVE-1+ which is characteristic of lymphatic endothelial cells 

consists of two populations: MHCII+ and MHCII

cytokeratin (PCK) positive which is characteristic of epithelial cells 

can be subdivided into two distinct populations: gp38+ cells and gp38

populations will be analyzed in order to determine the individual cell population functions.

EpCAM low populations express high 

Figures shown are representative of n=3 independent experiments with equivalent biological 

results. 
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Fig 6.  Introductory descriptive analysis of Ly51+ and EpCAM+ cells.  The Ly51+ cell population 

smooth muscle actin positive (α-SMA) which is characteristic of endothelial cells 

1+ which is characteristic of lymphatic endothelial cells [58].  The Ly51+ population 

consists of two populations: MHCII+ and MHCII-.  The EpCAM+ population is entirely pan

cytokeratin (PCK) positive which is characteristic of epithelial cells [59].  The EpCAM+ population 

can be subdivided into two distinct populations: gp38+ cells and gp38- cells.  These two EpCAM+ 

populations will be analyzed in order to determine the individual cell population functions.

EpCAM low populations express high gp38, while EpCAM high populations express little gp38.

Figures shown are representative of n=3 independent experiments with equivalent biological 

 
The Ly51+ cell population 

SMA) which is characteristic of endothelial cells [57] and 

he Ly51+ population 

.  The EpCAM+ population is entirely pan-

.  The EpCAM+ population 

cells.  These two EpCAM+ 

populations will be analyzed in order to determine the individual cell population functions.  

gp38, while EpCAM high populations express little gp38.  

Figures shown are representative of n=3 independent experiments with equivalent biological 



 

Fig 7. Immunofluorescent microscopy of freshly isolated EpCAM+ cells.

immunofluorescence reinforces the previous flow cytometry findings of an entirely PCK+ EpCAM 

population.  It also demonstrates that approximately 50% of the EpCAM+ cells are gp38

the other 50% are gp38+.  Again, cells that stain dimly for EpC

cells that stain strongly for EpCAM have little to no gp38 expression.
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Fig 7. Immunofluorescent microscopy of freshly isolated EpCAM+ cells.  The 

immunofluorescence reinforces the previous flow cytometry findings of an entirely PCK+ EpCAM 

population.  It also demonstrates that approximately 50% of the EpCAM+ cells are gp38

Again, cells that stain dimly for EpCAM, stain strongly for gp38 while 

cells that stain strongly for EpCAM have little to no gp38 expression. 

 

 

immunofluorescence reinforces the previous flow cytometry findings of an entirely PCK+ EpCAM 

population.  It also demonstrates that approximately 50% of the EpCAM+ cells are gp38-, while 

AM, stain strongly for gp38 while 
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Location of the EpCAM+ and Ly51+ population based on immunohistochemistry 

With a basic understanding of the origin and type of stromal cells we have isolated, the next 

focus was the location of the cells in respect to each other and the follicle.  The lymph node of a  

mouse and the surrounding fat pads show distinct channels formed by α-SMA+ cells and PCK+ 

cells (Figure 8). Further analysis depicts a smooth muscle actin positive population closely 

associating with the PCK+ population of epithelial cells.  The channels consist of an epithelial 

(PCK+) cell population forming the luminal surface, while the smooth muscle cells form the 

exterior of the channel.   

 

Detailed surface profile of EpCAM+ cells 

To better elicit the role of EpCAM+ cells in the lymph node and surrounding cells, a more robust 

surface marker profile study was conducted using flow cytometry.  The analysis helped clearly 

define the population, gave hints at possible growth conditions based on growth factor 

receptors, and supplied us with possible avenues of functional studies.  The first array of surface 

marker antibodies used included common indicators of cell adhesion and co-stimulation (Figure 

9). Flow cytometric analysis demonstrates that the CD45-/EpCAM+ population’s cell surface has 

medium levels of CD40, CD86, and PDL1 and high levels of LtBR on their surface.  CD40 is a co-

stimulatory molecule found on APCs and is required for activation of APCs by binding CD154 on 

T helper cells inducing stimulation of T helper cells and APCs [60]. CD54 is a glycoprotein 

expressed on endothelial cells, and when ligated can cause downstream inflammatory effects 

and leukocyte recruitment [61].  CD80 and CD86 are co-stimulatory signals for T cell activation 

and survival and act by ligating CD28 and CTLA4 on the surface of T cells [62]. CD106 is a cell 

adhesion molecule commonly found on stimulated blood vessels that mediates the adhesion of 

leukocytes [63].   



 

Fig 8. Histological microscopy of the fat pad surrounding the inguinal lymph node follicle in 

BL/6J mice.  In order to elicit the location of the EpCAM+ and Ly51+ popu

staining of mouse lymph node fat pads was conducted.  

Right Pane: 200x. Ly51-Red, PCK

and EpCAM respectively due to poor staining by the L

are channels formed with the epithelial cells forming the luminal surface, while the smooth 

muscle cells form the exterior of the channel.  
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Fig 8. Histological microscopy of the fat pad surrounding the inguinal lymph node follicle in 

In order to elicit the location of the EpCAM+ and Ly51+ populations histological 

staining of mouse lymph node fat pads was conducted.  Left Pane: 200x. α-SMA

Red, PCK-brown. Surrogate markers α-SMA and PCK were used for Ly51 

and EpCAM respectively due to poor staining by the Ly51 and EpCAM antibodies.  Seen above 

are channels formed with the epithelial cells forming the luminal surface, while the smooth 

muscle cells form the exterior of the channel.   

Fig 8. Histological microscopy of the fat pad surrounding the inguinal lymph node follicle in 

lations histological 

SMA-green, PCK-red. 

SMA and PCK were used for Ly51 

y51 and EpCAM antibodies.  Seen above 

are channels formed with the epithelial cells forming the luminal surface, while the smooth 



 

Fig 9. Flow cytometric analysis of CD45

costimulation).  Isotypes corresponding to each constant region, species, and fluorophore were 

used for each analysis.  Numbers indicate percent of mean fluorescent intensity (MFI) above the 

isotype control.  Figures shown are representative of n

equivalent biological results.
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Fig 9. Flow cytometric analysis of CD45-/EpCAM+ cell surface markers (adhesion and 

Isotypes corresponding to each constant region, species, and fluorophore were 

used for each analysis.  Numbers indicate percent of mean fluorescent intensity (MFI) above the 

Figures shown are representative of n=3 independent experiments with 

equivalent biological results. 

 

 

esion and 

Isotypes corresponding to each constant region, species, and fluorophore were 

used for each analysis.  Numbers indicate percent of mean fluorescent intensity (MFI) above the 

=3 independent experiments with 
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PDL1 and PDL2 play role in suppressing the immune system by interacting with PD-1 on the 

surface of CD8+ cytotoxic T cells; therefore, inhibiting proliferation [64-66]. CD275 is present on 

APCs and binds ICOS on activated T cells for co-stimulation [67].  LtBR plays a role in lymph node 

development and we hypothesize that it may suppress T cells through an unknown mechanism: 

possibly through the iNOS or IDO1 pathway or by up-regulating PDL1 [34, 35].   

 

Further analysis on the CD45- EpCAM+ population of lymph node and surrounding tissue stroma 

was focused on the mesenchymal and stem-like properties of the unique cell population (Figure 

10).  Analysis of common stem-like markers demonstrated that the EpCAM+ population express 

medium levels of CD38, CD44, CD140a, CXCR4, OCT4, Sca-1, CD9, and CD29 eliciting a possible 

multi-potency potential of the cell population.  CD38 is widely expressed on many tissues, can 

bind CD31, and can mediate lymphocyte activation and adhesion [68]. CD44 is expressed on 

some epithelial cells and is a receptor for hyaluronic acid [69]. CD140a is expressed on 

mesenchymal-derived cells of adult mouse tissue [70]. CD157 is present on bone marrow 

stromal cells and plays a role in pre-B-cell growth [71].  CXCR4 is commonly found on 

hematopoietic stem cells (HSCs) and lymphocytes and binds SDF-1 (CXCL12) present on BM 

stromal cells [72]. Oct4, a transcription factor, is commonly used as a marker for 

undifferentiated tissue [73]. Sca-1 and c-kit are HSC markers and are present on some 

endothelial cells [74].  CD9 and CD29 are both possible marker for stem-like cells [75, 76].  MHCI 

is positive as to be expected with any nucleated cell.  In total, the flow cytometric analysis gives 

an indication of the possible origin, stem-like, and adhesive properties of the EpCAM+ cell 

population.   

  



 

Fig 10.  Flow cytometric analysis of CD45

(mesenchymal stem cell), and miscellaneous].

species, and fluorophore were used for each analysis.  Numbers indicate percent of mean 

fluorescent intensity (MFI) above the isotype control.

independent experiments with equivalent biological results.
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Fig 10.  Flow cytometric analysis of CD45-/EpCAM+ cell markers [stem-like, MSC

(mesenchymal stem cell), and miscellaneous].  Isotypes corresponding to each constant region, 

species, and fluorophore were used for each analysis.  Numbers indicate percent of mean 

fluorescent intensity (MFI) above the isotype control.  Figures shown are representative of n=3 

s with equivalent biological results. 

 

 
like, MSC-like 

Isotypes corresponding to each constant region, 

species, and fluorophore were used for each analysis.  Numbers indicate percent of mean 

Figures shown are representative of n=3 
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Growth attempts of CD45- EpCAM+ cells 

In order to further study the EpCAM+ cells we decided to initiate primary cultures.  This would 

allow us to accomplish several things: 1) Identify the similarities between freshly isolated and 

cultured EpCAM+ cells. 2) Eliminate the need for time and resource draining fresh mouse 

preparations. 3) Utilize large quantities of grown EpCAM+ cells for co-culture experiments with T 

cells. 4) Establish a long lasting cell line for further studies in the future.   

 

Initial attempts to grow the EpCAM+ cells consisted of placing the sorted EpCAM+ cells into 

media containing RPMI with 10% FBS.  Growth was slow and insufficient number of cells for 

desired experiments resulted (Figure 11).  The next step in growth attempts included using 

irradiated 3T3 fibroblasts as feeder cells to support the EpCAM+ cells in adhesion and growth.  

This more successful method of culturing resulted in faster growth.  Further analysis of grown 

EpCAM+ cells in RPMI with irradiated 3T3s demonstrated the retention of a similar surface 

profile to freshly isolated EpCAM+ cells.  The cultured EpCAM+ cells retained the 1:1 ratio of 

gp38+ and gp38- cells seen in flow cytometry and immunofluorescent analysis (Figure 12).  In 

attempt to replicate the successful mammary epithelial cell growth conducted by Ehmann et al 

[56], irradiated LA7 cells were used with media consisting of DMEM/Ham’s F12 1:1 ratio 

supplemented with insulin and transferrin.  This resulted in successful growth of EpCAM+ cells, 

but instead of the characteristic 1:1 ratio of gp38+ to gp38- cells, only gp38- cells were found 

(Figure 13).  This may be due to the depletion of EpCAM
LOW

 gp38+ cells during magnetic column 

selection. 

  



 

Fig 11. Day 4 culture of EpCAM+ cells in RPMI 10% F

growing in the above picture.  

 

 

34 

Fig 11. Day 4 culture of EpCAM+ cells in RPMI 10% FBS.  A colony of EpCAM+ cells is seen 

growing in the above picture.   

 

 

A colony of EpCAM+ cells is seen 



 

Fig 12.  Day 12 growth of EpCAM+ cells on irradiated 3T3’s increases growth potential.

attempts to grow EpCAM+ cells resulted in greater success.  Lymph node follicles and 

surrounding fat were collected, digested with collagenase, RBC lysed, CD45+ cell depleted, Ly51 

depleted, and finally positively selected for EpCAM+ cells using magnetic separation.  EpCAM+ 

cells were plated at a concentration of 1.04 x 10

fibroblasts at a concentration of 1.6 x 10

10% FBS.  Cells harvested on day 12 demonstrated EpCAM positivity by flow and 

immunofluorescence.  Cells also demonstrated the consistent 50% gp38+ population and 50% 

gp38- population. 
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Day 12 growth of EpCAM+ cells on irradiated 3T3’s increases growth potential.

attempts to grow EpCAM+ cells resulted in greater success.  Lymph node follicles and 

surrounding fat were collected, digested with collagenase, RBC lysed, CD45+ cell depleted, Ly51 

depleted, and finally positively selected for EpCAM+ cells using magnetic separation.  EpCAM+ 

cells were plated at a concentration of 1.04 x 10
4
cells/cm

2
 on a bed of 4000 rad irradiated 3T3 

fibroblasts at a concentration of 1.6 x 10
3 

cells/cm
2
 in 6 well plates.  Media used was DMEM with 

10% FBS.  Cells harvested on day 12 demonstrated EpCAM positivity by flow and 

immunofluorescence.  Cells also demonstrated the consistent 50% gp38+ population and 50% 

 

Day 12 growth of EpCAM+ cells on irradiated 3T3’s increases growth potential.  Further 

attempts to grow EpCAM+ cells resulted in greater success.  Lymph node follicles and the 

surrounding fat were collected, digested with collagenase, RBC lysed, CD45+ cell depleted, Ly51 

depleted, and finally positively selected for EpCAM+ cells using magnetic separation.  EpCAM+ 

a bed of 4000 rad irradiated 3T3 

in 6 well plates.  Media used was DMEM with 

10% FBS.  Cells harvested on day 12 demonstrated EpCAM positivity by flow and 

immunofluorescence.  Cells also demonstrated the consistent 50% gp38+ population and 50% 



 

Fig 13. 8 Day growth of EpCAM+ cells plated on confluent, irradiated LA7 rat mammary cells.  

1.04 x 10
5
 LA7 cells/cm

2
 were irradiated at 6000 rads and plated 24 hours prior to plating 1.04 x 

10
4
 EpCAM+ cells.  The smaller, rounder EpCAM+ cells can be seen pushing the LA7 cells 

outwards as growth of EpCAM+ cells replaces the irradiated LA7s

shows an EpCAM+ population with no gp38 positivity.
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pCAM+ cells plated on confluent, irradiated LA7 rat mammary cells.  

were irradiated at 6000 rads and plated 24 hours prior to plating 1.04 x 

EpCAM+ cells.  The smaller, rounder EpCAM+ cells can be seen pushing the LA7 cells 

wards as growth of EpCAM+ cells replaces the irradiated LA7s.  Flow cytometric analysis 

shows an EpCAM+ population with no gp38 positivity. 

 

pCAM+ cells plated on confluent, irradiated LA7 rat mammary cells.  

were irradiated at 6000 rads and plated 24 hours prior to plating 1.04 x 

EpCAM+ cells.  The smaller, rounder EpCAM+ cells can be seen pushing the LA7 cells 

Flow cytometric analysis 
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Ly51+ stromal cells uptake exogenous antigen and cross-present to CD8 T cells. 

To better understand the role the EpCAM+ cells were playing around the lymph node, the other 

unique population, Ly51+ cells, was analyzed for its role in antigen presentation and T cell 

stimulation.  The normal pathway for exogenous antigen after endocytosis results in 

presentation on MHC-II.  Ly51+ cells are capable of up-taking exogenous antigen resulting in 

cross-presentation of antigen in the context of MHC-I.  This leads to CD8 T cell activation, down-

regulation of CD25 (IL-2 receptor), and up-regulation of T cell early activation marker CD69.  

Proliferation is evident from the CFSE studies shown.  Compared to dendritic cells (DCs) Ly51+ 

cells result in less IFNƴ production by T cells.  IL-6 is constitutively produced by Ly51+ cells 

(Figure 14).  

 

The inhibitory effects of EpCAM+ cells on T cells 

The proliferative effect Ly51+ cells have on T cells may be counterbalanced by the inhibitory 

effect of the adjacent EpCAM+ cells.  Varying amounts of EpCAM+ cells had a dose dependent 

inhibition of bead-activated T cell activation and proliferation (Figure 15).  With increasing 

amounts of EpCAM+ cells co-cultured with fixed numbers of T cells, one sees the inhibitory 

effect of EpCAM+ cells keeping T cells in their non-activated (CD44- CD62L+) naïve state (Figure 

16). EpCAM+ lymph node stromal cells are also found to inhibit the production of IL-2 in a dose 

dependent manner especially when compared to the total CD45- population which contains the 

stimulatory Ly51+ cells and the inhibitory EpCAM+ cells.  When the EpCAM+ cells are isolated 

and interacting with activated T cells, production of IL-2 drops.  IL-6 is produced by both the 

EpCAM+ population and the entire CD45- population in similar amounts (Figure 17).  

 

 



 

Fig 14.  Ly51+ lymph node stromal cells can uptake Ova and cross

3 day co-culture of Ly51+ lymph node stroma with OT

dendritic cells.  The flow cytometry is of the day 3 OT

bottom two panels is from the supernatant coll

contain TCRs specific for ova peptide in the context of MHC

activated [77].  CSFE is a measure of proliferation, wit

intensity (MFI), the more proliferation occurs 

indicate MFI.  Percentages in CD69 indicate 

significance was calculated using ANOVA (p<.05) followed by post

indicates significant differences between groups (p<.05).

is representative of 3 independent experiments with equivalent b
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Fig 14.  Ly51+ lymph node stromal cells can uptake Ova and cross-present to naïve OT

culture of Ly51+ lymph node stroma with OT-I T cells presented with antigen by CD11c+ 

dendritic cells.  The flow cytometry is of the day 3 OT-I T cells while the ELISA data located in the 

bottom two panels is from the supernatant collected on day 3 of the co-culture.  OT

contain TCRs specific for ova peptide in the context of MHC-I.  T cells produce IFN

.  CSFE is a measure of proliferation, with the smaller the mean fluorescence 

, the more proliferation occurs [78].  Numbers in CD25 and CFSE flow histograms 

indicate MFI.  Percentages in CD69 indicate MFI percentage above isotype.  Statis

significance was calculated using ANOVA (p<.05) followed by post-hoc student’s T test.  * 

indicates significant differences between groups (p<.05).  n=3 for sample analysis.  Data shown 

is representative of 3 independent experiments with equivalent biological end results.

present to naïve OT-I T cells.  

I T cells presented with antigen by CD11c+ 

I T cells while the ELISA data located in the 

culture.  OT-I T cells 

I.  T cells produce IFN-ƴ when 

mean fluorescence 

Numbers in CD25 and CFSE flow histograms 

Statistical 

hoc student’s T test.  * 

n=3 for sample analysis.  Data shown 

iological end results. 



 

Fig 15.  EpCAM+ cells demonstrate the ability to inhibit the proliferation of bead

CD4 and CD8 T cells in a dose

EpCAM+ lymph node stromal cells with 

a 96 well U-bottom plate.  The mean fluorescence intensity of CSFE correlates with the reverse 

amount of proliferation: the less CFSE present in flow cytometry, the more proliferation 

occurred.  With the addition of 1x10

proliferation of activated CD4 and CD8 T cells.  

shown are representative of 2 independent experiments with biologically equivalent results.
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Fig 15.  EpCAM+ cells demonstrate the ability to inhibit the proliferation of bead

CD4 and CD8 T cells in a dose-dependent manner.  3 day co-culture of passage 0 (P0) cultured 

EpCAM+ lymph node stromal cells with CD3/CD28/CD137 bead activated CD4 and CD8 T cells in 

The mean fluorescence intensity of CSFE correlates with the reverse 

amount of proliferation: the less CFSE present in flow cytometry, the more proliferation 

addition of 1x10
5
 EpCAM+ cells, one sees a marked decrease in the 

proliferation of activated CD4 and CD8 T cells.  Numbers in histograms indicate the MFI.

shown are representative of 2 independent experiments with biologically equivalent results.

Fig 15.  EpCAM+ cells demonstrate the ability to inhibit the proliferation of bead-activated 

culture of passage 0 (P0) cultured 

CD3/CD28/CD137 bead activated CD4 and CD8 T cells in 

The mean fluorescence intensity of CSFE correlates with the reverse 

amount of proliferation: the less CFSE present in flow cytometry, the more proliferation 

EpCAM+ cells, one sees a marked decrease in the 

Numbers in histograms indicate the MFI.  Figures 

shown are representative of 2 independent experiments with biologically equivalent results.   



 

Fig 16.  EpCAM+ cells can keep bead

EpCAM+ lymph node stromal cells were capable of retaining the activated CD4 and CD8 T cells in 

their naïve CD44- CD62L+ state in a dose

96 well plates.  CD44+ CD62L

T cells [79].  Results shown are representative of 2 independent experiments with equivalent 

biological results. 
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Fig 16.  EpCAM+ cells can keep bead-activated T cells in their naïve state.  Passage 0 cultured 

EpCAM+ lymph node stromal cells were capable of retaining the activated CD4 and CD8 T cells in 

CD62L+ state in a dose-dependent manner in a 3 day co-culture in U

96 well plates.  CD44+ CD62L- T cells are effector T cells while CD44+ CD62L+ T cells are memory 

Results shown are representative of 2 independent experiments with equivalent 

Passage 0 cultured 

EpCAM+ lymph node stromal cells were capable of retaining the activated CD4 and CD8 T cells in 

culture in U-bottom 

T cells are effector T cells while CD44+ CD62L+ T cells are memory 

Results shown are representative of 2 independent experiments with equivalent 



 

Fig 17.  EpCAM+ lymph node stromal cells inhibit the production of IL

manner. 3 day co-culture of bead

and EpCAM+ T cells) or CD45

inhibit the production of IL-

equivalently by both the CD45

analysis between the EpCAM+ group and the CD45

followed by post-hoc student T tests between each group at each concentration of cells.  * 

indicates significant difference (p<.05).
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Fig 17.  EpCAM+ lymph node stromal cells inhibit the production of IL-2 in a dose dependent 

culture of bead-activated T cells with either CD45- stroma (containing Ly51+ 

and EpCAM+ T cells) or CD45- EpCAM+ stroma alone demonstrates that EpCAM+ cells can 

-2, an essential cytokine for T cell proliferation [80].  IL

y both the CD45- population and the isolated EpCAM+ population.  

analysis between the EpCAM+ group and the CD45- group was conducted using ANOVA (p<.05) 

hoc student T tests between each group at each concentration of cells.  * 

indicates significant difference (p<.05). 

 

2 in a dose dependent 

stroma (containing Ly51+ 

EpCAM+ stroma alone demonstrates that EpCAM+ cells can 

.  IL-6 is produced 

population and the isolated EpCAM+ population.  Statistical 

group was conducted using ANOVA (p<.05) 

hoc student T tests between each group at each concentration of cells.  * 



42 

 

Contact-mediated and secretory actions of EpCAM+ inhibition on activated T cells. 

Transwell and U-bottom plates were used to elicit the role secreted factors and direct contact 

could be playing in T cell inhibition.  Based on MFIs, EpCAM+ stromal cells moderately inhibit the 

proliferation of T cells through a secreted mechanism, but exhibit even stronger inhibition in a 

contact-mediated setting as shown in the U-bottom plate.  Down-regulation of CD25, the IL-2 

receptor, also demonstrates the inhibitory potential of EpCAM+ lymph node stromal cells in 

both a secretory system and a contact-mediated system (Figure 18). 

 

IDO1 and iNOS: possible mechanisms of T cell inhibition by EpCAM+ lymph node stromal cells. 

qPCR analysis of co-cultured EpCAM+ cells with T cells that were activated with either beads or 

APCs presenting specific antigen resulted in up-regulation of the genes IDO1 and iNOS. When 

EpCAM+ cells encounter secreted factors from activated T cells, IDO and iNOS are up-regulated 

Figure 19).   

 

 

  

 

  

 

 

 

 

 



 

Fig 18. Inhibition of T cells by EpCAM+ lymph node stroma: contact mediated or secretion

dependent.  A 3 day co-culture of either EpCAM+ stromal cells or Ly51+MHCII+ stromal cells 

with bead activated CD4 or CD8 T cells in either a contact

secretion-dependent system (transwell) is shown above.

Results shown are representative of 2 independent experiments with equivalent biological end 

results. 
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Fig 18. Inhibition of T cells by EpCAM+ lymph node stroma: contact mediated or secretion

culture of either EpCAM+ stromal cells or Ly51+MHCII+ stromal cells 

with bead activated CD4 or CD8 T cells in either a contact-mediated environment (U

dependent system (transwell) is shown above. Numbers in histograms indic

Results shown are representative of 2 independent experiments with equivalent biological end 

Fig 18. Inhibition of T cells by EpCAM+ lymph node stroma: contact mediated or secretion-

culture of either EpCAM+ stromal cells or Ly51+MHCII+ stromal cells 

mediated environment (U-bottom) or 

Numbers in histograms indicate MFI.  

Results shown are representative of 2 independent experiments with equivalent biological end 



 

Fig 19. EpCAM+ cells up-regulate potential T cell inhibitory genes IDO and iNOS in response to 

secreted factors released by bead

%GAPDH.  The left panel shows a 36 hour co

cells in transwell 96 well plates. The right panel shows a 72 hour transwell EpCAM+ cell co

culture with OT-II T cells stimulated by CD11c+ dendritic cells presenting the OT

protein, ova, or a control protein, Tyrp1, that should not stimulate OT

graph is representative of n=1 patient with samples analyzed in triplicate. 
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regulate potential T cell inhibitory genes IDO and iNOS in response to 

secreted factors released by bead-activated T cells.  Gene expression was analyzed using 

The left panel shows a 36 hour co-culture of EpCAM+ cells with Bead activated CD3 T 

cells in transwell 96 well plates. The right panel shows a 72 hour transwell EpCAM+ cell co

imulated by CD11c+ dendritic cells presenting the OT

protein, ova, or a control protein, Tyrp1, that should not stimulate OT-II T cell activation

graph is representative of n=1 patient with samples analyzed in triplicate.  

 

regulate potential T cell inhibitory genes IDO and iNOS in response to 

Gene expression was analyzed using 

culture of EpCAM+ cells with Bead activated CD3 T 

cells in transwell 96 well plates. The right panel shows a 72 hour transwell EpCAM+ cell co-

imulated by CD11c+ dendritic cells presenting the OT-II specific 

II T cell activation.  Each 
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CHAPTER 2. HUMAN LYMPH NODE STROMA 

Introduction 

Human lymph node stroma cell populations were isolated to identify populations that may be 

analogous to our mouse model populations: EpCAM+ and Ly51+MHCII+.  The unique ability to 

resect and begin preparation of human lymph nodes immediately following surgery has given us 

the opportunity to analyze the distinct populations before cell death occurs.  Freshly resected 

human lymph nodes were analyzed based on two primary markers: CD34 and HLA-DR.  CD34 is 

present in all Ly51+ lymph node cells in our mouse studies and represents a sufficient surrogate 

marker for Ly51 and endothelial cells in general.  HLA-DR is the human form of the MHCII 

complex.  There is insufficient evidence of any epithelial cell populations that may be analogous 

to the mouse EpCAM+ population.  The main goal of the human lymph node studies was to 

characterize the cell populations using surface marker expression, internal markers, and gene 

expression assays in order to determine further courses of action regarding the function of the 

cells.   
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Materials and Methods: 

 

Lymph Node Collection 

Lymph nodes were collected from healthy patients undergoing limb reperfusion and 

immediately placed in saline on ice. All tissue harvests were conducted according to institutional 

review board (IRB) regulations.  Human lymph nodes were procured from healthy donors (fresh) 

and were never frozen.  The tissue was digested, processed, and analyzed within 5 hours of 

collection.  Lymph nodes and the surrounding fat pads were excised and directly placed in saline 

solution and placed on ice.   

 

Preparation of Lymph Node 

Tissue was kept on ice unless otherwise indicated.  Tissues from individual human patients were 

separated based on fat and lymph node.  Lymph nodes were then cut into smaller 10mm 

sections using forceps and a scalpel.  Lymph nodes were further mechanically processed by 

holding the 10mm sections in place and crushing the tissue with the butt end of a 10mL syringe 

plunger.  Tissue was then placed into GentleMACS C tubes (approximately 6 grams/C tube) 

(Miltenyi Biotec Inc., Auburn, CA) containing 3 mL of cold Hyclone RPMI (Thermo Scientific, 

Waltham, MA) supplemented with 10% Hyclone FBS, 100 I.U./mL Penicillin, 100 ug/mL 

Streptomycin, 1mM Sodium Pyruvate, 1x MEM Nonessential Amino Acids ((Mediatech, 

Manassas, VA), 2mM L-Glutamine, 20mM HEPES (Lonza, Walkersville, MD), and 1x 2-

Mercaptoethanol (Gibco, Grand Island, NY) and dissociated using the GentleMACS Dissociator 

(Miltenyi Biotec Inc.) on default setting “spleen 02” (14 seconds).  Any tissue remaining in the 

blades of the GentleMACS C tube was removed using forceps and placed into the remaining 

dissociated tissue.  10 ug Collagenase D (Roche, Basel, Switzerland) was dissolved in 2mL of 
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supplemented RPMI and added to the 3 mL of RPMI containing the dissociated tissue for a final 

w/v of 0.2%.  Lymph node tissue was incubated at 37°C (5% CO2) for 30 minutes, and then 

dissociated for 60 seconds with the GentleMACS Dissociator default setting “Spleen 01”, again 

incubated for 30 minutes at 37°C, and finally dissociated again for 60 seconds using the “Spleen 

01” setting.  45 mL of supplemented RPMI added to digested lymph node and transferred to a 

50 mL conical tube and centrifuged at 400 RPM for 10 minutes.  Supernatant was disposed (no 

cells present in supernatant) and pellet was re-suspended in 2 mL of 1x RBC Lysis Buffer 

(eBioscience) for 60 seconds and inactivated with 30 mL cold FACS buffer (2% FBS in Thermo 

Scientific PBS.)  Suspension then filtered through a 40 um cell strainer (Thermo Scientific) and 

strainer rinsed with an additional 20 mL of FACS buffer.  Cell suspension centrifuged at 350 RPM 

for 5 minutes and resuspended in FACS buffer for flow cytometric analysis or supplemented 

RPMI for growth studies or selected for CD45- cell populations using CD45 MicroBeads (Miltenyi 

Biotec, Bergisch Gladbach, Germany.) CD45 microbeads were added to the disaggregated cell 

populations, incubated at 4°C for 30 minutes, followed by 2 washes with MACS buffer and then 

a run through an LS column attached to a magnet and magnetic stand (Miltenyi Biotec.)  Run 

through was collected and analyzed with flow cytometry, qPCR, or chosen for growth and 

differentiation studies.   

 

Flow Cytometry Analysis 

Antibodies were purchased from eBioscience (San Diego, CA) unless otherwise noted.  Events 

were collected with the LSRII flow cytometer (BD Biosciences) at IUSM’s Flow Cytometry Core.  

Antibodies were diluted at 1:100 of the tube volume with a minimum of 1uL of antibody and 

100 uL of FACS buffer for every 1e6 cells. Antibodies were incubated at 4°C for 30 minutes and 

subsequently washed two times with FACS buffer and centrifuged for 5 minutes at 350RPM.  



48 

 

Analysis was performed using FlowJo (Tree Star Inc., Ashland, OR.)  Isotype controls and 

compensation controls used for every analysis.  CellTrace™ Calcein Violet, AM (Invitrogen, 

Carlsbad, California), diluted 1:1000 used for cell viability.  Intracellular staining was conducted 

using eBioscience intracellular staining protocol A with IC Fixation Buffer and Permeabilization 

Buffer.  CellTrace Carboxyfluorescein succinimidyl ester (CFSE) Proliferation Kit (Molecular 

Probes, Eugene, Oregon) was used for proliferation quanitification.  Cell sorting was conducted 

using the BD FACSAria (BD Biosciences) located at IUSM’s Flow Cytometry Core.  List of 

antibodies used (Figure 20). 

Epitope Species Isotype Fluorophore Clone 

CD105 Mouse IgG1 APC SN6 

CD106 Mouse IgG1 APC STA 

CD123 Mouse IgG1 APC 6H6 

CD144 Mouse IgG1 APC 16B1 

CD146 Mouse IgG2a APC MUC18, Mel-CAM 

CD19 Mouse IgG1 APC-eF780 HIB19 

CD31 Mouse IgG1 APC WM59 

CD34 Mouse IgG1 APC 4H11 

CD34 Mouse IgG1 FITC 4H11 

CD44 Rat IgG2b APC IM7 

CD45 Mouse IgG1 PE HI30 

CD45 Mouse IgG1 APC HI30 

CD45 Mouse IgG1 PE-Cy7 HI30 

CD73 Mouse IgG1 APC AD2 

CD90 Mouse IgG1 APC 5E10 

CXCR5 Mouse IgG2b PE MU5UBEE 

DLL-1 Mouse IgG1 PE MHD1-314 

gp38 Rat IgG2a APC NZ-1.3 

HLA-ABC Mouse IgG2a APC W6/32 

HLA-DQ Mouse IgG1 FITC SK10 

HLA-DR Mouse IgG2a PE L243 

HLA-DR Mouse IgG2a FITC L243 (G46-6) 

LtBR Mouse IgG1 APC 71319 

LYVE-1 Mouse IgG1 APC 537028 

SMA Mouse IgG2a FITC 1A4 

VEGFR3 Mouse IgG1 APC 54733 

 

Fig 20. Antibodies used for human analysis 



49 

 

qRT-PCR Analysis 

Quantitative real time PCR was performed using lymph nodes and surrounding tissues digested 

and prepared as described.  Cells were sorted for CD45- Calcein Violet+/EpCAM+ and CD45-

Calcein Violet+/Ly51+MHCII+.  200,000 cells were used for preparation of each RNA sample.  

RNA was prepared using RNeasy Plus Mini Kit to the manufacturers specifications (Qiagen, 

Venlo, Limburg.)  Due to the limited amount of starting RNA, SMART mRNA Amplification Kit 

(Clontech, Mountain View, CA) was used to linearly amplify mRNA prior to reverse transcription.  

cDNA was reverse transcribed from isolated RNA using the High Capacity cDNA Reverse 

Transcription Kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol. SYBR 

Green PCR Master Mix (Applied Biosystems, Foster City, CA) or TaqMan Real Time PCR Master 

Mixes (Life Technologies, Carlsbad, CA) were used for the qPCR reaction according to the 

manufacturer’s protocol.  Samples were run on the STEPOne PLUS Real Time qPCR System 

(Applied Biosystems).  All primers were designed using PrimerBlast software (NIH) using the 

following requirements: PCR product size, 70-150; primer melting temperatures minimum, 58.0; 

optimum, 60.0; maximum, 60.0; maximum temperature melting difference, 2; exon should span 

an exon-exon junction; Guanine Cytosine (GC) content, 30-36; maximum polynucleotides, 3; 

maximum self-complementation, 5, 3 in a row; concentration of monovalent cations, 60; both 

primers need the same melting temperature [55]. The following 25 nmol oligonucleotide DNA 

primers were ordered from Integrated DNA Technologies: Results were analyzed using StepONE 

(Applied Biosystems) and Excel (Microsoft) software and interpreted as %GAPDH. Primers used: 

hCD40, 5'- AGT CGG CTT CTT CTC CAA TGT -3' and 5'- CTT TGG TCT CAC AGC TTG TCC -3'; hCD80, 

5'- ATC TGA CGA GGG CAC ATA CG -3' and 5'- AGG TGT AGG GAA GTC AGC TTT -3'; hCD83, 5'- 

TTG AGA GTG ACA GGA TGC CC -3' and 5'- AGA TAC TCT GTA GCC GTG CAA -3'; hCD86, 5'- ACT 

AGC ACA GAC ACA CGG AT -3' and 5'- GAC TGA AGT TAG CAG AGA GCA G -3'; hCD275, 5'- ATG 
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TGG CAG CAA ACT TCA GC -3' and 5'- AGG CTG TTG TCC GTC TTA TTG A -3'; hCD274, 5'- TGG TCA 

TCC CAG AAC TAC CTC -3' and 5'- TCA GTG CTA CAC CAA GGC AT -3'; hCCL19, 5’- GGT GCC TGC 

TGT AGT GTT CAC C-3’ and 5’- CGG CGC TTC ATC TTG GCT GA -3’; hCCL21, 5’ – TCA CCC TCA GCT 

CTG GCC TCT T -3’ and 5’- TCC ATC ACT GCC TTG GGT CCT G -3’; hCXCL12, 5’- 

TGTGCCCTTCAGATTGTAGCCCG – 3’ and 5’ – TCG AGT GGG TCT AGC GGA AAG T -3’; hIL6, 5’ – 

AGC CCA CCG GGA ACG AAA GA -3’ and 5’- ACT GGA CCG AAG GCG CTT GT – 3’; hTGFB1, 5’ – 

TTG TGC GGC AGT GGT TGA GC – 3’ and 5’ – GGC CGG TAG TGA ACC CGT TGA T-3’; hIL10, 5’-TCC 

GAG ATG CCT TCA GCA GAG T-3’ and 5’-GCT TGG CAA CCC AGG TAAC CCT TA-3’; hGAPDH, 5’-

TGT TCG ACA GTC AGC CGC ATC T-3’ and 5’-CGC CCA ATA CGA CCA AAT CCG T-3’; hACTB, 5’- TCC 

TTC CTG GGC ATG GAG TCC T - 3’ and 5’- TGC GGA TGT CCA CGT CAC ACT - 3’; hMITF, 5’ – TGA 

AGA GCA GCA GTT CCG CC -3’ and 5’- TGC TGG CGT AGC AAG ATG CG - 3’; hAIRE, 5’-CCC GAG 

GAC AAG TTT CAG GAG ACG-3’ and 5’-TCC AGG ATG GCT GTG GAG TCC T-3’; hIL3, 5’ - GCA CCC 

ACG CGA CAT CCA AT - 3’ and 5’ - ACG AGC TGG ACG TTG GAC TCA - 3’; hKITLG, 5’-AGT CCT GAG 

AAA GGG AAG GCC AAA-3’ and 5’-TGC CCT TGT AAG ACT TGG CTG TCT-3’; hFLT3LG, 5’-ACT TTC 

GGT CTC TGG CTG TCA CC-3’ and 5’-GAT AGG TTG TTG GGC TCC AGG CT-3’; hDLL1, 5’- GTC CGC 

CGC TGT TCT AAG GAG A-3’ and 5’-TCC AGA CCT GAC ACA GCA AGG C-3’; hIL7, 5’-TCC TGC TCC 

AGT TGC GGT CA-3’ and 5’-ACT GGC AAC AGA ACA AGG ATC AGG G-3’; hGMCSF, 5’-GCC AGC 

CAC TAC AAG CAG CAC-3’ and 5’-GCC TCA TCT GGC CGG TCT CA-3’; hIL3RA, 5’-GAT CTC CAT TTA 

AGC AGG CAC C-3’ and 5’-TAG GTT CGT GAT TGG TGG GTT-3’; hCCR1, 5’- TTG GAA CCA GAG AGA 

AGC CG - 3’ and 5’- CTC TCG TTC ACC TTC TGG CA -  3’; hCCR2, 5’- AGC CAC AAG CTG AAC AGA 

GA - 3’ and 5’- GGT GAC TTC TTC ACC GCT CT - 3’; hCCR3, 5’-TGA CGC CTA AGC TAT CAC TGG-3’ 

and 5’-TTG TCA TTT CAC TTC TCC CTG AA-3’; hCCR4, 5’- CGG GTC CTT CTT AGC ATC GT-3’ and 5’-

AGA AGC AGC TTG CTT TTC TGA- 3’; hCCR5vB, 5’-ATC TGG CAT AGT CTC ATC TGG C-3’ and 5’-

TAA TCC ATC TTG TTC CAC CCG-3’; hCCR7, 5’- ATG GAC CTG GGG AAA CCA AT- 3’and 5’ - CGT 
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CCG TGA CCT CAT CTT GA - 3’; hIL6R, 5’- GTA CCA CTG CCC ACA TTC CT-3’ and 5’-CCA CGT CTT 

CTT GAA CCT CAG-3’; hIL7R, 5’- GTC GTC TAT CGG GAA GGA GC-3’ and 5’-TGG ATA AAT TCA CAT 

GCG TCC A-3’; hTGFBR3, 5’- AAG TGG GCT TTG GAC AAT GG-3’ and 5’-CAT CTC CCA TCT CCT CTG 

CAT T-3’; hFLT3, 5’- TCG AGG AGG GCA ACT ACT TT-3’ and 5’-GGT GTC GTT TCT TGC CAC TG-3’;    

hCSF2RA,  5’-AGA CAG CAG ATC CGA GAA GC-3’ and 5’- GAG AGA AGG GAA GAG CGA CA-3’; 

hKIT, 5’-GCA TTC AAG CAC AAT GGC AC- 3’ and 5’ - GGG ATG GAT TTG CTC TTT GTT G - 3’; 

hEGFR, 5’- TGC CAT CCA AAC TGC ACC TA - 3’ and 5’- GGG ATC TTA GGC CCA TTC GT - 3’; 

hFGFR1, 5’- AAC CAA ACC GTA TGC CCG TA - 3’ and 5’-AAC TTC ACT GTC TTG GCA GC - 3’; 

hIGF1R,  5’-CGT GGG AGG GTT GGT GAT TA - 3’ and 5’- GAA CGT ACA CAT CAG CAG CG - 3’; 

hEPOR, 5’- TTC TGG TGT TCG CTG CCT A - 3’ and 5’- GCG TCT AGG AGC ACT ACT TCA-3’;     hTLR1,  

5’-CAA GCA GGT TGT CTT GTG TTA AAG-3’ and 5’-TCT TCT AAC GAG GAA GAG GGC-3’; hTLR2, 5’- 

GGT AGT TGT GGG TTG AAG CAC - 3’ and 5’ - GCC CTT GCA GAT ACC ATT GC - 3’; hTLR3,  5’-TCC 

CTT TGT CAA GCA GAA GAA TTT-3’ and 5’- AGC TGA ACC TGA GTT CCT AAT TT-3’; hCXCR4, 5’- 

GCA GCA GGT AGC AAA GTG AC-3’ and 5’- GAA GTG TAT ATA CTG ATC CCC TCC A-3’; hCSF2RB, 

5’- CCC TCA ACG TGA CCA AGG AT - 3’ and 5’- TCT CGG TCT TGC TGT CCT TC - 3’; hMYC, 5’- CTC 

CGT CCT CGG ATT CTC TG - 3’ and 5’- TTC TTG TTC CTC CTC AGA GTC G - 3’; hOSM, 5’- GCT GCT 

CAG TCT GGT CCT T - 3’ and 5’- TGT CTG CTT CTG GAG CTG G – 3’; hPIM1, 5’-CTT CGG CTC GGT 

CTA CTC AG-3’ and 5’-TGC CAT TAG GCA GCT CTC C-3’; hFOS, 5’-GGA GAA TCC GAA GGG AAA 

GGA-3’ and 5’-CTG TCT CCG CTT GGA GTG TA-3’; hRAF1, 5’-TGG CTC CCT CAG GTT TAA GAA-3’ 

and 5’-GAT CGT CTT CCA AGC TCC CT-3’; hBCL2, 5’-ATG TGT GTG GAG AGC GTC AA-3’ and 5’- 

GTT CCA CAA AGG CAT CCC AG-3’; hBCL2L1, 5’- CCT CTC CCG ACC TGT GAT AC-3’ and 5’-TCT GAA 

GGG AGA GAA AGA GAT TCA A-3’; hJUN, 5’-TTT CTG GCC TGC CTT CGT TA-3’ and 5’-ACA ACA 

CTG GGC AGG ATA CC-3’; hIL8, 5’- AGG AAG AAA CCA CCG GAA GG-3’ and 5’-AAA CTG CAC CTT 

CAC ACA GAG-3’; hGCSF, 5’- CCA GAG CTT CCT GCT CAA GT-3’ and 5’- TAG GTG GCA CAC TCA 
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CTC AC-3’; hHLA-DRA, 5’-TGG AGT CCC TGT GCT AGG AT-3’ and 5’-TGT TCT TCT TTG ATA GCC 

CAT GA-3’; hCD34, 5’- TCT TGG GCA TCA CTG GCT ATT-3’ and 5’-ATA AGG GTC TTC GCC CAG C-3’; 

hCD73, 5’- TGA TGA ACG CAA CAA TGG AAT C-3’ and 5’- AGG GTC ATA ACT GGG CAC TC-3’; 

hCD90, 5’- TTC ACT AGC AAG GAC GAG GG-3’ and 5’-ACC AGT TTG TCT CTG AGC ACT-3’; hCD105, 

5’- CCT CAA CAT GGA CAG CCT CT-3’ and 5’-CAC TCT GAC CTG CAC AAA GC-3’; hCD31, 5’- CCC 

ACA ACA GAC ATG GCA AC-3’ and 5’-CTG CTG ACC TTG GAT ATG CG-3’; hDLL4, 5’-TGT CAT TGC 

CAC GGA GGT AT-3’ and 5’-ATT CCC TCC TCC TCC TGA GA-3’; hIL21, 5’-ACA CAG ACT AAC ATG 

CCC TTC A-3’ and 5’-AGA AGC AAA TCT GGA TAG GTA AAG A-3’; hIL15, 5’-TCC ATC CAG TGC TAC 

TTG TGT-3’ and 5’-TGG GTA TAT TAG CTG CAT CCC AA-3’; hINS, 5’-AGG CCA TCA AGC AGA TCA 

CT-3’ and 5’-GGT GTT GGT TCA CAA AGG CT-3’; hGAD67, 5’- GTT CGC ACA GGT CAT CCT C-3’ and 

5’-AGG ACA AAC ACT GGT GCA AT-3’; hPTPRN, 5’- TGC CCA CGG CTG TCT ATT T-3’ and 5’-ACA 

CCT TGT AAG CGT TGG AGA-3’; hPLP1, 5’- AGA GGA CAA AGA TAC TCA GAG AGA A-3’ and 5’-AAC 

AAG CCC ATG TCT TTG GG-3’; hATP4A, 5’- CCC AGA GTA CGT CAA GTT CG-3’ and 5’-5’- GCG ATT 

GCC AGG TAC AGA TTG-3’; hCHRNA1, 5’- AAT GTG CGT CTG AAA CAG GG-3’ and 5’- GTT GTA ATC 

CAC CCA TTG CTC A-3’; hTYRP2, 5’- CTT CCT GAA CGG GAC AAA CG-3’ and 5’-TCA GTA AAG GAA 

TGA AGA ACC ACA-3’; hAFP, 5’- GAG GGA GCG GCT GAC ATT AT-3’ and 5’-GCC AAC ACC AGG GTT 

TAC TG-3’; hSAG 5’-AGC TCC GTG CGA TTA CTG AT-3’ and 5’-TTG AGA GAG ACC GCA AGG TG-3’; 

hATP4B, 5’- ACT ACG TGG CCT TCT ACG TG-3’ and 5’-GTC TTG GTA GTC CGG TGT GT-3’; hALB, 5’- 

CGC CTT TGG CAC AAT GAA GT-3’ and 5’- GCA TCT CGA CGA AAC ACA CC-3’. 

 

Primary Culture of Unique Human Populations 

Generation of adipose derived stem cells (ADSCs) from the CD34+ HLA-DR- population isolated 

from human patient 2 was conducted using  IMDM media supplemented with 2 x 10
-3

 M 

Hydrocortisone, 2x10
-2

 m 2-Mercaptoethanol, 10 ng/mL EGF.  Adherent cells were isolated and 
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given the supplemented IMDM media in order to preferentially select ADSCs for growth [81].  To 

determine if the ADSCs were multipotent, differentiation of the cell line into chondrocytes 

myoblasts was conducted according to the protocols of Zuk et al 2002 [82].  For culturing of 

human CD34+ HLA-DR+ populations RPMI and DMEM with concentrations of 5-20% FBS were 

unsuccessfully used.  Other unsuccessful growth attempts included using 3T3s irradiated at 4000 

rads and using ADSCs derived from patient 2 as feeder cells. 
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Results 

 

HLA-DR, CD34 populations 

Isolation of lymph nodes from nine patients resulted in seven successful preparations of 

individual cells (Figure 21).  Flow cytometric analysis focused on the CD45- stromal populations 

of the human lymph nodes and isolated the viable cells according to positive calcein violet 

presence.  Two populations were clearly and repeatedly found in all seven patients: CD34+ HLA-

DR+ and CD34- HLA-DR-, while two human subjects had a third population of CD34+ HLA-DR- 

cells.  These two preparations involved retaining the surrounding fat around the lymph node 

follicle.   

 

Flow cytometric profile of CD34+ HLA-DR+ cells. 

 Relevant negative markers help define the CD34+ HLA-DR+ population (Figure22).  CD19 is a B 

cell marker, further clarifying that our cell population is not a B cell.  HLA-DQ is part of the 

heterodimer that is MHC-II complex in human cells.  DLL-1 is Delta Like 1 and plays a role in 

Notch signaling pathway and hematopoiesis differentiation fate.  It plays a major role in T cell 

development. CXCR5 is present in spleen and lymph node follicles and is a receptor for CXCL13 

which helps control the organization of B cells within lymph node follicles. LYVE-1 and VEGFR3 

negativity indicates that this cell population is not lymphatic endothelium [89, 90].  Also 

negative is CD106, VCAM cell adhesion molecule, which mediates adhesion of lymphocytes and 

monocytes to vascular endothelium.  Gp38, podoplanin, is a marker of lymphatic endothelium 

and fibroblastic reticular cells (FRCs), but is absent from the isolated CD34+ HLA-DR+ cells. 

 

 



 

Fig 21. Human lymph node digest and flow cytometric profile.  

underwent lymph node retrieval followed by lymph node digest and flow cytometric staining.  

Seven out of nine retrievals were 

cell counts for analysis.  Events were gates according to forward scatter and side scatter, 

followed by gating on the Ca Violet+ CD45

Finally CD34 and HLA-DR were used to identify two definitive populations: CD34+HLA

CD34-HLA-DR-.  In patients 2 and 8 more fat surrounding the lymph nodes was digested 

resulting in a third population of CD34+HLA
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Fig 21. Human lymph node digest and flow cytometric profile.  Nine healthy human patients 

underwent lymph node retrieval followed by lymph node digest and flow cytometric staining.  

Seven out of nine retrievals were successful while two resulted in poor yields and insufficient 

cell counts for analysis.  Events were gates according to forward scatter and side scatter, 

followed by gating on the Ca Violet+ CD45- population—living, non-hematopoietic stromal cells.  

DR were used to identify two definitive populations: CD34+HLA

.  In patients 2 and 8 more fat surrounding the lymph nodes was digested 

resulting in a third population of CD34+HLA-DR- cells. 

 
Nine healthy human patients 

underwent lymph node retrieval followed by lymph node digest and flow cytometric staining.  

successful while two resulted in poor yields and insufficient 

cell counts for analysis.  Events were gates according to forward scatter and side scatter, 

hematopoietic stromal cells.  

DR were used to identify two definitive populations: CD34+HLA-DR+ and 

.  In patients 2 and 8 more fat surrounding the lymph nodes was digested 



 

Fig 22. Analysis of HLA-DR+ C

to each constant region, species, and fluorophore were used for each analysis.  Numbers 

indicate percent of mean fluorescent intensity (MFI) above the isotype control.

are representative of 2 independent patient sample analysis.
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R+ CD34+ surface profile (relevant negatives).  Isotypes corresponding 

to each constant region, species, and fluorophore were used for each analysis.  Numbers 

indicate percent of mean fluorescent intensity (MFI) above the isotype control.

presentative of 2 independent patient sample analysis. 

 

 
.  Isotypes corresponding 

to each constant region, species, and fluorophore were used for each analysis.  Numbers 

indicate percent of mean fluorescent intensity (MFI) above the isotype control.  Figures shown 
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HLA-DR+ CD34+ cells isolated from the CD45- fraction of human lymph node tissue have high 

expression of SMA, HLA-ABC, CD31, CD73, CD90, CD105, CD144, and CD146 (Figure 23.  α-

smooth muscle actin (SMA) is commonly found in smooth muscle cells and stains vessel walls 

[85].  HLA-ABC stains for human MHC-I present in all nucleated cells.  Common markers for 

mesenchymal stem cells (MSCs) include CD73, CD90, CD105 [86]. CD144, also known as VE-

Caderin, is responsible for cell adhesion and the permeability of endothelium [87].  CD146 is 

melanoma cell adhesion molecule responsible for cell cohesion and denotes endothelial cell 

lineage [88].  Lymphotoxin β Receptor (LTBR), CD123, and CD44 are strongly expressed on the 

surface of our isolated human population of cells. LtBR binds lymphotoxin α and β, helps 

lymphatic vessels form, and is associated with apoptosis [35].  CD123 is the IL3 receptor and as 

such plays a role in signaling proliferation and growth.  IL3 is released by activated T cells and 

can have many downstream effects when ligating the IL3 receptor [83]. CD44 is a glycoprotein 

hyaluronic acid receptor responsible for adhesion and migration [84].   

 

Gene expression profile of 3 populations: Adipose Derived Stem Cells (ADSCs), CD34+HLA-DR-, 

and CD34+HLA-DR+.   

Cells isolated from Patient 2 were analyzed for specific genes of interest related to growth factor 

receptors, cytokine signaling, chemokine trafficking, differentiation, presentation of antigen, co-

stimulation, and stem-like indicators.  Patient 2 cells were divided into freshly isolated CD34+ 

HLA-DR- and CD34+ HLA-DR+ populations.  RNA was isolated from each population.  ADSCs were 

derived from the CD34+ HLA-DR- population given specific media as outlined in materials and 

methods.   

 



 

Fig 23. Analysis of HLA-DR+ CD34+

corresponding to each constant region, species, and fluorophore were used for each analysis.  

Numbers indicate percent of mean fluorescent inte

Figures shown are representative of 2 independent patient sample analysis.
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DR+ CD34+ flow cytometric profile (positive markers).  Isotypes 

corresponding to each constant region, species, and fluorophore were used for each analysis.  

Numbers indicate percent of mean fluorescent intensity (MFI) above the isotype control.

Figures shown are representative of 2 independent patient sample analysis. 

 

.  Isotypes 

corresponding to each constant region, species, and fluorophore were used for each analysis.  

nsity (MFI) above the isotype control.  
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Focusing on the CD34+HLA-DR+ population, one sees that our flow cytometric profile 

corresponds to the gene expression profile in our positive flow controls (Figure 24).  Growth 

factors expressed by our CD34+ HLA-DR+ cell population were also analyzed in order to 

elucidate possible autocrine growth mechanisms used by the cell (Figure 24).  Analysis 

demonstrates high expression of VEGFC, a growth factor essential for maintaining and repairing 

vasculature.   

 

Further qPCR analysis focused on receptors present on the surface of our double positive 

(CD34+ HLA-DR+) population (Figure 25).  Receptor studies help shed light on possible signaling 

pathways and growth factors that may be essential for establishing a primary culture.  The 

receptor for IL7R, EGFR, and TGFBR3 are all expressed in a relatively high amount, leading to a 

presumption that the corresponding ligands (IL-7, EGF, and TGFβ) may play a role in our 

population’s growth.  TGFBR3 is a receptor for basic fibroblast growth factor (bFGF).  IL3R was 

also found to have relatively high expression and was further analyzed by studying downstream 

molecules important in IL-3 signaling.  Analysis of various cytokines and chemokines (Figure 26) 

demonstrates the high expression of IL-7 and IL-8.  IL-7 is a hematopoietic growth factor 

produced by DCs and epithelial cells and is important in B and T cell development [91].  IL-8 is a 

neutrophil chemotactic factor and promotes angiogenesis [92].  The possible role of lymph node 

stromal cells in extra-thymic T cell development was analyzed with qPCR by studying genes 

involved in antigen processing and promiscuous antigen expression (Figure 27).  HLA-DM is 

essential for loading antigen onto MHC-II for presentation to T cells.  Promiscous antigens, if 

expressed in the periphery can possibly eliminate self-reactive T cells.  Finally, T cell 

development and IL3RA signaling molecules were analyzed via qPCR (Figure 28). 
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Fig 24.  qRT-PCR (Panel 1 – Positive Flow Controls and Growth Factors) - Relative expression 

(%Gapdh) of genes using in 3 populations: Adipose Derived Stem Cells (ADSCs), CD34+HLA-DR- 

and CD34+HLA-DR+.  All samples were derived from patient 2 and linearly amplified.  Results 

shown are taken from one patient sample analyzed in triplicate. 
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Fig 25. qRT-PCR (Panel 2 – Surface Receptors) 
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Fig 25. qRT-PCR (Panel 2 – Surface Receptors)  Relative expression (%Gapdh) of genes using in 3 

populations: Adipose Derived Stem Cells (ADSCs), CD34+HLA-DR  and CD34+HLA-DR+. Growth 

factor, cytokine, and chemokine receptors were analyzed for expression between 3 populations 

of cells. Results shown are taken from one patient sample analyzed in triplicate. 
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Fig 26. qRT-PCR (Panel 3 – Cytokines and Chemokines). 
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Fig 26. qRT-PCR (Panel 3 – Cytokines and Chemokines).  Relative expression (%Gapdh) of genes 

using in 3 populations: Adipose Derived Stem Cells (ADSCs), CD34+HLA-DR  and CD34+HLA-DR+.  

Analysis of various cytokine and chemokine production gene expression elucidated more 

functional properties of our CD34+HLA-DR+ population of interest. Results shown are taken 

from one patient sample analyzed in triplicate. 
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Fig 27. qRT-PCR (Panel 4 – Antigen Processing and Promiscuous Self-Antigens). 
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Fig 27. qRT-PCR (Panel 4 – Antigen Processing and Promiscous Self-Antigens).  Relative 

expression (%Gapdh) of genes using in 3 populations: Adipose Derived Stem Cells (ADSCs), 

CD34+HLA-DR  and CD34+HLA-DR+.  Promiscous self-antigens involved in extra-thymic T cell 

education were also analyzed in our populations of interest. Results shown are taken from one 

patient sample analyzed in triplicate. 
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Fig 28. qRT-PCR (Panel 5 – T Cell Development and IL3R Downstream Signaling). 
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Fig 28. qRT-PCR (Panel 5 – T Cell Development and IL3R Downstream Signaling).  Relative 

expression (%Gapdh) of genes using in 3 populations: Adipose Derived Stem Cells (ADSCs), 

CD34+HLA-DR and CD34+HLA-DR+.  Analysis of molecules involved in thymic T cell development 

including AIRE – the driving force behind promiscuous self-antigen presentation.  IL3R signaling 

was analyzed due to the high levels of IL3R RNA expression analyzed previously.  Results shown 

are taken from one patient sample analyzed in triplicate. 
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AIRE is the driving force behind expression of promiscuous antigen in the thymus, but was not 

present in our lymph node stromal populations. DLL1 and DLL4 are important to T cell 

development and maturation [93].  Zúñiga-Pflücker’s lab has successfully differentiated multi-

potent hematopoietic stem cells into T cells using DLL1 and DLL4 expressed by OP9 cells. 

 

Histology of human lymph nodes 

Histology of a lymph node with its surrounding tissue revealed the presence of CD34 and HLA-

DR in channels surrounding the lymph node (Figure 29).  The HLA-DR+ CD34+ stains could not be 

assessed together due to lack of sufficient antibody staining, but individual stains using one of 

the two markers were used along with the endothelial marker SMA.  The channels formed 

demonstrate a polarity of cells.  Smooth muscle actin positivity is present on the exterior of the 

channel while the interior lumen is CD34+.  HLA-DR positivity is located directly in the lumen of 

the peri-lymph node channels. 

 

Growth attempts of CD34+ HLA-DR+ lymph node cells 

In order to further study the CD34+ HLA-DR+ cells we decided to initiate primary cultures.  This 

would allow us to accomplish several things: 1) Identify the similarities between freshly isolated 

and cultured CD34+ HLA-DR+ cells. 2) Generate a cell line to provide unlimited cells for analysis 

and experimental study 3) Utilize large quantities of grown EpCAM+ cells for co-culture 

experiments with T cells.  

 

The most successful growth attempt included plating CD34+ HLA-DR+ cells directly onto ADSCs 

derived from patient 2 tissue (Figure 30).  Analysis of the primary culture identified a small 

population of HLA-DR+ cells with a small proportion of these being CD31+ (Figure 31). 



 

 

Fig 29.  Patient 2 lymph node and surrounding tissue histology.

blocks of human lymph node cut to 

Bottom Panels: α-SMA-Red, HLA
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Fig 29.  Patient 2 lymph node and surrounding tissue histology.  Analysis of paraffin embed 

blocks of human lymph node cut to 5um thickness.  Top Panels: α-SMA-Red, CD34

Red, HLA-DR-Brown.   

 

 

Analysis of paraffin embed 

Red, CD34-Brown.  



 

 

Fig 30. Growth attempts of human CD34+ HLA

were isolated and placed directly onto ADSCs for support.
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Fig 30. Growth attempts of human CD34+ HLA-DR+ lymph node cells.  Patient 8 HLA

were isolated and placed directly onto ADSCs for support. 

 

 

Patient 8 HLA-DR+ cells 



 

Fig 31. Growth attempts of human CD34+ HLA

cytometric analysis of the grown population indicated that there is a small population of HLA

DR+ cells that with a small proportion of these also being CD31 positive.
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Fig 31. Growth attempts of human CD34+ HLA-DR+ lymph node cells (Flow Cytometry).  

lysis of the grown population indicated that there is a small population of HLA

DR+ cells that with a small proportion of these also being CD31 positive.  

 

 
DR+ lymph node cells (Flow Cytometry).  Flow 

lysis of the grown population indicated that there is a small population of HLA-
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DISCUSSION AND FUTURE DIRECTIONS 

Chapter 1. Lymph Node Stroma of the Mouse 

The two cell populations isolated in the lymph node stroma of mice play an important role in 

modulating the immune response.  Ly51+ cells, capable of up-taking exogenous antigen, can 

stimulate CD4 and CD8 T cells to elicit a positive immune response, while EpCAM+ cells can 

inhibit T cell activation and proliferation through an unknown mechanism.  These two cells may 

act in a complex system of checks and balances to ensure the proper immune response is 

spurred.  The importance of the Ly51+ cells lies in its ability to present antigen and activate T 

cells.  The escalating immune response needs a counter balance to control inflammation and 

proliferation of T cells.  We believe the EpCAM+ cell population may be responsible for 

regulating hyper-stimulation of T cells and inflammation.  The immune response must be 

appropriate for the stimulation.  Foreign malicious bacteria or viruses must be dealt with 

efficiently while still maintaining control of inflammation and cell-mediated killing.  Auto-

reactive T cells must be eliminated or inhibited before causing damage to native cells.  We 

believe the EpCAM+ and Ly51+ cells, located in and around the skin-draining lymph nodes, play 

a major role in balancing the immune response. 

 

The Ly51+ cell population isolated from skin-draining lymph nodes of mice represents a novel 

stimulatory mechanism of T cells.  The importance of this cell type will be analyzed by others in 

the laboratory, while my focus is on the more inhibitory function of the EpCAM+ cell population. 

 

Evidence from histology, qPCR, and flow cytometry indicate that EpCAM+ cells may reside in the 

luminal surface of afferent or efferent lymphatic vessels surrounding the lymph node.  This 

luminal layer of EpCAM+ cells is then surrounding by an SMA+ cell layer.  These cells may inhibit 
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stimulated T cells when exiting the lymph node, regulating the immune response and controlling 

inflammation.  The importance of adhesion molecules present on EpCAM+ cells may help 

leukocyte rolling and interaction and could also play a role in slowing the T cells down to enable 

EpCAM+ cells to have direct contact-mediated inhibition through an as yet un-described 

mechanism.  

 

Results from initial phenotypic analysis of our two mouse populations, Ly51+ and EpCAM+, 

demonstrates the respective endothelial and epithelial nature of our population.  The 

characteristic endothelial markers CD31, CD34, LYVE-1, and α-SMA are present on our Ly51+ 

population, while the EpCAM+ population expresses the epithelial markers EpCAM and PCK.  

The EpCAM+ population can be divided into two further sub populations, gp38+ and gp38-.  The 

functional difference between these two populations has not been elicited, but it may indicate a 

relation to the gp38+ and gp38- populations of stromal cells previously characterized in the 

lymph node follicle itself (FRCs and FDCs) [47].  The difference between these classical 

characterizations of stroma and our populations lies in the peri-nodal location of our EpCAM+ 

population while the classical conventions show gp38+ and gp38- populations inside of the 

node.  This may indicate that the EpCAM+ cells are integral to lymphatic vessels that extend into 

the follicle itself, but with dissipating expression of EpCAM on intra-nodal lymphatic vessels. 

 

EpCAM+ cells express a variety of surface proteins that could play a functional role in T cell 

trafficking, signaling, adhesion, and mulipotency.  The presence of adhesion molecules such as 

CD54 could play a role in adhering to passing leukocytes, bringing them into proximity to the 

inhibitory mechanisms of EpCAM+ cells.  Surface markers such as PDL1, LtBR can play a role in 

cell signaling, and possibly enable the EpCAM+ cells to directly inhibit T cells.  EpCAM+ cells 
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express a variety of stem-like markers (CD38, CD44, CD140a, CXCR4, OCT4, Sca-1, CD9, and 

CD29) which indicate the mult-ipotent potential of the EpCAM+ cells.  These cells may act in a 

progenitor fashion or have a high proliferative capacity to restore epithelial lining of damaged 

lymphatic vessels. 

 

EpCAM+ cells could be inhibiting activated T cells through a variety of mechanisms They are 

capable of inhibiting both artificially bead-activated T cells and T cells activated by antigen 

presenting dendritic cells with specific antigen.  The cells are capable of inhibition through both 

a secretory system (transwell model) or through direct contact (U-bottom), but have the most 

dramatic inhibition when direct contact is present.  The loss of IL-2 production by T cells 

inhibited by EpCAM+ cells can lower the proliferative capacity of T cells.  The ability of EpCAM+ 

cells to retain activated T cells in their naïve CD44-CD62L+ state also demonstrates the 

suppressive force of EpCAM+ cells.  

 

We have developed a possible model for how EpCAM+ cells are inhibiting T cells (Figure 32). 

When T cells are activated by an APC presenting specific antigen in the context of MHCI or 

MHCII, along with co-stimulation, IFNƴ and TNFα are produced.  EpCAM+ expressing IFNƴ and 

TNFα receptors may induce a signaling cascade resulting in JAK1+2 phosphorylating STAT1, 

causing translocation of STAT1 into the nucleus, causing up-regulation of the iNOS and IDO1 

genes.  IDO1, when activated, converts tryptophan into kynurenine, depleting essential 

tryptophan that is necessary for T cell growth and proliferation.  Kynurenine may also play a role 

in apoptosis of T cells through signaling pathways of the T cell [40].  iNOS up-regulation leads to 

the production of Nitric Oxide, a potent to combine with superoxides to form peroxynitrites; a 
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free radical capable of damaging DNA, lipids, and proteins [44].  PDL1 and LtBR may cause 

contact-mediated inhibition or induce apoptosis of the activated T cell.  

The isolated cell populations serve as a model for further studies of human lymph node and 

peri-lymph node stromal populations.  If similar cell types are identified in humans, they could 

be important to autoimmune diseases or even immunosuppressed patients.  The exact 

mechanism of EpCAM+ inhibition of T cells could have clinical significance in patients 

undergoing bone marrow transplants, helping T cell recovery following irradiation and 

transplantation.   

 

Future Studies 

Successful growth studies will be continued to analyze the effect of feeder populations, such as 

LA7 and 3T3 fibroblasts, and their effect on the growth and maintenance of an EpCAM+ primary 

culture.  The successful growth of EpCAM+ cells using confluent LA7 cells as feeders indicates 

that 3T3 fibroblast may also be used at higher concentrations to elicit similar growth.  Previous 

studies using 3T3s used lower concentrations of 3T3’s and resulted in unsuccessful growth of 

EpCAM+ cells.  Another culturing goal is to successfully and repeatedly grow gp38+ EpCAM+ 

cells.  We believe that our current isolation method using column selection removes the 

EpCAM
low

 population which is the same population that has the gp38 positivity.  By only 

depleting CD45+ cells we may be able to successfully grow both EpCAM+ gp38- and EpCAM
low

 

gp38+ cell populations.  Further analysis will be conducted to elicit the functional difference 

between these two populations.  

 

To elicit the actual mechanism of EpCAM+ cell inhibition of activated T cells a number of studies 

are necessary.  Currently the only evidence of specific mechanisms is resultant from qPCR and 
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flow cytometry data.  It will be necessary to measure directly the levels of nitric oxide resultant 

from iNOS up-regulation and kynurenine and tryptophan levels due to up-regulation of IDO1.  

Further studies will be required to determine if one or more mechanisms is responsible.  These 

include blocking the release of IFNƴ (IFNƴ knockout T cells) and blocking IFNγ and IFNγR by using 

specific antibodies (α-IFNγ and α-IFNγR).  We would also like to block the TNFα and TNFαR 

signaling using specific antibodies (α-TNFα and α-TNFαR).  Further studies will need to employ 

the use of IDO1 and iNOS knockout mice to isolate EpCAM+ cells and determine if these 

knockout cells are still able to functionally inhibit activated T cells.  The use of chemical 

inhibitors of IDO1 and iNOS such as 1-methyl-tryptophan (1-MT) and Aminoguanidine 

hydrochloride (AG) will also be helpful in eliciting the exact mechanism of EpCAM+ cell inhibition 

of T cells.  Further experiments will also require the blocking of surface markers PDL1 and LtBR 

which could be responsible for direct contact inhibition.  This will be accomplished by using 

specific blocking antibodies (α-PD-L1 and α-LtBR). 

 

  



 

Fig 32.  Proposed model of the inhibitory action of EpCAM+ cells on activated T cells.  
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Chapter 2. Human Lymph Node Stroma. 

The human lymph node studies efficiently characterized the lymph node stroma present in skin-

draining lymph nodes of healthy donors.  The CD34+ HLA-DR+ population of interest isolated 

from lymph nodes appears to be analagous to the Ly51+ MHCII+ population isolated from 

mouse lymph nodes.  While no functional co-cultures of human lymph node stroma were 

conducted, the potential for a stromal cell of lymph node origin to stimulate T cells is important.  

The human CD34+ HLA-DR+ population and the Ly51+ MHCII+ population have similar 

expression of endothelial markers CD31, CD34, and of course MHCII+.   

 

The CD34+ HLA-DR+ population expresses multiple markers for mesenchymal stem cells (MSCs) 

including the canonical CD73, CD90, and CD105.  The importance of this stem-like phenotype 

lies in the potential for this cell to differentiate and repopulate damaged lymph nodes, possibly 

capable of generating adipose or vasculature necessary for lymph node repair.   

 

The high expression of DLL-4 in the CD34+ HLA-DR+ population could have major implications in 

the study of extra-thymic T cell development.  [93].  Zúñiga-Pflücker’s lab has successfully 

differentiated HSCs into T cells using OP9 cells that express DLL-4.  Our isolated cell population 

could be responsible for development of T cells outside of the thymic environment.  The mouse 

Ly51+ population is analogous in many ways, including the expression of DLL4.  If these cell 

populations are capable of innately differentiating HSCs into T cells, it will be a breakthrough in T 

cell development studies. 

 

One important gene expression assay concluded that IL3R was upregulated in the CD34+ HLA-

DR+ population.  IL-3R is a transmembrane molecule that initiates signaling through recruitment 
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of the β chain of the receptor followed by the Janus kinase and STAT pathway, the mitogen-

activated protein kinase pathway and the phosphatidylinositol 3-kinase pathway.  These 

pathways can lead to cell proliferation and prevention of apoptosis.  IL-3 stimulation also is 

integral to differentiation of multipotent hematopoietic  cells into basophils and mast cells.  

While our cell is of non-hematopoietic origin, the IL-3 signaling may still play a role in 

differentiation of tissue [94].  To further analyze the IL-3R pathway, signaling molecules within 

the pathway were studied including MYC, OSM, PIM1, FOS, RAF1, BCL2, and JUN. 

 

Histology of the human lymph nodes and the surrounding tissue shows the anatomical 

relevence of our cell population.  CD34 and HLA-DR are present on the luminal face of channels 

in the adipose tissue surrounding the lymph node.  These cell types are surrounding by SMA+ 

cells.  The polarity of HLA-DR+ expression on the interior of channels may play an important role 

in stimulating T cells migrating through these channels.   

 

Future Studies 

Many studies need to be further analyzed in considering the functional role of the CD34+ HLA-

DR+ cell population present in human lymph nodes.  Based on the analysis of possibly analagous 

mouse stroma, the human lymph node stroma could be capable of up-taking exogenous antigen 

and presenting and stimulating migrating T cells.  Studies isolating the population of interest and 

analyzing the capability of the cell to up-take and present antigen need to be pursued.  If the cell 

is capable of uptaking antigen and presenting in context of MHCII, the CD34+ HLA-DR+ cells 

need to be studies for their capability of stimulating T cells in an in-vitro setting. 
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The difficulty in these studies is the minimal number of cells recovered from a preparation of 

human lymph node tissue.  To attain the necessary cell numbers to analyze the functional role of 

human lymph node stroma, one must first successfully culture the CD34+ HLA-DR+ cells and 

analyze the cultured cell line for any discrepancies to the freshly isolated cells.  Successful 

growth of CD34+ HLA-DR+ cells will enable a full analysis of functional properties.  The analysis 

of growth factor receptors gives us clues into the optimal growth conditions for CD34+ HLA-DR+ 

cells. 

 

T cell development studies will need to be conducted to analyze the role DLL-4 is playing in 

differentiating HSCs into T cells extra-thymically.  Isolated CD34+ HLA-DR+ cells will be 

cocultured with isolated human HSCs or T cell progenitors and analyzed for differentiation into T 

cells.   

 

Another important goal is to identify an epithelial cell population analagous to the EpCAM+ 

population in mice.  The isolation of a population of human lymph node stromal cells capable of 

inhibiting T cell activation and proliferation will be a major breakthrough in the study of  

immunology.  It will be necessary to analyze multiple markers of epithelial. 

 

The presence of multi-potent markers such as CD73, CD90, and CD105 indicates the possible 

role of this CD34+ HLA-DR+ population in differentiation and proliferation.  By using different 

growth factors and cytokines, we can analyze the differentiation capacity of the CD34+ HLA-DR+ 

population.  Because of the similarities between our isolated population and MSCs, we will need 

to analyze the ability of our population to differentiate into cells of adipogenic, osteogenic, 

chondrogenic, and myogenic lineages. 
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