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Baoguang Han 

 

STATISTICAL ANALYSIS OF CLINICAL TRIAL DATA USING MONTE CARLO 

METHODS 

In medical research, data analysis often requires complex statistical methods 

where no closed-form solutions are available. Under such circumstances, Monte Carlo 

(MC) methods have found many applications. In this dissertation, we proposed several 

novel statistical models where MC methods are utilized. For the first part, we focused on 

semicompeting risks data in which a non-terminal event was subject to dependent 

censoring by a terminal event. Based on an illness-death multistate survival model, we 

proposed flexible random effects models. Further, we extended our model to the setting 

of joint modeling where both semicompeting risks data and repeated marker data are 

simultaneously analyzed. Since the proposed methods involve high-dimensional 

integrations, Bayesian Monte Carlo Markov Chain (MCMC) methods were utilized for 

estimation. The use of Bayesian methods also facilitates the prediction of individual 

patient outcomes. The proposed methods were demonstrated in both simulation and case 

studies. 

For the second part, we focused on re-randomization test, which is a 

nonparametric method that makes inferences solely based on the randomization 

procedure used in clinical trials. With this type of inference, Monte Carlo method is often 

used for generating null distributions on the treatment difference. However, an issue was 

recently discovered when subjects in a clinical trial were randomized with unbalanced 

treatment allocation to two treatments according to the minimization algorithm, a 

randomization procedure frequently used in practice. The null distribution of the re-
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randomization test statistics was found not to be centered at zero, which comprised power 

of the test. In this dissertation, we investigated the property of the re-randomization test 

and proposed a weighted re-randomization method to overcome this issue. The proposed 

method was demonstrated through extensive simulation studies. 
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CHAPTER 1. INTRODUCTION 

 

Monte Carlo (MC) methods are a class of computational algorithms that rely on 

repeated random sampling to compute quantities of interest. MC methods are widely used 

to solve mathematical and statistical problems. These methods are mostly applicable 

when it is infeasible to compute an exact result with a deterministic algorithm or when 

theoretical close-form derivations are not possible. 

In this dissertation, we will focus on two applications areas of MC methods:  (i) 

Bayesian modeling using Markov Chain Monte Carlo (MCMC) methods, with particular 

focus on semicompeting risks data and joint models. (ii) Randomization-based inference, 

with particular focus on an issue recently identified when subjects in clinical trials are 

randomized with the minimization algorithm. Both topics are frequently encountered in 

clinical trials. We developed and evaluated novel approaches for both problems. 

First, we developed novel Bayesian approaches for flexible modeling of the 

semicompeting risks data. The proposed method was applied to two breast cancer studies. 

We then proposed a novel method for the joint modeling of the longitudinal biomarker 

and semicompeting risks data. The method is applied to prostate cancer studies. Finally, 

we discuss and evaluate a weighted method for randomization-based inference, which 

overcomes a problem recently discovered in this field. 
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1.1 Bayesian approach for semicompeting risks data 

Semicompeting risks data arise when two types of events, non-terminal and 

terminal, are observed. When the terminal event occurs first, it censors the non-terminal 

event, but not vice versa.  

Semicompeting risks data are frequently encountered in medical research. For 

example, in oncology clinical trials comparing two treatments, the time to tumor 

progression (non-terminal) and the time to death (terminal) of cancer patients from the 

date of randomization are routinely recorded.  As the two-types of events are usually 

correlated, models for semicompeting risks should properly take account of the 

dependence. In the literature, copula models are popular approaches for modeling of such 

data. However, the copula model postulates latent failure times and marginal distributions 

for the non-terminal event that may not be easily interpretable in reality. Further, the 

development of regression models is complicated for copula models. To overcome these 

issues, the well-known illness-death models have been recently proposed for more 

flexible modeling of semicompeting risks data. The proposed model includes a gamma 

shared frailty to account for the correlation between the two types of events. The use of 

gamma frailty is for purposes of the mathematical simplicity. We therefore extend this 

framework by proposing multivariate lognormal frailty models to incorporate random 

covariates and capture heterogeneous correlation structures in the data.  

The standard likelihood based approach for multivariate lognormal frailty models 

involves multi-dimensional integrals over the distribution of the multivariate frailties, 

which almost always do not have analytical solutions. Numerical solutions such as 

Gaussian quadrature rules, Monte Carlo sampling have been routinely used in literature. 
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However, as the dimension increases, these approaches still remain computationally 

demanding. 

Bayesian MCMC method has also been applied as estimation procedures for frailty 

models. The MCMC method generates a set of Markov chains whose joint stationary 

distribution corresponds to the joint posterior of the model, given the observed data and 

prior distributions. With MCMC method, the frailty terms are treated as no different from 

other regression parameters and the posterior of each parameter is approximated by the 

empirical distribution of the values of the corresponding Markov chain. The use of 

MCMC methods circumvents the complex integrations usually involved in obtaining the 

marginal posterior distribution of each parameter. Due to the availability of general tools 

for analyzing Bayesian models using MCMC methods, Bayesian methods is increasingly 

popular for modeling of complex statistical problems. As another advantage, the event 

prediction for survival models is very straightforward with Bayesian approach. 

We therefore propose a practical Bayesian modeling approach for semicompeting 

risks models. This approach utilizes existing software packages for model fitting and 

future event prediction. The proposed method is applied to two breast cancer studies. 

1.2 Joint modeling of repeated measures and semicompeting data 

In longitudinal studies, data are collected on a repeatedly measured marker and a 

time-to-event outcome. Longitudinal data and survival data are often associated in some 

ways. Separate analysis of the two types of data may lead to biased or less efficient 

results. In recent years, methods have been developed for joint models, where the 

repeated measures and failure time are assumed to depend on a common set of random 

effects. Such models can be used to assess the joint effects of baseline covariates (such as 
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treatments) on the two types of outcome, to adjust the inferences on the repeated 

measurements accounting for potential informative drop-out, and to study the survival 

time for a terminating or recurrent event with measurement errors or missing data in time 

varying covariates. 

Despite the increasing popularity of joint models, the description of joint models 

for longitudinal marker and semicompeting risks data is still scarce in literature. In this 

dissertation, we extend our lognormal frailty models on the semicompeting risks data to 

the joint modeling framework and develop a Bayesian approach. We applied our 

approach to a prostate cancer study. 

1.3 Weighted method for randomization-based inference 

In the third part, we focused on randomization-based inference, a nonparametric 

method for parameter estimation and inference, which is somewhat less related to the first 

two topics. However, this method is especially important in clinical trial settings because 

it makes minimum assumptions. It also represents another important area where Monte 

Carlo method can be used. 

For randomized clinical trials, the primary objective is to estimate and test the 

comparative effects of the new treatment versus the standard of care. A well-run trial may 

confirm a causal relationship between a new treatment and a desired outcome. In the 

meantime, one can make inference on treatment effect based on the randomization 

procedure, by which treatment assignments are produced for the study. The null 

hypothesis of the randomization based tests is that the outcomes of subjects are not 

affected by the treatments.  Under this hypothesis,  we re-run our experiments many 

times, each time we reassign subjects to treatments but leave the outcomes unchanged to 
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represent the hypothesis of no effects, and each time we record the difference of means 

between the two treatments. From many such replications, we would obtain a set of 

numbers that represent the distribution of the difference of means under null hypothesis. 

And the inference can then be based on comparing the actual observation of the treatment 

difference from the null distribution. Because it is usually computationally infeasible to 

enumerate all permutations of the re-randomization process, a random Monte Carlo 

sample is often used to represent the process.  

In practice, subject randomization is seldom performed with the complete 

randomization algorithm. Since a typical clinical trial usually includes a limited number 

of subjects, the use of a complete randomization may leave a substantial imbalance with 

respect to some important prognostic factors. Instead, some restricted randomization 

procedures such as blocked randomization or minimization are proposed to balance 

important prognostic factors that are known to affect the outcomes of the subjects. In 

particular, minimization is a method of dynamic treatment allocation in a way to 

minimize the differences among treatment groups with respect to predefined prognostic 

factors. 

When minimization is used as a procedure for randomization, the standard method 

for randomization based inference works well when subjects are equally allocated to two 

treatments. With an unequal allocation ratio, however, randomization inference in the 

setting of minimization was found to be compromised in power. In this research, we 

further investigated this issue and proposed a weighted method to overcome the problem 

associated with unequal allocation ratio. Extensive simulations mimicking the setting of a 

real clinical trial are performed to understand the property of the proposed method.  
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This dissertation is organized as follows. In Chapter 2, we present our Bayesian 

approach for semicompeting risks data. Chapter 3 develops the joint modeling of 

longitudinal markers and semicompeting risks data. In Chapter 4, we propose and 

evaluate the weighted approach for randomization based inference for clinical trials using 

minimization procedure.  Chapter 5 gives concluding remarks. 
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CHAPTER 2. BAYESIAN APPROACH FOR SEMICOMPETING RISKS DATA 

 

2.1 Summary 

Semicompeting risks data arise when two types of events, non-terminal and 

terminal, are observed. When the terminal event occurs first, it censors the non-terminal 

event, but not vice versa. To account for possible dependent censoring of the non-

terminal event by the terminal event and to improve prediction of the terminal event 

using the non-terminal event information, it is crucial to properly model their correlation. 

Copula models are popular approaches for modeling such correlation. Recently it was 

argued that the well-known illness-death models may be better suited for such data. We 

extend this framework to allow flexible random effects to capture heterogeneous 

correlation structures in the data. Our extension also represents a generalization of the 

popular shared frailty models which only uses frailty terms to differentiate the hazards for 

the terminal event without non-terminal event from those with non-terminal event. We 

propose a practical Bayesian modeling approach that can utilize existing software 

packages for model fitting and future event prediction. The approach is demonstrated via 

both simulation studies and breast cancer data sets analysis. 
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2.2 Introduction 

Semicompeting risks data arise when two types of events, a non-terminal event (e.g., 

tumor progression) and a terminal event (e.g., death) are observed. When the terminal 

event occurs first, it censors the non-terminal event. Otherwise the terminal event can still 

be observed when the non-terminal event occurs first [1, 2]. This is in contrast to the 

well-known competing risks setting where occurrence of either of the two events 

precludes observation of the other (effectively censoring the failure times) so that only 

the first-occurring event is observable. More information about the event times are 

therefore contained in semicompeting risks data than typical competing risks data due to 

the possibility of continued observation of the terminal event after the non-terminal event. 

Consequently, this allows modelling of the correlation between the non-terminal and 

terminal events without making strong assumptions. Adequate modelling of the 

correlation is important to address the issue of dependent censoring of the non-terminal 

event by the terminal event [2-4]. It also can allow modelling of the influence of the non-

terminal event on the hazard of the terminal event and thus improve on predicting the 

terminal event [5]. 

Semicompeting risks data are frequently encountered. For example, in oncology 

clinical trials, time to tumor progression and time to death of cancer patients from the 

date of randomization are normally recorded. It is generally expected that the two event 

times are strongly correlated. Main objectives of the trials usually include estimation of 

treatment effects on both of these events. When the time to death is the primary endpoint, 

there may also be great interest in predicting the overall survival based on disease 

progression to facilitate more efficient interim decisions in subsequent clinical trials [5]. 
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Dignam et al. [6] presented randomized breast cancer clinical trials with  data collection 

of first recurrence at any anatomic site (local, regional, or distant) as well as the first 

distant recurrence. If the local recurrence occurs first, patients will continue to be 

followed up for the first recurrence at distant location and hence both types of events may 

be observed. When the local failure occurs after distant failures, however, the local 

recurrence is usually not rigorously ascertained in practice. Another semicompeting data 

example is AIDS studies where the non-terminal event is first virologic failure and the 

terminal event is treatment discontinuation [7].   

Semicompeting risks data have been popularly modeled using copula models [1-4, 

8-15]. The copula model includes nonparametric components for the marginal 

distributions of the two types of events and an association parameter to accommodate 

dependence. Despite its flexibility, regression analysis is somewhat awkward under the 

copula framework. Peng (2007) and Hsieh (2008) proposed separate marginal regression 

models for the time to the terminal and non-terminal events and a possibly time-

dependent correlation parameter[12, 14]. In this approach, the marginal regression for the 

terminal event is first estimated, for example via the Cox proportional hazards model. 

Then, the marginal regression for the non-terminal event and the association parameter in 

the copula are jointly estimated by estimating equations. To gain efficiency, Chen [16] 

developed a likelihood-based method. A similar approach to incorporate time-dependent 

covariates in copula models was also developed [17]. 

Another bothersome feature of the copula models is that they are specified in terms 

of the latent failure time for the non-terminal event. Supposition of such a failure event 

may be unnatural, similar to the problem arising in the  classical competing risks setting 
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[18]. Consequently Xu et al. [18] suggested the well-known illness-death models to 

tackle both issues. Their approach not only allows for easy incorporation of covariates 

but also is based only on observable quantities; no latent event times are introduced. 

Their general illness-death models differentiate three types of hazards: hazard of illness, 

hazard of death without illness and hazard of death with illness. Incorporation of 

covariates is achieved through proportional hazards modeling. A single gamma frailty 

term is used to model the correlation among different hazards corresponding to the two 

types of events. Nonparametric maximum likelihood estimation (NPMLE) based on 

marginalized likelihood is used for inference.  

The gamma frailty in the proposed illness-death model is used mainly for 

mathematical convenience, namely because it leads to closed-form expressions of the 

marginal likelihood. In addition to the restriction of using a single variable to capture all 

associations, it is also hard to extend the gamma frailty framework to incorporate 

covariates or random effects into modeling the correlation structure. Other distributional 

models have been suggested for frailty [19]. Among them, the log-normal frailty models 

are especially suited to incorporate covariates [20-26]. With the log-normal frailty, it is 

very easy to create correlated but different frailties as required in correlated frailty 

models [23]. We therefore extend the gamma frailty model of Xu et al. (2010) to log-

normal frailty models to comprehensively model the correlation among the hazard 

functions. Our extension also represents a generalization of the popular shared frailty 

models for joint modelling of non-terminal and terminal events [25, 27]. These shared 

frailty models belong to the ‘restricted model’ in the terminology of Xu et al. (2010) 

because they do not differentiate the hazards for the terminal event without non-terminal 
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event from those with non-terminal event.  As a result, shared frailty models tend to put 

very strong assumptions on the correlation structure and may be inadequate to capture as 

much data heterogeneity, similar to the longitudinal data analysis setting [28]. In contrast, 

our adopted ‘general model’ assumes that the terminal event hazard function is possibly 

changed after experiencing the non-terminal event on top of the frailty terms. 

With the log-normal frailty model, it is unfortunately impossible to derive the 

marginal likelihood function in an explicit form, and as such, parameter estimation needs 

to resort to different numerical algorithms [26]. In this chapter, we propose using 

Bayesian Markov Chain Monte Carlo methods (MCMC) to directly work with the full 

likelihood. The Bayesian MCMC methods have been applied as estimation procedures in 

frailty models [23, 29-32]. The Bayesian paradigm provides a unified framework for 

carrying out estimation and predictive inferences. In particular, we show that 

computation can be carried out using existing software packages such as WinBUGS [33], 

JAGS [34], and Stan [35], which leads to simple implementation of the modelling 

process. In Section 2.3 we describe the model formulation. In Section 2.4, we present 

details of the Bayesian analysis including prior specification, implementation of the 

MCMC, and computation using existing software packages. In Section 2.5, we present 

results from some simulation studies. In Section 2.6, we conduct a thorough analysis of 

two breast cancer clinical trial datasets.  Section 2.7 contains a brief discussion.  

2.3 Model formulation 

Let    be the time to the non-terminal event, e.g., disease progression (referred to 

as illness hereafter),    be the time to the terminal event (referred as death hereafter), and 

  be the time to the censoring event (e.g., the end of a study or last follow-up assessment 
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status). Observed variables consist of           ,        ,            

  , and           . Note that    can censor    but not vice visa, whereas   can 

censor both    and   . Semicompeting risks data such as these can be conveniently 

modelled using illness-death models [18]. These models assume individuals begin in an 

initial healthy state (state 0) from which they may transition to death (state 2) directly or 

may transit to an illness state (state 1) first and then to death (state 2) (see Figure 2.1) . 

The hazards or transition rates are defined as follows: 

(2.1)                                                    

(2.2)                                                    

(2.3)                                                         

 

where        . Equations (2.1) and (2.2) are the hazard functions for illness and 

death without illness, which are the competing risks part of the model. Equation (2.3) 

defines the hazard for death following illness. In general,           can depend on both    

and   . These equations define a semi-Markov model. When                 , the 

model becomes Markov. The ratio                  partly explains the dependence 

between    and   . When this ratio is 1, the occurrence of    has no effect on the hazard 

of   . Borrowing the terminology from Xu et al. [18], we refer models that force 

                 as “restricted models” and models without this assumption as 

“general” models. 

  To account for the dependency structure between    and   , Xu et al. (2010) 

introduced a single shared gamma frailty term   to capture correlation among       ,  
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       and          . Here we extend to model the correlation using multivariate random 

variables. In particular, we specify the following conditional transition functions: 

 

Figure 2.1 Illness-death model framework 

 

(2.4)                           
     ̃ 

         

(2.5)                           
     ̃ 

          

(2.6)                               
     ̃ 

             

   

where        ,         and         are the unspecified baseline hazards;   ,    and    

are vectors of regression coefficients associated with each hazard;   ,   , and    are 

subsets of   and may have overlap with each other; and  ̃ ,  ̃ , and  ̃  are subsets of   

and may have overlap with each other or with   ,   , and   .  

Models (2.4) - (2.6) allow multivariate random effects with arbitrary design matrix 

in the log relative risk. In its simplest form, when  ̃   ̃   ̃   , the frailty term   is 

reduced to a univariate random variable that accounts for the subject-specific dependency 

of three types of hazards. The models in Xu et al. (2010) belong to this simple case where 

they assume that      ) follows a gamma distribution. However, in many cases, random 

effects based on covariates, e.g., clinical center or age, may provide better models for the 
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correlation structure.  Then the terms  ̃ 
  ,  ̃ 

   and  ̃ 
   can be used to incorporate these 

random covariates. For example, clustered semicompeting risks data frequently arise 

from oncology trials evaluating efficacies of different treatments. A typical model for this 

type of data is to have both subject-level and cluster-level frailty terms [23, 32].  We 

assume a normal distribution for the random effects,         . The zero mean 

constraint is imposed so that the random effects represent deviations from population 

averages. The covariance matrix   is assumed to be unconstrained. However, with proper 

parameterization of the random effects,   can be diagonal.  Interests on the unknown 

quantities,    ,    ,   ,  ,   ,        ,        , and          can depend on specific 

analyses. In the clinical trial setting, effects of treatment and prognostic factors are 

usually the focus of primary analysis. For genetic data analysis the focus may be on   

which captures genetic variability. The baseline hazards are usually treated as nuisance 

parameters but are needed for the estimation and prediction of survival probabilities for 

individual subjects. 

Assume only    is of interest to an investigator, especially in prediction setting. 

Then a possible solution is to use the well-known Cox model on   . Basically, we can 

introduce an indicator              and fit a Cox model for death incorporating the 

effect of illness and the interaction between illness and covariates, using         

                     
            

    . Comparing with the general models (2.4)-

(2.6), this Cox model basically specifies a ‘deterministic’ effect of    on   . The baseline 

hazard specification is only comparable to the ‘restricted’ models. Of course  one can 

further allow even more flexible Cox models such as the time-varying coefficient Cox 

models [36, 37]. In this way, prediction of    may improve. However, our models still 
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offer more flexibility in capturing underlying data heterogeneity and prediction. In 

particular, for any subject without illness, we can incorporate the illness progression via 

model (2.5) and (2.6) in predicting   .   

Note that the general models allow much flexibility in model specification in case 

of prior scientific knowledge or data sparsity. For example, we can set                 

but still allow different covariates in (2.5) and (2.6). The models can also easily 

incorporate time-dependent covariates. For example, if interventions such as drugs or 

behaviorial change were taken, for example, sometime after illness, then an indicator for 

the intervention can be incorporated into           in (2.6). However care must be taken 

to identifiability issues. If all subjects take drugs immediately after illness, then the drug 

effect is confounded with the baseline hazard        . In this case, we need to put 

constraints on        , such as                 in order to estimate the drug effect.   

For a subject  , we observe     ,    ,                   Let                    

  ,                            , and                             be 

the counting processes for the three patterns of the event process. Correspondingly, let 

                                        and                     be the 

at-risk process for the three types of events. We assume that the censoring time   is 

independent of   ,   , given covariates     

For the subject i, the likelihood is                      
             

            
                              

                         

    
              . The likelihood can be simplified to               

       

                  
            

                             
       . Note that 
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when      ,         and therefore the last part of   can also be written as       

            
       . From the definition of the hazard functions, we can obtain 

expressions of the probabilities by solving the corresponding ordinary differential 

equations that link these hazards to distribution functions.  Specifically, we have 

                                     
      

                           
                                         

 

By plugging the above two equations into    and multiply    across all subjects, we 

obtain the following likelihood, 

∏       
                    

                              
                               

 

   

 

With the proportional hazards assumptions and the use of counting process notations, 

the corresponding likelihood can be rewritten as, 

 

(2.7)     ∏ ∏ {∏            
       

      [ ∫                    
 

   
]} 

   
 
     

 

where                          
     ̃  

    ,                          
     ̃  

   , 

and                          
     ̃  

   . 

We can view (2.7) as Poisson kernels for the random variables         with means 

of         . That is,                           . More specifically, the joint likelihood 

can be written as  
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(2.8) 

          ∏[               
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             [     
     ̃  
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   ∏[               
   

 

   

  ̃  
    ]

         [     
     ̃  

                      ] 

   

where                are the baseline cumulative hazards functions. 

Note that with the restricted model, the likelihood in (2.8) reduces to  

(2.9) 

          ∏ [               
     ̃  

    ]
       [     

     ̃  
           ]

 
    

                  ∏ [               
     ̃  

    ]
      [     

     ̃  
           ]

 
      

The baseline hazard functions        are left unspecified. Similar to Zeng and Lin 

(2007) [25], we take        
as a discrete function, or        as a step function, with 

increments or jumps occurring at the corresponding observed distinct failure time points. 

In other words, for       , its jump points are at those     with      ;  for       , its 

jump points are at those     with       and      ;  and for       , its jump points are 

at those     with       and      . The jump sizes are treated as parameters in 

maximizing (2.8). When the sample sizes are small or the number of events is low, the 

need to estimate such a large number of parameters may lead to computational instability. 
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In this case we can also model the baseline hazards from parametric distributions such as 

the exponential, Weibull, lognormal, etc. However, these parametric assumptions can be 

too restrictive. An attractive compromise is to adopt piecewise constant (PWC) baseline 

hazards models to approximate the unspecified baseline hazards, which may significantly 

reduce computational time [38].  For        , the follow-up times are divided into    

intervals with break points at                   where      equals or exceeds the largest 

observed times and       . Usually,      is located at the  th quantile of the observed 

failure times. The baseline hazard function then takes values       in the intervals 

            ] for         . 

2.4 Bayesian approach 

Estimation for frailty models can usually be conducted using either the expectation-

maximization (EM) algorithm [25, 39-41] or MCMC methods [23, 29, 42-48]. When the 

EM algorithm is used, the unobserved random effects are treated as ‘missing values’ in 

the E step. The conditional expectations of random effects often involve intractable 

integrals and Monte Carlo methods have been used to approximate the integrals [26, 27, 

43]. The implementation of Monte Carlo EM becomes less straightforward and usually 

needs to be treated on a case-by-case basis. For semicompeting risks data, involvement of 

different event types will make programming a daunting task that can easily discourage 

ordinary users. In addition, for prediction of future events, high order integration 

involving complicated functions of random effects is needed under the EM algorithm. 

Other numerical methods for maximizing likelihood were also proposed. 

McGilchrist and Aisbett (1991) first adopted the partial penalized likelihood (PPL) 

method for frailty models [20, 21]. In the simple frailty structure, the PPL estimation 
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works relatively well. With multidimensional random effects, a two-step procedure was 

proposed based on simple estimating equations and a penalized fixed effects partial 

likelihood [49]. However, this approach leads to an underestimation of the variability of 

the fixed parameters. Liu et al. [38] proposed a Gaussian quadrature estimation method 

for restricted joint frailty models with a single frailty term using the piecewise constant 

baseline hazard functions. Estimation can then be implemented easily in SAS. However, 

when the baseline hazard is left unspecified, this approach does not work with the 

existing software anymore. In addition, generalization of their method to our general 

model may be difficult. 

We therefore utilizes to a Bayesian approach for computation. Bayesian MCMC 

methods have been applied as estimation procedures for frailty models [23, 29-32]. The 

Bayesian framework is naturally suited to our setting with conditionally independent 

observations and hierarchical models. The Bayesian approach allows us to use existing 

software packages like WinBUGS [33], JAGS [34], and Stan [35]. The model fitting 

becomes very accessible to any users. For example, the program for WinBUGS only 

involved tens of lines (see Appendix A). 

In order to carry out the Bayesian analysis, we specify the prior distributions for 

various parameters as follows. Following Kalbfleisch [50], the priors for         are 

assigned as gamma processes with means     
     and variances     

         for k=1, 2, 3. 

The increments          are distributed as independent gamma variables with shape and 

scale parameters        
     and  , respectively.    

     can be viewed as an initial 

estimate of         . The scale   reflects the degree of belief in the prior specification 

with smaller values associated with higher levels of uncertainty. In our computation, we 
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take         . For univariate censored survival data without any frailty term, the prior 

for        has the virtue of being conjugate and the Bayes estimator (given   ) for 

       is a shrinkage estimator between the maximum likelihood estimate and the prior 

mean    
     [29]. In our computation, we take the mean process     

      to be 

proportional to time, that is,    
        with      . With this formulation,   can be 

considered as the mean baseline hazard rate. 

For regression parameters, independent normal prior distributions are assigned 

           

     with    as the corresponding identity matrices for        . Usually, 

large values of     

  are used so that the prior distributions bear negligible weights on the 

analysis results. However relevant historical information about regression parameters can 

be incorporated into the prior distribution to enhance the analysis results.  

Finally, we specify an inverse Wishart prior distribution for the unconstrained 

covariance matrix,            .  To represent non-informative prior, we choose the 

degree of freedom of this distribution as d, i.e. the rank of   , which is the smallest 

possible value for this distribution. The scale matrix   is often chosen to be an identity 

matrix multiplied by a scalar  .  The choice of   is fairly arbitrary. The sensitivity of the 

results to changes of needs to be examined to ensure the prior distribution can leave 

considerable prior probabilities for extreme values of the variances terms. If we have 

evidence to assume no correlation among the random effects, diffuse priors can be 

directly specified on the diagonal elements of  :   
            for         . With 

minimum prior information, we can choose         and        . For the piecewise 

constant baseline models, diffuse gamma distribution priors can be specified for      , 
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               for          .With minimum prior information, we can choose 

        and        .   

Because the posterior distributions involve complex integrals and are 

computationally intractable, MCMC methods are used. The existing packages WinBUGS, 

JAGS, and Stan all led to similar results in our simulation studies. Our analysis was based 

on Stan version 1.1.0 [35], an open-source generic BUGS-style [51] package for 

obtaining Bayesian inference using No-U-Turn sampler[52], a variant of the Hamiltonian 

Monte Carlo[53]. For complicated models with correlated parameters, the Hamiltonian 

Monte Carlo avoids the inefficient random walks used in simple MCMC algorithms such 

as the random-walk Metropolis [54] and Gibbs sampling [55] by taking a series of steps 

informed by first-order gradient information, and hence converges to high-dimensional 

target distributions more quickly [56]. However we provide the WinBUGS program 

codes for the general Cox model and the PWC exponential model in Appendix A due to 

the long-standing status of WinBUGS. Program codes for other packages are available 

upon request. 

Within the Bayesian framework  it is straightforward to predict an individual’s 

survival that is often of great interest to both patients and physicians. Denote   

          . The survival probability at time   for a patient   with illness at       and 

censored for death at        is 
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(2.10) 

∫                                                                    

 ∫
                            

                             
     

 ∫       
                                           

 ∫    [       
              

   
     ̃  

   ]       

Direct evaluation of (2.10) can be very computationally challenging even when the 

dimension of     and   are moderately high. Because we have draws of     and   from 

the posterior distribution,    
   

and      for        , a straightforward 

approximation of (2.10) is via a simple sum with the following form:  

   ∑   (      |                                 
   

     ) 
 

   
 

Similarly the survival probability for terminal event at time    for a patient   who is 

censored for both illness and death events at         is 

(2.11) 

∫                                                                      

 ∫  
                            

                             
     

 ∫
                                                           

                             
       

Where 

                               [ {     
       

     ̃  
         

      
     ̃  

   } ] 

                             

    [ {          
   
     ̃  
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                                ∫                           
  

   

  

 ∫       
                 

            
  

   

   

 

Again (2.11) may be approximated by , 

   ∑   (      |                                 
   

     ) 
   . 

 

2.5 Simulation study 

We generated data according to models (2.4) - (2.6) with the Weibull baseline 

hazard functions in our simulation. Specifically we chose                          

and                . A fixed covariate               applies to all three models, with 

corresponding coefficients          and         Random effects were 

incorporated using      and               with the corresponding frailties generated 

independently using normal distributions with variances of 1 and 0.8 respectively. The 

censoring time   is fixed at 3. The detailed methods for generating survival times based 

on the general semicompeting risks models are given in Appendix B. 
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Table 2.1 Simulation results comparing parametric and semi-parametric Bayesian models 
________________________________________________________ 

                                                             

  Models         Par   Bias       SD     ESE       CP(%)  

__________________________________________________________ 

  General model 

  Weibull              0.007    0.178    0.184     95.5 

                       0.003    0.184    0.184     94.0 

                      -0.003    0.201    0.204     95.5 

                       0.077    0.461    0.437     95.1 

                       0.030    0.218    0.21      94.6 

                                                                  

  PWC                 -0.001    0.179    0.185     95.9 

                      -0.005    0.186    0.185     95.0 

                      -0.007    0.199    0.203     95.7 

                    
    0.064    0.496    0.456     92.9 

                    
   -0.011    0.198    0.194     92.7 

                                                             

  Cox                  0.012    0.186    0.194     95.2 

                       0.008    0.196    0.195     94.8 

                       0.013    0.213    0.213     94.4 

                    
    0.129    0.566    0.511     93.3  

                    
    0.052    0.248    0.23      93.1 

   

  Restricted model                                  

  Cox                  0.059    0.187    0.177     92.1 

                      -0.103    0.171    0.159     86.6 

                       0.397    0.171    0.159     30.3 

                    
    0.369    0.376    0.361     81.6 

                    
    0.149    0.185    0.175     86.6  

__________________________________________________________       
     

    500 datasets are analyzed. Each consists of 500 patients                                                                          

    Abbreviations: SD, standard deviation; ESE, the average of the standard error; CP, 

coverage probability                           
                    

Data for 500 replications are generated with a total of       observations for 

each replication. On average, from each simulated dataset, we observed 283    events, 

285    events without the precedence of   , and 265   events with the precedence of   , 
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respectively. The analyses were conducted using the Cox models, the PWC exponential 

models and the Weibull models for the baseline hazards. In addition to the general 

models, the restricted Cox models were also fitted.   

The results are summarized in Table 2.1. The average biases (Bias), the standard 

deviation (SD) of the posterior mean, the average values of the estimated standard errors 

(ESE), and coverage probabilities (CP) of the 95% credible intervals including the true 

value are listed in the table.  We can see that the three methods perform well for 

regression and frailty parameters. In particular, the PWC exponential models are quite 

comparable with Weibull models for both bias and SD estimates. The biases are small, 

ESEs agree well with the sample SDs, and CPs are close to the nominal values. As 

expected, ESEs and SDs increase with more complex models. The restricted Cox models 

give an unbiased estimate for   . However, the mean estimates for     and     is 0.897, 

which is between the true values of     and   . This model does not consider differential 

covariate effects. Further the variance estimates for random effects showed larger bias 

compared with the general Cox models. The inflation of the variance may be attributed to 

the misspecification (or restriction) of the baseline hazards which confounds the frailty 

terms.  We used Stan to perform all the simulations. With 10,000 posterior samples and 

2,000 burn-in iterations, it took an average of 5.5 minutes per data set analysis for the 

Weibull models, 7.3 minutes for the PWC exponential models with 20 pieces and 39.5 

minutes for the Cox models on Linux server with 2.40 GHz Intel Xeon E7340 CPU and 

4.0 GB RAM. Three multiple chains were run in parallel and the method of Gelman-

Rubin was used for convergence diagnosis[57].  
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2.6 Application to breast cancer data 

2.6.1 Effect of tamoxifen on local-regional failure in node-negative breast cancer 

Between 1982 and 1988, 2892 women with estrogen receptor-positive breast 

tumors and no auxiliary node involvement were enrolled in National Surgical Adjuvant 

Breast and Bowel Project (NSABP) Protocol B-14, a double-blind randomized trial 

comparing 5 years of tamoxifen (10 mg b.i.d.) with placebo [6, 58]. Women in the study 

were observed for recurrence at local-regional, or distant sites. If distant metastasis was 

the first event, then reporting of additional local-regional failure was not required. 

Consequently, the data follow the semicompeting risks structure where the local-regional 

failure is considered as non-terminal and distant failure as terminal [6]. Among 2850 

patients with follow-up times of at least 6 months before any events, 1424 and 1426 

patients received placebo and tamoxifen, respectively. A total of 237 patients had local 

recurrence and 93 of them further developed distant metastasis. A total of 428 patients 

had distant recurrence without local-regional failure occurring first. 

We first fit a restricted model based on likelihood (2.9) to compare the effect of the 

treatment. Covariates considered were age and tumor size at randomization. We 

considered a shared frailty model with no random covariates. The results are summarized 

in Table 2.2. As compared with placebo, tamoxifen significantly reduces both local and 

distant recurrences with estimated log hazard ratios of -1.274 (95% credible interval (CI): 

-1.642, -0.938) and -0.713 (95% CI: -1.019, -0.443), respectively. Both age and tumor 

size have substantial effects on recurrences. Younger women have greater chance of 

recurrence. It is true in general that younger women have worse prognosis, as younger 

age at onset is associated with more aggressive tumor types. Every increase of 10 years in 
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age results in a reduction of local-regional recurrence with an estimated log hazard ratio 

of -0.4 (95% CI: -0.56, -0.24) and of distant failure with an estimated hazard ratio of -

0.26 (95% CI: -0.39, -0.12). An increase in the tumor size also results in significant 

increases of both types of recurrences. The estimated variance of the frailty term is 4.360 

(95% CI: 3.223, 5.887), indicating a strong correlation between the local and distant 

recurrences. This is consistent with a large observed percentage of distant recurrences 

among patients with local recurrences. In fact, while 39.2% of patients with local failures 

further developed distant failures, only 16.4 % of patients without local failures 

developed distant failures.  

Table 2.2 NSABP B-14 data analysis based on restricted models 
_______________________________________________________________________ 

                                             Distant occurrence       

              Local occurrence           without local occurrence    

           ________________________   ________________________________ 

Covariates Mean     SE    95%CI          Mean       SE      95%CI 

______________________________________________________________________ 

 

Univariate random effects model 

 

Fixed effect 

Age       -0.040  0.008  (-0.056,-0.024) -0.026  0.007 (-0.039,-0.012)  

Treat     -1.274  0.183  (-1.642,-0.938) -0.713  0.145 (-1.019,-0.443)  

Size       0.037  0.007  ( 0.025, 0.051)  0.042  0.006 ( 0.030, 0.053)  

                                                                       

Random effect variance  

Int.       4.360  0.676  ( 3.223, 5.887)                               

                                                                       

Multivariate random effects model 

                                                                       

Fixed effect 

Age       -0.036  0.013  (-0.061,-0.010) -0.020  0.013 (-0.046,  0.005) 

Treat     -1.425  0.214  (-1.874,-1.023) -0.843  0.175 (-1.175, -0.504) 

Size       0.041  0.011  ( 0.021, 0.063)  0.043  0.010 ( 0.024,  0.062) 

                                                                       

Random effect variance 

Int.       4.264  0.813  ( 2.676, 5.899)                                

Age        0.024  0.003  ( 0.018, 0.032)                                

Size       0.018  0.003  ( 0.014, 0.024)                                

______________________________________________________________________ 
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We next fit a restricted model with random covariates. The results are also shown in 

Table 2.2. In addition to the random intercept, age and tumor size were included as 

random covariates.  An unstructured matrix was used to model the covariance of the 

random effects. The posterior means of covariance were found to be rather close to zero 

(data not shown), indicating minimum correlation among the random effects. The 

variance for the random intercept, age and tumor size were quite different from zero, with 

95% CIs of (2.676, 5.899), (0.018, 0.032), and (0.014, 0.024) respectively. The posterior 

means of the log-hazard ratios of the treatment were -1.425 and -0.843 for the local and 

distant recurrences respectively.  

We also fit three general models based on (2.8): the random intercept Cox model, 

the random effects Cox model and the random effects PWC model. The random effects 

models used both age and tumor size as random covariates. Results are presented in 

Table 2.3. 

Based on the random intercept Cox model, the estimated cumulative baseline 

hazards are plotted in Figure 2.2. In addition, for comparison, the estimated cumulative 

baseline hazards based on restricted models are plotted in the same figure. Notice that the 

restricted models do not distinguish the two types of hazards for the terminal events while 

the general models do. The cumulative hazards for distant failure with and without local 

recurrence are quite similar before 40 months, but then diverge from each other. The 

variance of the random intercept is 2.617 with a standard error of 1.143, which is smaller 

than that from the restricted model, possibly because the dependence of    on    
is partly 

captured by the different baseline hazard functions         and        . 
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Table  2.3 NSABP B-14 data analysis based on general models 
____________________________________________________________________________________________________ 

                                             Distant occurrence           Distant occurrence      

              Local occurrence            without local occurrence      after local occurrence    

Covariates  _________________________   __________________________    ____________________________ 

             Mean    SE       95%CI         Mean    SE   95%CI           Mean     SE   95%CI 

______________________________________________________________________________________________________ 

Univariate random effects Cox model                                                                         

Fixed effect    

 Age         -0.035 0.008 (-0.051,-0.018)  -0.022 0.007 (-0.037,-0.010)  -0.007  0.015 (-0.036, 0.023) 

 Size         0.030 0.008 ( 0.017, 0.046)   0.035 0.007 ( 0.024, 0.049)   0.028  0.013 ( 0.004, 0.055)                                                          

 

Random effect variance   

 Intercept    2.617 1.143  1.025  5.353                                                                                                                                                            

 

Multivariate random effects Cox model                                                                                     

Fixed effect  

 Age         -0.043 0.017 (-0.077,-0.012)  -0.029 0.016 (-0.063, 0.001)   -0.005  0.023 (-0.050, 0.041) 

 Treat       -1.723 0.252 (-2.242,-1.236)  -1.190 0.223 (-1.648,-0.766)   -0.563  0.416 (-1.370, 0.215) 

 Size         0.052 0.014 ( 0.025, 0.079)   0.055 0.014 ( 0.028, 0.083)    0.050  0.019 ( 0.010, 0.087)                                                                                                

 

Random effect variance 

Intercept    8.733 1.693  (5.753,12.619)                                                       

 Age          0.032 0.006 ( 0.022, 0.044)                                                       

 Size         0.023 0.004 ( 0.017, 0.031)                                                                                                                                                     

 

Multivariate random effects PWC model 

Fixed effect  

 Age         -0.043 0.015 (-0.073,-0.013)  -0.029 0.015 (-0.059, 0.002)   -0.003  0.023 (-0.047, 0.044) 

 Treat       -1.658 0.245 (-2.173,-1.185)  -1.126 0.228 (-1.613,-0.707)   -0.451  0.409 (-1.258, 0.370) 

 Size         0.049 0.013 ( 0.024, 0.074)   0.051 0.013 ( 0.027, 0.075)    0.045  0.018 ( 0.010, 0.082) 

Random effect variance 

 Intercept    7.635 1.689  (4.312,10.804)                                                       

 Age          0.030 0.005  (0.022, 0.041)                                                       

 Size         0.022 0.004  (0.016, 0.031) 

_______________________________________________________________________________________________________ 
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Figure 2.2 The estimated baseline cumulative hazards for the NSABP B-14 dataset based 

on the restricted and general semicompeting risks models 

Based on the general model with only a random intercept, tamoxifen has a 

significant effect in reducing the local-regional recurrence with an estimated log hazard 

ratio of -1.130 (95% CI: -1.512, -0.802). Tamoxifen also has a significant effect on 

distant recurrence without local failure with an estimated log hazard ratio of -0.616 (95% 

CI: -0.949, -0.340). However, tamoxifen showed no effects in reducing distant recurrence 

following local failure. This makes sense from a clinical and biological perspective.  

Local failures tend to happen earlier than distant failures.   If the tamoxifen fails to 

control recurrence locally, then it also would likely not be able to control the distant 

disease. The increase in tumor size has a comparable effect in increasing all three types of 

recurrences. Age has a significant effect on both local and distant failure without local 

reoccurrence, but no significant effect on distant recurrence following local failure, 

indicating an age-independent metastatic rate after local failure. The fitted variances of 

the random effects all differ from zero. The correlations among the three random effects 
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are negligible. Similar conclusions about tamoxifen can be drawn as the random intercept 

only model.  In addition, the estimates based on the PWC exponential models are quite 

comparable to the Cox models.  

 

 

Figure 2.3 Prediction of distant recurrence for a patient experienced the local failure 
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Figure 2.4 Prediction of distant recurrence for a patient who has not experienced the local 

failure 

 

With posterior samples for regression parameters and frailty terms, the prediction of 

future events for subjects that are censored for local and/or distant recurrence is 

straightforward.  Based on formulae for (2.10) and (2.11), we illustrate the predictions of 

the distant recurrence-free probabilities using two selected individuals, one with       

and      , the other with          . The prediction was based on the general Cox 

model with multivariate lognormal distributions for random intercept, age and tumor size. 

The results are shown in Figures 2.3 and 2.4.  Figure 2.3 is for a patient treated with 

tamoxifen, aged 35 at the time of randomization with a tumor size of 20. The patient 

experienced local recurrence at 49 month and censored at 100.6 month for distant 

recurrence. Figure 2.4 is for a patient treated with placebo, aged 61 at the time of 
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randomization with a tumor size of 33. The patient was censored at 107.9 months for 

both types of recurrences.  

2.6.2 Local-regional failure after surgery and chemotherapy for node-positive breast 

cancer 

NSABP Protocol B-22 is a randomized clinical trial to evaluate dose intensification 

and increased cumulative dose on disease-free survival and survival of primary breast 

cancer patients with positive auxiliary nodes receiving postoperative adriamycin-

cyclophosphamide (AC) therapy [59]. Between 1988 and 1991, 2305 women were 

randomized and the primary trial findings indicated no advantage for increased or 

intensified dose relative to the standard dose. However, this randomized trial provided 

data for analyzing several important prognostic factors for failures, including  the number 

of lymph nodes that contained tumor cells (integer values from 1 to 37), size of the 

primary tumor (in millimeters), and age at diagnosis. In our analysis, we included data 

from 2201 patients with complete information for these covariates.  Among these patients, 

320 experienced local failures, 189 of which further developed distant failures, and 606 

subjects had distant failures occurring before local failures. 

We first fitted a restricted model with the same covariates analyzed by Dignam, 

Wieand and Rathouz [6], including estrogen receptor status (0 for negative, 1 for positive 

status), tumor size (per 0.1 mm) and age (per 0.1 year),  both the linear and quadratic 

terms of the number of positive nodes (per 0.1 unit). The shared random intercept with 

log-normal distribution was used in the analysis. The results are shown in Table 2.4. The 

mean estimate of the variance of the frailty term was 4.899, demonstrating a strong 

association between the local and distant failures. Negative estrogen receptor status, 
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increasing tumor size, and the linear term of the number of positive nodes all have 

negative prognostic effects on both types of failures while older age has a positive 

prognostic effect.  

 

Table 2.4 NSABP B-22 data analysis using restricted models 
_______________________________________________________________________ 

               

                Local  recurrence               Distant recurrence      

              _________________________    __________________________ 

Covariate      Mean   SE         95%CI      Mean    SE     95%CI  

_______________________________________________________________________ 

Fixed effect   

 ER status   -0.596  0.173  (-0.928,-0.261) -0.590 0.142 (-0.897,-0.313) 

 nPNodes      2.536  0.269  ( 2.051, 3.103)  2.484 0.233 ( 2.055, 2.990)  

 nPnodes SQ  -0.795  0.170  (-1.150,-0.473) -0.671 0.140 (-0.973,-0.403)                          

 Tumor size   0.159  0.050  ( 0.060, 0.254)  0.179 0.041 ( 0.103, 0.254) 

 Age         -0.446  0.078  (-0.595,-0.297) -0.366 0.067 (-0.501,-0.232) 

                                                                     

Random effect variance                                                                   

 Intercept    4.899  0.647  ( 3.701, 6.312)                            

_______________________________________________________________________ 

                                                                                                                                                

 

We next fitted a general model with the shared random log-normal intercept using 

the same covariates as the restricted model. The estimated baseline cumulative hazards 

are shown in Figure 2.5, which also includes the baseline cumulative hazards estimates 

based on the restricted model for comparison. We note that the estimated baseline 

cumulative hazards for the distant failure after the local failure are the largest from the 

general model. It appears that patients who experienced the local failure first would 

develop the distant failure much sooner than patients who have the same baseline 

covariates but have not yet experienced local-regional failures. This finding is consistent 

with the report based on data pooled from five NSABP node-positive protocols (B-15, B-

16, B-18, B-22, and B-25) by Wapnir et. al.[60], which demonstrated that local/regional 

failure is associated with increased risk of distant disease and death. Such findings would 
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not be possible from the restricted model. The mean estimate for the variance of log-

normal frailty term is 1.67, which is much smaller than that based on the restricted model.   

The regression coefficients for all covariates are listed in Table 2.5. Based on 

these results, the number of positive nodes, the larger tumor size and the negative 

estrogen receptor status all have negative prognostic effects, with a similar magnitude 

across failure types. However, the mean estimates for age show different magnitudes of 

effects. While older age shows positive prognostic effect on the local failure and distant 

failure without local failure first, its effect on distant failure following local failure is 

negligible. 

 

 

 

Figure 2.5 The estimated baseline cumulative hazards for the NSABP B-22 dataset based 

on the restricted and general semicompeting risks models 
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Table 2.5  NSABP B-22 data analysis using general models 
______________________________________________________________________________________________________ 

                                             Distant occurrence            Distant occurrence       

                   Local occurrence       without local occurrence       after local occurrence     

             _________________________  ___________________________   _____________________________ 

 Covariate    Mean   SE         95%CI    Mean      SE      95%CI          Mean    SE      95%CI  

 ______________________________________________________________________________________________________ 

Fixed effect 

 ER status  -0.390  0.142 (-0.669,-0.107) -0.353  0.122 (-0.600,-0.105)   -0.334  0.230 (-0.782, 0.087) 

 nPNodes     1.835  0.249 ( 1.365, 2.329)  1.738  0.208 ( 1.374, 2.149)    1.639  0.384 ( 0.931, 2.397) 

 nPNodes SQ -0.603  0.143 (-0.895,-0.324) -0.433  0.108 (-0.650,-0.234)   -0.638  0.219 (-1.097,-0.221) 

 Tumor size  0.105  0.041 ( 0.023, 0.184)  0.125  0.033 ( 0.064, 0.193)    0.105  0.057 (-0.009, 0.215) 

 Age        -0.345  0.068 (-0.483,-0.213) -0.302  0.054 (-0.407,-0.203)    0.047  0.100 (-0.149, 0.237) 

Random effect variance 

Intercept    1.582  0.520  0.795  2.769                                                           

________________________________________________________________________________________________________ 
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2.7 Discussion 

We developed flexible frailty models for semicompeting risks data. Our models can 

incorporate different covariates into the frailty terms for three different types of hazard 

functions corresponding to the illness, death without illness, and death after illness. Our 

methods extended the gamma frailty models by Xu et al. (2010) which used a single 

frailty term to correlate the events and did not consider covariates for the frailty term. In 

clinical trial settings, this model will help address important questions such as whether 

continuing treatment is still beneficial for the terminal event after the occurrence of the 

non-terminal event. We used Bayesian methods for estimation. Our choice over the EM 

algorithm was mainly computational. With the development of general purpose software 

packages such as WinBUGS, JAGS and Stan, implementation of the Bayesian approach 

and model based predictions became very straightforward. 

Our models also will work with clustered data [23, 42].  Further they can be 

extended beyond shared frailty models. For example, Gustafson (1997) described a 

semicompeting risks model where relapse and death have correlated frailties associated 

with clusters in addition to the random intercept specific to individual subjects. Our 

model could also be easily extended to such correlated frailty models. We are also 

adapting our approach to the joint modelling of semicompeting risks, which will be 

presented in Chapter 3. 
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CHAPTER 3. JOINT MODELING OF LONGITUDINAL AND SEMICOMPETING 

RISKS DATA  

 

3.1 Summary  

In medical research, multiple duration outcomes are often recorded along with 

longitudinal biomarker measurements. In this chapter, we consider semicompeting risks 

duration data that arise when two types of events, non-terminal and terminal, are 

observed. When the terminal event occurs first, it censors the non-terminal event, but not 

vice versa. For the longitudinal data, we consider repeated continuous measures that may 

exhibit nonlinear patterns and can be important predictors for both types of the duration 

outcomes. Joint models of the repeated measures and semicompeting risks data provide 

most efficient use of data to infer the covariate effects and reduce bias due to the 

intermittent observation of the longitudinal biomarker and with the dependent censoring 

issue (of the non-terminal event) by the terminal event. In addition, such models also 

facilitate an individualized approach for prediction of patient outcome that improves on 

simplified models. The method is demonstrated via a simulation study and an analysis of 

a prostate cancer study.  
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3.2 Introduction 

Many biomedical studies collect data on repeatedly measured markers such as CD4 cell 

counts for human immunodeficiency virus (HIV) patients, and time-to-event outcomes 

such as time to disease progression and time to death. The longitudinal data can be 

important predictors or surrogates of the time-to-event outcomes. To describe the 

relationship between the longitudinal data and the time-to-event outcomes, joint models 

can be very useful. That is, a model is specified for the longitudinal data and then derived 

components of the longitudinal model are linked to survival models. The modeling of the 

longitudinal data is usually necessary due to the intermittent observations and 

measurement error. Nice overviews of this field were given by [61, 62] [44, 63].  

In this chapter we consider joint modeling of longitudinal data and semicompeting 

risks data. Semicompeting risks data arise when two types of events, a non-terminal event 

(e.g., tumor progression) and a terminal event (e.g., death) are observed. When the 

terminal event occurs first, it censors the non-terminal event. Otherwise the terminal 

event can still be observed when the non-terminal event occurs first [1, 2]. This is in 

contrast to the well-known competing risks setting where occurrence of either of the two 

events precludes observation of the other (effectively censoring the failure times) so that 

only the first-occurring event is observable. More information about the event times are 

therefore contained in semicompeting risks data than typical competing risks data due to 

the possibility of continued observation of the terminal event after the non-terminal event. 

Consequently, this allows modeling of the correlation between the non-terminal and 

terminal events without making strong assumptions. Adequate modeling of the 

correlation is important to address the issue of dependent censoring of the non-terminal 
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event by the terminal event [2-4, 12]. It also can allow modeling of the influence of the 

non-terminal event on the hazard of the terminal event and thus improve on predicting the 

terminal event [5]. 

The development of our proposed model was primarily motivated by studies of 

prostate cancer, the most commonly diagnosed cancer among American men. In current 

practice, patients diagnosed with clinically localized prostate cancer often undergo 

radiation therapy or radical prostatectomy, sometimes in combination with hormone 

therapies [64]. After initial treatments, patients are actively monitored for prostate-

specific antigen (PSA), a biomarker associated with clinical recurrence of prostate cancer 

[65]. Patients with elevated and/or rising levels of PSA sometimes receive additional new 

treatment (called salvage therapy) in order to prevent or delay recurrence. One such 

salvage therapy is androgen deprivation therapy (SADT), which consists of either 

surgical or medical castration. Although SADT is generally thought to be beneficial in 

delaying recurrence, the magnitude of the benefit of SADT is not well quantified [66-68]. 

The benefit of early versus deferred androgen suppression as well as the association of 

the effect of SADT with the current health status of the patient (e.g., the current value or 

slope of PSA) or other patient characteristics (e.g.,  age) are not well understood.  

 One of the complications in determining the effect of SADT is the adapted 

treatment decision, which is not predetermined by the investigator, but rather than based 

on the current condition of the patient. That is  SADT is a “treatment by indication”  

which is related to elevated PSA, or rising PSA slope, both being considered as 

intermediate variables for the recurrence of prostate cancer.  The effect of SADT on the 

risk of recurrence of prostate cancer could not be adequately addressed by standard Cox 
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regression models. Recently, Kennedy et al. [69] described a two-stage method (and as 

well a sequential stratification method) to analyze the treatment effect. However, because 

the two-stage method does not appropriately propagate the uncertainty from the analysis 

of the first stage, the standard errors may be underestimated. 

The basic joint models formulated by Faucett and Thomas (1996) [70]and Wulfson 

and Tsiatis (1997)[71] have been extended in multiple ways to accommodate multivariate 

survival outcome. These include competing risks data [72-74] [75-77]and recurrent event 

data with informative terminal event[78, 79]. Unfortunately, despite the recent rapid 

advance on semicompeting risks data, the joint modeling of such data and longitudinal 

data has not been explicitly described in the literature. Most of the proposed models on 

joint models with multivariate survival outcomes adopted shared frailty models. 

Conceivably, the current shared frailty models developed for joint modeling on 

multivariate survival data can be utilized for joint models with semicompeting risks data.   

However current shared frailty models have the following shortcomings for modeling 

semicompeting risks data. First conditioning the frailty terms, the frailty models specify 

the joint distribution of the non-terminal event and terminal event in completely 

independent manner. However because there is no possibility of observing a non-terminal 

event after a terminal event, the shared frailty models are in essence over-specified [18]. 

In addition, the shared frailty models do not differentiate hazards of the terminal event 

before or after the onset of the non-terminal event, and consequently the two type of 

events can only be related via a shared frailty term, which may or may not be a sensible 

assumption in reality since the onset of the non-terminal event may cause the terminal 

event to occur sooner if it is harmful or later if it is a cure. In contrast, our adopted 
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‘general model’ assumes that the terminal event ha ard function is possibly changed after 

experiencing the non-terminal event on top of the frailty terms. This can have 

implications in prediction.  

On the other hand, the illness-death models proposed by Xu et al. [18] can 

overcome these two shortcomings. However the current approaches do not incorporate 

flexible random effects. Such incorporation can provide adequate modeling for complex 

observational studies where over-dispersion and outcome heterogeneity are common. In 

this chapter, we propose such random effects multistate models to jointly model 

longitudinal and semicompeting risks data. For prostate cancer studies, we consider 

SADT as the intermediate event and cancer recurrence as the terminating event. We 

adopt the illness-death model for semicompeting risks data [18], which allows 

specification of three types of baseline hazards and corresponding regression coefficients 

associated with two type of events,  i.e., the hazard for time to SADT, the hazard for time 

to recurrence without SADT and the hazard for time to recurrence following SADT. 

Further, we adopt joint modeling approach to appropriately adjust time-dependent PSA 

value and its slope when estimating the effect of SADT. The linear mixed model is used 

to predict the current value and slope of PSA in the absence of SADT. Although the 

observed PSA of patients who received SADT experienced considerable decreases, the 

‘latent PSA process’ represents health status that is unaffected by initiation of SADT [69]. 

The predicted PSA and slope of PSA are incorporated as time-dependent covariates in 

proportional hazards models. Based on this joint modeling framework, the effect of 

SADT on an individual can then be addressed by comparing the hazards overtime with or 

without SADT. Although motivated by the prostate cancer study, the methods described 
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here should be generally applicable to studies where both longitudinal and 

semicompeting risks data are collected. 

Besides parameter estimation, we also focus on subject specific predictions for the 

time-to-event outcomes, in particular for the terminal event which can be of most clinical 

relevance. Prediction in joint modeling framework has been considered in [80-83]. We 

show in this article that in presence of both non-terminal and terminal event, adequate 

modeling of longitudinal data and both events are necessary when the prediction of the 

terminal event is of main interest.  

Computation for such complex models can be challenging. Therefore we adopt 

Bayesian MCMC to directly work with the full likelihood. The Bayesian paradigm 

provides a unified framework for carrying out estimation and predictive inferences. In 

particular, we carry out the computation using an existing software package Stan [35]. 

The remaining of the chapter is organized as follows. In Section 3.3, we introduce the 

details of the joint model, the implementation of a Bayesian approach as well as 

individualized prediction of survival outcome. In section 3.4, we present results from a 

simulation study. In Section 3.5, we conduct a thorough analysis of the prostate cancer 

studies.  Section 3.6 contains a brief discussion.  

3.3 Model specification 

3.3.1 Joint models and assumptions 

The proposed joint models consist of two submodels, the longitudinal data 

submodel for the observed repeated biomarker measures and the survival submodel for 

semicompeting risks data. For notational simplicity, we describe our models using a 

simple linear mixed effect model for the marker process. However, more complex models 
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such as nonlinear mixed models, B-spline models [48, 84] can be adopted when 

necessary. The use of the nonlinear mixed models will be illustrated through our case 

study in Section 3.5.  

3.3.2 Longitudinal data submodels 

Consider a set of   subjects. For subject  , let       denote the unobserved true 

values for the biomarker process at time   and       be the corresponding observed 

biomarker process at time  . Let                    and                    

denote the true and observed marker history up to time  . There are a total of 

   longitudinal observations for subject   at observation times             . We further 

denote               
) as the vector of the observed marker values.  

The observed    and the latent process       for subject   at     are assumed to 

satisfy  

 (3.1)                (   )                    

 

where           
   are mutually independent for          . The latent process       

is typically specified as a linear function of time and baseline covariate vector   , given 

by 

 (3.2)        (   )                
                 

 

The quantities     and     are taken to be random and have a multivariate normal 

distribution, 

            
            

where          
  denote the mean vector and     the covariance matrix.  
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3.3.3 Semicompeting risk data submodels 

We adopt the same notations and illness-death model for the semicompeting risks 

data that is presented in Section 2.3 in Chapter 2. For self-containedness of this chapter, 

we repeat it here. For semicompeting risks data, let    be the time to the non-terminal 

event, e.g., disease progression (referred to as illness hereafter),    be the time to the 

terminal event (referred as death hereafter), and   be the time to the censoring event (e.g., 

the end of a study or last follow-up assessment status). Observed variables consist of 

          ,        ,              , and           . Note that    

can censor    but not vice visa, whereas   can censor both    and   . For subject  , we 

observe     ,    ,             . 

Semicompeting risks data have been popularly modeled using copula models, 

which consists of two marginal distributions for the two types of events and an 

association parameter to accommodate dependence. However, with the copula models, it 

is not straightforward to incorporate both fixed and random covariates. Here we extend 

the illness-death models recently proposed by Xu et al. [18] for more flexible modeling 

of semicompeting risks data. With this model, an individual begin in an initial healthy 

state (state 0) from which they may transition to death (state 2) directly or may transit to 

an illness state (state 1) first and then to death (state 2)  (see Figure 2.1). Three distinct 

types of hazard functions, denoted by              , are differentiated and defined as 

follows, 

 

(3.3)                                                      
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(3.4)                                                      

 

(3.5)                                                            

where        . In general,           can depend on both    and   . These equations 

define a semi-Markov model. When                 , the model becomes Markov. 

The ratio                  partly explains the dependence between    and   . When this 

ratio is 1, the occurrence of    has no effect on the hazard of   . Borrowing the 

terminology from Xu et al. [18], we refer models that force                  as 

“restricted models” and models without this assumption as “general” models. 

The longitudinal and semicompeting risks components can be linked through 

functionals of the latent process      , which account for the association of the two types 

of outcomes. For notational simplicity, we assume that only the current value       

affects the hazard functions. In our data analysis, we have both       and its derivative 

  
      in the model. In addition, for semicompeting risks data, there may be additional 

frailties or random effects   . The proportional hazards models are thus given as, 

(3.6)                         
     ̃ 

                         , 

where        are the baseline functions.  Baseline covariates     and  ̃  may overlap 

among each other and may overlap with     in the longitudinal model too. The random 

effects    follow a multivariate normal distribution with mean of zero and covariance 

matrix   , that is,           . Note that under the restricted models, the occurrence of 

   does not alter the baseline hazard function of   , that is              , then we can 

express the hazard models as 

(3.7)                           
     ̃ 
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This is the commonly used shared frailty model. 

3.3.4 Baseline hazards  

Parametric models such as the exponential, Weibull, gamma, and lognormal models can 

be used for baseline hazards. Nonparametric models similar to the Cox proportional 

hazards models [85] can also be used. Alternatively one can also use parametric but 

flexible models such as piecewise-constant (PWC) models [86] [38] and regression 

splines  [48]. 

In a Weibull model,                      . The proportional hazards model is 

given as, 

(3.8)               
            

                         

The baseline hazards is monotone in    If     , the Weibull model is reduced to 

the exponential model with the constant hazard. 

In a PWC model, for        , the follow-up times are divided into   intervals 

with break points at                 where      equals or exceeds the largest observed 

times and       . Usually      is located at  th quantiles of the observed failure times. 

The baseline hazard function then takes values      in the interval             ] for 

        , that is,                          . Obviously when the number of 

break points increases, the baseline hazards become more flexible. In the limiting case 

where each interval contains only a single true event time (assuming no ties), this model 

is equivalent to the Cox model where the baseline hazards are left unspecified. 

Although Cox models are widely used for survival analysis, the use of this method 

for the joint modeling meets with some computational challenge. Due to the inclusion of 
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random effects into the hazards, an EM algorithm based on profile likelihood approach is 

typically used for estimation of standard errors of the maximum likelihood estimates 

(MLEs). However, this method would lead to underestimation of standard errors of EM 

estimators [87] [88]. Bootstrapping is therefore proposed for estimation of standard errors. 

However, it is evident that computation load is rather demanding. With Bayesian 

methods, on the other hand, because the inference on hazard parameters is based on exact 

posterior distributions, it is feasible to fit joint models with Cox proportional hazards. 

Nevertheless, the computation load also tremendously increases when the number of 

distinct events increases. 

3.3.5  Joint likelihood  

To derive the joint likelihood, we adopted counting process notations for survival 

data. Let                      ,                            , and 

                            be the counting processes for the three patterns of 

the event process. Correspondingly, let                                     

    and                     be the at-risk process for the three patterns of events. 

Denote      as the event indicator associated with each type of hazard,      as the 

corresponding observed times. Hence,        ,        ;        ,               ; 

       ,           . 

With the proportional hazards assumptions and the non-informative censoring 

assumption for   , the joint likelihood for subject  ,     is given as, 

 

(3.9)        
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where                               
     ̃ 

            . In particular, the joint 

likelihood under the PWC baseline hazard can written as, 

 

(3.10) 

∏ (   |     
 )

  

   

∏[               
     ̃ 

              ]
    

 

   

 

    [        
     ̃ 

    ∑    ∫                 

    

       

  

   

] 

where        are at risk functions that equals to 1 if the subject   is at risk for hazard type 

   In particular, for      ,          for       and 0 otherwise. For    , 

         only when    =1 and          .  

Since the random effects    and    are not observed, the standard likelihood 

approach to this problem involves integration of the joint likelihood over the distribution 

of random effects. In addition, there is also an integral with respect to time for the 

survival function that incorporates time-dependent marker values. Since the integrations 

may not have close-form solutions, numerical solutions can be employed to approximate 

these integrals. However approximations may not work well due to the nonlinear nature 

of the integrands, especially when the dimensionality of random effects is not small. 

Therefore programming becomes very demanding and can require problem-specific fine 

tuning for stable numerical results.  The Expectation-Maximization (EM) algorithm is 
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commonly applied to joint modeling [62, 71, 89]. However these computational 

challenges remain. 

3.3.6 Bayesian approach and prior specification 

We utilize Bayesian MCMC approach for parameter estimations [70, 90-92]. The 

Bayesian computation can be conveniently implemented in standard Bayesian software 

like WinBUGS [51], JAGS[34] and Stan [35]. In addition, posterior draws of all 

parameters, including random effects, are stored, which facilitates easy approximation of 

integrals. Consequently individual predictions can be done quickly.  

For Bayesian analysis, prior distributions need to be specified for all parameters. 

When there are no prior data, non-informative or diffuse prior distributions can be 

specified. In general, the prior distributions can be chosen to be proper and conjugate to 

the likelihood while remain fairly non-informative. For regression coefficients, 

                       we will assume normal prior distributions with means of zero 

and large variances (e.g., 10,000). For   
 , we will assume an inverse gamma distribution 

with shape and scale of 0.01. For      , we will assume inverse-Wishart prior 

distribution         , where d is the rank of   , which is the smallest possible value for 

this distribution. The scale matrix   is often chosen to be an identity matrix multiplied by 

a scalar,  .  The choice of   should ensure that the prior distribution can leave 

considerable prior probabilities for extreme values of the variances terms. For parameters 

of baseline hazards   , and   ,  gamma priors are specified with shape and scale of 0.01. 

For the scale parameter of Weibull distribution,      a normal prior is assumed on its 

logarithm. 
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All simulations and data analysis are done using Stan, which is a new piece of 

software that allows a very flexible way of specifying the likelihood and obtaining 

Bayesian inference [35]. Stan utilizes the No-U-Turn sampler, a variant of Hamiltonian 

Monte Carlo (HMC), which takes a series of steps informed by the first-order gradient 

information of logarithm of posterior distribution and hence avoids the random walk 

behavior of simpler MCMC methods. These features allow it to converge to high-

dimensional target distributions much more quickly [93]. In our experience, Stan has 

significant computational speed advantage over WinBUGS and JAGS with our proposed 

joint models.  

3.3.7 Prediction of Survival Probabilities 

The joint model enables the prediction of patient survival outcomes using all 

available information, including both the baseline information and highly individual 

longitudinal biomarker levels. There have indeed been many related works [80-83]. With 

semicompeting risks data, information from the non-terminal event should in general be 

utilized to provide valid prediction of the terminal event. Such necessity arises first from 

the fact that the transition rate to the terminal event can greatly differ before and after the 

non-terminal event. Secondly, quite often the longitudinal biomarker is not measured 

after the non-terminal event, the non-terminal event therefore represents an important 

aspect for prediction of the terminal event, especially when the non-terminal event 

happens early.  

Specifically, we are interested in predicting survival probabilities for the subject  , 

who has survived the terminal event up to time      and has a set of longitudinal 

measurements               
). In this context, it is more relevant to calculate 
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conditional probability of surviving time         given the survival up to    . If the 

subject has experienced non-terminal event, the conditional survival probability for the 

terminal event is, 

 (3.11) 

                                          

  
                             

                              
 

When the subject is censored for both nonterminal and terminal events, the 

conditional survival probability can be calculated as below, 

(3.12) 

                                          

  
                                 

                                  
 

 
                                                                     

                                  
 

 where 

                                     

∫                                
  

   
    

Posterior distributions of these conditional survival probabilities can be obtained easily 

by substituting the stored posterior samples for            and all other parameters such 

as the baseline hazards. 

3.4 Simulation studies 

Simulation studies were performed to examine the feasibility and properties of the 

proposed joint models. The simulated datasets included repeated measurements and 

semicompeting risks data. The simulations consisted of 400 replications, each composed 
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of       subjects. Eight visits are scheduled at equally spaced time points between 0 

and 4 months. The measurements of the longitudinal variable became missing after 

          , that is when subjects experienced the non-terminal event or censored 

from studies. For simplicity, we set     months. In addition to parameter estimation 

for various parts of the joint model, we investigated terminal event prediction based on 

various models. Specifically, we fit five joint models: three general models based on (3.6) 

that used Weibull, 10-piece PWC, and nonparametric baseline hazards respectively; the 

restricted model based on (3.7), and the joint model based on univariate survival 

submodel that used only the terminal event but ignored the non-terminal event. 

For simplicity, the longitudinal submodel (3.2) used in our simulation was a linear 

mixed model consisting of random intercept and slope with mean           

          and variance   =         

     

   with    

       and    

      . We also 

include a single binary covariate    with its covariate effect        The residual of 

measurement errors follows normal distribution with a mean of zero and   
      . 

For semicompeting risks data, we specified Weibull distributions for the baseline 

hazards, i.e.           
     with         and         for    , 2, and 3. The 

proportional hazards model (3.8) includes the single baseline covariate    and the current 

value of the true longitudinal variable value       . Corresponding parameters for    and 

the current value       in the survival submodels are              ,        and 

                     for the three hazard functions respectively. Because    

affects the hazard functions not only through    but also affect       through  , we also 
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consider           in our results comparison among various models we fit. These 

derived quantities in some sense gauge the total effects of    on the hazard functions.  

For Bayesian analysis, flat priors specified in Section 3.3.6 were used for all 

parameters except when fitting joint models based on Weibull baseline hazards. In that 

case, we used slightly informative prior distributions to speed up convergence of MCMC 

chains. A uniform prior on support of (-6, 0) is assumed on       and a gamma prior is 

specified with both shape and scale of 0.1 for   . Integrations over time was 

approximated by 16-points Gaussian quadrature. The computation was performed in 

Linux clusters with over 1000 CPU processors (2.60GHz Intel Xeon CPU E5-2670 with 

16 GB memory). Each data analysis was done using three MCMC chains with a burn-in 

period of 1,000.  Algorithm convergence was monitored using the method of Gelman-

Rubin [57]. Posterior distributions of parameters were summarized from 1,000 iterations. 

For joint models based on general semicompeting risks survival submodels, it took an 

average of 3.50 and 8.95 minutes when using the 10-piece PWC baseline hazard 

functions and the Weibull baseline hazard functions, respectively. For Cox models, it 

took an average of 24.3 hours due to the large number of parameters resulted from the 

nonparametric baseline hazards. The computing time reduced drastically to 2.67 on 

average when we fit datasets with 200 subjects. In a typical simulated data set with 600 

subjects, there are typically 2170 longitudinal observations, 280 non-terminal events and 

370 terminal events (278 without first experiencing the non-terminal events and and 67 

after the non-terminal ones). Therefore, for the Cox models, the computation load 

significantly increases as the sample sizes grow. 
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3.4.1 Results for simulation 

For parameter estimations, we report in Table 3.1 the average biases (Bias), the standard 

deviation of the mean estimates (SD) and the coverage probabilities (CP) based on 95% 

the credible intervals. When the joint model based on univariate survival submodel was 

fit, large biases were observed for all parameters especially for the survival parameters, 

leading to poor coverage probabilities from the 95% credence intervals. The biases are 

relatively smaller from the joint model based on restricted semicompeting risks models. 

The parameter estimates for longitudinal model all improved. For the survival outcomes, 

the estimates for the parameters       and    that are associated with the non-terminal 

event are all well estimated. However, for the terminal event, both     and    are 

underestimated while both    and    are over-estimated. In contrast, all parameters are 

well estimated when joint models based on (3.6) were used to fit the data sets, for all 

three different baseline models: Weibull, 10-piece PWC and Cox models. The biases are 

all small and coverage probabilities are all close to 95%.   
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Table 3.1 Parameter estimation for simulation studies based on various joint models  
__________________________________________________________________________________________________________   

                Univariate       Restricted          General              General                General      

                 Weibull           Weibull            Weibull               PWC                    Cox         

             _________________  _________________ _________________    ________________ __________________   

Par    Truth Bias  SD    CP(%)  Bias   SD  CP(%)  Bias    SD   CP(%)   Bias  SD   CP(%)  Bias  SD   CP(%)    

__________________________________________________________________________________________________________   

Longitudinal submodel parameters 

        0.4  0.029 0.035 87.4   0.015 0.036 92.6   0.002 0.036  94.0   0.002 0.036 94.5  -0.001 0.036 94.4   

        0.5 -0.097 0.018    0  -0.049 0.019 32.0  -0.001 0.021  92.8  -0.002 0.021 95.0  -0.004 0.021 93.3   

        0.4 -0.028 0.048 90.9  -0.016 0.049 92.9  -0.003 0.049  94.5  -0.004 0.049 95.3  -0.001 0.049 94.9    

        0.5 -0.020 0.021 82.5  -0.010 0.021 91.4   0.001 0.021  94.5  -0.002 0.022 93.0   0.001 0.022 94.0   

        0.2 -0.030 0.018 65.9  -0.015 0.018 87.2  -0.003 0.018  95.3  -0.004 0.018 94.8  -0.004 0.018 95.4   

        0.5  0.007 0.010 88.3   0.003 0.010 91.9   0.001 0.010  95.3   0.001 0.010 94.0   0.001 0.010 94.6  

 

 Survival submodel parameters   

        0.2                     0.005 0.134 93.8   0.010 0.133  91.8   0.002 0.136 94.8  -0.008 0.135 93.9   

        0.2  0.089 0.115 86.7   0.171 0.115 67.2   0.007 0.133  94.8   0.004 0.135 93.8  -0.006 0.134 94.9   

        0.8 -0.511 0.115  0.5  -0.429 0.115 03.2   0.064 0.295  94.0   0.042 0.299 95.3   0.008 0.297 94.9   

        1.5                    -0.011 0.170 92.1   0.038 0.170  92.8   0.045 0.177 95.0  -0.027 0.167 94.1   

        1.5 -1.104 0.114    0  -1.367 0.100    0   0.031 0.170  95.3   0.030 0.176 95.8  -0.069 0.167 91.3   

        0.2  0.196 0.114 57.9  -0.067 0.100 86.9  -0.089 0.282  95.3   0.024 0.298 96.5   0.028 0.287 94.9 

 

Total effect of binary covariate on survival   

       0.8                     0.023  0.147 94.8  -0.021 0.149  94.8  -0.015 0.150 96.3  0.021  0.147 95.6  

       0.8   0.363 0.111 10.3  0.378  0.109  6.9  -0.014 0.150  94.8  -0.011 0.150 94.8  0.035  0.146 94.6  

      0.88   0.443 0.111 03.0  0.458  0.109  1.7  -0.028 0.288  94.0  -0.052 0.293 94.8 -0.020  0.288 94.6   

 

Weibull baseline parameters 

 ln   -3.22                     0.006 0.220 95.6   0.056 0.224  94.3                                          

 ln   -3.22  1.054 0.139    0   1.249 0.128    0   0.058 0.223  95.3                                          

 ln   -3.22  1.054 0.139    0   1.249 0.128    0   0.088 0.603  96.5                                          

       1.05                     0.003 0.072 93.6  -0.003 0.071  92.3                                         

       1.05 -0.092 0.064 70.8  -0.006 0.067 94.6   0.007 0.071  95.8                                         

       1.05 -0.092 0.064 70.8  -0.006 0.067 94.6   0.162 0.347  96.5                                         

__________________________________________________________________________________________________________     
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We next evaluated the performance of each model for the terminal event prediction 

for censored patients at 4.5, 5.25, 6, 6.75 and 7.5 month. We calculated the survival 

probabilities for the terminal events at these time points, conditional on the event history 

and longitudinal profile. The sums of the event probabilities among these censored 

patients were taken as estimates for the predicted total numbers of events that may occur 

between 4 month and the corresponding future time points. These estimates were then 

compared with observed numbers of events accordingly. In Table 3.2, we list prediction 

results from the joint model based on univariate survival submodel, the joint model based 

on restricted model, the joint model using Weibull baseline hazards, and the true model.  

We see that the general model predicted the number of events quite comparable to that 

based on true parameter values, both are close to the observed number of events. In 

contrast, both the restricted model and univariate terminal event joint models over 

predicted the number of events. 

Table 3.2  Event prediction based on different joint models 
_______________________________________________________________________  

             Univariate  Restricted    General     True         

    Observed      model      model          model     parameter      

       ___________ _____________ _____________ ___________ ____________   

Time   Average  SD  Average  SD  Average  SD  Average  SD Average   SD   

_______________________________________________________________________  

   4.5   19.8  4.3    33.2  1.8   30.3   2.1    22.1   2.5   21.4   1.7   

  5.25   45.3  6.2    77.7  4.2   70.2   4.9    50.2   6.5   48.1   3.2   

     6   67.0  7.6   115.9  6.1  104.1   7.3    74.0  10.8   70.8   4.3   

  6.75   86.9  8.6   147.9  7.5  132.6   9.3    94.7  15.3   91.0   5.3   

   7.5  105.2  9.5   173.9  8.2  156.2  10.6   112.9  19.7  109.3   6.1   

 

_______________________________________________________________________  
     

 

  In Figure 3.1, we also plotted predicted survival probabilities for the terminal 

event from the general Weibull baseline hazards and the restricted models for two 

selected subjects. Subject 22 experienced the non-terminal event at 1.8 month and then 
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got censored at 4 month. The predicted survival probabilities at 7.5 month are 0.75 and 

0.42, respectively (see the top panel of Figure 3.1). Subject 38 was censored at 4 month 

for both the non-terminal and terminal events. The predicted curve from the general 

Weibull baseline hazards model took into account two possible path of terminal event. 

For one path, the terminal event occurs before non-terminal event. For the other one, the 

terminal event occurs after the non-terminal event and the occurrence of the non-terminal 

event changes the hazard function over time. This is in contrast with the restricted model.  

The predicted survival curve has quite a different shape (see bottom panel of Figure 3.1). 

 

Figure 3.1 Predicted survival probabilities for two simulated subjects based on general 

and restricted models.  
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3.5 Application to prostate cancer studies 

The analysis dataset contains 1947 clinically localized prostate cancer patients who 

were initially treated with the external beam radiation therapy (EBRT) [94]. Patients 

came from the University of Michigan and the William Beaumont Hospital in Detroit. 

Patients were monitored for PSA periodically throughout follow-up. We plotted the log-

transformed longitudinal PSA profiles for a sample of 50 patients in the left panel of 

Figure 3.2. Generally, the              values decline initially and then increase. From 

the right panel of Figure 3.2, patients that received SADT appear to have higher 

recurrence free probabilities than those that did not.  

 

Figure 3.2. Individual PSA profiles from randomly selected 50 patients (left) and Kaplan-

Meier curve on recurrence (right).  

 

A summary of the data are listed in Table 3.3. The median number of PSA 

measurements prior to the SADT is 8 times per patient. There were 11.8% patients who 

received SADT. Among 287 cases of recurrence, 45 were treated with SADT and 242 
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were untreated. The median time to clinical recurrence is 6.5 years for patients treated 

with SADT and 3.7 years for those untreated. The median time to SADT is 4.4 years. 

Table 3.3 Description of PSA data  
 

_________________________________________________________ 

  Item                        Category          Summary     

  _________________________________________________________ 

  Paitents (#)                                    1947                                                                         

  PSA measures (#)                               17796                                                                         

  Age (years)                              72.0(58.0,81.0)                                                                    

  Pretherapy PSA (ng/ml)                    7.9( 2.3,41.0)                                                                                                         

  Clinical T-stage(#)             1           626( 32.2%)   

                                  2           1210(62.1%)   

                                3-4            111( 5.7%)   

                                                            

  Gleason score(#)              2-6           1249(64.1%)   

                                  7            518(26.6%)  

                               8-10            180( 9.2%)    

                                                                                         

  PSA measures/patient                        8.0(3.0,19.0)                             

                                                                                         

  SADT                                        230(11.8%)                                

                                                                                         

  Time to SADT(years)                         4.4(1.4,8.5)                                                                                                                                          

                                                                                         

  Clinical recurrence    Without prior ADT    242(12.4%)                                

                         With prior ADT        45( 2.3%)                                

                         Total                287(14.7%)                                

                                                                                         

  Time to clinical       

  recurrence (years)    Without prior ADT    3.7(1.3, 8.6)                                                                                                    

                        With prior ADT       6.5(1.8,10.6)                                                                                                                 

  Time to last                                                        

  contact (years)                            4.9(1.5,10.9)                                                   

  _________________________________________________________                              
 

The underlying curve for the longitudinal data,              takes the following 

form [69]: 

(3.13) 

  (   )                             (   )                        

where                 and         are used to capture the short term and long-

term evolutions respectively;                are baseline covariates;              
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are fixed effects and                  are random effects. Note that the timing of the 

SADT can be viewed as a random variable that is associated with baseline characteristics 

and disease progression status of patients. We therefore consider the time to SADT as the 

non-terminal event and cancer recurrence as the terminal event. The corresponding 

proportional hazards models is given, 

(3.14) 

                (   
                      )                 

where        is the derivative of       representing the slope of the log-transformed 

PSA process and     are baseline covariates. We use patient age, baseline prostate 

specific antigen (bPSA), Tumor stage (T-stage), and Gleason score as covariates in both 

(3.13) and (3.14). The T-stage was dichotomized and takes a value of 1 when the actual 

tumor stage is 1 and 0 otherwise. The other three covariates are continuous and mean-

centered. The baseline hazards are modeling using PWC functions with 8 pieces in the 

analysis. Bayesian MCMC method is used to fit the models with non-informative prior 

specified for all parameters. The complete Stan code is given in the Appendix C. The 

trace plot of MCMC chains and density plots for several regression parameters are shown 

in Figure 3.3.  The MCMC chains for all parameters have reached their stationary 

posterior distribution and are mixing very well.  
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    (Age on survival submodel) 

 
   (Current PSA value on survival submodel) 

 
   (Baseline hazard of 1

st
 interval for time to SADT) 

 
  (Residual error of longitudinal submodel) 

 

Figure 3.3 Posterior marginals for selected parameters.  

The left column gives superimposed time-series plots of the three Markov chains. The 

right column gives posterior marginal distribution density for the corresponding 

parameters. 

 

3.5.1 Analysis results for the prostate cancer study 

The analysis results on the prostate cancer study based on the joint models are 

listed in Table 3.4 for the PSA longitudinal submodel and Table 3.5 for the survival 

submodel.  It is observed that for the phase 0 part              of (3.13), the 95% 

credible intervals of all covariates exclude zero, indicating significant fixed effects. For 
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the phase 1 part,             , that is related to      , and for the phase 2,      

       , that is related to      , the effect of age is negligible. On the other hand, higher 

Gleason score, later T-stage, and higher baseline PSA are all positively correlated with 

the magnitude of the slopes for both phase 1 and 2. 

Table 3.4 Analysis results for the longitudinal submodels on PSA 
_______________________________________________ 

_______________________________________________ 

 Covariate          Mean    SE        95%CI  

________________________________________________ 

 Phase  0 

 Intercept         -1.165  0.036  (-1.240,-1.090)  

 Gleason           -0.143  0.026  (-0.196,-0.092)     

 T_stage            0.369  0.068  ( 0.236, 0.498)     

 Age               -0.013  0.004  (-0.022,-0.005)     

 bpsa               0.095  0.037  ( 0.023, 0.168)     

                                                  

 Phase 1                                       

 Intercept          2.743  0.044  ( 2.654, 2.827)     

 Gleason            0.125  0.032  ( 0.063, 0.186)  

 T_stage           -0.490  0.081  (-0.647,-0.328)      

 Age                0.006  0.005  (-0.005, 0.017)      

 bpsa               0.746  0.045  ( 0.657, 0.831)      

                                                   

 Phase 2                                       

 Intercept          0.404  0.016  ( 0.373, 0.433)      

 Gleason            0.062  0.011  ( 0.039, 0.083)      

 T_stage           -0.213  0.029  (-0.268,-0.155)      

 Age               -0.003  0.002  (-0.007, 0.001)      

 bpsa               0.229  0.016  ( 0.199, 0.261)      

                                                     

 Covariance                                    

     

 
                1.330  0.060 ( 1.218, 1.448)    

     

 
                1.643  0.084 ( 1.482, 1.810)    

     

 
                0.253  0.013 ( 0.229, 0.279) 

                    -0.868  0.008 (-0.882,-0.852) 

                    -0.517  0.022 (-0.558,-0.473) 

                     0.510  0.023 ( 0.462, 0.555) 

                                                

 Residual                             

     
                  0.288  0.002 ( 0.284, 0.291) 

__________________________________________________ 
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For the random effects, all variances for the three phases have 95% credible 

intervals excluding zeros, demonstrating substantial heterogeneity for PSA trajectories. 

There is also a large negative correlation between the random effects for phase 0 and 

phase 1, suggesting a sharper PSA drop for higher baseline PSA subjects. Modest 

correlations also exist between phase 0 and phase 2 random effects and between phase 1 

and phase 2 random effects. 

The piecewise baseline hazards based on the joint models are shown in Figure 3.4.  

It appears that the baseline propensity of receiving SADT is similar to the baseline hazard 

of cancer recurrence without SADT. On the other hand, the baseline hazards of 

recurrence are much higher for SADT treated patients during the first five years of 

follow-up. In fact, among 58 patients who received SADT within the period of (0, 2.79), 

6 experienced recurrence during this period and 13 more experienced recurrence later. 

The initial surge of the hazards may reflect the fact that SADT may not benefit those sick 

patients with imminent recurrence.  

In Table 3.5, we see that the estimates for T-stage, both PSA current value and 

slope are all significant for the propensity of receiving SADT. In particular, the PSA 

slope has a very large effect. Older age and higher Gleason score are associated with 

higher hazards for recurrence when no SADT are received, but their association became 

insignificant after SADT. The effects of T-stage, however, are significant regardless of 

the SADT.  Both PSA slope and PSA current value are strong predictors of cancer 

recurrence for those patients receiving no SADT. On the other hand, both have negligible 

effects on cancer recurrence after SADT. This demonstrated that the projected PSA 
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process will not be a good predictor of recurrence anymore once patients received SADT. 

In some sense, disease progression process appears to be substantially altered.  

Analysis results from the joint models allow us to dissect the differential 

treatment effect of SADT among different subpopulations, defined by covariate values. 

In Figure 3.5A, the fitted PSA process for late and early T-stage is plotted.  The PSA 

values in both groups first decrease and then increase over time. However, the increasing 

slopes significantly differ from each other. In Figure 3.5B, the hazard of recurrence over 

time for patients with late T-stage was plotted for patients either treated or untreated with 

SADT. The hazard of recurrence for patients who did not receive SADT dramatically 

increases after year 5. However, the hazards for patients who received SADT remained 

relatively flat. Patients of early T-stage also benefits from SADT treatment. However, the 

treatment effect is much smaller. 

 

Figure 3.4 Baseline survival based on joint models 
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Table 3.5 Survival submodels based on two-stage and simultaneously joint modeling 
 

________________________________________________________________________________________________________ 

                      SADT                  Recurrence without SADT      Recurrence after SADT    

            _________________________     ___________________________   ___________________________ 

 Covariate    Mean     SE     95%CI         Mean     SE      95%CI         Mean    SE      95%CI 

 ______________________________________________________________________________________________________ 

Baseline covariates 

 Age        -0.002  0.010 (-0.022, 0.018)  -0.034  0.009 (-0.052, -0.015)  0.023  0.025 (-0.025,  0.075) 

 bpsa        0.148  0.084 (-0.019, 0.311)  -0.120  0.080 (-0.276,  0.030) -0.263  0.178 (-0.615,  0.077) 

 Gleason    -0.000  0.052 (-0.101, 0.100)   0.170  0.053 ( 0.065,  0.277)  0.028  0.127 (-0.218,  0.283) 

 T_stage     0.382  0.186 ( 0.020, 0.740)  -0.494  0.236 (-0.982, -0.051) -1.515  0.819 (-3.308, -0.126) 

 

Unobserved PSA process 

PSA value   0.578  0.069 ( 0.439, 0.712)   0.640  0.064 ( 0.516,  0.762)  0.143  0.085 (-0.024,  0.311) 

PSA slope   1.863  0.219 ( 1.437, 2.315)   1.612  0.191 ( 1.248,  1.989)  0.047  0.619 (-1.177,  1.237) 

_______________________________________________________________________________________________________ 
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Figure 3.5 Fitted PSA process and hazard process for early and late T-stage patients.  
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3.5.2 Results of prediction for prostate cancer study 

To illustrate individualized prediction of cancer recurrence, we consider 

prediction curves of cancer recurrence for 3 subjects.  Patient 1175 was 86 years old at 

baseline with a later T-stage and Gleason score of 7. He received SADT at 4.38 years and 

censored for recurrence at 9.37 years.  Patient 70 was 54 years old at baseline with a late 

T-stage and Gleason score 6. He was censored at 5.8 years for both SADT and recurrence. 

At the time of censoring, this patient has a relative low PSA value and a descending slope. 

Patient 117 was 70 years old at baseline with a late T-stage and Gleason score 5. Similar 

to patient 70, he was censored at 8.16 years for both SADT and recurrence. At the time of 

censoring, the patient has a rising PSA slope and a high value of PSA. The prognosis for 

patient 70 should be much better than patient 117. 

 

 

 

Figure 3.6  Prediction of survival for a patient receiving SADT 
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Figure 3.7 Prediction of survival probability for a healthier patient. 

 

For patient 1175, prediction of cancer recurrence is according to        and 

illustrated in Figure 3.5.  For patients 70 and 117 that were censored for both SADT and 

recurrence, we can predict the cancer recurrence similar to our simulation study by using 

our joint illness-death model that automatically account for the ‘random’ nature of 

receiving SADT. However, we can also withhold SADT or give SADT at any time prior 

to cancer recurrence and then use the joint illness-death model for prediction. However 

these two approaches alter the ‘randomness’ in the SADT and therefore are at the risk of 
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extrapolation from the observed data. For example, we can give SADT for a patient with 

excellent prognosis in our prediction, but such case may never arise in practice and 

therefore no data were available to test the validity of the prediction. Nevertheless, we 

still did the predictions in three fashions for our curiosity. In Figure 3.6, we see that the 

recurrence probability remain low whether the patients follow the current practice of 

receiving SADT (Figure 3.6.A), given SADT at year 5.8 (Figure 3.6.B), or withhold 

SADT forever (Figure 3.6.C), Note that the predicted recurrence-free probability for this 

patient decreased by about 5% toward the end of year 15 when given SADT at year 5.8, 

compared with the current practice of receiving SADT. It seems that SADT does minor 

harm to this patient. Again this may be explained by the extrapolation nature of the 

prediction when given SADT at year 5.8.  The prediction of the survival probability of 

this patient with very good prognosis, is based on data observed on SADT treated 

patients who were relatively sick and usually expecting imminent recurrence. 

Unfortunately, the observed data could not be used to test the validity of such 

extrapolation and therefore we cannot rule out the possibility that SADT in fact may do 

more harm than good to patients with good prognosis.  

The prediction for patient 117 is shown in Figure 3.7.  The predicted recurrence 

probability is very high if this patient follows the current practice of receiving SADT 

(Figure 3.7.A) or withholds SADT (Figure 3.7.C). However, if the patient receives SADT 

from the time of censoring (Figure 3.7.B), the recurrence probability of the patient will be 

substantially lowered, to about 22% at 15.4 years. This indicates the importance of early 

SADT for this patient. Also we caution readers about the possible prediction bias 

associated with extrapolation, which in this case may be less severe.  
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Figure 3.8 Prediction of survival probability for a sicker patient 

 

 

3.6 Discussion 

We have developed a Bayesian joint modeling framework for longitudinal and 

semicompeting risks data. The Bayesian computation can be conveniently performed 

using standard Bayesian software including WinBUGS, JAGS and Stan. Although the 

EM algorithm can also be developed, programming may become very cumbersome due 

to the requirement for integration over multivariate frailty terms. The Bayesian 

framework also made individualized event prediction very straightforward. In addition, 
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the Bayesian framework described here can be easily extended. Possible extensions 

include incorporation of multiple longitudinal markers and using semiparametric models 

for longitudinal data [48, 84].  

One unique feature of our joint models is the use of illness-death models for survival 

outcome.  To our knowledge, although this method has been proposed recently by Xu et 

al., its use in the framework of joint modeling has not been reported. In the literature, 

similar problems were addressed by time-varying covariate approach [69], the joint 

models with a bivariate survival models [46], or by competing risks models [77]. The 

main advantage of the illness-death model is its flexibility to differentiate two types of 

hazards on the terminal event, one occurring after intermediate event and one without it, 

thus allowing specifying different baseline models, and incorporating different regression 

coefficients. When applied to prostate cancer data, it enables us to dissect and compare 

the effect of PSA trajectory and baseline covariates on two separate survival path, one 

receiving SADT and one remaining untreated.  This model not only allow us to address 

the interaction between the SADT and patient health status (PSA profile, T-stage) but 

also enable us to predict the patient outcome according to the current practice by 

accounting for the probability of receiving SADT. 

As with many other models, there is a limitation to statistical inference based on 

extrapolations. Obviously, the two patient populations, i.e., treated and untreated by 

SADT, may have very different healthy status. We expect to see some bias, for example, 

when we attempt to predict the effect of SADT on healthier people. Therefore the 

conclusions based on this analysis should to be used with some cautions.  
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CHAPTER 4. WEIGHTED RANDOMIZATION TESTS FOR MINIMIZATION WITH 

UNBALANCED ALLOCATION 

4.1 Summary 

Re-randomization test has been considered as a robust alternative to the traditional 

population model-based methods for analyzing randomized clinical trials. This is 

especially so when the clinical trials are randomized according to minimization which is 

a popular covariate-adaptive randomization method for ensuring balance among 

prognostic factors. Among various re-randomization tests, fixed-entry-order re-

randomization is advocated as an effective strategy when a temporal trend is suspected. 

Yet when the minimization is applied to trials with unequal allocation, fixed-entry-order 

re-randomization test is found biased and thus compromised in power. We find that the 

bias is due to non-uniform re-allocation probabilities incurred by the re-randomization in 

this case. Therefore we propose a weighted fixed-entry-order re-randomization test to 

overcome the bias. The performance of the new test was investigated in simulation 

studies that mimic the settings of a real clinical trial. The weighted re-randomization test 

was found to work well in the scenarios investigated including the presence of a strong 

temporal trend.  
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4.2 Introduction 

Randomization is the foundation of modern controlled clinical trials. It establishes 

causality and provides a basis for inference [95]. By ensuring proper balance of 

prognostic factors in treatment and control groups, randomization leaves the treatment 

under test as the only dissimilarity. Proper randomization can also eliminate or reduce 

any conscious or unconscious selection biases in subject allocation. However, in practice 

randomization often does not work so ideally, especially for trials of small sample sizes 

[96]. For trials with many prognostic factors or confounders, the balance between 

treatment groups across the covariates can be achieved by stratified block randomization 

[97]. However, the performance of stratified randomization deteriorates as the number of 

strata increases, particularly in small trials [98].  

In such settings, minimization, a covariate-adaptive randomization procedure, can 

be employed. The method of minimization was proposed by Taves [99] and generalized 

by Pocock and Simon to clinical trials with equal allocation of subjects for each group 

[100]. With this method, subjects are assigned to minimize imbalance among prognostic 

factors. That is, for every possible assignment, a pre-specified measure of overall 

covariate imbalance will be calculated. A treatment is preferred if inclusion of the new 

subject into that treatment group minimizes the overall covariate imbalance. Commonly 

used imbalance measures include marginal balance which is obtained by normalizing the 

absolute imbalance by subject counts [101] and range. The new subject is then allocated 

to the preferred treatment either deterministically, or with a ‘high’ probability of p
H
 that 

is larger than 0.5. In case when the assignment of the new subject does not affect the 

overall imbalance, the subject is assigned randomly to the treatments. Pocock and 
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Simon’s method cannot be applied directly to the case of unequal allocation [95, 101-

104]. Simple modifications of minimization tend to have a smaller allocation ratio than 

the desired target. We recently described a biased coin minimization (BCM) that achieves 

the desired allocation ratio by varying the probability of assigning the preferred treatment 

according to the allocation ratio [105].  

 Although the majority of the primary analyses for clinical trials are performed 

using population-based models that assume independent and identically distributed 

random samples, re-randomization or permutation based inference provides an attractive 

alternative in case of  model assumption violation. Re-randomization test solely relies on 

the specific randomization procedure employed in the trials. In particular, a test statistic 

is evaluated using both the observed data and the re-randomized data or the reference set. 

P-value of the statistic is calculated by comparing the observed test statistic with the 

reference set. Simon suggests that, besides the subject responses and covariate values, the 

entry order of the subjects should all be fixed during the re-randomization[106]. For 

setting of equal allocation, Hasegawa and Tango (2009) conducted Monte Carlo 

simulation to compare such fixed-entry-order re-randomization test with the t -test and 

the analysis of covariance (ANCOVA) following minimization [107]. They concluded 

that the fixed-entry-order re-randomization test is an indispensible alternative. The Food 

and Drug Administration (FDA) frequently requests re-randomization tests to confirm the 

results from population-model based tests, particularly when a confirmatory clinical trial 

was randomized by minimization [97]. 

 For minimization with unequal allocation, however, Proschan, Brittain and 

Kammerman discovered serious problems with the fixed-entry-order re-randomization 
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test [108]. In a randomized, double-blinded and placebo-controlled trial from Genzyme, 

the “Late Onset Treatment study (LOTS)”  90 subjects with late-onset Pompe’s disease 

were enrolled and randomized to alglucosidase alfa (60 subjects) or placebo (30 subjects) 

[109]. A modified Pocock and Simon minimization algorithm was used to balance three 

factors: clinical sites (8-levels), 6 minute walk tests (6MWT) (2 levels: 300m , 300m ) 

and forced vital capacities (FVC) (2 levels: 55% predicted, 55% predicted). The 

actual minimization algorithm can be found in an addendum to the FDA briefing material 

at http://www.fda.gov/ohrms/dockets/ac/08/briefing/2008-4389b1-00-FDA-index.htm. 

The primary efficacy analysis was performed by the ANCOVA on the change of two co-

primary endpoints from baseline to week 78. The fixed-entry-order re-randomization test 

was chosen as the pre-specified sensitivity analysis. At the conclusion of the trial, the p

value for one of the two co-primary endpoints was 0.035 based on ANCOVA, but was 

0.06 from the re-randomization test. The discrepancy led to an intriguing discussion 

regarding the interpretation of the re-randomization test during an FDA advisory 

committee meeting on October 21, 2008 [110]. The fixed-entry-order re-randomization 

test distribution was not centered around zero and the validity of re-randomization test 

was questioned. It appeared that the re-randomization test broke down with the unequal 

allocation minimization, whose use is consequently discouraged [108].  

In this chapter, we examine the properties of the fixed-entry-order re-randomization 

test in detail, and propose a valid re-randomization test for the unequal allocation 

minimization. The performance of various methods will be evaluated through extensive 

simulation studies that mimic the LOTS trial. The remaining of the chapter is organized 

as follows. In Section 4.3, we briefly review the concept of the re-randomization test and 

http://www.fda.gov/ohrms/dockets/ac/08/briefing/2008-4389b1-00-FDA-index.htm
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then carefully examine the shift in the mean of the fixed-entry-order re-randomization 

test distribution with unequal allocation minimization. In Section 4.4, we propose a 

weighted fixed-entry-order re-randomization test and a random-entry-order re-

randomization test.  In Section 4.5, we evaluate our proposed tests through extensive 

simulations. In Section 4.6, we apply the proposed approaches to an example data set that 

mimics the motivating example. In Section 4.7, we conclude the chapter with discussions. 

4.3 Noncentral distribution of the fixed-entry-order re-randomization test 

4.3.1  Notations and the re-randomization test 

The most commonly used analysis for clinical trial is based on population models.  

That is, for a clinical trial with   subjects, the observed subject responses           are 

considered as realizations of random variables          while the actual treatment 

assignment,              and covariates            are considered as fixed. The 

treatment indicator      if subject   is assigned to treatment A and 0 if to B. The 

underlying population model is here taken as a linear regression model, 

(4.1)                      (    )                        

where   and   are the treatment effects;   is a vector of regression coefficients, and    

is the variance of the error term. Test of equality between   and    is based on the 

ANCOVA or the  -test if    is absent. 

Re-randomization or permutation tests on the other hand consider the observed 

responses and covariates as a set of fixed values. The treatment assignment is then re-

randomized using the same allocation mechanism as the trial. Let   be the number of the 

re-randomizations performed. Statistical inference or  -value is evaluated by comparing 

the observed treatment difference with the   re-randomized treatment differences. 
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Obviously each treatment re-randomization sequence is a realization of the random 

binary variables    , j=1,…,n}, where      if a subject is assigned to treatment A and 0 

if to B. 

Denote    and    as the targeted allocation number, and         and         as 

the actual assigned numbers to A and B, respectively. For notational simplicity, we first 

consider the case without covariates and later extend our results to the case with 

covariates.  For         , the corresponding re-randomization test statistic is based on 

the difference in means,   

(4.2)         ̅      ̅     
 

          
∑          

     

 

 
     

Here      and      are the numbers of subjects that are assigned to treatments A and B, 

 ̅    and  ̅    are the sample means for groups A and B, and      indicates treatment A 

for subject j. The two-sided  -value of the re-randomization test is then computed as [107, 

111], 

 ̂  [  ∑      

 

   

   ̅          ̅ ]       

where      is the indicator function,   ̅  
 

 
∑   

 
   , and  

      ̅        ̅       
 

              
∑      

       

 

 

   

  

Note that the fixed-entry-order re-randomization sequences are generated by the 

method of the randomization actually used. When the size of a trial is small,   is also 

small and the reference set can be listed exhaustively. When the size of a trial is relatively 

large, the reference set can easily become too large to be enumerated. In this case, Monte 

Carlo samples are often used to approximate the reference set [111].   
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4.3.2  Noncentrality of the re-randomization test 

For large  , we have          and         under any effective 

randomization scheme that attains the targeted allocation ratio. Consequently the mean of 

  over the reference set can be approximated by 

(4.3)                   
 

    
∑   [          

  

 
]  

 

    
∑   [   

  

 
] 

   
 
    

          Here (.)E denotes the expectation under the law of the re-randomization, 

             are the re-assigning probabilities of the random variable    , j=1,…,n}, 

or 

     (    )                 

Based on (4.3), if                   then                  . Obviously for 

trials using the complete randomization,        are independent and identically 

distributed Bernoulli random variables, and hence                  . For equal 

allocation with Pocock and Simon’s minimi ation method [100], we have         for 

all  . Therefore in both cases,    is centered around 0. 

Now consider the minimization with unequal allocation. Because there are no 

closed-form solutions to             , we investigate their behavior via a Monte 

Carlo method. Consider a most simple case with    subjects to be allocated to A and B 

with a ratio of 1 to 2. The responses for the three subjects are   = -0.570, 0.527 and 0.870 

which were generated from the standard normal distribution. These actual values are 

irrelevant to us. The three subjects were randomized to A and B using biased coin 

minimization (BCM) with         and the fixed entry order. The re-randomization 

process was repeated for 1,000 times and the treatment assignments were recorded. The 

frequencies of 8 possible sequences are listed in Table 4.1. As can be seen, BAB was the 
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most frequently observed re-randomization sequence. In contrast, the other two 

sequences, BBA and ABB, both containing two Bs and one A, have very low frequencies. 

The actual frequencies for assigning A for the three subjects are 53, 848, and 139. That is, 

although the overall allocation to A is 1/3,   ,    and    can be very different from 1/3, 

the targeted allocation ratio for A. This fact has a direct impact on both the mean and 

variance of the re-randomization test. In particular, the mean re-randomization test score 

over 1,000 simulations has a mean of 0.25. Obviously, the noncentrality of the fixed-

order re-randomization test is due to the restriction imposed by the fixed entry order. 

When subject entry-order conveys no information, the random-entry test can be 

performed after first permuting the subject entry order, which would allow each subject 

to have equal chance of being in any position of the entry sequence. This asymptotically 

ensures that    will be close to      because with minimization and relatively large 

sample sizes, we have∑         
 
   . In this case, we expect this re-randomization test 

to center at 0. 

Though illuminating, the above simple example is rarely encountered in practice. 

Therefore we also considered a more realistic setting where we randomized 90 subjects to 

two treatments at a ratio 1 to 2 according to BCM [101] with no covariates. We used the 

minimization assignment both with the probability        and 0.9. The re-

randomizations were performed 9,999 times and             are calculated and 

shown in the top panel of Figure 4.1. The distribution of the re-randomization test will be 

presented in Section 4.5.1. As can be seen, {          } oscillate around 1/3. Except 

for the first few subjects,              display a periodic pattern with a period of 3. 

For       , the three values are around 0.535, 0.275 and 0.190, with a mean of 1/3. 
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The oscillation of j  is more pronounced for       . Such periodic pattern is also 

observed in other allocation ratios we have examined. For example, with an allocation 

ratio of 2 to 3, the period becomes 5 (data not shown).  

Table 4.1 Reference set for the fixed-entry-order re-randomization test  
  ____________________________________ 

                 Test    

  Sequences     score     Frequency 

  ____________________________________ 

  AAA           0.000             0 

  AAB           0.594             4             

  ABA           0.251             5             

  ABB           0.846            44            

  BAA           -.846            41            

  BAB           -.251           803            

  BBA           -.594            93            

  BBB           0.000            10             

  _____________________________________ 

3 subjects were allocated to treatment A and treatment B.The randomization was 

performed by BCM and repeated 1,000 times. The subject responses were fixed and the 

test score is defined as the negative of sum of the responses of all subjects that are 

assigned to A.  
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Figure 4.1 Representative examples of allocation probabilities of BCM in trials that 

mimic LOTS.  

Top panel, allocation probability for BCM without covariates with Hp = 0.7 (left) and 0.9 

(right) respectively.  Bottom panel, allocation probability profile for BCM with a specific 

sequence of realization of covariates (site, FVC, 6MWT) with a random element Hp = 0.7 

(left) and 0.9 (right) respectively. Only 50 out of a total of 90 subjects are shown. The 

allocation probability is computed based on 9,999 Monte Carlo samples of re-

randomization. The dashed blue lines represents allocation probability with subject order 

fixed while the wiggly solid line represents that with subject entry order randomly 

permuted before each re-randomization.  

 

A similar phenomenon exists also for the case with covariates. Using the setting 

described in Section 4.4 below, with one particular set of virtual subjects, re-
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randomization are repeated 9,999 times and               are calculated and shown in 

the bottom panel of Figure 4.1. Again we can see that              fluctuate around 

1/3. Under the assignment probability       , the periodic pattern is still visible 

although not as distinct as the no covariate case. However the pattern is obviously more 

apparent under the assignment probability       . When the random entry order re-

randomization is performed,              are all close to 1/3 (Figure 4.1).  

From (4.3), we see that the non-uniform              make                

non-zero. We argue that marginally S is not centered at zero either. In other words, 

suppose that we have many similar trials and when              follow model (4.1) 

without covariates. Then we can write                    where      and     are the 

corresponding responses when treated with A or B. Then the mean and variance of    are 

         (    )   and    

       (    )       .With some algebra, the 

mean and variance of                can be expressed as 

 (4.4)     
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(4.5)   
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We show both (4.4) and (4.5) in the Appendix D. In deriving (4.5), we ignored 

possible correlations among jY  with heuristic justification. For most clinical trial settings, 

the second term of (4.5) is relatively small since it is less than        
      of the 

first term. 
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Based on (4.4) and (4.5), with a non-uniform             , the mean of re-

randomization test distribution follows a distribution with the mean of          and the 

variance of         
 . When                  

 
         is shifted in the same 

direction as the treatment mean difference      . The magnitude of the mean shift is 

proportional to both the relative treatment effect and 

[
 

    
]
 
∑ (   

  

 
)
 

 
   , which can be considered a measure of fluctuation of       

       from its targeted ratio. Obviously, this mean shift contributes to the observed 

power loss of the fixed-entry-order re-randomization test for minimization with unequal 

allocation.  

4.4 New re-randomization tests 

4.4.1  Weighted re-randomization test  

The insights we gained from the behavior of   in Section 4.3 prompted us to 

propose a weighted version of the fixed-entry-order re-randomization test for 

minimization with unequal allocation. An obvious way is to correct the fluctuation and 

use  ̃                ∑ (    ̅)          
 
    as a test statistic. Even though 

explicit expressions for             ,  are unavailable, they can be well approximated 

through Monte Carlo simulations because the re-randomization mechanism is known. 

Therefore S  can be calculated after    have been evaluated by simulation. We propose 

10,000 re-randomizations to estimate   which can then be utilised in the calculation of 

the test statistic for each re-randomization. Ideally the same starting seed for running the 

re-randomizations to estimate    should be used when the re-randomization program is 

run again with the addition that the test statistic is calculated.  
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However we also need to consider the impact of the behavior of    on the 

variance. 

Note that in re-randomization tests, the responses are considered as fixed 

quantities. The observed test statistic is calculated as 

      ̅        ̅       
 

              
∑      

       

 

 

   

  

  So each observation contributes equally in the sense that the ‘weights’ or 

coefficients for the observed responses    are the same. Therefore we want also equal 

weights of the observed responses in re-randomized tests.  

First consider the behavior of the re-randomization test under the complete 

randomization. The variance of the re-randomization test given by formula (4.3) can be 

computed as 

(4.6) 
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Here the subscript  in      and      indicates that these quantities are 

evaluated under the re-randomization distribution. Note that       is a Bernoulli random 

variable with the success probability j . For minimization,      is not zero although the 

exact form is hard to derive. 
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Now assume that the trial was conducted using complete randomization. In this 

case, { , 1,..., }jT j n can be considered as independent and identically distributed binary 

random variables. Therefore the second term of formula (4.6) is zero and the variance is  

(4.7) 
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In (4.7) each      ̅   carries the same weight so that                  is 

proportional to the sample variance        ∑      ̅   
   . This is obviously a desired 

property that makes comparison with observed test statistic valid.  

Now consider a variant of the complete randomization procedure. Assume 

subjects are independently randomized to two treatments with predefined but unequal 

allocation probabilities             . In this case,    , j=1,…,n} are independent but 

non-identical. For trials randomized with this procedure,  

                 (
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     ̅  
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We see that each 
2( )jy y  is not equally weighted to the calculation of the 

variance unless    is constant. When    is close to 0, subject j is severely down-weighted. 

When       , subject   has the largest weight.  Obviously, in order for each subject 

response to have equal influence to the conditional variance,      ̅  should be re-

weighted.  
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Therefore we define a mean-centered and information-weighted re-randomization 

test as, 

(4.8) 

  
   

 

    
∑     ̅      
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√        

Under the general minimization procedure with no covariates, the weighted 

randomization test 

wtS  is centered around zero. Its variance can be calculated using (4.6), 

which comprise two terms. The first term now becomes the sample variance and the 

second term is a linear combination of the terms     ̅      ̅           
         

   , 

which is generally intractable. Nevertheless, the second term has an expectation of 0 

under the null hypothesis. In our simulations, we indeed observed small values for the 

second term. Therefore the variance of   
  is dominated by the first term in many cases.  

Finally for a minimization procedure with covariates and where the responses 

follow model (4.1), the ANCOVA is a valid test when a correct model is specified 

between the response and covariates [112], and the simple  -test, without any covariate, 

is conservative in terms of type I error rates. As the covariate imbalance is minimized in 

covariate-adaptive minimization, the weighted randomization test without adjusting for 

covariates may still yield valid results. Alternatively, we propose to perform the re-

randomization test on covariate-adjusted residuals, which can be obtained by fitting a 

regression model on baseline covariates, but without using the treatment indicator [95]. 

Note that in theory the covariate-adjusted re-randomization test remains valid even the 

fitted model is misspecified. Frequently, covariate-adjusted re-randomization inference 
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can reduce bias and increase efficiency by accounting for imbalanced influential 

covariates due to finite samples. 

4.4.2  Alternative re-randomization test using random entry order 

The weighted re-randomization test described in Section 4.4.1 keeps the original 

subject entry order during the re-randomization process. When the subject entry order 

does not convey any information, random entry order re-randomization test can be 

performed and we expect this re-randomization test to center at 0 and perform well. 

However, when subject entry conveys certain information due to the temporal trend, this 

test may be invalid as this information is lost after the permutation of the entry order. We 

mainly use this random-entry-order test for numerical comparisons. 

4.5 Numerical studies 

In this section, we present results from extensive numerical studies to evaluate 

various tests including the usual fixed-entry-order re-randomization test, the weighted 

fixed-entry-order re-randomization test, the random-entry-order re-randomization test, 

the t-test, and the ANCOVA. We considered cases with no covariates and with covariates. 

We also investigated the influence of the temporal trend on the performance of these tests. 

The simulation scenarios all mimicked the LOTS trial. In particular, we generated data 

from 90 subjects to be allocated to two treatments with an allocation ratio of 1 to 2. We 

generated subject responses assuming the mean treatment effect of 0 for the placebo and 

0.64 for the active treatment using model (4.1) with =1. With the sample size of 90, a 

power of 0.80 with type I error of 0.05 is expected based on a two-sided t-test. We 

assumed 20, 16, 12, 10, 10, 10, 10 and 2 subjects for 8 sites respectively. Half of subjects 

in each site had low 6MWT and half had low FVC. The two covariates 6MWT and FVC 
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are independent. In LOTS, a modified minimization procedure with an imbalance 

threshold check was used to achieve the target allocation ratio among factor levels. We 

used BCM with the marginal balance measure to mimic the minimization algorithm used 

in LOTS. 

4.5.1  Empirical distributions of various re-randomization tests 

We first construct empirical distributions of various re-randomization tests under 

the BCM with        with no covariates. We performed a total of 1,999 Monte Carlo 

re-randomizations on this simulated dataset. The results are shown in Figure 4.2. The 

usual fixed-entry-order re-randomization test distribution is shifted away from zero. In 

addition, the variance is smaller as compared with that of the corresponding random-

entry-order test. In contrast, both the weighted fixed-entry-order and the random-entry-

order re-randomization tests are centered at zero and with variance close to each other. 

4.5.2 Power and test size properties with no covariates and no temporal trend 

Here BCM was performed with three different   values, i.e., 0.7, 0.8 and 0.9. We 

generated 10,000 and 1,000 replication data sets under the null and the alternative 

respectively. Table 4.2 lists the results for the t-test and the usual fixed-entry-order re-

randomization test and Table 4.3 lists the results for the t-test, the weighted fixed-entry-

order re-randomization test, and the random-entry-order re-randomization test. 
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Figure 4.2 Comparison of the distributions of various re-randomization tests. 

 In a simulated trial, a total of 90 subjects are randomized into two treatments with 

allocation ratio of 1:2 using BCM with Hp =0.9. The effect size is 0.64. A total of 1,999 

Monte Carlo samples were used for each re-randomization test. The distributions were 

plotted based on R function density(). 
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Table 4.2 Size and power for the fixed-entry-order re-randomization test following 

minimization with no covariates and no temporal trend 
 

__________________________________________________________ 

                          Mean(SD) of  

                         rerand. dist. mean        

Effect                _________________________    Rerand 

  size          t-test  Expected        Observed      Power 

_________________________________________________________ 

     0  0.7     0.048   0.00(0.07)   -0.00(0.07)    0.049 

        0.8     0.048   0.00(0.11)   -0.00(0.11)    0.053 

        0.9     0.048   0.00(0.16)   -0.00(0.16)    0.050 

                                                          

  0.64  0.7     0.799   0.06(0.07)    0.06(0.08)    0.766 

        0.8     0.801   0.16(0.11)    0.15(0.12)    0.680 

        0.9     0.802   0.34(0.16)    0.33(0.17)    0.410 

                                                          

__________________________________________________________ 
 

10,000 and 1,000 simulations were conducted under null and alternative 

hypothesis, respectively. 4,999 Monte Carlo samples were used for re-randomization test.                                                                   

Abbreviations: Rerand, re-randomization; dist, distribution; SD, standard deviation.                                                                                          
 

 

 

 

Table 4.3 Size and power of the fixed-entry-order and random-entry-order re-

randomization tests following minimization with no covariates and no temporal trend 
 

   ______________________________________________________________  

                                                                

                          Fixed-entry-order                     

   Effect               _________________                       

    size          t-test   Usual  Weighted   Random-entry-order   

  ____________________________________________________________  

       0  0.7     0.048    0.049     0.048       0.049          

          0.8     0.048    0.053     0.046       0.048          

          0.9     0.048    0.050     0.044       0.048          

                                                                

    0.64  0.7     0.799    0.766     0.805       0.802          

          0.8     0.801    0.680     0.802       0.803          

          0.9     0.802    0.410     0.792       0.807          

______________________________________________________________  
                                          

10,000 and 1,000 simulations were conducted under null and alternative hypothesis, 

respectively. 4,999 Monte Carlo samples were used for re-randomization test.                                                                  

Abbreviations: Rerand, re-randomization.                                                                                         
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 Figure 4.3 Comparison of the variances of re-randomization tests.  

Randomization is done using BCM with no covariates and Hp = 0.7. The treatment effect 

is 0. A sample of 100 points is shown. The x-axis shows the sample standard deviation. 

The y-axis shows the standard deviation of re-randomization tests. 
 

 

 

From Table 4.2, the observed values of          and         
 agree quite well with 

the expected values based on formula (4.4) and (4.5). When there is a treatment effect, a 

positive shift in the mean of   is observed and the shift increases as    becomes larger. 

With       , the mean of the shift is 0.34, which is about 53% of the treatment effect. 

The  -test has the type I error about 0.05 and power about 0.80. The type I error of re-

randomization test is 0.05 but the power of the test are 0.766, 0.680 and 0.410 for 
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      , 0.8, and 0.9 respectively. Obviously, the power loss is proportional to the 

magnitude of the shift in means.  

In contrast, from Table 4.3, we see that both the weighted fixed-entry-order re-

randomization test, and the random-entry-order re-randomization test restored the power 

to 0.80 while preserving the type I error level. To provide further insights, we traced the 

variances of the re-randomization tests under the null treatment effect for 100 simulated 

data sets using the BCM with       . From Figure 4.3, we see that the variances of the 

usual fixed-entry-order re-randomization tests are mostly smaller than the weighted 

fixed-entry-order and random-entry-order tests, whose variances agree quite well with the 

sample variance.  

Table 4.4 Size and power for the fixed-entry-order re-randomization test following 

minimization with covariates but no temporal trend 
______________________________________________________________________________  

                                                                 

               Mean(SD) of                  Rerand.  Rerand.     

   Effect        Rerand. Dist.                on raw     on        

    size        mean        ANCOVA  t-test response residuals*   

_______________________________________________________________  

                                                                 

     0    0.7   0.01(0.04)   0.049   0.018    0.050     0.049    

          0.8   0.01(0.07)   0.048   0.013    0.048     0.051    

          0.9   0.02(0.10)   0.050   0.010    0.047     0.048    

                                                                 

    0.64  0.7   0.03(0.05)   0.804   0.593    0.714     0.788    

          0.8   0.06(0.07)   0.784   0.570    0.687     0.749    

          0.9   0.14(0.11)   0.800   0.564    0.626     0.668    

_______________________________________________________________  

10,000 and 1,000 simulations were conducted under null and alternative hypothesis, 

respectively. The covariates of each simulated trial mimic LOTS.                      

 

999 Monte Carlo samples were used for re-randomization test. 

* Residuals were obtained by first fitting a linear regression model to baseline covariates, 

other than treatment groups.                       

Abbreviations: Rerand, re-randomization; dist, distribution; SD, standard deviation.  
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4.5.3 Power and test size properties with covariates but no temporal trend 

Now we incorporate covariates but no temporal trend. The effects of 6MWT are 

taken as -0.6 and 0.6 for low and high levels; the effects of FVC are taken as -0.4 and 0.4 

for low and high levels; and the effects of clinical sites 1~8 are taken as 0.851, 0.317, -

0.629, -0.219, 0.429, -0.517, 0.647, and -1.337. In addition to the re-randomization tests 

on the responses directly, we also performed residual based re-randomization tests.  

Table 4.5 Size and power of the fixed-entry-order and random-entry-order re-

randomization tests following minimization with covariates but no temporal trend 
_______________________________________________________________________ 

                                  Fixed-entry-order         

                                 ___________________   

                    

Effect size   Hp     ANCOVA     Usual    Weighted   Random-entry-order 

_______________________________________________________________________ 

                                                                                         

       0      0.7     0.049      0.049       0.049        0.049        

              0.8     0.048      0.051       0.050        0.048        

              0.9     0.050      0.048       0.046        0.050        

                                                                         

    0.64      0.7     0.804      0.788       0.810        0.806        

              0.8     0.784      0.749       0.782        0.786        

              0.9     0.800      0.668       0.783        0.795        

______________________________________________________________________ 
 

10,000 and 1,000 simulations were conducted under null and alternative hypothesis, 

respectively. The covariates of each simulated trial mimic LOTS.            

999 Monte Carlo samples were used for re-randomization test. 
 

Table 4.4 lists the results for the t-test, the ANCOVA, and the usual fixed-entry-

order re-randomization test. Table 4.5 lists the results for the ANCOVA, the weighted 

fixed-entry-order and the random-entry-order re-randomization test. From Table 4.4, we 

observed a shift in the expected mean value of the usual re-randomization test similarly to 

the no covariate case. The magnitude of the positive shift increased from 0.03 to 0.14 

when the random element   changes from 0.7 to 0.9.  The power of the ANCOVA is 

around 0.80. The power of the t  test, however, is between 0.564 and 0.593. In all cases, 

the re-randomization test based on residuals outperformed those based on response only. 
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Although still under-powered, the usual fixed-entry-order re-randomization test on both 

responses and covariate-adjusted residuals provided better power than the t -test.  On the 

other hand, the power loss of the usual fixed-entry-order re-randomization test could be 

severe and reached over 0.13 when        . In contrast, from Table 4.5 we see that 

both the weighted fixed-entry-order and the random-entry-order re-randomization tests 

recovered the power while maintaining the type I error in all scenarios.  

 Table 4.6 Size and power for the fixed-entry-order re-randomization test following 

minimization with covariates but no temporal trend 
___________________________________________________________________ 

                 Mean(SD) of                    Rerand.     Rerand.  

 Effect          Rerand. Dist.                  on raw       on      

  size             mean          ANCOVA  t-test  response   residuals* 

 ___________________________________________________________________ 

                                                                     

   0       0.7    0.01(0.04)   0.049   0.018     0.050       0.049   

           0.8    0.01(0.07)   0.048   0.013     0.048       0.051   

           0.9    0.02(0.10)   0.050   0.010     0.047       0.048   

                                                                     

  0.64     0.7    0.03(0.05)   0.804   0.593     0.714       0.788   

           0.8    0.06(0.07)   0.784   0.570     0.687       0.749   

           0.9    0.14(0.11)   0.800   0.564     0.626       0.668   

___________________________________________________________________ 
 

10,000 and 1,000 simulations were conducted under null and alternative hypothesis, 

respectively. The covariates of each simulated trial mimic LOTS.            

999 Monte Carlo samples were used for re-randomization test. 

* Residuals were obtained by first fitting a linear regression model to baseline covariates, 

other than treatment groups.  

Abbreviations: Rerand, re-randomization; dist, distribution; SD, standard deviation.  

                                         

4.5.4 Power and test size properties with covariates and temporal trend 

We assume that there is a time trend such that the response increases 0.0284 per 

subject order. This resulted in a mean response difference of 2.56 between the last and 

the first subject, which is about four times as large as the treatment effect. The results are 

shown in Table 4.6. When no adjustment was made for the time trend, the true 

significance levels of the ANCOVA were around 0.02. There were also substantial losses 

of power for the ANCOVA. Similar results have been observed previously for both 
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minimization and the blocked randomization [113]. The usual fixed-entry-order re-

randomization test based on residuals preserved the type I error rates but suffered 

noticeable power loss. Loss of power was also observed for the random-entry-order re-

randomization test. On the other hand, the weighted fixed-entry-order re-randomization 

test performed satisfactorily in terms of power and the type I error rate. When adjustment 

was made for the time trend using subject entry order as a covariate, the power and type I 

error of both the weighted fixed-entry-order and the random-entry-order randomization 

tests agreed well with that of the ANCOVA, similar to scenarios with no time trend. 

However the usual fixed-entry-order re-randomization test still experienced very 

noticeable power loss.  

Table 4.7 Type I error and average power of different re-randomization tests following 

minimization with covariates in the presence of temporal trend 
___________________________________________________________________ 

                                Fixed-entry-order                  

                                _________________                   

Time trend  Effect                                                   

 adjust**    size         ANCOVA  Usual  Weighted Random-entry-order 

 _________________________________________________________________   

 NO           0     0.7   0.024   0.049   0.053     0.025            

                    0.8   0.021   0.049   0.048     0.022            

                    0.9   0.019   0.052   0.048     0.020            

                                                                     

           0.64     0.7   0.713   0.732   0.810     0.706            

                    0.8   0.694   0.691   0.807     0.694            

                    0.9   0.703   0.645   0.827     0.706                                                                                

                                                                     

 YES          0     0.7   0.050   0.049   0.050     0.051            

                    0.8   0.049   0.051   0.050     0.050            

                    0.9   0.049   0.047   0.045     0.051            

                                                                     

           0.64     0.7   0.801   0.786   0.802     0.804            

                    0.8   0.782   0.742   0.777     0.784            

                    0.9   0.798   0.664   0.785     0.800            

__________________________________________________________________ 

10,000 and 1,000 simulations were conducted under null and alternative hypothesis, 

respectively. The covariates of each simulated trial mimic LOTS.                  

Residual based re-randomization tests were performed with 999 Monte Carlo samples. 

 

**Adjustment of time trend is performed on residuals obtained by fitting a model that 

include both baseline covariates and subject entry order.                                                                                                                                                                                       
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4.5.5 Property of the confidence interval 

We demonstrate briefly here that it is feasible to invert the re-randomization tests 

to  provide estimates of the treatment effect difference, say   and the corresponding 

confidence intervals (see Section 3.4 of [111]). An interval estimate of  contains all 

values of  for which a given test does not reject the null hypothesis   when all 

treatment responses are shifted by  . For comparison, we consider three types of re-

randomization tests: 1) a simple permutation test where each subject is independently 

sampled without replacement into two groups with ratio 1:2; 2) BCM with the usual 

fixed-entry-order test; and 3) BCM with the weighted fixed-entry-order re-randomization 

test. Due to the computational load, we only performed a grid search around the 

endpoints of the confidence interval. We also only selected two representative data sets 

under the simulations described Section 4.5.2. In Figure 4.4, we see that the weighted test 

has almost identical performance as the permutation test but the usual fixed-entry-order 

re-randomization test leads to quite different confidence intervals. The mean values for 

the fixed entry-order re-randomization tests were 0.22 and -0.10 for the left and right 

panel of Figure 4.4, respectively. The confidence intervals based on the fixed entry-order 

re-randomization tests shifted to the opposite direction to the sign of the mean values. 

 

4.6 Application to a single trial data that mimic LOTS 

Due to lack of the actual subject-level data from the LOTS trial, we focused on one 

simulated dataset to illustrate how the proposed method can be applied in real settings 

using the simulation setting of Section 4.5.4.  
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Figure 4.4 Confidence interval estimation by re-randomization tests.  

A total of 90 subjects were randomized to treatment A and B under alternative hypothesis 

with a treatment effect of 0.64. The randomization is performed using BCM with Hp of 

0.8. For each simulated trial, three types of re-randomization tests were performed: the 

simple permutation test, the usual fixed entry-order, and the weighted fixed-order re-

randomization test. The confidence interval of treatment effects is obtained by identifying 

a shift that leads to relevant p-values.  Two representative plots from two simulated data 

sets are shown. The x-axis is the magnitude of shift in treatment effect. The y-axis is the 

corresponding two-sided p values from re-randomization tests. The horizontal dashed line 

indicates the p-value of 0.05. 

 

In the top left panel of Figure 4.5, the dot plot shows the subject entry stratified by 

sites. In the top right panel of Figure 4.5, the scatter plot shows a linear increase in the 

subject responses over time (i.e. the entry order). In the bottom left of Figure 4.5, the re-

assignment probability {          } versus the subject entry order is displayed, which 

were calculated based on 9,999 Monte Carlo re-randomizations. We see that       

      ,  are not uniform but fluctuate wildly around 1/3. Note             , is quite 

different from the bottom panel of Figure 4.1 due to different realizations of covariates 

despite the use of the same study design and the minimization process. In the bottom 
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right panel of Figure 4.5, the distribution of the usual fixed-entry-order re-randomization 

test based on the mean residual difference is displayed and we see that the mean of the 

distribution clearly shifted away from 0. The observed test statistic is also shown. We 

then applied various tests to this mock data. When the time trend is adjusted, the 

ANCOVA gave a p value of 0.056. The usual fixed-entry-order, weighted fixed-entry-

order, and random-entry-order re-randomization tests gave p values of 0.399, 0.054, and 

0.053, respectively. When the temporal trend was not adjusted, the ANCOVA gave a p

value of 0.070 and usual fixed-entry-order, weighted fixed-entry-order, and random-

entry-order re-randomization tests gave p values of 0.329, 0.032, and 0.066, respectively.  

4.7 Discussion 

The main focus of this chapter is on properties of the fixed-entry-order re-

randomization test under unbalanced treatment allocation using BCM. It should be noted 

that although the main results are obtained using BCM, the conclusion is generally 

applicable to any other randomization scheme with non-uniform allocation probabilities, 

including the modified minimization scheme used in LOTS trial. In particular, BCM with 

no covariates works in the same way as the original biased coin design [114] and the 

biased coin design with imbalance tolerance [115]. 
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Figure 4.5 A representative of simulated trials that mimic LOTS under the alternative 

hypothesis.  

(Top left) Dot-plot for subject entry among 8 sites. (Top right) Time trend for response. 

Dashed line is the simple linear regression line. (Bottom left) Unconditional assignment 

probability at each allocation step. The horizontal line refers to arithmetic average. The 

unconditional assignment probability was calculated from re-randomizations. (Bottom 

right) The usual fixed-entry-order re-randomization test distribution in the difference in 

the means between placebo and treatment. The dashed line refers to the arithmetic mean 

of the test. The solid line indicates the observed value of the test. 9,999 Monte Carlo 

samples were used for re-randomization. 
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Through extensive simulations that mimic the LOTS trial, the distribution and the 

associated power of the usual fixed-entry-order re-randomization test following unequal 

allocation minimization were characterized in this chapter. Theoretically, the center of re-

randomization test distribution is not guaranteed to be at zero unless the re-assigning 

probabilities              are all equal to the targeted allocation ratio. With unequal 

allocation BCM, {          } vary at each allocation step and the variation is both 

determined by the subject covariates and the re-randomization procedure used. The extent 

of the fluctuation of assignment probabilities is smaller when a less determined 

minimization procedure is used. The choice of imbalance metrics also affects the 

assignment probabilities.  The results presented in simulations are based on the marginal 

imbalance, which is a relative measure. With a non-uniform {          }, the mean of 

the re-randomization distribution tends to shift in the same direction as the treatment 

effect, thus jeopardizing power. We proposed a fixed-entry-order weighted re-

randomization test that restores the power level while preserving the type I error rate. 

When no time trend is suspected, a random-entry-order re-randomization test may be an 

alternative choice. The weighted fixed-entry-order re-randomization test ensures that 

each subject contributes equally to the variation of the re-randomization test distribution, 

thereby leading to a valid test of the treatment effect. It indeed controlled the type I error 

rate at its nominal level while attaining sufficient power in all our simulation studies. We 

have only heuristically argued its validity, a rigorous investigation is still lacking. Further 

research similar to Kalish et.al [113] would be helpful in this regard. 

Recently, model based inference following covariate adaptive randomization 

including minimization has been investigated in a rigorous fashion [112]. In particular, 
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the authors showed that one way to obtain a valid test procedure is to use a correct model 

between the outcome and the covariates, including those used in randomization. Our 

work has confirmed that standard asymptotic ANCOVA has satisfactory properties for 

Type I error and power for unequal allocation with minimization in the absence of a 

strong time trend. If the time trend is corrected for in the analysis then again standard 

ANCOVA has adequate properties. Thus in keeping with standard practice we 

recommend using the standard asymptotic test to be the primary analysis. We note, 

however, that others may take a different view [116, 117]. Berger [116] has argued the 

need to perform this approximate test when  a permutation test has good properties.  We 

certainly agree with such argument, though ANCOVA can be a practical preference due 

to its simplicity, particularly when trial results are presented in medical journals.  On the 

other hand, the weighted residual-based re-randomization tests can be used for sensitivity 

analysis due to its robustness to model misspecification between the outcome and the 

covariates. A rigorous investigation of such robustness should be an interesting future 

research direction. 

 In practice, the use of unequal minimization with BCM without covariates for 

purpose of solely balancing treatment totals should be used with caution as this may lead 

to selection bias if investigators are aware of the periodic pattern. Further, it can 

potentially introduce the accidental bias if the periodic pattern coincides with some 

unknown influential covariates. On the other hand, in practice unequal allocation 

minimization is mostly used for balancing many prognostic factors where the stratified 

block randomization fails. Since the assignment probabilities {          } depend on 

the realization of covariate values specific to a trial, the pattern is largely unpredictable, 
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which prevents the selection bias. In addition, if we can assume that the covariate values 

are independent samples from a certain distribution, the assignment probability at each 

allocation step will vary from trial to trial, with an expected value around the target 

allocation ratio except for the first few subjects (data not shown). This feature may help 

prevent the accidental bias when unknown confounding covariates exists. Alternatively, a 

minimization algorithm that preserves the allocation ratio at every step can be used albeit 

with a cost in balancing particularly when “block si e” S (i.e.  the sum of integer 

allocation ratios that has no common divisor, e.g., S=3 for allocation ratio of 1:2 ) is not 

too small[118]. 
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CHAPTER 5. CONCLUSIONS AND DISCUSSIONS 

 

The use of Monte Carlo methods has generated significant impact on statistics. In the 

settings of clinical trials, the use of this method allows statistician to address a variety of 

problems from study design to data analysis, which many times do not have closed-form 

solutions and would be otherwise unapproachable. In this dissertation, we focused on two 

areas of applications, i.e., Bayesian MCMC methods and randomization based inference.  

Other common applications of Monte Carlo methods include bootstrap methodology, 

Monte-Carlo Expectation-Maximization (MCEM) and Approximated Bayesian 

computation (ABC).  

Semicompeting risks data is frequently encountered in medical research. The 

literature of semicompeting risks model is dominated by copula models. The parameter 

estimation for copula models is usually done by estimating equations or classical 

likelihood based method. In this dissertation, we adopted the well-known illness-death 

models to more flexibly modeling semicompeting risks data. We extended the shared 

gamma frailty models proposed by others to multivariate frailty models. This extension 

allows us to more flexibly model data heterogeneity by incorporating random covariates 

such as investigation sites in clinical trials.  

The extended model presents computational challenge to standard likelihood based 

approach because it involves high-dimensional integrations. We therefore proposed a 

Bayesian MCMC approach to solve this problem. Our proposed approach can be 

conveniently implemented in general software package like Stan/WinBUGS. The use of 

Bayesian methods also makes event prediction very straightforward. We evaluated the 
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proposed method through simulation study. We also applied our method to two breast 

cancer study. The use of the proposed method allows us to provide estimations for the 

different effects of covariates (including treatments) on two subgroups, that is, those who 

have experienced illness and those have not. On the other hand, the copula models do not 

differentiate these two subgroups.  

The use of Bayesian methods also allows us to easily further extend our 

semicompeting risks models. For example, we may be able to replace the shared frailty to 

the correlated frailty models to more appropriately model the genetic effects. In this 

dissertation, we extended our models to the framework of joint modeling, where repeated 

marker and semicompeting risks data are jointly analyzed. Joint modeling is a very active 

research area in recent years because it provides unbiased and efficient estimation for 

parameter of interests. However, the use of this method in the settings of clinical trials is 

still not as popular as it should have been. One of the main challenges is the 

computational complexity which usually involves the development of EM or MCEM 

algorithm that is often problem specific and requires special expertise. Furthermore, the 

description of joint models with semicompeting risks model is scant or lacking. 

We developed a Bayesian model for joint modeling. Our model includes mixed 

model for repeated marker and shared frailty illness-death models for semicompeting 

risks data. The underlying value and slope of the marker are included as covariates for the 

survival outcome. Our methods can be easily implemented in Stan. We evaluated our 

methods through simulation study and applied this method to prostate cancer datasets. 

The use of this method allows us to more accurately predict survival probability of 
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subjects, based on all information available, which may inform physicians to make 

optimal decisions for patients. 

Currently our joint models include parametric mixed models for univariate 

longitudinal marker. Future extensions include dealing with multivariate marker or 

markers that follow non-normal distribution (e.g., Bernoulli distribution).  Another 

extension is to replace the parametric mixed models by nonparametric models such cubic 

B-splines. 

Randomization based inference is another part of this dissertation where Monte 

Carlo method is used to generate null distribution for making inferences. Randomization 

based inference has been well established as a robust method of inference as it is 

nonparametric and requires minimum assumptions. Surprisingly, when this inference 

method is used for analyzing clinical trial data where patients are randomized by 

minimization with unequal allocation ratio, a non-central null distribution is discovered, 

which is associated with a comprised power.  

We investigated this issue and proposed a weighted method for more appropriate 

inference. We provided some heuristic derivation on the proposed methods. Formal proof 

of the method involves complex covariance calculation, which currently is still an open 

research problem. We therefore performed extensive simulations. The proposed methods 

worked well for all scenarios tested. Our methods are currently based on normal 

distributed outcome. Some modifications or further developments may be needed for 

outcome of other distributions. 
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Appendix A WinBUGS code for semicompeting risks model 

Data preparation for Cox model and piecewise model are similar. For semicompeting 

risks data, the event or censoring time for   and   , the covariate vector X are usually 

recorded for each subject . To prepare datasets for WinBUGS, we need to obtain the 

values of the following data variables: 

N: the number of subjects 

obs_t1: the observed event time for    

obs_t2: the observed event time for    before the occurrence of    

obs_t3: the observed event time for   after the occurrence of    

fail1: the event indicator for    

fail2: the event indicator for    before the occurrence of    

fail3: the event indicator for    after the occurrence of    

t1, t2, t3: vectors that specifying the boundary of intervals for three types of hazards, with 

the first element being zero and last element being the maximum observed time. For cox 

models, boundaries are defined by distinct event times associated with each type of 

hazard. For piecewise model, the quartiles of the event times are usually taken as 

boundaries. 

NT1,NT2,NT3: the number of intervals for three types of hazards 

 X: the vector of fixed covariate 

nX: the number fixed covariates 

Z: the vector of random covariate, with the first element being 1, corresponding to the 

random intercept 

nZ: the number of random covariates 
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S: the identity matrix with dimension of nZ 

Code for Cox model: 

model { 
        #nZ is number of random covariates 
       for ( i in 1:nZ){  mu[i]<-0;  } 
                      
      #prior precision 
      c <- 0.001; 
      #prior hazard rate 
      r <- 0.1;  
 
      for(i in 1:N) { 
       # illness 
          for(j in 1:NT1) { 
             Y1[i, j] <- step(obs_t1[i] - t1[j] + .0000001); # at risk process 
             dN1[i, j] <- Y1[i, j] * fail1[i] * step(t1[j + 1] - obs_t1[i] - .0000001); # event process 
              } 
      # direct death 
        for(j in 1:NT2) { 
              Y2[i, j] <- step(obs_t2[i] - t2[j] + .000000001); 
              dN2[i, j] <- Y2[i, j] * fail2[i] * step(t2[j + 1] - obs_t2[i] - .0000001); 
             } 
      # death after illness 
        for(j in 1:NT3) {           

 Y3[i, j] <- step(obs_t3[i] - t3[j] + .000000001) *step(t3[j+1]-obs_t1[i]+ .0000001 ) * 
fail1[i];           

             dN3[i, j] <- Y3[i, j] * fail3[i] * step(t3[j + 1] - obs_t3[i] - .0000001); 
               } 
    } 
        
      # prior for the inverse of covariance matrix 
       Omega[1:nZ, 1:nZ]~dwish(S[1:nZ,1:nZ],nZ)        
       Sigma[1:nZ, 1:nZ]<-inverse(Omega[1:nZ, 1:nZ]); 
        
       for ( i in 1:N){ 
         #multivariate log-normal  random effect 
        b[i,1:nZ]~dmnorm(mu[1:nZ], Omega[1:nZ,1:nZ]) ;        
         } 
       
     for ( i in 1:nX){  
        #Regression coeffients for illness      
          alpha[i]~dnorm (0, 0.01);         
        #Regression coeffients for direct death 
          beta[i]~dnorm (0, 0.01); 
        #Regression coeffients for death after illness         
           eta[i]~dnorm(0,0.01) 
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          }     
          
   
     for ( j in 1:NT1){ 
           #hazard increament for illness, intv1 is the width of interval 
           dL10[j] ~ dgamma(mu10[j], c); 
           mu10[j]<-r * intv1[j] * c; 
          } 
 
       for ( j in 1:NT2){ 
           #hazard increment for direct death 
           dL20[j] ~ dgamma(mu20[j], c); 
           mu20[j]<-r * intv2[j] * c; 
           } 
 
       for ( j in 1:NT3){ 
         #hazard increment for death after illness 
           dL30[j] ~ dgamma(mu30[j], c); 
           mu30[j]<-r * intv3[j] * c  ; 
          } 
  
               
       for(i in 1:N) {    
              
          for ( j in 1:NT1){  
                   #likelihood for illness 
                   dN1[i, j]~dpois(idt1[i,j]   );           
                   idt1[i,j]<-Y1[i,j]*dL10[j]*exp( inprod(b[i,], Z[i,] )+ inprod(alpha[],X[i,])) 
                 }  
             
          for ( j in 1:NT2){  
                   #likelihood for direct death 
                   dN2[i, j]~dpois(idt2[i,j]  );   
                   idt2[i,j]<- Y2[i,j]* dL20[j]*exp(inprod(b[i,], Z[i,] )+ inprod(beta[],X[i,])  )        
                  }  
 
         for ( j in 1:NT3){  
                   #likelihood for death after illness 
                   dN3[i, j]~dpois(idt3[i,j] ); 
                   idt3[i,j]<-  Y3[i,j] * dL30[j]*exp(inprod(b[i,], Z[i,] )+ inprod(eta[],X[i,])  )           
                 }  
       } 
  } 
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Code for Piecewise model: 

model{ 
 
   #nZ is the number of random covariates 
    for (  i in 1: nZ) { mu[i]<-0;} 
 
#N is the number of observations 
  for(i in 1:N) { 

 
    #NT1: the number of pieces for illness 
      for(j in 1:NT1) { 
          dN1[i, j] <- step(obs_t1[i]-t1[j] ) * fail1[i] * step(t1[j + 1] - obs_t1[i] ); 
          delta1[i,j] <- (min(obs_t1[i], t1[j+1]) - t1[j])*step(obs_t1[i] - t1[j] );                   
         } 

 
    #NT2: the number of pieces for direct death 
     for(j in 1:NT2) { 
         dN2[i, j] <-  step(obs_t2[i] - t2[j] ) * fail2[i] * step(t2[j + 1] - obs_t2[i] ); 
         delta2[i,j] <- (min(obs_t2[i], t2[j+1]) - t2[j])  * step(obs_t2[i] - t2[j] );                   
         } 

 
    #NT3: the number of pieces for death after illness 
     for(j in 1:NT3) {                    

dN3[i, j] <-    step(obs_t3[i] - t3[j])*step(t3[j+1]-obs_t1[i] ) * fail1[i] * fail3[i] * step(t3[j 
+ 1] - obs_t3[i] ); 

delta3[i,j] <- (min(obs_t3[i] , t3[j+1]) -  max(t3[j],obs_t1[i]) )* step(obs_t3[i] – 
t3[j])*step(t3[j+1]-obs_t1[i] ) * fail1[i];  

     } 
 

     # prior for the inverse of covariance matrix 
     Omega[1:nZ, 1:nZ]~dwish(S[1:nZ,1:nZ],nZ) 
     Sigma[1:nZ, 1:nZ]<-inverse(Omega[1:nZ, 1:nZ]); 
             
     for ( i in 1:N){ 
        # Multivaraite log-normal random effect 
         b[i,1:nZ]~dmnorm(mu[1:nZ], Omega[1:nZ,1:nZ]) ;        
         } 
       
     for ( i in 1:nX){    
          #regression coefficients for illness    
          alpha[i]~dnorm (0, 0.01);         
         #regression coefficients for direct death  
          beta[i]~dnorm (0, 0.01);    
         #regression coefficients for death after illness    
          eta[i]~dnorm (0, 0.01);                 
          }     
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     for ( i in 1:NT1 ){  
         #prio distribution for hazard of illness       
          h10[i] ~ dgamma(0.01,0.01); 
         } 
           
     for ( i in 1:NT2 ){   
           #prio distribution for hazard of direct death          
           h20[i] ~ dgamma(0.01,0.01); 
         } 
             
     for ( i in 1:NT3 ){ 
         #prio distribution for hazard of death after illness 
         h30[i] ~ dgamma(0.01,0.01); 
      } 
         
     for(i in 1:N) {                 
       for ( j in 1:NT1){ 
           #likelihood for illness 
           dN1[i, j]~dpois(idt1[i,j])    
           idt1[i,j]<-h10[j]*delta1[i,j]*exp(inprod(b[i,], Z[i,] )+ inprod(alpha[],X[i,])  );         
           }  
        for ( j in 1:NT2){  
         #likelihood for direct death 
          dN2[i, j]~dpois(idt2[i,j]) 
          idt2[i,j]<-h20[j]*delta2[i,j]*exp(inprod(b[i,], Z[i,] )+ inprod(beta[],X[i,]) )  ;           
           }                         
       for ( j in 1:NT3){  
           #likelihood for death after illness 
           dN3[i, j]~dpois(idt3[i,j]) 
           idt3[i,j]<-h30[j]*delta3[i,j]*exp(inprod(b[i,], Z[i,] )+ inprod( eta[],X[i,])  ));           
           }                 
      } 

   } 
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Appendix B Simulating semicompeting risks data based on general models 

Denote the observed event time for illness and death as        , respectively The 

generation of semicompeting risks data based on illness-death models consists of two 

steps.. In the first step, survival times are generated for either illness or death without 

illness. This is the competing component of semicompeting risks data. The survival 

function         for the two type of events can be defined as  

           [            ]   

where   and    denote the cumulative hazards for illness and death without illness, 

respectively.  We have, 

              . 

The survival function may involve integrals over the time-dependent hazards. The 

            function in R can be used for integration.  

To generate competing event times, denoted by   , a random number    is 

generated and then              is solved using           function in R. Then we 

generate another random number     to determine the type of events. If    >
      

             
 , 

   is considered as     and       . The subject is censored for     and     is then 

assigned a vary large number, e.g. 9999. Otherwise,    is considered as    , that is 

      . To generate    , additional survival time till the terminal event, dented by    

should be generated, based on the following survival function, 

                       [                  ] , 

where    is the cumulative hazards for death after illness. 
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A third random number     is generated and    is obtained by solving     

   [                  ].  Consequently,             

To generate the event indicator     and      a censoring time   is independently 

generated and compared with         . 
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Appendix C Stan code for joint modeling 

The Stan code below was developed for Stan 1.3.0. to illustrate how joint modeling 

approach can be applied to prostate cancer studies. The following data variables are 

expected for this code to work: 

Data for integration using quadrature  

nQ:  the number of quadrature points 

wt[nQ];   the weights for quadrature points, obtained using legendre.quadrature.rules() 

function of R package ‘gaussquad’ 

x[nQ] :   the  quadrature points 

Data for marker values 

N:  the total number of subjects        

nObs: the total number of longitudinal data points 

 y1:  the observed marker values 

 t:  the times of measurements for marker values 

 id: the subject id of marker value 

 nW:     the number of covariates for marker 

 W:  the covariate vector for marker 

 Data for survival models 

nZ:   the number of covariates for hazards                 

 Z:  the covariate vector for hazards 

 fail1: the event indicator associated with type I hazard 

 obs_t1: the observed event times associated with type I hazard      

     NT1:  the number of pieces of intervals associated with type I hazard       
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     t1:  the interval boundaries associated with type I hazard          

     ind1:   the interval number for obs_t1; 

    fail2: the event indicator associated with type II hazard 

    obs_t2: the observed event times associated with type II hazard    

    NT2:  the number of pieces of intervals associated with type II hazard       

    t2: the interval boundaries associated with type II hazard          

    ind2: the interval number for obs_t2; 

    fail2: the event indicator associated with type III hazard 

    obs_t2: the observed event times associated with type III hazard 

    NT3: the number of pieces of intervals associated with type III hazard       

    t3: the interval boundaries associated with type III hazard          

    ind3: the interval number for obs_t3; 

Other data variables: 

    S: the identity matrix, used for Wishart distribution  

 
Stan code 

 

data { 
      int<lower=0> nQ; #number of quadrature points; 
      vector [nQ] wt;   #weights for quadrature points  
      vector [nQ] x;    #quadrature points 
       
      matrix [3,3] S;  #identity matrix, used for Wishart distribution ; 
 
      #number of subjects       
      int<lower=0> N; 
           
      #longitudinal data 
      int<lower=0> nObs; 
      real y1[nObs];  #observed marker values 
      real<lower=0> t[nObs]; #measuring time 
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      int<lower=0> id[nObs]; #subject id 
 
      # covariates for marker 
      int<lower=0> nW; 
      vector [nW] W[N];  
 
 
 
     #covariates for hazards                 
      int<lower=0> nZ;  
      vector[nZ] Z[N];  
 
      # type I survival data       
      int<lower=0>  fail1[N];              
      real<lower=0> obs_t1[N];     
      
      int<lower=0>  NT1;               #number of pieces 
      real<lower=0> t1[NT1 + 1]; #boundaries           
      int<lower=0> ind1[N];         #the interval number for obs_t1; 
       
     # type II survival data       
      int<lower=0>  fail2[N];              
      real<lower=0> obs_t2[N];  
 
      int<lower=0>  NT2;          #number of pieces 
      real<lower=0> t2[NT2 + 1];  #boundaries           
      int<lower=0> ind2[N];   #the interval number for obs_t1; 
        
   # type III survival data       
      int<lower=0>  fail3[N];              
      real<lower=0> obs_t3[N];  
      int<lower=0>  NT3;          #number of pieces 
      real<lower=0> t3[NT3 + 1];  #boundaries           
      int<lower=0> ind3[N];   #the interval number for obs_t1; 
 
    } 
     
    transformed data { 
     
   #mean vector for multivariate random effect b 
      vector [3] mub;        
 
      vector [NT1] C1[N];    #half of the interval width 
      vector [NT1] D1[N];    #the average of the boundary points 
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      int<lower=0> R1[N,NT1];  #at risk 
       
      vector [NT2] C2[N];    # half of the interval width 
      vector [NT2] D2[N];    # the average of the boundary points   
      int<lower=0> R2[N,NT2];  #at risk 
 
      vector [NT3] C3[N];    # half of the interval width 
      vector [NT3] D3[N];    # the average of the boundary points   
      int<lower=0> R3[N,NT3];  #at risk 
       
      for ( i in 1:3){ 
         mub[i]<-0; 
       }  
 
       # type I event 
      for(i in 1:N) {     
        for(j in 1:NT1) { 
          R1[i,j]  <- int_step(obs_t1[i] - t1[j] );     #at risk; 
          C1[i,j] <- 0.5 * (fmin(obs_t1[i], t1[j+1]) - fmin(obs_t1[i], t1[j]  )) * R1[i,j] ;          
          D1[i,j] <- 0.5 * (fmin(obs_t1[i], t1[j+1]) + fmin(obs_t1[i], t1[j]  )) * R1[i,j] ;             
        }               
         
       # type II event   
        for(j in 1:NT2) { 
          R2[i,j]  <- int_step(obs_t2[i] - t2[j] );     #at risk; 
          C2[i,j] <- 0.5 * (fmin(obs_t2[i], t2[j+1]) - fmin(obs_t2[i], t2[j]  )) * R2[i,j] ;  
          D2[i,j] <- 0.5 * (fmin(obs_t2[i], t2[j+1]) + fmin(obs_t2[i], t2[j]  )) * R2[i,j] ;  
        } 
            
       # type III event 
        for(j in 1:NT3) { 
          R3[i,j]  <- int_step(obs_t3[i] - t3[j] ) * int_step(t3[j+1]- obs_t1[i]) * fail1[i] ;     
#at risk; 
          C3[i,j] <-0.5 * ( fmin(obs_t3[i], t3[j+1]) - fmax(obs_t1[i], t3[j]  )) * R3[i,j] ;          
          D3[i,j] <-0.5 * ( fmin(obs_t3[i], t3[j+1]) + fmax(obs_t1[i], t3[j]  )) * R3[i,j] ;          
        } 
      } 
    } 
          
    parameters { 
 
    # residual error for marker 
      real<lower=0> sigma1;     
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    #unstructured covariance matrix for random effects 
     cov_matrix [3] omega; 
 
    # 3-dimentional random effects 
      vector [3] b[N]; 
 
      #regression coefficients 
 
     #intercepts for three phases 
      real mu [3];  
 
     #regression coefficients for covariates on three phases 
      vector [nW] alpha1;  
      vector [nW] alpha2;  
      vector [nW] alpha3;  
     
    # covariate effect on hazard 
      vector [nZ] beta[3];    
     
   #link parameter for current marker  
      real eta[3]; 
  
   #link parameter for current slope 
      real gam[3]; 
       
      #baseline hazard      
      vector  <lower=0>[NT1] h10;  
      vector  <lower=0>[NT2] h20;  
      vector  <lower=0>[NT3] h30;  
    }  
     
    transformed parameters { 
  
    }  
     
    model { 
 
      sigma1~gamma(0.01,0.01); #prior for sd for marker 
      omega~inv_wishart(3,S);      # prior for covariance of random intercept, slope 1 
and slope 2; 
 
      # prior for regression coefficients for marker; 
     for ( i in 1:nW){ 
            alpha1[i] ~ normal (0, 100);   
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            alpha2[i] ~ normal (0, 100);  
            alpha3[i] ~ normal (0, 100);  
      }   
       
  # prior for intercepts of three phases; 
     for ( i in 1:3){ 
      mu[i]~normal(0,100); 
     }    
 
     #multivariate distribution for random effect; 
     for ( i in 1:N){ 
      b[i]~multi_normal(mub, omega); 
     }    
 
 
  # prior for regression coefficients for three type of hazards 
     for ( i in 1:3){ 
      for(j in 1:nZ){ 
         beta[i,j]~normal (0, 100);   
      } 
    } 
     
    # prior for coefficients linking current marker and slope 
     for ( i in 1:3){ 
       eta[i] ~ normal(0, 100); 
       gam[i] ~ normal(0, 100); 
     }    
 
     #prior for hazards of each pieces 
     for ( i in 1:NT1 ){      
         h10[i] ~ gamma(0.01,0.01);  
      } 
       
     for ( i in 1:NT2 ){      
         h20[i] ~ gamma(0.01,0.01);  
      } 
 
    for ( i in 1:NT3 ){      
         h30[i] ~ gamma(0.01,0.01);  
      } 
    
     #likelihood for longitudinal markers 
      for ( i in 1:nObs){ 
        y1[i]~normal(    dot_product(W[id[i]],alpha1) + mu[1] + b[id[i] ,1] 
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                     + ( dot_product(W[id[i]],alpha2) + mu[2] + b[id[i], 2]) * pow(1 + t[i], -1.5) 
                     + ( dot_product(W[id[i]],alpha3) + mu[3] + b[id[i], 3]) * t[i], sigma1) ;                               
     }  
      
 
 
     #likelihood for survival 
     for(i in 1:N) {  
 
        #local variables 
         real A0;  #for phase 0 
         real A1;  #for phase 1 
         real A2;  #for phase 2 
                         
         A0<- b[i,1]+ mu[1]+ dot_product(W[i],alpha1);          
         A1<- b[i,2]+ mu[2]+ dot_product(W[i],alpha2); 
         A2<- b[i,3]+ mu[3]+ dot_product(W[i],alpha3); 
                                                                                   
         #likelihood part I: event related     
         if (fail1[i] != 0) lp__ <- lp__ + log(h10[ind1[i]]) + dot_product(beta[1],Z[i]) 
                                         + eta[1] * A2 -1.5* eta[1] * A1 * pow(1.0 + obs_t1[i], -2.5) 
                                         + gam[1] * ( A0 + A1 * pow(1 + obs_t1[i],-1.5) + A2 * obs_t1[i] ) ;                               
 
         if (fail2[i] != 0) lp__ <- lp__ + log(h20[ind2[i]]) + dot_product(beta[2],Z[i]) 
                                         + eta[2]*A2 -1.5* eta[2] * A1 * pow(1 + obs_t2[i], -2.5) 
                                         + gam[2] * ( A0 + A1 * pow(1.0 + obs_t2[i],-1.5) + A2 * 
obs_t2[i] ) ;                                                                        
 
         if (fail3[i] != 0) lp__ <- lp__ + log(h30[ind3[i]]) + dot_product(beta[3],Z[i]) 
                                         + eta[3]*A2 -1.5* eta[3] * A1 * pow(1 + obs_t3[i], -2.5) 
                                         + gam[3] * ( A0 + A1 * pow(1.0 + obs_t3[i],-1.5) + A2 * 
obs_t3[i] ) ;                                           
 
         #likelihood part II: survival or at-risk related 
         for ( j in 1:NT1){            
           if(R1[i,j] !=0) { 
               
             vector [nQ] qd;                           
 
             for (k in 1:nQ){ 
              real xp; 
              xp<- C1[i,j] * x[k] + D1[i,j];                
              qd[k]<-C1[i,j] * wt[k] * exp (-1.5 * eta[1] * A1 * pow(1 + xp, -2.5) + gam[1] * 
(A1 * pow(1.0 + xp, -1.5) + A2 * xp) ); 
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             }            
             lp__ <- lp__ - h10[j] *  exp( dot_product(beta[1],Z[i]) +  eta[1] * A2 + gam[1] * 
A0) * sum(qd) ;  
           } 
         }           
                 
         for ( j in 1:NT2){            
           if(R2[i,j] !=0) {   
 
            vector [nQ] qd;                                                    
            for (k in 1:nQ){ 
             real xp;   
             xp<- C2[i,j] * x[k] + D2[i,j]; 
             qd[k]<-C2[i,j] * wt[k] * exp (-1.5 * eta[2] * A1 * pow( 1+ xp, -2.5) + gam[2] * 
(A1 * pow(1.0 + xp, -1.5) + A2 * xp) ); 
             }            
             lp__ <- lp__ - h20[j] *  exp( dot_product(beta[2],Z[i]) + eta[2] * A2 + gam[2] * 
A0) * sum(qd) ;  
           } 
         }           
                        
         for ( j in 1:NT3){            
           if(R3[i,j] !=0) {   
  
             vector [nQ] qd; 
                        
             for (k in 1:nQ){ 
             real xp;                            
             xp<- C3[i,j] * x[k] + D3[i,j]; 
              qd[k]<-C3[i,j] * wt[k] * exp (-1.5 * eta[3] * A1 * pow( 1+ xp, -2.5) + gam[3] * 
(A1 * pow(1.0 + xp, -1.5) + A2 * xp) ); 
             }            
             lp__ <- lp__ - h30[j] *  exp( dot_product(beta[3],Z[i]) + eta[3] * A2 + gam[3] * 
A0) * sum(qd) ;  
           } 
         }      
        }             
  } 
              
      generated quantities { 
        
    }  
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Appendix D Derivation of formula (4.4) and (4.5) 

Under model (4.1), the response for any subject   is                    , where 

   is the indicator variable for treatment  , that is,      if the subject is assigned to 

treatment   and 0 otherwise. Denote      as the response treated with   with mean   , 

and     as the response treated with   with mean   . Let      (    )         , 

then the mean of    is  
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Under minimization and a large  , ∑     
  

 
  

     . The second term is 

therefore approximately zero. Further we have, 
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Replace the second term with the above term, we obtain formula (4.4). 
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In deriving formula (4.5), we assume that the covariance between    is zero. 

Because the correlations between    can only occur due to correlated treatment 

assignment, they are 0 under the null case of no treatment differences. On the other hand 

these correlations can be nonzero especially for adjacent responses in minimization with 

unequal allocation. However for terms far apart, the correlation should be close to zero. 

In addition, based on our simulations, the contribution of covariance terms is minimal 

and formula (4.5) agreed with empirical estimates closely (see Table 4.2). Consequently, 
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