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ABSTRACT 

Peter R. Corridon 

 

HYDRODYNAMIC FLUID DELIVERY FOR THE STUDY, TREATMENT AND 

PREVENTION OF ACUTE KIDNEY INJURY 

 

Advancements in human genomics have simultaneously enhanced our basic 

understanding of the human body and ability to combat debilitating diseases. Historically, 

research has shown that there have been many hindrances to realizing this medicinal 

revolution. One hindrance, with particular regard to the kidney, has been our inability to 

effectively and routinely delivery genes to various loci, without inducing significant 

injury. However, we have recently developed a method using hydrodynamic fluid 

delivery that has shown substantial promise in addressing aforesaid issues. We optimized 

our approach and designed a method that utilizes retrograde renal vein injections to 

facilitate widespread and persistent plasmid and adenoviral based transgene expression in 

rat kidneys. Exogenous gene expression extended throughout the cortex and medulla, 

lasting over 1 month within comparable expression profiles, in various renal cell types 

without considerably impacting normal organ function. As a proof of its utility we by 

attempted to prevent ischemic acute kidney injury (AKI), which is a leading cause of 

morbidity and mortality across among global populations, by altering the mitochondrial 

proteome. Specifically, our hydrodynamic delivery process facilitated an upregulated 

expression of mitochondrial enzymes that have been suggested to provide mediation from  
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renal ischemic injury. Remarkably, this protein upregulation significantly enhanced 

mitochondrial membrane potential activity, comparable to that observed from ischemic 

preconditioning, and provided protection against moderate ischemia-reperfusion injury, 

based on serum creatinine and histology analyses. Strikingly, we also determined that 

hydrodynamic delivery of isotonic fluid alone, given as long as 24 hours after AKI is 

induced, is similarly capable of blunting the extent of injury. Altogether, these results 

indicate the development of novel and exciting platform for the future study and 

management of renal injury. 

 

        Simon J. Atkinson, Ph.D., Chair 
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1 

I. INTRODUCTION 

 

A. Acute kidney injury (AKI) 

1. The growing prevelance of renal injury 

 It appears that we have advanced well beyond Byzantine medical practices of 

uromancy with respect to the ways we manage renal injury. However, our present day 

understanding of the kidney in various disease states is still quite limited. This has made 

it difficult to assist the growing global population in maintaining proper renal health. 

Thus renal dysfunction is now a common and progressive problem affecting millions1.  

 Renal dysfunction can manifest in several forms, yet the most prevelant forms 

result from the following cases: (1) inherited and congential diseases; (2) nephrotoxicity 

that results from accumulated broad-spectrum antibiotics, chemotherapeutic drugs and 

radiocontrast agents; (3) ischemia; (4) major blood loss; (5) trauma; (6) high blood 

pressure; and (7) diabetes2-10. Additionally, the latter two sources of renal injury are 

poised to generate kidney disease at pandemic proportions.  

 For instance, in 2007 the National Institute of Diabetes and Digestive and Kidney 

Diseases of the National Institutes of Health declared that diabetes (types 1 and 2) 

accounts for virtually 44% of new cases of irreversible kidney injury, making it the most 

common cause of renal failure11. Even when a patient’s diabetic syndrome is at a  

controlled level, it can still lead to chronic renal injury, which again may ultimately 

progress to renal failure.  It is also envisioned that 40% of the existing type 2 diabetic  
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population will develop long-term renal injuries12. Thus, the present 240 million diabetic 

population worldwide, which is expcted to almost double within the coming 20 years13, 

will remain a key demographic driving the need for enhanced renal interventions. 

 Comparably, the existing billion individuals across the globe that suffer from high 

blood pressure are anticipated to further drive these statistics to enormous levels by the 

year 2025, as another 0.5 billion are set to develop high blood pressure13. Overall, these 

incidences will further increase this population’s risk of cardiovascular disease and 

ultimately enhance the total progression of renal insults. 

2. AKI: A significant clinical problem 

From a clinical persepctive, most forms of significant renal damage result in 

impaired nephron function14. Such damage can occur rapidly, with sudden blood loss and 

trauma, or steadily from toxin intake, diabetes or hypertension. These injuries are 

categorized by time-dependent reductions in renal clearance or glomerular filtration rate 

(GFR), and rises serum createnine (SCr) levels: (1) early stage injury: 25% decrease in 

GFR and an increase in SCr by a factor of 1.5; (2) acute kidney injury (AKI): 50% 

decrease in GFR and increase in SCr by a factor of either 2 or 3; (3) acute renal failure 

(ARF): 75% decrease in GFR and SCr greater than 4.0 mg/dl; (4) chronic kidney disease 

(CKD): persistent AKI and complete loss of kidney function for more than 4 weeks; and 

(5) end stage renal disease (ESRD) - loss of renal function for more than 3 months2,15.  

Serum creatinine clearance is at present the gold standard biomarker used to 

gauge renal function16. This method is derived from the fact that creatinine is a by  
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product of normal muscle metabolism and should be generated and excreted by the 

kidney at a relatively constant rate. However, with renal injury, nephron capacity is 

altered substantially to limit renal clearance. Such an event can eventually reduce the 

excretion of compounds like creatinine, thereby often decreasing urinary creatinine 

excretions17, while increasing serum creatinine levels16.  

Among the abovementioned four injury categories, AKI is generally considered 

as a critical stage within the course of renal dysfunction. This is because renal 

dysfunction categorized to the point of AKI may be reversed, allowing a patient to either 

maintain or regain essential renal functiona, a patient’s treatment options are limited to 

renal replacement therapy once the dysfunction progresses to either ARF7 or ESRD18.  

AKI remains a significant clinical problem, as approximately 25% of ICU patients 

and 5-15% of all hospitalized patients are diagnosed with this injury19. Patients afflicted 

with this form of injury are likely to endure lengthy periods of hospitalization that 

accompany high costs20. These patients also encounter substantial risks of having their 

injury progress to renal insufficiency, and ultimately dying during their hospitalization7, 

as mortality rates have ranged between 50 to 80% for the past several decades20.  

3. Classification and pathogenesis of AKI 

 AKI is historically regarded as a myriad of complex disorders2,6,15. This definition 

dates back to it’s original classification used to describe injuries crush victims sustained 

during World War II15. These victims had renal injuries characterized by patchy tubular 

necrosis. This histological characterization paved the way for the clinical definition of  
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moderate forms of renal injury as acute tubular necrosis (ATN)15. However, today ATN, 

AKI and ARF are often used interchangably to define sudden losses in renal filtration 

function21. This interchangable usage may have orignated from the degradation in 

proximal tubular epithelial cell integrity that is common to each injury classification7,22,23.  

Classically, ATN is defined as the most common cause of AKI23, while the ability 

for acute renal injury reversal give its distincton from ARF. There is much debate over a 

unified definition of AKI, due to low createnine specificities and sensitivities observed in 

injury settings and tretment regimes, as a delay generally preceeds rises in serum 

creatinine24. Clinical standards are based on RIFLE2,25 and Acute Kidney Injury 

Network26 criteria, which use serum and urine createnine to define dynfunction severity.  

Other biomarkers have been proposed to aid clinicians in providing improved 

diagnoses27-32. For example, serum cystatin C and cytokines have been identified as 

possible enhanced biomarkers of AKI. Cystain C has desirable measurement 

characteristics, such as its ability to be freely filtered by the glomerulus, reasborbed and 

catabolized, but it is also secreted by the tubules24. It has also shown promise  

in its use as a non-invasive estimator of GFR in patients with normal and impaired renal 

function24,33. In similar studies, rapid and significant increases in levels of serum 

interlukens IL-634, IL-834 and IL-1835 correlated with the developoment of AKI in 

patients that underwent cardiac surgery. These characteristics identify the possible role of 

cytokines as potential early indicators of AKI, perhaps may augment the diagnostic gold 

standard - 1.5 fold increases in serum createnine and oliguria extending beyond 6 hours7.  
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The etiology of AKI can be subdivided into three main categories: prerenal, 

intrinsic and postrenal. First, prerenal AKI is generated from systemic reductions in renal 

flow that result from decreases in blood volume/pressure and heart failure, which 

frequently stem from microvascular alterations. These debilitating vascular modifications 

may be produced from either renal artery stenosis36 or renal vein thrombosis37. Prerenal 

mechanisms are the most common causes of AKI3. Second, intrinsic AKI is produced by 

direct kidney damage that can occur during accidents and surgery. Third, postrenal AKI 

occurs as a consequence of uniary tract obstructions resulting from renal casts and tumors, 

as well as tumors and retroperitoneal fibrosis originating externally to kidney38.  

4. Present management of AKI 

The management of AKI depends on the identification and treatment of its 

underlying causes. Current treatment regimens are mainly supportive and include fluid, 

electrolyte and acid-based balance39. These methods are employed to prevent/eliminate 

volume depletion, remove tubular blockages, weaken toxin concentrations, facilitate 

diuresis and reinstate normal GFR levels40,41. Such methods are widely employed to treat 

patients with prerenal AKI, but further studies are needed to determine exact fluid 

quantities and infusion endpoints for maximum interventional benefit40.  

Beyond fluid administration, diuretics42, steroids43 and inotropes44 may be 

employed to indirectly regulate renal function by mainpulating cardiac output, and thus 

renal blood flow. These approaches are generally used to treat patients with intrinsic 

AKI7. Even though these forms of treatment are commonly utilized, they are closely  
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monitored, and retracted if necessary, as they can often generate hamful side effects that 

aid the progression of a patient’s renal impairment45. Some of these harmful side-effects 

are metabolic acidosis, hyperkalemia and pulmonary edema. Subsequently, sodium 

bicarbonate, antihyperkalemia agents, and diurectics may be used in conjunction with 

these treatments in order to counteract the respective side effects46.  

It may be necessary to employ invasive techniques for post renal AKI cases. In 

such cases, physicans can first attempt to remove urinary blockages by exogenous fluid 

delivery or generate bypass channels, and reduce harmful elevated pressures. A bend of 

steriods, fluids and inotropes can then be used to improve or reinstate renal function46.  

In the event that all previosly mentioned attempts fail to improve renal function, a 

form of renal replacement therapy will generally be used as the last resort. For example, 

hemodialysis and peritoneal dialysis are forms of replacement therapy that can be utilized 

once a patient’s sustained injury transitions to a chronic injury47. Between these two 

forms of treatment, peritoneal dialysis offers significant advantages in cost and 

administration48. However, it is less commonly used because of its likelihood to produce 

infections from the permanent insertion of an abdominal catheter49. Even though, such 

artificial renal systems are known to enhance and prolong patient life, the best long-term 

solution is renal transplantation if the dysfunction persists and escalates beyond an acute 

injury. Unfortunately, low organ availability50-52; stringent transplant requirements53; high 

rates of organ rejection54; and rare chances of reproducing AKI during renal replacement 

therapy55, complicate this ultimate option and further limit positive patient prognoses. 

 

  



 
 
 
 
 

 
 
 
 
 
 

7 

B. Genetic medicine: a novel alternative for the study and management of AKI  

1. The promise of genetic medicine 

The scientific and technological advancements brought about by the Human 

Genome Project have provided us with a greater understanding of human biology. In 

particular, it has equipped us with a method to identify genetic variations that occur in the 

settings of various diseases. This fundamental ability to successfully define genotype-

phenotype relationships has accelerated scientific development in the subspecialty field 

of medical genetics, through which physicians and scientists aim to revolutionize the 

existing state of human medicine.  

Dating back to its emergence in the mid-20th century, scientists envisioned that 

genetic medicines could facilitate the wide scale implementation of individualized 

medical diagnostics and therapeutics56. Specifically, this new era in medicine was 

expected to provide innovative methods for the detection, treatment and prevention of 

incurable diseases; the regeneration of damaged and lost body parts; and the reduction of 

existing human health vulnerability thresholds. Owing to this, scientists worldwide are 

now focused on realizing this promise.  

During the initial phases of the past century, researchers were focused on the 

design and development of treatments for disorders that result from single genetic 

aberrations, such as a mutation, truncation or deletion. The first successful study within 

this research campaign provided clinical evidence that genetic medicines may be used to 

treat patients with single genetic abnormalities, like adenosine deaminase (ADA)  
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deficiency. In that 1990 clinical study, a four year old patient with the aforesaid  

immunodeficiency received repeated doses of lymphocytes carrying the normal ADA 

genes that she lacked57. This treatment gave her defenseless immune system the ability to 

temporarily combat infections, and it was heralded as a medical breakthrough.  

Thereafter, various efforts were launched to extend this treatment method to other 

monogenic disorders and a wider platform of ailments. Moreover, research was also 

directed to provide a fundamental understanding of the major global causes of morbidity 

and mortality, namely vascular disorders, infectious disease and cancers. Emphasis was 

given to study of renal injury, as it is closely linked with the previously listed ailments.  

The increased interest in gene therapy applications produced pivotal clinical trials 

that explored ways to boost cellular immunity against cancers and viruses58,59, and 

destroy cancer cells by transfecting them with suicide genes60. These studies uncovered 

the fact that most monogenic disorders and diseases with more complex genetic 

abnormalities may not be simply treated by the approach used to address ADA 

deficiency. Nevertheless, this identified key challenges related to gene delivery methods 

and vectors that must be addressed before the renal, as well as the overall medical 

community, may be able to transform the promise of tailored therapies into a reality61.  

Historically, another significant challenge that has halted interests in genetic 

medicine is the difficulty in reliably and routinely facilitating targeted gene transfer to 

various cells and tissues62,63. These obstacles hindered the progress of gene medicine 

until studies conducted during the period 2000 to 2002 spawned its resurgence64,65. Since  
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then several research efforts have been directed towards improving gene delivery 

methods and vectors in an organ-specific manner. This is because the intricate structures 

within organs, like the kidney, have traditionally provided distinct challenges to 

generating reliable renal gene delivery strategies66,67. Nevertheless, recent reports on gene 

therapy have outlined that this form of treatment may yet provide an alternative to 

existing, and mainly supportive AKI management strategies.  

It has been suggested that renal gene therapy may be used to improve AKI patient 

prognoses, by enhancing transplantation outcomes68-71, treating and possibly preventing 

underlying causes and results of AKI22,72,73. Continued and complimentary research to 

identify new key genetic targets, and better examine existing ones while improving gene 

delivery, will further enhance the utility of genetic medicine as we envision its promise.  

2. Efforts to devise effective AKI gene monitoring and treatment strategies 

a. Recombinant peptides and proteins  

To date, numerous methods have been proposed to deliver exogenous genes to 

mammalian cells for the study and treatment of human disease74. With specific regard to 

the kidney, attempts have been made to protect and repair renal function using 

recombinant DNA strategies75. In one approach, recombinant growth factors were been 

used in experimental and clinical AKI settings to both preserve renal function and 

accelerate tissue repair. These studies have suggested that hepatocyte growth factor 

(HGF) may have a significant role in the management of AKI. HGF has been shown to 

have diverse functions in kidney repair following acute injury, as it can act as both a  
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renotropic and anti-fibrotic agent76,77. Parallel studies have shown that HGF may also be 

used to prevent cyclosporin-induced tubulointerstitial fibrosis, indicating its additional 

renoprotective capacity77. Similarly, other studies have shown that exogenous vascular 

endothelial growth factor (VEGF-121) was capable of preserving renal microvascular 

morphology and reducing secondary renal disease following AKI78.  

Further developments in genetic engineering have extended gene therapies to 

include purified protein products, plasmids and viruses encoding peptides/proteins. The 

therapeutic potential of recombinant interleukins (IL-18BP) was investigated in an 

established ischemia AKI rat model. An intravenous dose of IL-18BP was shown to 

improve renal function and tubule morphology, and reduce tubular necrosis and 

apoptosis79. Recombinant uteroglobin treatment also prevented glomerulonephritis by 

reducing proteinuria and pathogenic globulin-glomerular binding80.  

Using plasmids vectors, studies have confirmed the renotherapeutic potential of 

HGF as it mediated tissue regeneration and protected tubular epithelial cells from injury 

and apoptosis during ARF. These results were obtained using single intravenous 

injections of plasmids encoding HGF76. However, the following factors may limit the 

clinical benefit obtained from systemic-based therapies: 1) half-life of HGF is quite short; 

2) recombinant HGF treatment requires very large doses; and 3) this form of therapy 

requires frequent injections of the recombinant protein77,81. Altogether, these factors 

outline a basis for the generation of adverse side effects that can result from 

administering supraphysiologic doses of costly recombinant proteins.  
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In contrast, vector-based gene transfer procedures can be simple, safe and 

potentially cost effective, as they require less frequent dosing81. Researchers have also 

utilized adenovirus vectors to deliver immunomodulating genes like interleukin-1382 (a 

known potent anti-inflammatory agent) and 2,3-indoleamine dioxygenase83 (a stimulator 

of regulatory T cell production) that improved renal transplant outcomes in models of 

acute rejection. These findings are significant, since both repair of ischemic and toxic 

renal injury are critically dependent on the regulation of a redundant, interactive network 

of cytokines and growth factors79. Thus, it would be valuable to devise a system that 

could modulate gene expression levels in an attempt to return kidney function to near 

normal baseline function79, in a reliable fashion without inducing harmful viral-derived 

toxicity. However, viral vector use may ultimately be confined to experimental gene 

therapy applications unless we overcome obstacles that limit their widespread use84,85. 

b. Cell transplantation 

Cell therapy is another form of genetic medicine that is being developed for the 

prevention and treatment of renal diseases. Original applications of cell transfer were 

geared towards bone marrow and organ transplantation86,87, blood transfusion88 and in 

vitro fertilization89. Emphasis was shifted to include research on ways to repair/replace 

damaged and lost compartments of organs. Such work has also targeted individual 

components of the nephron that have resisted traditional AKI management regimens90.  

This regenerative strategy relies on the transplantation of exogenous cells into the 

target organ. Cell therapy utilizes various cell types (stem/progenitor cells; mature  
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functional cells from humans/animals; genetically altered cells; and transdifferentiated 

cells) that are manipulated in tissue culture90, and then implanted into patients73. This 

method is expected to spawn an industry distinct from pharma, biologics and devices91. 

An example of such a therapeutic strategy was presented in a study where 

mesenchymal stem cells (MSC) facilitated recovery from AKI. Repeated MSC treatments 

directly reduced the extent of renal fibrosis, and aided kidney tissue remodeling and 

regeneration in rats with AKI 92. While, in another investigation, rats given intravenous 

infusions of relatively undifferentiated NRK52E cells, which were reprogrammed to 

generate sera amyloid A proteins, had accelerated renal recovery from gentamicin, 

cisplantin and ischemia-reperfusion derived acute injury93. Likewise, for the purposes of 

aiding existing AKI management standards, transformed mesothelial cells were used to 

repopulate peritonea denatured by dialysis-derived acute and chronic inflammation94.    

Beyond the clearly outlined potential that this form of therapy may provide, many 

ethical issues regarding biological and medical applications still thwart progress in the 

field. Nevertheless, it is apparent that the ability to culture human stem cells on an 

indefinite basis, while simultaneously governing their differentiation characteristics, 

offers great possibilities for the future of medicine95.  

c. RNAi therapy 

Another option within the growing arsenal of applications being developed for 

genetic medicine is RNA interference (RNAi). The discovery of mammalian RNAi is 

possibly one of the most promising therapeutic strategies, because for the first time, it  
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enables the silencing of any gene96. This may be crucial for the development of clinical 

gene therapies, as research has shown that it may be easier to silence deficient and non- 

functional genes than replace them97. Moreover, RNAi is seen as the most practical 

approach, thus far, capable of ushering in the much anticipated era of genetic medicine by 

aiding the identification of complex genetic loci that are essential in human pathology.  

RNAi is an endogenous process that provides cells the ability to regulate their 

genetic activity. Such a process remains central to gene expression and the defense 

against mutagenesis generated from viral genes and transposons98. Presently, main 

methods used for exogenous RNAi-based gene silencing utilize micro RNA (miRNA), 

small interfering RNA (siRNA), and small hairpin RNA (shRNA) technologies.  

Since its discovery within the past ten years, there has been a growing interest in 

utlizing RNAi technology to improve the state of renal health96. This interest has directed 

RNAi-based renal research focused on development of the following strategies to  

improve the the study and management of AKI: 1) identification of miRNA targets and 

AKI biomarkers; 2) delivery of exogenous silencing mediators; 3) development of siRNA 

and shRNA targets to either reduce or protect against AKI; 4) determination of in vivo 

silencing efficiencies; and 5) investigation of other small RNAs that can affect post-

transcriptional gene silencing99.  

From a diagnostic viewpoint, several research projects have provided insight on 

renal injury biomarkers. For instance, Valadi et al. showed that miRNAs recovered from 

urinary exosomes provide characteristic information about the kidney in normal and  
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injury settings100. Moreover, Zhou et al. showed levels of miR-27b and miR-192 in these 

urinary vesicles could be used to differentiate between glomerular and tubular damage101.  

Likewise, with regard to therapeutics, exosomes containing miRNAs can enter 

recipient cells upon their recognition by membrane surface proteins. This phenomenon 

offers a new mechanism for cell-to-cell communication, and possibly gene delivery101. 

For example, microvesicles derived from endothelial progenitor cells have been shown to 

protect the kidney from acute ischemic injury. Intravenously delivered microvesicles, 

enriched with pro-angiogenic miR-126 and miR-296, that localized to tubular and 

capillary cells, enhanced tubular cell proliferation, and reduced apoptosis and leukocyte 

infiltration102. 

To further outline the possible broad spectrum of RNAi applications, this 

technique is being considered as a viable way to combat AKI by reducing the uptake of 

nephrotoxins, amelioriating immunologic response mechanisms, and downregulating 

harmful disease mediators22. Results like these have prompted interest in the knockdown 

of dynamin-2 (Dyn2) and low-density lipoprotein-related protein 2 (LRP2). Dyn2, is a 

critical component of the endocytic pathway103-105, and its knockdown has shown to 

block both clathrin-coat dependent endocytosis and coat-independent fluid phase probe 

uptake in a variety of epithelial cell lines106. Silencing LRP2 has also reduced gentamicin 

toxicity in proximal tubule epithelial cells107. LRP2 is a multiligan binding receptor that 

also functions to mediate endocytosis. As a result, examining these RNAi targets may 

provide a practical means to combat, and possibly inhibit nephrotoxicity in vivo. 
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In yet another study on renotherapeutic potential of siRNA technology, 

systemically delivered siRNAs provided supressed in ischemia-induced p53 upregulation, 

and overall attenuation of ischemic and cisplatin-induced AKI22. The oligonucleotides 

used to facilitate RNAi, contained stabilizing modifications that have a relatively low 

affinity for albumin and other plasma proteins. Such modifications diminished their 

hepatic distribution and degradation in sera, enabled their renal clearance and robust 

endocytic tubular uptake108. These results may potentially limit the class of therapeutic 

siRNAs that may be used in the procedure, based on the natural tendency of systemically 

delivered materials to accumulate within the liver.  

Similarly, expression of transgenic shRNA targeting the proapoptotic BIM gene 

prevented the development of polycystic kidney disease in Bcl-2 deficient mice109. Yet, 

the death of a significant proportion of the transgenic animals in that study is a major 

source of concern. It is not clear whether this will turn out to be a general problem or one 

that is linked to the sequence of the particular shRNA. This issue of mortality limits the 

use of such transgenes in human studies. Alternatively, these transgenes could readily be 

given to livestock to produce specific viral and pathogen resistant animal strains110.  

3. Mechanisms for exogenous transgene expression in mammalian cells 

Despite the many reports presented on the development of genetic medicine 

strategies, and their potential to improve AKI management regimens (based on the 

performance of recombinant peptides, DNA vectors, stem cells and RNAi agents), exact 

mechanisms related to each approach are still unclear111. This fact has made it difficult to  
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optimize designs for gene-based techniques. Nevertheless, the basic principles for 

successful transgene expression have been documented throughout scientific literature112.  

All gene therapies rely on the efficient delivery of exogenous genes to specific 

cellular targets. The techniques discussed earlier achieve this by using either DNA/RNA  

molecules or DNA/RNA molecules inserted in gene transport vehicles. Once the genetic 

materials enter the nuclei (specific transport mechanisms/vehicles, which facilitate 

transgene delivery to and across plasma and nuclear membranes, will be discussed in the 

subsequent section), they work to either enable or inhibit the expression of the gene 

product of interest in transformed cells and their progeny.  

Similarly, the overall effectiveness of RNAi in inducing gene silencing in any cell 

depends on the ability of the dsRNA reagent to access the subcellular compartment 

containing the RNA-induced silencing complex (RISC) and other components of the 

RNAi machinery113,114. This subcelllular compartment is located in the perinuclear region 

of the cytoplasm115. However, with cell transplantation the gene delivery process relies 

primarily on the integration of the delivered cells, and native cellular division and cell-to-

cell communication processes to facilitate sufficient levels of gene expression/inhibition. 

This is done after the exogenous cells integrate into tissues and organs92-94,116.  

Previous work conducted within our division suggests that the effectiveness of 

gene therapies, using adenovirus117 and siRNA22, depends on the dose and time these 

transgenes are administered. This reflects variations in drug concentrations at the 

respective sites of the gene expression and silencing machinery. It is therefore important  
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to understand how the effective concentration in the cytoplasm relates to the dose and 

timing of transgene administration as a function of therepautic potency. This is a topic of 

practical importance, as the mechanism will determine the intracellular fate of exogenous 

transgenes, from non-viral, viral and cellular sources, and aid the development of novel 

medical strategies that can control the duration and extent of induced genetic traits. 

4. Key aspects to facilitate advancements in renal genetic medicine 

a. The development of efficient renal gene delivery techniques 

To date, numerous methods have been proposed to deliver exogenous genes to 

mammalian cells for the study and possible treatment of human diseases67,74. These 

techniques have aimed to provide inexpensive and rapid alternatives to pronuclear 

microinjection-derived transgenic models118. At present there is still need for reliable 

gene delivery systems, as several reports have indicated mixed views on the effectiveness 

of existing gene transfer techniques. Such variability has been clearly exemplified 

amongst reports on renal gene delivery57,61,67,69-71,73,75,82,119-123.  

Generally, in vivo gene transfer success is directly influenced by the following 

phenomena: 1) the ability to deliver vectors to the target cell; 2) the time taken for cells to 

express the delivered genes; 3) the number of cells that incorporate the exogenous genes; 

4) the level of the resulting expression; 5) cellular turnover rates; 6) reproducibility of the 

process; and 7) the extent and severity of any injury that may result from the gene 

delivery process67. Thus, in order to overcome this delivery challenge, researchers must 

consider variations in organ morphology and function as crucial elements to potentially  
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provide efficient rates of transformation, while providing a solution to the problems of 

mistargeting, limited persistence and/or limited frequency of expression in the target cells.   

Efficient gene transfer has been difficult to achieve routinely in the kidney66,67. 

The varied levels of successful transgene incorporation reported within the renal cortex 

and medulla have illustrated this difficulty124,125. The structure of various renal vascular  

beds and their permeability characteristics present intrinsic challenges to gene transfer 

processes. For example, proximal tubule epithelial cells have an immense capacity for the 

apical endocytic uptake of exogenous materials, and thus possible transgene 

incorporation66,67,124-126. Yet, accessibility of the apical domain to exogenously delivered 

vectors, and accordingly resulting degrees of transgene uptake, are strongly limited by 

glomerular permeability66. The degree to which such cells are accessible for gene transfer 

at basolateral surfaces, secondary to peritubular capillary leakage, is also unknown.  

Independent investigators have such challenges as they observed diverse levels of 

renal gene expression using adenovirus. This virus was delivered by arterial injections in 

normal124,127,128 and cystic rats127; pelvic catheter infusions in normal rats127; and tail 

vein125 and cortical micropuncture117 injections in uninjured animals.  

One group showed intra-arterial injected adenovirions delivered to pre-chilled 

kidneys, produced transgene expression largely within cortical vasculature127, whereas 

combining pre-chilling treatment with vasodilators, gene transfer was observed in both 

the inner and outer stripes of the outer medulla127. Expression in the cystic kidneys was 

only observed in vasculature, some epithelial cysts and interstitial cells127. 
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Another group demonstrated the ability to successfully use adenovirus vectors to 

transduce rat glomerular endothelial cells by slowly infusing 1.5 ml of a vector solution 

into the right renal artery, using a 27-gauge needle, for a period of 15 minutes128. This 

technique provided high levels transgene expression, which lasted for at least 3 weeks, 

without causing significant damage.  

To further complicate matters, within the same study, analogous concentrations of 

the same type of adenovirus vector were suspended in different volumes and delivered to 

the kidney via arterial injections and pelvic catheter infusions. These methods produced 

transgene expression in distinct regions of the kidney124. The expression generated from 

the 1 to 2 ml/min rate, 30-gauge needle injection of 2 ml solution into the aorta, at 

location proximal to the left renal artery, was limited to proximal tubular cells124, whereas 

the PE-10 catheter-based retrograde delivery of 300 µl of adenovirus solutions, mediated 

selective tubular transduction in the medulla and papilla. Expression lasted for two to 

four weeks using either form of adenoviral delivery.  

Comparably, studies using tail vein and retrograde ureteral adenovirus infusions, 

to target aquaporin water channels also reported varied levels of expression that appeared 

to be dependent upon the transgene infusion site125. This study found aquaporin 1 (AQP1) 

expression in apical and basolateral membranes of proximal tubule epithelial cells in the 

renal cortex, but no AQP1 expression was found in glomeruli, loop of Henle, or 

collecting duct from tail vein infusions of adenovirus vectors. Conversely, through 

ureteral infusions, significant ureteral and renal papilla transgene expression was  
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reported. Less intense and patchy expression was observed in cortical collecting ducts. 

These results indicate the varied nature of renal transgene uptake can be strongly 

influenced by anatomical obstacles. 

Finally, others have explored direct transfer of adenovirus vectors carrying 

transgenes into individual nephron segments using micropuncture techniques117. The 

results of this study showed site-specific transgene expression within the injected tubules 

or vascular welling points. These results also demonstrated the utility of intravital 

fluorescent multiphoton microscopy as a means of directly monitoring protein expression 

in live animals. One limitation of the approach, however, is that gene expression is 

restricted to injection sites. Altogether, these studies illustrate that renal gene delivery 

depends on transgene infusion site, volume and rate, and highlighting the difficult nature 

of genetically altering multiple cell types, given the intricate anatomy of the kidney.  

Clearly, intravenously transgene delivery would be beneficial. However, the 

effectiveness of this method has so far benefited RNAi, as endocytic uptake of siRNAs 

by the proximal tubule has shown significant promise. Thus a more direct delivery route 

may be necessary. This has again been illustarted by the results generated from ureteric 

introduction that yields expression that is limited to distal tubules and collecting ducts.  

As one considers more direct and invasive delivery techniques, from a practical 

persective the simplest approach is subcapsular gene delivery. Subcapsular injections 

provide extended expression of a genes in a variety of vectors, albeit the gene expression 

is limited to the site of injection.  This technique is beneficial for in vivo imaging studies,  
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but not for gene therapy. As a result, the majority of gene therapy strategies are thus far 

confined to laboratory settings as the field progresses123.  

In contrast, hydrodynamic fluid delivery has been proposed to address these 

challenges by increasing vascular permeability to efficiently deliver exogenous 

substances throughout the kidney. Specifically, hydrodynamic fluid delivery is aimed at 

impacting fluid pressures within thin, and stretchable capillaries121. The enhanced fluid 

flow generated from pressurized injections produce rapid and high fluctuations in the 

blood circulation. This is believed to increase the permeability of the capillary 

endothelium121 and epithelial junctions129 by generating transient pores in plasma 

membranes that facilitate the cellular internalization of macromolecules of interest130. 

The unique anatomy of the kidney provides various innate delivery paths (renal artery, 

renal vein, and ureter) that may be ideal for hydrodynamic gene delivery122.  

b. Exogenous transgene vectors 

Generally, the gene of interest is infused either systemically or directly into the 

kidney (Table1). Apart from the artery, vein and ureter, direct infusions into the renal 

capsule and parenchyma using micro-needles117 and blunt-tip needles131 have also been 

proposed, in conjunction with tail vein132-134 and peritoneum22,135,136 infusions.  

As indicated before, the success of these methods vary according to the 

anatomical location of the targeted cells67, and the types of vectors used to enable genetic 

expression67. These vectors include: PRC-amplified DNA fragments137;  plasmid DNA122; 

liposomes67; polycations67; viral vectors (adenovirus117, baculovirus138,139,  
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hemagglutinating virus of Japan (HVJ)123 and lentivirus119,140 and stem cells92-94. If 

transgene expression is mediated by using transformed cells as gene vectors, then these 

cells may be engineered with a variety of anchoring or binding proteins/peptides to assist 

their integration into the tissue of interest141.  This process is done to mimic adenovirus142 

and lentivirus143 endogenous capsid components, which mediate receptor binding and 

their successful entry into mammalian cells. Alternatively, as is observed only in injured 

kidneys, there appears to be a process initiated during renal repair that facilitates the 

incorporation of exogenous renal cells delivered intravenously93. 

Beyond achieving successful genetic modifications, the effects resulting from 

exogenous transgene delivery and expression need also be considered. Such 

considerations relate to the levels of cellular toxicity and injury that may result during 

and after the transfer process. In particular, DNA fragments are aptly degraded by endo- 

and exonuclueases137. However, an overload of exogenous DNA fragmentation may 

stimulate Ca2+ endoclunease activity that may also degrade endogenous DNA, and 

mediate cell death144. Similarly, plasmid DNA, prepared from bacteria, may induce 

unmethylated CpG motif toxicity that can trigger lower respiratory tract inflammatory 

responses67,145. Oligonucleotides, at doses greater than 10 mg/kg, also stimulate immune 

system responses, and may induce hepatotoxicity and nephrotoxicity67. 

Virus-induced toxic and immunogenic responses resulting from high titers, 

protein overexpression and capsid protein infections are also topics of major concern146.  

Mutagenesis derived over a long-term may also be an issue using recombinant  
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Infusion Site & Method  Gene  Expression Impact 
Tail vein 

Low rate134,147,148,149,150 and 
hydrodynamic 
injections148,151-157 of 
plasmid and viral vectors 

Low rate injections only produce 
expression (high levels) in hepatocytes’ 
Hydrodynamic-based plasmid lung, spleen, 
heart, kidney and liver gene expression; 
Highest level of expression in liver-specific 
transfection (~ 40% of the cells in the liver) 
that persisted for at least 12 weeks 

No injury from 
histology; Transient 
impact on cardiac 
function; structural 
changes in 
sinusoid/hepatocyte 

Endothelia with 
large volume 
hydrodynamic 
injections 

Renal capsule blunt 
injections158-161 

or micropuncture117,157 

Expression was seen in some tubular cells 
in the adult kidney using plasmids and 
retrovirus vectors; robust and stable 
superficial (within 100 µm of the kidney’s 
surface) adenovirus expression; transgenes 
directly introduced into the lumens of 
single proximal tubules and vascular 
welling points of renal cortices 

The cells can 
differentiate into 
renal tubules when 
injected under the 
capsule of an 
uninjured kidney or 
intra-arterially after 
renal ischemia-
reperfusion injury; 
micropuncture-
derived expression 
persisted over a 
period of two weeks 

Renal artery162,159,160, 
pelvis62,162, vein or 
ureter163 injections 

Transient transduction of tubules using 
plasmids; no expression in glomerular, 
vascular or interstitial compartments; Gene 
delivery into the renal glomerulus by 
transfer of genetically engineered cells; 
expression exclusively in the interstitial 
fibroblasts near the PTCs of the kidney and 
colleccting ducts; expression limited to 
collecting ducts with ureteral delivery 

Varied review of 
renal injury/gene 
expression reported 
from localized/direct 
injections to the 
kidney63,164-168 

 
 
Table 1. An overview of renal gene delivery methods, associated transgene vectors 
and reported expression.  
A review of renal gene delivery method, which highlight the challenge in generating 
reliable renal transgene expression with minimized injury.  
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adenovirus169. Slow transforming insertional mutagenesis may also arise with retroviruses 

that incorporate into the genome leading to tumorgenesis170. In vivo stem cell quiescence 

can also tamper with DNA repair mechanisms and generate mutagenesis 171.  

In sum, there are several challenges to renal transgene delivery. The techniques 

presented have provided varied levels of success and are capable of inducing harmful 

side effects. Therefore, there is critical need for the development of safe and efficient 

transgene delivery options.  Such techniques would assist the delivery of clinically 

relevant genes that can induce transient genetic modifications with minimal physiological 

interference or damage, and help realize the promise of gene therepy.  

 

C. Multiphoton microscopy: a novel tool for renal genetic medicine 

  1. Biomedical applications of optical microscopy    

Within the last two decades, microscopy has revolutionized our understanding of 

living systems by providing insight into the dynamics of biological regulatory 

processes172. Amongst all forms of microscopy, optical microscopy has shown substantial 

value in the study of biological processes. When used in the acquisition of anatomical, 

physiological, metabolic, and functional data from the living organisms, optical imaging 

modalities have found widespread utility in the field of biomedicine173. Ideally non-

invasive or minimally invasive optical microscopy provides high lateral spatial 

resolution, three-dimensional volume sectioning, and high image contrast174. These facts 

make this system well-suited for studies at tissue, cellular, and molecular levels173.  
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The field of optical microscopy can be partitioned into linear and non-linear 

applications. Traditionally, the most prominent linear microscopy systems include 

confocal fluorescence and wide-field laser microscopy174. Both of these linear approaches 

are popular choices for cell culture and tissue sections studies. The spatial resolution of 

these techniques is confined to a useful range of 100 µm from the specimen surface, due 

to multiple light scattering events blur the image at greater depths, limiting its in vivo and 

thus possible clinical utility175. This is a particular problem in confocal microscopy, since 

the intense degree of light scattering observed in turbid biological media significantly 

decreases the amount of light that enters the pinhole of the microscope. This in turn 

results in strong signal attenuations that are highly susceptible to the effects of scattering, 

which increase with greater tissue depths176.  

By comparison, non-linear microscopy has provided a significant advance in 

overcoming the barriers to deep-tissue imaging177. These methods use higher-order light-

matter interactions with multiple photons to generate image-based contrasts. The most 

widely used application of this principle is in fluorescence excitation by two-photon 

absorption177,178. Two-photon excitation depends on the simultaneous absorption of two-

photons to produce fluorescence emissions that vary with the square of the excitation 

intensity. Consequently, this process is defined by a non-linear (quadratic) relationship 

between excitation and emission events. This in turn facilitates investigations in tissues at 

depths that are on the order of a millimeter. These imaging depths significantly exceed 

those of conventional one photon processes like confocal microscopy.  
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With enhanced tissue depth penetration comes welcomed benefits that support the 

use of multiphoton imaging over other light-based microscopy systems for live biological 

tissue imaging. Such benefits inculude: (1) minimized out-of-focus photobleaching; (2) 

reduced scattering of infrared-derived excitations; (3) reduced background fluorescence 

from localized excitations. For these reasons, multiphoton fluorescence microscopy has 

found widespread application in the intravital imaging of diverse organs, such as the 

brain, liver, kidney and skin179,180. Examples of these applications include analyzing  

normal renal physiology176,179,181 and renal pathophysiology182, rapid diagnosis and 

quantification of AKI183, biodistribution and effects of various compounds for drug 

development184,185 and monitoring renal genetic alterations.  

2.  Applications multiphoton microscopy for monitoring renal gene 

expression 

Several methods have been developeed for the study and evaluation of genetic 

medicine strategies. However, traditional gene transfer and expression assessment 

methods are known to have limited clinical value186. Accordingly, there is ample need to 

develop gene strategies that could be repeatedly and safely performed in patients186.  

Advancements in pulsed laser systems, image reconstruction software and 

fluorescent reporters, are making non-linear imaging techniques an increasingly 

important tool in the field of genetic medicine. These molecular imaging techniques have 

been successfully used in animal models, but their sensitivity and reproducibility need to 

be tested and validated in human studies186,187. As an example, investigators have utilized  
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intravital two-photon imaging systems to study genetic alterations that impact renal 

mammalian cellular structure and function22,68,117,180.  

Using micropuncture injection techniques, studies by Tanner et al. yielded robust 

and stable superficial (within 100 µm of the kidney’s surface) transgene expression from 

fluorescently tagged chimeric constructs117. These transgenes were directly introduced  

into the lumens of single proximal tubules and vascular welling points of renal cortices, 

and monitored for a period of two weeks117,180. Likewise, multiphoton imaging has been 

used to track the delivery and localization of genetically altered cells93 and siRNAs22 that 

were used to promote renal recovery following AKI. Such research outlines the 

importance of non-linear microscopy in the study and development of renal gene therap.  

3. Fundamentals of intravital multiphoton fluorescence microscopy 

 a. Fluorescence excitation and emission 

The fundamentals of biological fluorescence date back to the observations 

presented by Spanish physician and botanist Nicolas Bautista Monardes in 1565188. In 

Monardes’ report, he described the visible hues that eminated from different types of 

wood. As simple as this report may seem, these observations became quite useful as it 

allowed individuals to distinguish a prized type of wood from its counterfeits.  

Specifically, coatli, which was then a scarce and costly material known for its diuretic 

properties, was differentiated from counterfeits by its ability to emit clear blue hues when 

immersed in water189. Such work paved the way for our present technological advances 

that have spawned from harnessing various forms of  emitted visible light.  
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Two major phenomona that revolve around the emission of visible light are 

incandesence and photoluminesence. Incandescence is a thermal radiative process in 

which electromagnetic radiation is generated from thermal motion of charged particles in 

substances. The electromagnetic radiation generated from incandescence is in the form of 

visible light, and is emitted in a direct response to heat. This heat provides electronic or 

charged particles with increased kinetic energy. Charged particles in motion create 

facilitate radiation emission during such an energy/heat transfer process.  

In contrast to incandescence, photoluminesence is used to describe the emission 

of light that also arises from electronic state transitions, but is independent of heat. This 

form of cold light was the object of an interesting controversy in the 19th century, as 

scientists argued whether photoluminescence could fit within the field of  

thermodynamics189. Since then, several aspects of this phenomenon have been defined 

and used daily, which include resonant radiation, phosphorescence and fluorescence.  

Resonant radiation is simply the rapid emission of electromagnetic energy 

produced from the absorption of photons by atoms of gases or vapors. Generally, the 

incident photon has the same frequency as the resonance frequency (or natural oscillating 

frequency) of the atoms of the vapor. When these atoms absorb the incident photons, they 

can transition from lower to higher energy levels. As the atoms transition back to their 

original state, the will emit photons with energy levels equivalent to those of the incident 

photons. Thus, there are no significant internal energy transitions or losses occurring 

between the absorption and emission processes. These discrete energy separations are  
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characteristic of the atoms involved, and can be used provide an atom with its own 

signature or unique energy transition marker. 

Unlike that of resonance radiation, photons emitted during phosphorescence 

fluoresence have lower energy levels that the incident photons that induce their excitation. 

Furthermore, phosphorescence-based radiation emissions also occur on a longer 

timescale than that of fluorescence. This slower rate process allows phosphorescencent 

materials to discharge radiaton well after excitations end.  

Particularly, the excitation of a fluorophore (or of a luminophore) can occur 

through either single or multiphoton absorption events. Building on the previously 

mentioned description provided on resonant radiation, we can first begin to further 

examine one-photon or conventional fluorescence. In this process, a single photon is  

absorbed by a fluorophore. Atoms of the fluorophore contain electrons that occupy 

different electronic states. Each state provides its electrons with a specific energy level, 

and thus a frequency that defines its perpetual motion. Motion can be in the form of 

vibrations, rotations or translations, depending on fluorescing compound’s physical state. 

After a fluorophore absorbs a photon, an electron within a low energy level or 

ground electronic state can become excited and transition to a state with a higher energy 

level. Such a fluorophore will collide with surrounding molecules and lose energy until 

its excited electrons return to their original lower level electronic states in a three-phase 

process. In the first phase of this process, the fluorophore will utilize some of this 

absorbed energy for vibrational and rotational motion, and internal conversions through  
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either radiative decay or radiationless de-excitation process that usually generates heat.  

Thereafter, the second phase of energy loss or conversion generates a photon. Such a 

photon, will have less energy (longer wavelength) than the incident photon, as described 

by the Stokes shift. Finally, during the last phase of energy loss, there is another internal 

conversion process that occurs within the lower energy states.    

In contrast, for multiphoton  microscopy, fluorescence is derived from the 

simultaneous absorption of two or more low-energy photons. The energy of each of these 

photons is insufficient to excite an electron, but when combined is sufficient to faclitate 

electron excitation/emission. Subsequently, as with single photon fluorescence, de-

excitation proceses produce photon emissions and two non-radiative events. These 

phenomena have been previously well defined in the literature179.  

b. Lasers: practical ways to generate multiphoton excitation 

fluoresence  

In order to generate a multiphoton excitation event, the required photons must be 

absorbed by the flurorphore within a single attosecond. This constraint drastically  

minimizes the probability of naturally occuring multiphoton phonemona. In practical 

terms, a molecule of rhodamine, if exposed to direct sunlight, would experience single 

photon excitations every second and two photon excitation ever 10 million years178,179.  

Revolutionary work theorized by Marie Groppert-Mayer in 1931, predicted that 

detectable multiphoton fluorescence could be generated from an enormous incident 

radiation flux178,179,190. This theory laid the foundation for the development of powerful  
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femtosecond infrared lasers capable of generating energy fluxes needed for multiphoton 

absorptions. Currently, commercially aviable laser systems, like titanium:sapphire lasers, 

provide average vast peak photon fluxes that facilitate two-photon excitation.  

In practice, the femtosecond pulse durations of these infrared lasers effectively 

limit incident photon fluxes, from enormous levels of radiation, to those merely capable 

of raising the temperature of water by 0.2 K/sec179. Moreover, these low energy (long 

wavelegth) photon fluxes are confined within a single volume at a given instant, limiting 

the exposure and phototoxic effects. This also reduces the effect of scattering and 

background noise that limit depth penetration and image resolution respectively. These 

properties support claims that the unique engineering of multiphoton pulsed excitation 

systems can be both safe and effective for live biological studies. Advancements in 

pulsed laser technology have also opened the way for three photon fluoresence excitation 

microscopy. The photon density required for this process is approximately 10 fold that of 

two-photon microscopy, making this a potentially practical system191. 

By comparison, single-photon excitation is usually generated by exposing tissues 

to greater levels of higher energy, shorter wavelength visible and ultraviolet radiation, 

using lasers that cases excite fluorophores throughout substantially larger volumes. This 

in turn provides single-photon excitation systems with an enhanced capability to generate 

substantial tissue damage and succumbing to the effects of light scattering in biological 

media to greater extents than multiphoton excitation systems. 
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c. Image formation in multiphoton fluorescence microscopy 

Once successful multiphoton excitation events are generated, the next step would 

be to gather photon emissions and convert them into electrical signals. Practical 

applications of this are presented in various microscopy image acquisition and analysis 

reports, and he fundamentals of this process have been documented extensively192. Thus, 

for the purposes of this dissertation, the general concept is outlined below.  

The major components of a multiphoton fluoresence microscope that enable 

image formation are the objectives, mirrors and detectors. These components are utilized 

in the following manner: when incident infrared light is emitted from the pulsed (mode-

locked) femtosecond laser, a scanning mirror guides the light towards an objective lens. 

This lens then focuses the light at a single position within the specimen volume to 

generate multiphoton excitation and emission events. Emitted fluorescence photons are in 

focus and take either scattered or ballistic trajectories. A greater portion of the emitted 

light is allowed to reach its designated target, allowing two-photon microscopy to make  

much better use of the photons generated by dramatically improving signal-to-noise ratio 

compared with standard confocal microscopy. Objective lens and mode-locking lasers 

spatially and temporally concentrate emitted photons respectively, to generate the 

required photon flux for excitation. The low pulse duty cycles limit the average input 

power to blow 10 mW, which is on the order of powers generated by confocal excitation, 

despite of the high photon intensities generated by these lasers. 
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In comparison to confocal fluorescence microspcy, a pinhole is not required for 

two photon microscopy, allowing greater flexibilty in detection geometry by utilizing 

descanned and non-descanned dection schemes. For confocal microspcy, emission 

photons travel the same pathway as excitation photons, as they collide with scanning 

mirros before they pass through the pin-hole to the detector with descanned geometry. 

However, for non-descanned systems a dichroic mirror can be placed immediately after 

the objective lens to direct emitted light to external dectetors without using an objective 

lens. This non-descanned option allows one to take full advantage of the depth 

penetration potential of this technique; enables collection of more scattered photons, 

requires fewer optical elements, such as mirrors and lenses; and reduces the path length, 

along which dust particles in the air interfere with the fluorescence signal. Consequently, 

non-descanned detection approaches for two-photon excitation dramatically increases 

collection efficiency and is essential for maximal depth penetration into living tissue, as 

the detectors contain highly sensitive photomultiplier tubes capable of detecting low 

levels of light, and barrier filters that are used to generate red, green and blue pseudo-

color images. This process enhances sensitivity without compromising image quality.  

 In the final generated image, each image point is geometrically related to a 

corresponding point in the specimen. Additionally, the photons emitted from the 

specimen originate from the focal point provides a three-dimension (3-D) sectioning 

characteristic. As the scanning mirror changes its position in the xy-plane, a raster scan 

process can be used to gather information at various loci within the xy-plane at the same  
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depth to form a planar image. Beyond the formation of a planar image, one can vary the 

position of the z-plane or depth within the specimen to acquire 3-D volume data. If this 

data collection process occurs across a period of time, the data set can be extended to 

provide timescale or 4-D information.  

At present, the fundamental components of multiphoton systems, objectives, 

mirrors and detectors, are not optimized for biological applications193. However, it is 

hoped that increased demand for this technique could perhaps enhance the development 

of optimized imaging components for the study of biological specimens. 

d. In vivo, ex vivo and in vitro multiphoton imaging of mammalian 

tissues 

In order to answer questions that would aid our understanding of living 

organisms, scientists have relied on in vitro, ex vivo and in vivo experimental designs. 

Historically, such work has facilitated scientific advancements.  

For instance, in vitro studies allow us to investigate interactions between 

individual molecules and living cells. This is vital first step that can help us evaluate 

basic interactions and specific molecular events without having to account for the 

cascades of intracellular, intercellular, intra-organ and inter-organ events that occur  

within living organisms. In vitro studies also eliminate the need for substantial financial 

and surgical resources that are needed to conduct in vivo studies. Thereafter the 

simplified experimental model can be scaled accordingly to examine the effects that 

various compounds may have on the living cells, as well as the effects from potentially  
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complex molecular interactions. This form of experimentation can also assist the study of 

various phenomena that may not be approved for animal usage by regulatory boards.  

However, in certain cases in vitro experimentation has defined either partial or 

incompatible descriptions of the biological processes194. Precisely, in vitro models may 

be unable to account for the aforementioned complex network of cellular interactions that 

occur in vivo. Overall, if this form of experimental design is solely relied upon, we can 

ultimately generate inaccurate theories on biomedical phenomena. As a result, the 

utilization of both forms of analyses provides an enhanced arsenal for complementary 

biological research efforts. 

It is from such a perspective that intravital investigations have become 

increasingly important within the biomedical sciences. Intravital imaging tools like 

multiphoton fluorescent microscopes, have equipped researchers with extremely 

powerful ways to uniquely address biologically important questions that can only be 

accomplished from whole organ investigations195. However, this technique’s utility is 

confined to a relatively low penetration depth in vivo, and most intravital multiphoton 

microscopes are experimental systems designed primarily for imaging small animals.  

As a result, non-invasive live multiphoton imaging studies are constrained to 

easily accessible organs like the skin196-198. Live investigations in the brain199-201, 

liver202,203 and kidney195,204-206 of rats and mice are also favorable, using minimally 

invasive techniques that expose these organs directly to multiphoton excitation light. 

Thereafter, further ex vivo or in vitro studies can be done to either verify live findings or  
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answer questions within deeper tissue structures that are inaccessible with existing 

intravital multiphoton microscopy systems.   

In particular, intravital multiphoton imaging of kidney function and structure has 

become quite popular, since the kidneys of rats and mice can be easily externalized after 

anesthesia, and placed in the view of a microscope lens179,180,207-209. The preparations 

made to conduct such imaging studies are crucial in ensuring the generation of useful 

microscopic data. Below are some essential conditions, related to anesthesia, 

physiological conditions and surgical environments, which should be considered for an 

intravital multiphoton imaging study.   

The choice of anesthetic is an important factor that must be considered prior to 

commencing the study. The two main types of sedatives used for small animal research 

are inhalants and injectable anesthetics. Generally, systemically delivered injectable 

anesthetics, such as pentobarbital (used in conjunction with analgesics and antiseptics) 

and thiobutabarbital (inaction) are used for survival and non-survival rat studies 

respectively. Research within our division has shown that inhalants, like isoflurane, are 

preferred for relatively short duration studies and procedures on rats, and is generally 

exclusively used for mice studies. Thiobutabarbital (inactin) has been the preferred  

anesthetic for  non-survival experiments in rats because it provides stable circulatory 

conditions for long-durations210. Furthermore, during such lengthy studies isotonic fluids 

and serum albumin may be applied to maintain osmotic pressures needed for normal cell 

and tissue health.  

  



 
 
 
 
 

 
 
 
 
 
 

37 

Once the animal is fully sedated, it is important to monitor physiological 

temperatures, which can be accomplished with an anal probe. Also, heating pads, lamps 

and blankets can be used to ensure an animal’s core temperature stay within normal 

physiological ranges for all surgical and imaging applications. Blood pressure can also be 

monitored via carotid or femoral artery access catheter. It is generally recommended to 

conduct surgical procedures in sterile environments, especially for survival studies. 

Further safeguards may be taken by sterilizing imaging dish and saline in which 

externalized kidneys are placed, to limit infection and tissue dehydration/pH alterations.  

 

D. Hypothesis  

The overall goal of our research is to test the hypothesis that hydrodynamic 

retrograde renal vein fluid delivery can be used to facilitate the study and treatment of 

AKI. In order to achieve this goal we will work towards achieving the following specific 

aims: (1) to facilitate efficient transgene expression in mammalian kidneys of normal 

animals and those with ischemia-reperfusion injury; (2) to track functional and structural 

changes in proximal tubule epithelial cells during AKI, as this is the site of maximal 

damage observed with this form of injury22; (3) to ameliorate, as well as provide 

protection against, moderate ischemia-reperfuision injury; and (4) to mediate the atypical 

widespread, robust and organ-specific internalization of exogenous macromolecules in 

various renal cells of both small and large animals that are standard models for renal and 

vascular studies. These specific aims will be tested using the following six hypotheses. 
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In the first case, we hypothesize that hydrodynamic fluid delivery is a robust 

method to express a variety of exogenous transgenes in live normal mammalian kidneys. 

We anticipate that a hydrodynamic-based technique will effectively deliver exogenous 

transgenes in superficial proximal tubules of rat kidneys, with minimal injury, using 

various non-viral and viral expression vectors. In this work we will characterize 

transgene expression in live animals using intravital multiphoton fluorescence 

microscopy, and define optimal parameters for transgene delivery and expression.  

In our second study, we will utilize this technique to introduce fluorescent actin 

plasmid expression vectors in the kidneys of rats, subjected to ischemia-reperfusion 

injury. We hypothesize that this method can be used to track subsequent structural and 

functional changes in actin cytoskeleton renal injury initiated by renal pedicle cross-

clamp. We predict that this technique will enable us to monitor the loss and remodeling 

of actin components in live proximal tubule epithelial cells, which is the major site of 

ischemia-reperfusion injury. 

We will then apply this method to investigate the uses of hydrodynamic isotonic 

fluid delivery for the study of AKI. In particular, our studies will utilize an established rat 

model for ischemia-reperfusion injury to test the following additional hypotheses listed in 

the succeeding four studies.  

In the third study, we hypothesize that hydrodynamic fluid delivery can be used to 

efficiently deliver transgenes in live animals with ischemia-reperfusion injury. As before, 

we anticipate that a hydrodynamic-based technique will effectively deliver exogenous  

  



 
 
 
 
 

 
 
 
 
 
 

39 

genes to proximal tubules, the major site of damage with AKI22, of rat kidneys that are 

accessible by intravital microscopy. In this work, we will also characterize transgene 

expression in live animals using intravital multiphoton fluorescence microscopy and 

define optimal parameters for transgene delivery and expression prior to and at the 

maximal time of damage with AKI in order to outline a regimen for possible maximal 

therapeutic benefit.  

For our fourth study, we hypothesize that hydrodynamic delivery of isotonic fluid 

can ameliorate moderate ischemia-reperfusion injury in rats. We predict that this 

technique can provide substantial reductions in sera creatinine levels with a single 

retrograde infusion into the renal vein of rats with acute ischemia-reperfusion injury. 

Here, we will determine the optimal volume and time to generate maximum therapeutic 

benefit. 

For our fifth study, we hypothesize that hydrodynamic retrograde venous 

injections can be used to effectively deliver mitochondrial specific genes that can protect 

mammalian kidneys from AKI generated from ischemia-reperfusion injury. Resistance to 

IR injury can be induced experimentally (e.g., preconditioning) or can be conferred by 

genetic factors (i.e., as observed in the brown Norway (BN) rat). Little is known about 

mitochondrial adaptations in experimental or genetic models of resistance. This is an 

important gap in our knowledge since a variety of organisms and tissues have  

demonstrable adaptations to ischemia/hypoxia or anaerobic conditions by altering 

mitochondria protein expression. However, it is our premise that adaptations in  
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mitochondrial composition can confer protection to ischemia by altering baseline 

mitochondria function. These adaptations preserve mitochondria integrity in response to 

injury, leading to cytoprotection and preservation of renal hemodynamics. In this case, 

we predicted that genes that have been reported to be upregulated in kidneys of rats that 

are resistant to moderate ischemia-reperfusion injury could be used to protect kidneys, 

which are incapable of innately initiating this upregulation event. Specifically, we 

anticipate that the transfer of physiologically relevant concentrations of these genes via 

hydrodynamic delivery can adequately mimic this renal regulatory and protective process 

in kidneys that do not naturally exhibit this phenomenon.   

In the sixth and final study, we hypothesize that hydrodynamic fluid delivery is 

capable of facilitating the widespread delivery of various exogenous substances througout 

the kidneys of small, as well as large animals. We predict that this technique will enable 

us to effectively deliver exogenous macromolecules of interest to various proximal tubule 

epithelial cells in the kidneys of live Ossabaw swine. 
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II. MATERIALS AND METHODS 

 

A. Cell culture and live animals 

1. Cell culture 

a. Mouse kidney cell culture 

We used S3 segment of the proximal tubule epithelial cells211 cultured in a 

mixture of 500 ml of essential media with, 7.5% of sodium bicarbonate, 7% of fetal 

bovine serum (FBS), and 1% of Penn-Strep (streptomysin) (Fisher Scientific, Pittsburgh, 

PA and grown in a 37°C, 5% CO2-38% CO2 humid incubator.  

                   b. MDCK cell culture 

Madin-Darby Canine Kidney (MDCK) strain II cells previously described212, 

were grown in minimal essential media (Fisher Scientific, Pittsburgh, PA) with 8% fetal 

bovine serum, 1% L-glutamine, penicillin/streptomycin (Fisher Scientific) and 

hygromycin (Calbiochem, San Diego, CA), and kept in a 37°C, 5% CO2 humid incubator.  

2. Live rats 

  We used male Sprague Dawley (Harlan Laboratories, Indianapolis, IN), Frömter 

Munich Wistar (Harlan Laboratories, Indianapolis, IN) and Simonsen Munich Wistar 

(Simonsen’s Laboratory, Gilroy, CA) rats (150 to 450 g). Rats were given free access to 

standard rat chow and water and experiments were conducted in accordance with the 

National Institutes of Health Guidelines (NIH) and were approved by the Indiana 

University School of Medicine Institutional Animal Care and Use Committee (IACUC). 
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3. Live pigs 

 Male and female Ossabaw swine213 that ranged in mass from 50 to 80 kg were 

used in collaboration with Drs. Michael Sturek and Jonathan Tune (IUSM). The animals 

were nil per os for 12 hours prior to surgery. Experiments were also conducted in 

accordance NIH guidelines and with IACUC approval. 

 

B. Mild, acute and severe models of renal injury  

1. Gentamicin toxicity 

 For our gentamicin toxicity experiments, adult male Sprague-Dawley rats 

weighing 250-350 g were given a daily intra-peritoneal injection of gentamicin (Sigma-

Aldrich, St. Louis, MO) at a dose of 100 mg/kg over the course of 2 weeks, as described 

in a previously established protocol214,215. This work was conducted in conjunction with 

Dr. B. Molitoris (IUSM) and  Dr. A. Hall (University of Zurich, Switzerland). AKI was 

typically observed after daily gentamicin treatments for 7 days.  

2. Ischemia-reperfusion injury  

a. Bilateral clamp model 

 Rats were anesthetized with intraperitoneal injections of 50 mg/kg pentobarbital 

(Hospira, Inc., Lake Forest, IL and CustomMed Apothecary, Indianapolis, IN), and then 

placed on a heating pad to maintain normal physiological temperature. We utilized a  

standard model to generate renal ischemia-reperfusion injury, bilateral renal pedicle 

clamps were applied to occlude blood flow for periods of 10-15, 30-45 and 60 minutes68.  
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These clamp periods correspond to mild, moderate/acute and severe kidney injury 

respectively22. At the end of each injury period, the clamps were removed to reinstate 

renal blood flow and animals were allowed to fully recover.  

b. Contralateral nephrectomy and unilateral clamp model 

 Again rats were anesthetized with intraperitoneal injections of 50 mg/kg 

Pentobarbital (CustomMed Apothecary, Indianapolis, IN), and placed on a heating pad to 

maintain normal physiological temperature. Intraperitoneal incission were made and we 

ligated the right renal artery, renal vein and ureter using 3-0 or 4-0 silk and subsequently 

removed right kidneys. Incission were closed and each animal was allowed to recover for 

2-4 weeks. Rats werethen  subjected to unilateral (left) renal pedicle clamps for 30-45 

minutes68, corresponding to acute kidney injury22. At the end of each injury period, clamp 

was removed from the pedicle to restore renal flow and animals were allowed to recover.  

c. Ischemic preconditioning  

 Rats were again anesthetized in the manner described above and subjected to 

bilateral pedicle clamps for periods of 30-45 minutes216. The incissions were also closed 

during ischemia. The animals were then allowed to fully recover for a period of 7 days. 

 

C. Serum creatinine measurements 

 Blood samples we obtained from rats after small incisions were made on their 

tails. The blood was collected in 1 ml heparin-treated Eppendorf tubes. Blood samples 

were then centrifuged at 100,000-130,000 rpm for 10 minutes. The plasma (supernatant)  
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was then stored at 4°C. To determine serum we used the creatinine kinase reagent set 

(Point Scientific, Inc., Canton, MI). Measurements were performed with a Beckman 

Creatinine Analyzer 2 (Beckman Instruments, Brea, CA) according to manufacturer’s 

specifications and reported values in milligrams per deciliter (mg/dl)217.  

 

D. Cell and tissue markers 

1. Tolonium chloride  

We prepared stock solutions by dissolving 50 mg of tolonium chloride dye 

(Toluidine Blue O, Electron Microscopy Sciences, Fort Washington, PA), in 5 ml of 

0.9% saline. Thereafter, 0.5 ml of this mixture was used for each hydrodynamic injection 

in a rat, while the 50 ml was used for each injection in a pig. 

2. Fluorescent cell and tissue markers 

 The following fluorescent probes were used in our intravital two-photon 

fluorescent imaging studies: Texas-red-labeled albumin in phosphate buffered saline, 

PBS, (Invitrogen, Carlsbad, CA); 3 kDa Cascade Blue, and 4 and 5 kDa Fluorescein 

Isothiocyanate (FITC) dextrans (Invitrogen, CA); and 150 kDa Tetramethyl Rhodamine 

Isothiocyanate (TRITC) dextran (TdB Consultancy, Uppsala, Sweden). For rat studies, 

each dextran solution was prepared by diluting 500 µl of a 20 mg/ml stock solution in 1 

ml of saline117. We also used 30-50 µl of Hoechst 33342 (Invitrogen, Carlsbad, CA) that 

was diluted in 0.5 ml saline. Similarly for pig studies we prepared 50 ml of 0.9% saline 

that contained 400 mg of both dextrans. For mitochondrial in vivo investigations we  
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prepared stock solution by suspending 5 µg of Tetramethyl Rhodamine Methyl Ester, 

TMRM (Invitrogen Molecular probes, Eugene, OR) in 2 ml of saline. 

3. X-ray/CT contrast agents 

 Standard doses that ranged from 500 to 1000 ml of X-RAY/CT grade constrast 

media (GE Healthcare, Waukesha, WI) were used in our pig imaging studies.    

4. Plasmid vectors  

 We prepared plasmid DNA treatments suspended in saline using Qiagen Maxi 

Prep systems (Qiagen, Chatsworth, CA, USA). These plasmids encode: enhanced green 

fluorescent protein (EGFP), EGFP-actin and EGFP-tubulin (Clontech Laboratories, Inc. 

(Mountain View, CA, USA); EGFP-occludin (a gift from Dr. Clark Wells, IUSM); 

EGFP-ZO1; and H2B-tdTomato (a gift from Dr. Richard Day, IUSM). We also used non-

fluorescently labeled plasmid vectors that encode mitochondrial enzymes isocitrate 

dehydrogenase [NADP], mitochondrial (IDH2) and SULT1C1, a member of the 

sulfotransferase family (OriGene Technologies, Inc., Rockville, MD).  The IDH2 vector 

was a Myc-DDK-tagged ORF clone of Homo sapiens isocitrate dehydrogenase 2 

(NADP+), mitochondrial (IDH2), nuclear gene encoding mitochondrial protein as 

transfection-ready DNA. The SULT1C1 vector was a Myc-DDK-tagged ORF clone of 

Homo sapiens galactose-3-O- sulfotransferase 2 (GAL3ST2) as transfection-ready DNA. 

For these hydrodynamic injections, we used a dosage range of 1 to 3 µg of plasmid DNA 

per gram of body weight. 
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5. Baculovirus vectors  

 CellLight® GFP, Actin-GFP and Null (control) BacMam 2.0 baculovirus 

expression vectors were obtained from the Invitrogen Corporation (Carlsbad, CA). The 

CellLight® Actin-GFP baculovirus vector encodes fluorescent proteins with a mammalian 

targeting sequence for both filamentous and globular actin. The Null reagent lacks 

mammalian genetic constituents, and is designed to identify potential baculovirus-

mediated effects and distinguish fluorescence signals from innate tissue fluorescence. For 

all experiments we used doses the ranged from 1×105 to 1×107 viral particles/ml. 

6. Adenovirus vectors   

 Replication-incompetent EGFP-actin and RFP-actin adenovirus vectors (gift of 

Dr. James Bamburg, Colorado State University, Fort Collins, CO). These vectors were 

kept in concentrations of 3 x 108 pfu/ml in DMEM at –80°C218. For injections, we used 

suspended 3×105 to 3×107 pfu of each adenovirus vector in 0.5 ml of 0.9% saline.  

 

E. Cell cultute transfection and transduction protocols 

1. Expression of a single transgene vector 

 Immortalized cell cultures were grown in in 35 mm glass bottom, No. 1.5 

coverslip dishes, with standard thickness of 0.17 millimeters (Corning Inc., Corning, NY).  

We followed the Effectene Transfection Reagent protocol provided by Qiagen (Valencia, 

CA), for plasmid-based transfections219. We transfected cells at a multiplicity of infection 

(MOI) of 10:1, and a 24 hour incubation period using both types of viral vectors.  
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2. Simultaneous expression of multiple transgene vectors 

We also investigated the ability to simultaneously EGFP-actin and RFP-actin 

adenovectors, using the viral titers and incubation period previoulsy mentioned.  

 

F. Exogenous fluid delievry to the kidneys of live animals 

1. Jugular vein infusions in live rats 

For all animal studies, each rat was first anesthetized by inhaled isoflurane 

(Webster Veterinary Supply, Inc., Devens, MA), 5% in oxygen, and then given an 

intraperitoneal injection of either 50 mg/kg of pentobarbital or 130 mg/kg 

thiobutabarbital (non-survival procedures). The rat was then placed on a heating pad to 

maintain its core body temperature of roughly 37°C (Figure 1A). Once the animal was 

fully sedated, its neck was shaved and sanitized it with Betadine Surgical Scrub (Purdue 

Products L.P., Stamford, CT) solution. An incision was made to expose the jugular vein. 

The vein was isolated with two 3-0/4-0 silk loops. Superior loop was tied and clamped 

with a pair of hemostats to stiffen and elevate this vein. A minor incision was made in the 

jugular vein to insert a PE-50 tubing catheter. The other silk loop was used to anchor the 

catheter in place. This tubing was attached to a 1 ml syringe containing injectate.  

2. Tail vein injections in live rats 

 The tail vein of a sedated rat was either moistened with a warmed sheet of gauze 

or placed into a warm bath. A 25-gauge butterfly needle was inserted into the dilated vein 

tail vein. The butterfly needle was attached to a syringe containing injectates.   
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3. Renal capsule injections in live rats 

 The left kidney of an anesthesized rat was exposed via a flank incision (Figures 

1B through 1D). Thereafter using a 26-gauge  needle, we infused 0.5-1 ml of a tissue dye 

solution to investigate the uptake and distribution characteristics of exogenously 

delivered materials.   

4. Hydrodynamic infusions in live rats 

a.  Renal artery catheter-based injections  

 The first step towards the development of our hydrodynamic infusion technique 

focused on the ligation of the renal artery by the insertion of a PE-50 catheter. For this 

process, we made a mideline incision exposing the left renal artery, clamped the region 

directly below the aorta with micro-serrefines, made a small incission into the artery and 

inserted the catheter. The clamp was applied for approximately 15 minutes. Thereafter, 

we rapidly infused solutions (0.5-1 ml) into the artery at a rate of approximately 0.1 ml/s.  

b. Renal artery fine-needle injections (without vascular cross-clamps) 

 After isolating the renal artery, it was elevated with either 3-0 or 4-0 silk loop. 

Saline (0.2-1 ml) containing either tissue dyes or plasmids were infused into the renal 

artery at an approximate rate of 0.1 ml/s, using a 30-gauge needle. The needle was 

removed, and hemostasis was induced with a cotton swab after applying pressure to the 

injection site for a minimum of 10 minutes. After this, the midline incision was closed 

and the animal was allowed to fully recover. 
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Figure 1. Standard surgery layout and method to exteriorize the rat kidney for 
intravital imaging 
Digital images taken of an anesthetized rat as it was being prepared for surgery (A); and 
then during the flank incision procedure that was used to exteriorize the left kidney of an 
anesthetized rat (B through D). Image (C) is a zoom of the field presented in (B) to 
illustrate the tuft of perienal fat situated at the apex of the kidney, and image (D) is the 
kidney once it has been exteriorized through the flank incission. 
 

 



 
 
 
 
 

 
 
 
 
 
 

50 

c. Renal artery fine-needle injections (with vascular cross-clamps) 

 Fine needle injections were performed as described above, except micro-

serrefines were used to isolate and occlude both the renal vein and aorta for roughly 5 

minutes. During this time we infused saline (0.2-1 ml) containing either tissue dyes or 

transgene vectors into the renal artery at an approximate rate of 0.1 ml/s, using a 30-

gauge stainless steel needle. Again, we removed the needle and applied pressure to the 

injection site to induce hemostasis. These arterial injections were also prone to failure of 

timely hemostasis, so pressure was again applied for extended period after injections 

before the animals were allowed to fully recover. 

d. Retrograde renal vein catheter-based injections  

 As with jugular/arterial cathterization, we inserted a PE-50 tube into the renal 

vein and prepared the rat for hydrodynamic infusion at an approximate rate of 0.1 ml/s.   

e. Retrograde renal vein fine-needle injections (without vascular 

cross-clamps) 

 After separating the renal artery and vein as described above, we elevated the 

renal vein with either 3-0 or 4-0 silk loop and performed a retrograde infusion of a either 

tissue dye or transgenes at an approximate rate of 0.1 ml/s into the renal vein, using a 30-

gauge needle. We then removed the needle and applied pressure to the injection site, with 

a cotton swab, to induce hemostasis. The animal was then allowed to recover from the 

effects of the anesthesia. In some cases, we added Optison (GE Healthcare Medical 

Diagnostics, Princeton, NJ, USA) to the transgene vector solution. 
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f. Retrograde renal vein fine-needle injections (with vascular cross-

clamps) 

 We adapted the injection process outlined above to incorporate vascular cross-

clamping as a means to potentially reduce exogenous substance leakage and renal uptake.  

For this technique, we first clamped the renal artery, followed by the renal vein, using 

micro-serrefines. The vein was then elevated with either 3-0 or 4-0 silk loops. At that 

time either a tissue dye or transgene suspension was infused into the vein as described in 

Figure 2. The needle was removed and pressure was applied to the injection site using a 

cotton swab to induce hemostasis. The vascular clamps were removed (venous clamp was 

removed before the arterial clamp) to restore flow. The total clamping was less than 3 

minutes. The midline incision was then closed and the animal was allowed to recover. 

5. Monitoring vital signs during renal vein hydrodynamic retrograde 

infusions in live rats 

We made incisions in the legs of anesthetized rats to expose the femoral arteries. 

The arteries were isolated with two 3-0 or 4-0 silk loops. Using micro-serrefine clamps, 

we clamped off the artery and tied off the loops as well. Each loop was then clamped 

with a pair of hemostats to stiffen and elevate each artery. We then made a small incision 

in the femoral artery and inserted a PE-50 tubing catheter into its lumen. The other silk 

loop was used to anchor the catheter in place. This tubing was attached to a three-way 

port that was linked to a PowerLab 8/30 data acquisition system (ADInstruments, 

Colorado Springs, CO) to record temperature, blood pressure, and heart rate. 
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Figure 2. Schematics and live images illustrating the hydrodynamic injection 
process in the rat kidney  
Figure (A) illustrates the retrograde renal vein injection process, and digital images taken 
of a live rat: (B) directly before hydrodynamic injection, (C) directly after the injection 
and (D) 3 minutes after the hydrodynamic injection once the vascular clamps were 
removed. Arrowheads in image (C) show regions where the kidney vasculature which 
were perfused with saline directly after the injection. Signs of reinstated perfusion were 
observed once the clamps were removed.  
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6. Critical parameters for retrograde renal vein hydrodynamic injections in 

live rats 

In order to characterize the hydrodynamic delivery process, we monitored time-

dependent pressure profiles during injections. PE-50 polyethylene catheter tubing (Clay 

Adams, Division of Becton, Dickson and Company, Parsippany, NJ) was introduced into 

the femoral vein and traversed to the level of the bifurcation adjoining the renal vein and 

inferior vena cava. Both the vena cava and renal artery were clamped. To monitor renal 

venous pressure, a three-way stopcock was used to connect the infusion line with a fluid-

filled pressure transducer, and data acquired in real time using data-acquisition software 

(Biopac Systems, Inc., Goleta, CA). 

7. Hydrodynamic delivery facilitates the endocytic uptake of virions in live 

rat kidneys  

We attempted to inhibit baculoviral incorporation and expression simultaneously 

in MDCK cell cultures and in live animals, by incubating the viral particles in sera 

containing active complement proteins for approximately 90 minutes220. Similarly, we 

attempted to maintain baculoviral-based expression by incubating the viral particles in 

sera, containing heat-inactivated complement proteins, again for 90 minutes in vitro and 

in vivo. The complement proteins were deactivated by heating the sera to 56°C for 30 

minutes221. For these experiments, the standard dose of 1x105 viral particles.ml-1 was used 

for both the in vitro and in vivo investigations. This standard viral dosage was also used 

suspended in the serum sample that was hydrodynamically injected into a given animal  
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after it was harvested from the same animal. Cell cultures were imaged 24 hours after 

incubation with baculovirus vectors, and live rats 3 days after hydrodynamic injections to 

investigate transgene expression. 

8. Hydrodynamic retrograde venous delivery in rats with ischemia-

reperfusion injury 

 Rats that were subjected to mild and moderate ischemia-reperfusion injury, as 

described earlier, received hydrodynamic retrograde injections at either 1 hour or 24 

hours after ischemia/reperfusion injury (the 24 hour time point corresponds to the period 

of maximum damage with AKI22).  

9. Hydrodynamic retrograde portal vein injections in live rats 

 After creating intraperitoneal incision, we identified and isolated the portal vein. 

We then elevated the vein with either 3-0 or 4-0 silk loop. Thereafter, the vein was 

clamped and we performed a rapid injection of a given transgene solution, described 

earlier, at a site between the clamp and the liver. Pressure was then applied to this vein as 

before to induce hemostasis. Again, the total clamping period did not exceed 3 minutes. 

Finally, the midline incision was closed and the animal was allowed to fully recover. 

10. Renal artery and vein infusions in live Ossabaw swine 

a. Low rate arterial and retrograde venous infusions into the renal 

vein of Ossabaw swine 

 Ossabaw pigs were anesthetized with 5 mg/kg of Telazol (a dissociative 

anesthetic & benzodiazepine) and 2.2 mg/kg of Xylazine (an alpha2 agonist) and  
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maintained on isoflurane, between 1 and 5% concentration. Local anesthetic (lidocaine & 

bupivacaine) was injected subcutaneously at the incision sites. Roughly 10 cm incisions 

were then made in the right and left inguinal regions to access the right femoral artery 

and left femoral vein respectively. An 8F-introducing sheath was placed in the right 

femoral artery, while a 7F-introducing sheath was placed in the left femoral vein, and 

guiding catheters were inserted into these sheaths and directed to the renal artery or vein. 

Guidewires, typically 0.014" wires were used to select a specific artery and vein.  

 Radiopaque contrast media was then injected intravenously and intra-arterially to 

help select a specific vessel. A 5 mm balloon catheter was placed over the guidewire in  

the renal artery.  An infusion catheter was placed over the guidewire in the renal vein. 

The 5 mm balloon was inflated in an attempt to occlude either the renal artery or vein. 

Low rate infusions of contrast media were first utilized to determine whether we could 

access the kidney from either the venous or arterial lines. Once this was done, we 

conducted low rate infusions of 50 ml of a mixture containing contrast media, toluidine 

blue dye, and low and large molecular weight dextrans were infused into either the renal 

artery or renal vein, and confirmed by angiography to examine the characteristics related 

to the possible uptake of exogenous materials in live Ossabaw swine kidneys. 

b. Hydrodynamic retrograde injection into the renal vein of Ossabaw 

swine 

 Several midline incisions were made in pigs, which were anesthetized in the 

manner described above, to separate the extensive skin, muscle, adipose layers. We then  
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externalized large and small intestine loops to first identify the spleen and liver. Using 

these landmarks we then identified the left gonadal vein and ascended the inferior to the 

common renal vein distal to the left gonadal vein insertion and proximal to anterior  

branching of the renal vein. We then tied off visible bifurcations of the renal vein, 

including the branch into to which we made injection, using umbilical cotton tape. This 

was done in an attempt to temporarily occlude renal blood flow.  

 Using the umbilical tape looped around this renal vein branch, we extended the 

vein and delivered 50 ml of saline containing the tissue dye solution (this solution 

contained equal concentrations of 4 KDa FITC and 150 kDa TRITC dextrans) using a 16-

gauge catheter attached to a 60 ml syringe. We then applied pressure to the vein to aid 

hemostasis. The total time that we occluded renal blood flow did not exceed 8 minutes. It 

should be noted that the angle from the IVC was quite acute and the anatomy of the 

length of the common renal vein distal to the left gonadal vein insertion and proximal to 

anterior branching of the renal vein was quite small, which increased the difficulty to 

make the injection.  Morover, it was difficult to induce hemostasis in this animal because 

it was given large doses of heparin to aid separate cardiac studies, as well as the complex 

network of veins intertwined within adipose tissue.  

11. Monitoring vital signs during renal vein hydrodynamic retrograde 

infusions in live pigs 

Anesthetized pigs were intubated and ventilated. ECG, Pulse-Oxymetry and 

Arterial Pressure Line patient monitoring devices were connected to animal’s vital signs. 
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G. Cell and tissue imaging 

1. Fluoresence microscopy   

a. Confocal fluorescence imaging of live cells  

 All confocal imaging studies were conducted an Olympus FV 1000-MPE 

Microscope (Olympus, Tokyo, Japan). Cell cultures were grown in 35 mm glass bottom, 

No. 1.5 coverslip dishes, with standard thickness of 0.17 millimeters (Corning Inc., 

Corning, NY). The dishes were placed above the objective and the microscope was set to 

acquire 512×512 blue-, green- and red-pseudo-color images. To minimize both 

photoxicity and photobleaching, we reduced both the energy level of the excitation light 

and the duration of excitation. We also used a Warner DH-35 dish and OW objective 

warmers to maintain culture temperatures as needed for prolonged imaging sessions.  

b. Spectral analyses to identify transgene fluorescence 

 Using the Olympus Fluoview Ver. 3.1a lambda stack algorithm, which is 

available with the Olympus FV 1000-MP Microscope, we collected emission spectra, in 

confocal mode covering major emission spectra of the fluorescent probes used for studies 

in live kidney and cell culture. Once major peaks were identified, our fluorescent spectra 

were compared to those of known fluorescent probes, and we noted general factors by 

which fluorescent signal intensities differed from background intensities.  

c. Intravital two-photon fluorescence microscopy  

 In anesthetized rats, we shaved the left flank and made vertical incisions to 

externalize the left kidney. The kidney was then placed inside a glass bottom dish  
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containing saline, which was set above either a 20X or 60X water immersion objective 

for imaging, with the animal’s body acting as weight to stabilize the kidney in this 

position207,209 (Figure 4). A heating pad was then placed over the rat to maintain its core 

temperature. Similarly, for liver imaging, horizontal incisions were made directly under 

the xiphoid, to facilitate the externalization of the liver lobes using a cotton swab. Lobes 

were rested in the imaging dish, and the animal was placed on its stomach to provide 

contact between the lobes and the glass dish, and minimize motion due to respiration.  

 Fluorescent images were acquired from externalized organ within 800-860 nm 

excitation wavelength range207. Measurements were made with an Olympus FV 1000-

MPE Microscope set with a Spectra Physics MaiTai Deep See laser, tunable from 710-

990 nm, with dispersion compensation for two-photon microscopy (Olympus Corporation, 

Tokyo, Japan)209. The system is also equipped with two external detectors for two-photon 

imaging, and dichroic mirrors available for collecting blue, green and red emissions.  

 The system is mounted on an Olympus IX81 inverted microscope (Figure 5). 

Emitted light is collected using a 3-fixed band pass filter system: 420-460 nm (blue 

channel), 495-540 nm (green channel), and 575-630 nm (red channel). It should be noted 

that as we investigated EGFP-based expression, we merged the pseudo-green and 

pseudo-red colors to further differentiate between GFP-based fluorescence and 

endogenous tissue fluorescence. This was done because renal tubules are known to have 

high levels of green autofluorescence. Such a technique has been presented in the 

literature to successfully identify positive GFP-based signals in vivo117. 
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d. Two-photon imaging of freshly excised tissues 

 Rat and pig tissues were harvested from live animals directly before euthanasia. 

These tissues were quickly sectioned and placed into imaging dishes for microscopic 

analyses as previously discussed. Additionally, other tissue sections were fixed with 4% 

paraformaldehyde, counterstained with Hoechst 33342 and then imaged. 

e. Texas-red phalloidin and fluorescent actin colocalization to verify 

transgene expression  

 Whole transduced kidneys were either perfusion or immersion fixed with 4% 

paraformaldehyde solution. Sections (100-200 µm thick) were obtained, then incubated 

overnight in a phalloidin staining solution. This solution was prepared by diluting Texas-

red-phalloidin (Invitrogen Corporation, Mountain View, CA) 1:200 in blocking buffer (2% 

bovine serum albumin and 0.1% Triton X-100, diluted in phosphate-buffered saline)117. 

The next day the tissues were rinsed three times for two hours in PBS, and then mounted 

onto slides and analyzed using the aforesaid confocal fluorescence microscope. 

f. Estimations of transgene delivery efficiencies  

i. In vivo renal transgene delivery efficiencies    

We estimated transgene delivery efficiencies for each vector in vivo using 

intravital fluorescent two-photon microscopy. We determined expression efficiencies 

within live superficial cortex segments of several rats across a 28-day period after 

transgene delivery. We began our measurements 3 days after delivery, as this was when 

we could observe signs of stable transformation and renal function after injections.   
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For these efficiency measurements, we first distinguished transgene expression 

from autofluorescent backgrounds by conducting spectral analyses. This allowed us to 

determine that transgene fluorescence signals had intensities at least double those of  

autofluorescence signals. Using this criterion we then calculated the percentage of 

nephron cross sections (glomeruli and tubules), which expressed the reporter transgenes 

within microscopic fields acquired with the 60X objective. Final efficiency value was the 

average percentage of transformed cross sections in 10 randomly chosen adjacent fields.  

ii. In vitro renal transgene delivery efficiencies 

Our in vitro estimations allowed us to determine the degree of transgene 

distribution throughout all regions of the cortex and medulla, including those presently 

inaccessible by intravital two-photon microscopy. For these measurements we acquired a 

montage of fields using confocal laser-scanning microscopy covering a wedge of the 

kidney from the cortex to the level of the pedicle. We then estimated the degree of 

transformation using the same method mentioned for the in vivo efficiency measurements, 

within 100 µm × 1000 µm at various depths from the surface of the kidney (Figure 3).  

g. Functional and structural analyses using fluorescent albumin and 

dextrans following transgene delivery and fluorescent protein 

expression 

After identifying a time-course for renal recovery and viable transgene expression, 

it was then necessary to investigate whether hydrodynamic delivery process or transgene 

expression would hinder intrinsic renal structural and functional capacities. For this, we  
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Figure 3. Reconstructed montage of a fixed kidney section 
Montage collected from a fixed kidney 3 days following hydrodynamic injection of saline. 
The montage was reconstructed from a series of confocal laser-scanning micrographs 
covering a wedge of the kidney from the cortex to the level of the pedicle. 
 

 

  



 
 
 
 
 

 
 
 
 
 
 

62 

again systemically introduced fluorescent albumin, and low/large molecular weight 

dextrans to investigate potential uptake and distribution of dyes in superficial nephron 

cross sections209, in animals that received hydrodynamic retrograde injections of saline 

and transgene solutions, throughout a 6-week period after the injection process.  

h. Investigating the correlation between hydrodynamic injection 

parameters and reliable transgene expression  

We examined the conditions required to infuse the transgenes at various injection 

rates. To gain insight into the effectiveness of each infusion rate, we infused the 3 kDa 

Cascade Blue and 150 kDa TRITC molecular weight dextrans at approximately 0.1 ml/s, 

0.008 ml/s and 0.004 ml/s. We investigated the effect each infusion rate had on renal 

structure and function, and transgene expression as presented below.  

i. Investigating whether hydrodynamic forces facilitate endocytic 

uptake of virions in vivo 

We conducted a series of experiments that monitored baculovirus-derived 

fluorescent protein expression under standard systemic and hydrodynamic renal vein 

delivery conditions. For systemic baculoviral delivery investigations, we introduced the 

CellLight® Actin-GFP baculoviral particles through the tail vein and monitored the tissue 

fluorescence prior to and post transgene delivery.  

We next examined the interactions between sera complement proteins and the 

actin-targeting baculovirus vectors, in vitro and in vivo, under hydrodynamic conditions. 

We attempted to inhibit baculoviral incorporation and expression simultaneously in  
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MDCK cell cultures and in live animals, by incubating the viral particles in sera 

containing active complement proteins for approximately 90 minutes220. Similarly, we 

attempted to maintain baculoviral-based expression by incubating the viral particles in 

sera, containing deactivated complement proteins, again for 90 minutes in vitro and in 

vivo. We deactivated complement proteins by heating the sera for both in vitro and in 

vivo investigations. Note all sera that were re-introduced into a given rat, were originally 

collected from the same rat.  

j. Estimations of mitochondrial potential activity in live rat kidneys 

based on TMRM fluorescence intensities 

We obtained 5-10 adjacent intravital fields that were randomly chosen from each 

live kidney using a 20X objective, approximately 15-30 minutes after TMRM was 

introduced into an animal via a jugular vein infusion. We calculated the mean intensity of 

each tubule in a given intravital fluorescence microscopic field using ImageJ software 

(National Institute of Mental Health, NIH, Bethesda, MD). Thereafter, a final TMRM 

intensity value was obtained from the average of all measured intensities. This process 

allowed us to examine fluorescence intensities from a minimum of 500 tubules per 

kidney. These kidneys were analyzed from normal and ischemic preconditioned rats, and 

those that received hydrodynamic treatments of saline, IDH2 and SULT1C1. 

2. Histology and renal injury assessment 

 Biopsies were performed on kidneys 3 days after receiving sham, saline and 

transgene hydrodynamic retrograde injections. For this process, rats were anesthetized  
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with pentobarbital and once fully sedated whole kidneys were acquired by clamping each 

renal pedicle and rapidly excised the kidneys. Once removed, the kidneys were fixed with 

4% paraformaldehyde for 24 hours at 4°C. Thereafter the samples were immersed in 10% 

neutral buffered formalin or 4% phosphate-buffered formalin, again for a minimum of 24 

hours at room temperature.  The specimens were then rinsed in distilled H2O and stored 

in 70% ethanol. For infiltration, the specimens were dehydrated through a graded series 

of ethanol (70%; 80%, 95%, 100%; two changes each under vacuum for 45 minutes at 

room temperature).  The specimens were cleared in two changes of xylene (under 

vacuum at room temperature for 45 minutes each), infiltrated with 4 changes of paraffin 

(under vacuum at 59°C; 45 minutes each), and embedded in fresh paraffin. After which, 

4-5 microns thick sections were cut using a Reichert-Jung 820 microtome (Depew, NY).  

Sections were flattened on a warm water bath and mounted on coated and charged 

glass slides. After drying the sections were deparaffinized, rehydrated and stained with 

hematoxylin and eosin. We then imaged these slides using a Nikon Microphot SA 

Upright Microscope equipped with a sensitive Diagnostic Instruments SPOT RT Slider 

color camera (Nikon, Tokyo, Japan) and collected a minimum of 10 randomly chosen 

adjacent fields with a 20X objective. This generated an approximately 0.24 mm2 field of 

view222.  

A blinded reviewer used a method previously described by Kelly et al.222,223 to 

assess renal injury by calculating the percentage of damaged tubules: (number of severely  

injured tubules)/(total number of tubules)×100%. Renal tubules were classified as normal  
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(showing no evidence of injury); moderately damaged (indicated by loss of brush border 

staining and simplification void of evidence of necrosis); and severely damaged 

(indicated by tubules with apparent necrosis, or cellular debris in the lumen). 

Approximately 500 tubules were scored for such assessments. 

3. Fluoroscopy/cinematography to monitor uptake of exogenous dyes in live 

pig kidneys 

 Angiograms of live Ossabaw pig kidneys were acquired using a 

fluoroscopy/cinematography unit. Pigs were anesthetized as described above, and then 

radiopaque contrast media was injected intravenously and intra-arterially to help select 

specific vessels. This selection was confirmed by angiography, as we examined 

characteristics related to possible uptake of exogenous materials in live swine kidneys. 

 

H. Western blot analysis 

 Immersion fixed kidney samples were homogenized, and we collected protein-

enriched fractions. The proteins were separated using sodium dodecyl sulfate (SDS) gel 

electrophoresis and transferred to membranes for detection. These membranes were 

incubated with generic proteins to inhibit non-specific binding and primary and 

secondary conjugations that were used to recognize proteins of interest (such as those 

expressed by our plasmid and viral vectors). Whole kidneys were harvested from 

anesthetized rats and were cryofixed by submsersion into liquid nitrogen chambers (no  

conventional fixatives were used throughout this process). After a minimum of 1 week  
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cryofixation, the kidneys were taken from the liquid notrogen chamber and we acquired 

approximately 300 mg tranverse sections that extended from the cortex to the pedicle.  

 The sections were homogenized in 300 ul RIPA buffer using Dounce 

homogenizer on ice and spun the lysate at 13,000g for 20 minutes in a 4°C pre-cooled 

centrifuge. We gently removed the tube from the centrifuge and placed it on ice and 

transfered the supernatant to a fresh tube (also kept on ice) and then performed a BCA 

assay to determine the protein concentration. Denatured protein samples were acquired 

by adding equal volumes of 2X Laemmli Sample Buffer at 70°C for 5 minutes. We then 

loaded 5 ug of each protein sample into the wells of the 10% SDS-PAGE gel, along with 

molecular weight markers. We then ran the gel for 50 minutes at 240 V, and the protein 

was transfered from the gel to the membrane for 36 minutes at 24 V. After wich, we 

blocked the membrane overnight at 4°C using TBST blocking solution with 3% FBS.  

 Next we incubated the membrane with 1:1000 dilution of primary antibody 

(Rabbit PolyAb Anti-IDH2, Novus Biologicals, Littleton, CO) in TBS  blocking solution 

with 0.3% FBS for 1 hour at room temperature and washed it three time with TBS for 5 

minutes. The membrane was then incubated with 1:40,000 dilution of secondary antibody 

HRP D&R in TBS blocking buffer with 0.3% FBS at room temperature for 1 hour, and 

gel was washed three times with TBS. For signal development, we incubated blots for 5 

minutes in the ECL reagents (SuperSignal™ West Pico Chemiluminescent Substrate). 

After, we removed excess reagent, covered membranes in transparent plastic wrap, and 

acquired images using chemiluminescence darkroom development techniques. 
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I. Statistical analysis 

 We computed the mean and S.E. for all data sets, and evaluated the statistical 

significance of our results using the Student’s t-test. All statistical analyses were 

evaluated with 95% confidence or certainty.  
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III. RESULTS 

 

Chapter 1. The design and characterization of various methods to facilitate and 

monitor transgene expression in the rat kidney  

 

A. Fluorescent protein expression in cultured cells using plasmid, baculovirus and 

adenovirus vectors 

We observed non-viral and viral derived fluorescent protein expression in 

cultured cells using confocal microscopy (Figures 4-6). We analyzed fluorescent protein 

spectra, and determined that their fluorescence levels were at least double those of 

autofluorescence in cell culture and tissues. This enabled us to clearly identify transgene 

expression in cell culture (Figure 5), and fixed (Figure 27) live and tissues (Figure 28). 

From our cell culture studies, green florescent proteins appeared throughout the 

nuclei and the cytoplasm of cells that were infected with EGFP plasmid (Figures 4A and 

4B), GFP baculovirus (Figures 5B) and EGFP adenovirus vectors (Figures 6A). Likewise, 

striking and characteristic filamentous and tubular fluorescent patterns were observed in 

cells that were infected with non-viral and viral transgene vectors designed to express 

fluorescent tubulin (Figures 4C and 4D) and actin (Figures 6B and 6C). Cells treated with 

EGFP-occludin (Figure 5E) and H2B-tdTomato plasmids (Figure 5F) expressed proteins 

also provided clear signs of anticipated probe localization and morphology. For instance, 

EGFP-occludin signals ran between adjacent nuclei as punctate fluorescent bands along  
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Figure 4. Plasmid-derived fluorescent protein expression in live cells  
Confocal micrographs taken of S3 proximal tubule epithelial mouse cell cultures 1 days 
after they underwent lipofection  with EGFP, EGFP Actin and EGFP Tubulin plasmid 
vectors. Images were taken under 2X or 3X optical zoom to highlight fluorescent 
structures. Untagged GFPs are expressed throughout the nuclei and cytoplasm observed 
within images (A) and (B). Cellular nuclei, actin filaments and microtubules are well-
defined within images (C and D), and (E and F) respectively. Images G and H were 
obtained from cells trated with PBS and show a typical lack of fluorescence.  
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Figure 5. Spectral analyses used to identify baculovirus- and plasmid-derived 
fluorescent protein expression in live cells 
Confocal laser scanning micrographs obtained from MDCK and S3 proximal tubule 
epithelial mouse cell cultures incubated with: (A) Null baculovirus vectors, (B) GFP 
baculovirus vectors, (C) Actin-GFP baculovirus vector, (E) EFGP-occludin plasmid 
vectors; and (F) Histone H2B-tdTomato plasmid vectors. These images were taken 1 day 
after plasmid and viral transformation. Untagged GFPs are expressed throughout the 
nuclei and cytoplasm observed within image (B). Within image (C) actin filament 
staining appears uncharacteristically punctate. Image (E) outlines characteristic plasma 
membrane-derived tight junction staining and (G) presents typical nuclear and 
cytoplasmic staining representing histone localization. Spectral analyses presented in (E) 
identified that transgene-based fluorescence signal intensities were at least double those 
of the background.  
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Figure 6. Adenovirus-derived fluorescent protein expression in live cells  
Confocal micrographs taken of MDCK cell cultures 1 day after they were incubated with 
fluorescent adenovirus vectors: (A) GFP, (B) Actin-GFP, and (C) Actin-RFP. Untagged 
GFPs are expressed throughout the nuclei and cytoplasm observed within image (A). 
Also, nuclei and actin filaments are clearly defined within images (B) and (C).  
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regions that would correspond to tight junctions (Figure 5E). Also, fluorescent H2B-

tdTomato protein expression was observed throughout the nuclei of transfected cells 

(Figure 5F). However, fluorescence patterns observed from cells treated with CellLight® 

Actin-GFP baculovirions (express GFPs that bind to actin filaments) produced punctate 

fluorescence patterns that deviated from normal cellular morphology (Figure 5C).   

 

B. Rat kidney autofluorescence,structure and function examined with intravital two-

photon florescence microscopy 

1. Rat kidneys investigated under normal physiological conditions 

a.  Tissue autofluorescence in normal rats visualized using two-

photon excitations wavelengths that range from 800 to 860 nm 

 We examined innate tissue autofluorescence in various nephron cross sections of 

live rat kidneys using intravital two-photon microscopy (Figure 7). From the data 

collected, across this range of excitation wavelengths, we observed that normal proximal 

tubules had a characteristic punctate autfluorescence pattern. The fluorescence signal 

levels obtained from proximal tubule epithelial cells were greater than those obtained 

from distal tubule epithelial cells. In two-photon micrographs, including the images we 

acquired from normal rat kidneys, distal tubules appear as regions of low fluorescence, as 

compared to neighboring proximal tubules. The epithelial cells of the proximal tubules 

have characteristic punctate fluorescence patterns that apprear throughout the cytoplasm 

(Figure 7). Similalry, Bowman’s capsule is the primary visible structure within the  
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Figure 7. Autofluorescence in the normal rat kidney visualized at excitation 
wavelentghs ranging from 800 to 860 nm 
Intravital micrographs of tissue autofluorescence in normal rat kidneys across excitation 
wavelength range 800 to 860 µm. These images show the punctate fluorescent patterns 
characteristic of proximal tubules. In all cases, we merged the red and green pseudo-color 
channels to form each image. 
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glomerulus (Figure 8), which gives it a unique appearance when visualized with confocal 

and multiphoton fluorescence miscroscopy. 

b. Renal structure and function in rats 

 We infused various fluorescent dyes into the jugular veins of live rats to examine 

key aspects of renal structure and function. This allowed us to visualize  

peritubular and glomerular capillary integrity, renal microvascular blood flow, 

glomerular and tubular filtration, and proximal tubular endocytic internalization (Figure 

8). These data provided us with a standard by which to identify renal structure and 

function, as well as to gauge  abnormalities in live rat kidneys using intravital fluorescent 

microscopy. 

2. Rat kidneys investigated under nephrotoxic and ischemic conditions 

a. Tissue autofluorescence, structure and function in the setting of 

gentamicin-induced nephrotoxicity 

 Gentamicin treatments significantly altered normal tissue autofluorescence, 

structure and function. Specifically, rats that received daily gentamicin injections for 1 

and 2 weeks produced acute and severe renal damage respectively. Two days after the 

treatments began, we observed signs of mild injury in these rat kidneys. The degree of 

injury escalated as we continuted providing gentamicin treatments. The typical uniform 

and punctate fluorescence patterns observed in the proximal tubules of normal rat kidneys, 

were significantly altered in these nephrotoxic rats, as illustrated by regions of clumped 

and intensified fluorescence (Figures 9B and 9C).  
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Figure 8. Renal function visualized with intravital two-photon fluorescence 
microscopy 
Glomerular structure and function investigated in live rats that received sequential jugular 
vein infusions of Hoechst 33342, Texas-red labeled Albumin and 4 kDa FITC dextran 
solutions : (A) normal glomerulus with non-fluorescent peritubular and capillaries prior 
to dye infusions; (B) Hoechst is seen filling the peritubular and glomerular capillaries 
directly after its infusion through the jugula vein; (C) stained nuclei label vascular and 
tubular cells after the infusion of Hoechst; (D) image taken directly infusing Texas-red 
labeled Albumin highlights the vascular system and endocytic tubular protein 
uptake/reclamation; (E) and (F) images taken directly after the infusion of the 4 kDa 
FITC dextran molecules. These latter images illustrate glomerular filtration, and 
localization of both the albumin and FITC probes within tubule lumens and as 
internalized fluorescent puncta with proximal tubule epithelial cells (Glomerulus = GL; 
proximal tubule  = PT; and vasculature = V). The ratio of albumin to dextran is the same 
in the capillaries as it is in the bowman's space signifying a variation from normal 
glomerular capillary integrity.  
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Figure 9. Nephrotoxicity alters normal renal function and structure 
An outline of the changes in tissue autofluorescence, structure and function that can be 
observed from a nephrotoxic kidney when compared to a normal kidney using intravital 
two-photon microscopy: (A) uniform and punctate fluorescence pattern observed in a 
normal; (B) through (D) rats treated treated with 100 mg/kg of gentamicin for 2 weeks 
and imaged 8 days post treatment illustrate signs of patch necrosis, blebs, sloughed cells, 
casts in lumens, epithelial cells thinning, diminished brush borders, and an overall change  
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in innate autofluorescence  patterns. These changes observed in the injured animal often 
make it difficult to identify various renal compartments. Moreover, image (D) outlines 
the reduced levels of proximal tubular endocytic uptake of a low molecular weight 
mitochondrial marker - Tetramethyl Rhodamine Methyl Ester (TMRM), and varied levels 
of mitochondrial activity within these cells.  
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By the eigth day, we observed a large quantity of blebs, sloughed cells and casts 

within tubular lumens and the supporting vasculature. There was also an overall 

reduction in proximal tubule brush borders and epithelial thickness (Figure 9D). These 

alterations are consistent with the documented impact aminoglycosides have on endocytic  

properties of proximal tubules224,225. These changes observed in injured animals often 

make it difficult to distinguish the various renal compartments. 

b. Tissue autofluorescence, structure and function in the setting of 

ischemia-reperfusion injury 

 Rats with mild and moderate ischemia-reperfusion injury, generated from 10-15 

minute and 30-45 minute bilateral renal pedicle clamps respectively, had microscopic 

renal damage similar to that observed in the rats with moderate to severe gentamicin-

derived nephrotoxicity (Figure 10). The serum creatinine levels in these rats were also 

significantly elevated (generally greater than 3 mg/dl during the first 24 hours after 

inducing injury) above the normal baseline. However, the damage observed in the 

kidneys of rats given mild forms of ischemia-reperfusion injury, generated from 10-15 

minute bilateral pedicle clamps, was less severe. Overall tissue fluorescence, structure 

and function were not significantly altered, and serum creatinine levels remained within a 

normal measurement range (0.4-0.6 mg/dl). 
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Figure 10. Ischemia-reperfusion injury alters normal renal function and structure 
An outline of the changes in tissue autofluorescence, structure and function that can be 
observed from a kidneys with ischemia-reperfusion injury when compared to a normal 
kidney using intravital two-photon microscopy: (A) uniform and speckled fluorescent 
patterns observed in a rat with normal structure and function; (B) rat with mild ischemia-
reperfusion injury (15 minute bilateral renal pedicle clamp), and (C) and (D)  rats with 
moderate ischemia-reperfusion injury (30-45 minute bilateral renal pedicle clamp). As  
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with gentamicin-treated rats,  images (B) and C) show blebs, sloughed cells, casts in 
lumens, epithelial cells thinning, and an overall change in autofluorescence  pattern. Red, 
green and blue pseudo-colors were merged to form these images. Arrowheads indicate 
cellular debris that filled tubule lumens. 
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C. Characterizations of various methods designed to deliver exogenous fluid to the 

kidney 

1. Systemic fluid delivery to the kidney in normal rats via jugular and tail 

vein infusions  

 High molecular weight (150 kDa) fluorescent dextran molecules delivered 

systemically through jugular and tail veins were characeristically restricted within the 

peritubular capillaries that surrounded intact proximal and distal tubules (Figures 11 and 

12). This probe was widely distributed within the vasculature of nephron segments that  

were accessible for imaging by our two-photon microscope independent of the infusion 

method. This imaging techniuqe allowed us to successfully survey the extensive 

distribution of the fluorescent dye as a function of renal tissue depth.  

2. Localized fluid delivery to the kidneys of normal rats 

a. Renal capsule infusions in live normal rat kidneys 

 After injecting the same dextran used for jugular and tail vein infusions, we 

examined the renal distribution of this fluorescent probe. In this case, the 150 kDa FITC 

dextran molecules were again confined within the vasculature, but at a reduced level 

when compared to the results generated from systemic delivery (Figure 13). Specifically, 

150 kDa dextan molecules delivered via renal capsule injections were restricted to narrow  

regions that surrounded the injection site, within highly superficial cortical zones (region 

within 20 µm from the surface). Also, this method also did not appear to significantly 

injure the kidney. 
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Figure 11. Jugular vein dye infusions used to aid the visualization of live normal rat 
kidney as a function of tissue depth  
Images of normal tubular structure and function in live rats that received jugular vein 
infusions of a 150 kDa FITC dextran solution. These images were taken at various tissue 
depths: (A) tissue autofluorescence  prior to dextran infusion approximately 40 µm from 
the capsule of the kidney; (B) approximately 60  µm from the capsule of the kidney; (C) 
approximately 40 µm from the capsule of the kidney; (D) approximately 20 µm from the 
capsule of the kidney; (E) approximately 10 µm from the capsule of the kidney; and (F) 
at the level of the renal capsule. These data show normal vasculature restriction of the 
large molecular fluorescent dextran. Proximal tubule (PT) and vasculature (V).  
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Figure 12. Tail vein dye infusions used to aid the visualization of live normal rat 
kidney as a function of tissue depth  
Intravital micrographs fields taken from a live rat that received a tail vein injection of 150 
kDa FITC dextran solution. These data show normal vasculature restriction of the large 
molecular probe. Proximal tubule (PT) and vasculature (V).  
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Figure 13. Renal capsule injections faclitate a limited distribution of exogenous 
probes that are only able to occupy the vasculature 
Two-photon micrographs taken at various depths from below the renal capsule to 
illustrate the limited distribution of 150 kDa FITC dextran molecules injected into the 
renal capsule: (A) approximately 35 µm from the capsule of the kidney; (B) 
approximately 30  µm from the capsule of the kidney; (C) approximately 25 µm from the 
capsule of the kidney; (D) approximately 20 µm from the capsule of the kidney; (E) 
approximately 15 µm from the capsule of the kidney; and (F) approximately 10 µm from 
the capsule of the kidney. These data show normal vasculature restriction of the large 
molecular probe. Proximal tubule (PT) and vasculature (V). These micrographs illustrate 
significant degree of the large molecular weight dye within the vasculature as anticipated.  
The dye was not distributed uniformly throughout the kidney and was restricted to a 
region that surrounded the injection site. 
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b. Hydrodynamic fluid delivery in live normal rat kidneys 

i. Catheter-based renal artery infusions 

We utilized the full effect of the pressurized injection system, under conditions of 

hydrodynamic equilibrium, by inserting PE-50 catheters into renal arteries of live rats and 

rapidly injected 150 kDa FITC dextran solutions proximal to the point of ligation. After 

such injections, various microscopic fields that were taken from these live rat kidneys 

illustrated the widespread distribution of dextran molecules within various nephron cross 

sections (Figure 14). The dextran molecules accessed the microvasculature, as well as 

lumens and apical borders of proximal and distal tubules. This in turn facilitated their 

vesicular internalization by renal tubular epithelia. Unfortunately, this welcomed 

internalization was accompanied by ample and irreversible injury from arterial ligations.   

ii. Catheter-based renal vein infusions 

We again investigated the full effect of the pressurized injection system, under 

conditions of hydrodynamic equilibrium, by inserting a PE-50 catheter into the renal vein. 

In this case, intermediate molecular weight fluorescent albumin molecules were injected 

into catheterized renal veins of live rats. Again, as with the renal catheter infusions, this 

hydrodynamic manipulation resulted in the robust and instantaneous distribution of 

albumin in vascular and tubular compartments in live animals (Figure 15). The images 

presented within 20 minutes of the albumin infusion. Additionally, as with the arterial 

studies, the catheter-induced ligation produced extensive disruptions to renal blood flow, 

resulting in collapsed vessels and sloughed cells within tubular lumens. 
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Figure 14. Catheter-based renal artery injections facilitate the widespread delivery 
of large molecular weight exogenous probes to the tubular epithelia at the expense 
of significant renal injury 
Microscopic fields were taken from a live rat that received a hydrodynamic injection of 
150 kDa FITC dextran molecules that were infused through the ligated renal artery, via a 
PE-50 catheter. There was widespread distribution of dextran molecules throughout the 
kidneys that appeared within lumens of proximal and distal tubules, and were internalized 
by proximal tubule epithelial cells. However, we also observed signs of significant renal 
injury such as constricted vessels, occluded lumens, and lumens that contained a 
noteworthy concentration of blebs.  
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Figure 15. Catheter-based renal vein injections facilitate the widespread delivery of 
exogenous albumin to the tubular epithelia at the expense of significant renal injury 
Intravital two-photon microscopy images illustrating the distribution of Texas red-labeled 
albumin within a rat kidney generated from a catheter-based hydrodynamic renal vein 
infusion. The dye was infused into the left renal vein through a PE-50 catheter that 
completely ligated this vessel. The fluorescent albumin can be seen within the distal 
tubules (DT), proximal tubules (PT) and vasculature (V). Distal tubules are known to 
display significantly lower autofluorescence signals that proximal tubules.  
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iii. Fine-needle hydrodynamic renal artery injections of 

fluorescent dextrans with vascular clamps  

 Live rats received fine-needle (30-gauge stainless steel needle) intra-arterial 

hydrodynamic injections of 5 kDa and 150 kDa FITC dextran molecules. During these 

injections we either clamped the renal vein for a period of 5 minutes, or both renal vein 

and aorta for the same period of time. Both cases resulted in simultaneous distribution of 

low (Figures 16) and large (Figure 17) dextran molecules throughout the kidney.  

These pressurized injections, however, did not facilitate robust and widespread 

vascular distribution of either 5 kDa or 150 KDa FITC dextran molecules. Interestingly, 

as with catheter-based infusions, the technique faciliated uncharacteristic filtration, and 

proximal tubular brush border localization and internalization of 150 kDa FITC dextran 

molecules. However, this was achieved at the expense of significant ischemic injury. This 

injury was cleary highlihted after infusing 150 kDa TRITC dextrans molecues through 

the jugular veins of these rats within 30 minutes of them receiving arterial hydrodynamic 

injections. This venous infusion produced substantial alterations to normal microvascular,  

glomerular and tubular structure and function similar to the arterial injections.  

iv. Fine-needle renal vein injections of fluorescent dextrans 

without and with vascular clamps  

Saline solutions containing both low (3 kDa Cascade Blue or 4 kDa FITC) and 

large (150 kDa TRITC) molecular weight dextrans were injected into the left renal veins 

of live rats, at different infusion rates (injections were conducted within 10 seconds, and  
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Figure 16. Hydrodynamic fine needle renal arterial injections facilitate the 
widespread delivery of low molecular weight exogenous probes to the tubular 
epithelia at the expense of significant renal injury  
Various microscopic fields taken from a live rat that received a hydrodynamic injection 
of 5 kDa FITC dextran molecules infused into the renal artery with only the renal vein 
clamped for a period of 5 minutes. There was an uneven distribution of dextran 
molecules throughout the kidney, and a relatively low proportion of these molecules 
appeared to be endocytosed by proximal tubule epithelial cells. This process generated 
significant injury illustrated by the patchy distribution of the dextran molecules and 
fluorescent debris and non-fluorescent blebs within proximal and distal tubule lumens.  
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Figure 17. Hydrodynamic fine needle renal arterial injections facilitate the 
widespread delivery of large molecular weight exogenous probes to the tubular 
epithelia at the expense of significant renal injury 
Microscopic fields taken from a live rat that received a hydrodynamic injection of 150 
kDa FITC dextran molecules infused into the renal artery with a single aorta clamp and 
renal vein clamp, followed by a subsequent (beyond 20 minutes) jugular vein infusion of 
150 kDa TRITC dextran. There was a significant amount of blood loss and pressure was 
applied for period of 10 minutes to the injection site to close the wound. These data 
illustrate a low and uneven distribution of these large molecular weight dextran 
molecules throughout the vasculature kidney as observed within glomerular (GL) and 
peritubular capillaries (V). The combination of hydrodynamic fluid delivery and injury 
generated from the injection procedure provided these FITC molecules access to tubular 
lumens. There is a more uniform fluorescent signal, which appeared throughout proximal 
tubule epithelial cells that may either signify the internalization of these large molecules 
or injury-based changes in tissue autofluorescence. TRITC dextran was subsequently 
infused. It also produced and patchy distribution further signifying significant injury. 
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2 and 4 minutes which corresponded to approximate injection rates of 0.1, 0.004 and  

0.008 ml/s), using 30-gauge needles. The kidneys that received hydrodynamic delivery 

were imaged within approximately 20 minutes of injections. From the 0.1 ml/s rate 

hydrodynamic injections, conducted with (Figure 18A) and without vascular clamping 

(Figure 18B), we observed widespread uptake of both dextrans in vivo.  

As anticipated, intravital micrographs obtained from these rats showed low 

molecular dextran molecules bound to brush border membranes of the proximal tubular 

epithelia. We also saw blue and green puncta in these epithelial cells after the 

internalization of the respective 3 kDa Cascade Blue and 4 kDa FITC dextrans, while 

concentrated levels in these dextrans appeared within distal tubule lumens. Again, the 

data are consistent with endocytic uptake of low molecular weight dextran molecules in 

rat kidneys195,226. These observations provided evidence that nephron segments could 

retain vital functional capacities after rapid fine-needle, hydrodynamic venous delivery.  

We also observed that large molecular weight TRITC dextran molecules were 

widely distributed within the vasculature and internalized by tubular cells across apical 

and basolateral surfaces as a result of hydrodynamic delivery (Figures 19-21). Large 

molecular weight dextran molecules were also unexpectedly filtered by renal tubules 

(Figure 19). Nevertheless, atypical access these large molecular weight dextran molecules 

had to apical (Figure 20) and basolateral (Figure 21) membranes of proximal tubules was 

transient and appeared to only occur via the hydrodynamic injection process. In fact, 

when these 150 kDa molecules were infused through the jugular vein of live rats, they  
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Figure 18. Hydrodynamic fine needle renal venous injections facilitate the 
widespread delivery of low molecular weight dextrans to the tubular epithelia with 
minimal renal injury  
Intravital two-photon micrographs taken within 20 minutes after the simultaneous 
infusion of low (either 3 kDa Cascade Blue or 4 kDa FITC) and large (150 kDa TRITC) 
dextrans. These data illustrate the effects that result from varying the hydrodynamic 
injection rate and method (lower infusion volume and added vascular clamping). Each 
retrograde injection was performed using a 30-gauge needle. Signs of intact nephron 
structure and function are observed from image (A) 10-second long hydrodynamic 
injections, without vascular clamps, of 1 ml solution containing 3 kDa Cascade Blue and 
150 kDa TRITC dextrans, and image (B) 5-second long injections (injection rate 0.1 
ml/s), with vascular clamps, of 0.5 ml solution containing 4 kDa FITC and 150 kDa 
TRITC dextrans (Hoechst was added to label nuclei). In comparison, image (C) outlines 
that 4-minute long injections (injection rate 0.0042 ml/s), without vascular clamps, of 1 
ml saline containing 3 kDa Cascade Blue and 150 kDa dextrans, produce vascular 
constriction, tubular blockage and irregular filtration of the large 150 kDa TRITC dextran.  
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Figure 19. Hydrodynamic fine needle venous delivery facilitates the atypical 
filtration of large molecular weight dextrans  
Intravital two-photon fluorescent micrographs taken from a live rat within 20 minutes of 
it receiving a hydrodynamic injection of a solution containing 150 kDa TRITC dextran 
molecules. These images were taken sequentially to outline the dextran molecules being 
filtered by proximal tubules.  
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Figure 20. Hydrodynamic fine needle venous delivery facilitates the uncharacteristic 
internalization of large molecular weight dextrans by the tubular epithelia 
Intravital two-photon fluorescent micrographs taken from a live rat within 20 minutes of 
it receiving a hydrodynamic injection of a solution containing a mixture of 150 kDa 
TRITC and 3 kDa Cascade Blue dextran molecules. These images outline evidence of the 
atypical internalization of the large TRITC dextran molecules within proximal tubules 
(PT). Image (B) through is a magnified image taken from the region highlighted in (A) by 
the dotted outline. Arrowheads indicate proximal tubule epithelial cells that have 
incorporated the low and high molecular weight dextrans along apical borders. 
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Figure 21. Hydrodynamic fine needle venous delivery facilitates the atypical 
basolateral uptake of large molecular weight dextrans 
Intravital two-photon fluorescent micrographs taken from a live rat before and 
approximately 20 minutes after it received a hydrodynamic injection of a solution 
containing 150 kDa TRITC dextran molecules. These images demonstrate that renal 
tubular cells internalize high molecular weight dextran molecules. Image (D) is a 
magnified image taken from the region highlighted in (B) by the dotted outline. 
Arrowheads indicate proximal tubule epithelial cells that have incorporated the low and 
high molecular weight dextrans along basolateral membranes. 
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were primarily confined to the vasculature and were not detected at significant levels in 

the tubule lumen or epithelia when they were injected 5 minutes before hydrodynamic 

injection of saline into the renal vein (Figure 22A). Similar vascular restriction was 

observed when 150 kDa dextran molecules were infused through the jugular vein roughly 

20 minutes after rats received hydrodynamic saline injections (Figure 22B).  

 Remarkably, as we decreased the injection rate from 0.1 ml/s to 0.0008 ml/s (10 

seconds to 4 minutes) our ability to successfully deliver these large exogenous probes 

across cell membranes, without generating substantial renal injury, was dramatically 

reduced. As we decreased our injection rate, the concentration of exogenous large 

molecular weight dextran molecules that entered renal cells decreased. Furthermore, low 

rate injections, administered at approximately 0.004 ml/s (total injection period of 

approximately 4 minutes), produced significant renal damage illustrated by vasculature 

constriction, reduced blood flow, tubular blockages impeding renal filtration, reduced 

endocytic uptake of low and large molecular weight dextrans (Figure 18C).  

v. Fine-needle renal vein injections of toluidine blue dye 

without and with vascular clamps  

  We harvested whole left and right kidneys, hearts, livers, lungs and spleens from 

rats that received hydrodynamic injections of 0.5 ml of toluidine blue dye to investigate 

the extent of whole organ uptake that could be attained using these fine-needle injections. 

Saggital plane sections of these organs revealed robust distribution of the dye within the 

left (injected) kidney, and no traces within the contralateral kidney and the other organs  
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Figure 22. Normal renal tissue integrity is restored after hydrodynamic fine needle 
venous delivery  
Intravital two-photon fluorescent micrographs taken from a live rat after it received a 
jugular infusion of 150 kDa FITC molecules: (A)immediately and (B) 30 minutes after 
receiving a renal vein hydrodynamic injection of a saline. These images show evidence of 
the restriction of the large FITC dextran molecules within the vascular compartments.  
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Figure 23. Hydrodynamic fine needle venous injections conducted with vascular 
clamping is sufficient to limit delivery to the target organ 
Digital images of whole kidneys, livers, lungs and spleens were taken from rats that 
received retrograde hydrodynamic delivery of toluidine blue dye into the left renal vein. 
These kidneys were harvested and sectioned within 20 minutes of delivering the dye. The 
dye appears throughout the cortex and medulla of the left kidneys. However, the dye was 
absent in the contralateral kidneys. Note the following abbreviations: C = renal cortex; M 
= renal medulla; HR = heart; LV = liver; LU = lung; and SP = spleen. 
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examined when the injection process was perfomed with vascular cross-clamping 

(Figures 23A-23C).  

In comparison, injections that were conducted without vascular cross-clamping 

facilitated minimal dye uptake in targeted left kidneys, and significant levels within 

aforesaid offsite and highly vascular organs (Figures 23D-23F). Overall, these results 

provided significant evidence that hydrodynamic renal injections, accompanied with 

vascular cross-clamping, are able to deliver substantial quantities of low, intermediate 

and large molecular weight substances to various cells throughout the entire kidney. 

 

D. Plasmid- and viral-mediated transgene expression in live rats 

1. Tissue autofluorescence is unalterted by the fluid delivery process 

We conducted control experiments to determine if modifications in tissue 

autofluorescence would be mistaken for transgene-derived fluorescence. We thus 

examined rats that received sham (no injection) and saline injections. Superficial cortices 

(region within 100 µm of the kidney’s surface) were imaged prior to and 3 days after 

receiving hydrodynamic treatments. From these data, there appears to be negligible 

differences between tissue fluorescence patterns observed in kidneys before and after 

receiving sham and saline injections (Figure 24).  

2. Systemic transgene delivery did not facilitate renal transgene expression 

 From a pratical perspective, it would be most beneficial to be able to succesfully 

deliver trasngene to the kidney intravenously, via a system route. This method would  
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Figure 24. Hydrodynamic delivery does not alter innate tissue autofluorescence 
Live rat kidney tubules micrographs obtained from animals prior to and 3 days after they 
received sham and hydrodynamic injections of saline: (A) rat kidney imaged prior to a 
sham injection, (B) kidney imaged 3 days after receiving a sham injection, (C) rat kidney 
imaged prior to a hydrodynamic injection of saline, (D) kidney imaged 3 days after 
receiving a hydrodynamic injection of saline.  
  



 
 
 
 
 

 
 
 
 
 
 

101 

provide the least invasive option. Unfortunely, plasmid, baculovirus and adenovirus 

vectors delivered via the tail vein did not facilitate transgene expression in rat kidneys 

(Figure 25). 

3. Low levels of plasmid expression and significant levels of renal injury 

generated from fine-needle renal artery hydrodynamic injections  

 After realizing that we were incapable of generating effective gene transfer via 

systemic delivery, we shifted focused to localized gene delivery technique. We thought it 

possible to improve our chances of eliciting genetic transformation by infusing 

transgenes directly into the kidney, and first investigated renal arterial injections.  

 Accordingly, rare transgene expression was observed using arterial injections. 

The fluorescent protein expression was observed primarily in sloughed cells and casts  

that occupied tubule lumens (Figure 26).  We conducted spectral analyses similar to those 

conducted to categorize transgene chimeric protein fluorescence in cell cultures (Figure 

5F). From these results we again identified that transgene-derived fluorescence signal 

intensities were at least double those of autofluorescence signal intensities obtained in 

vivo (Figure 27C) and in fixed tissues (Figure 28C). This enabled us to clearly identify 

and differentiate transgene expression from autofluorescent backgrounds in the rat kidney. 

Moreover, arterial injections, generated significant periods of ischemia-reperfusion injury. 

Hemorrhaging was frequent, which complicated our attempts to induce hemostasis at the 

injection site. As a result of these surgical complications and unreliable renal transduction, 

we halted further investigations using arterial injections.  
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Figure 25. Tail vein injections were incapable of facilitating renal transformation 
Intravital two-photon micrographs taken of left kidneys from rats that received transgene 
treatments via tail vein injections: (A) autofluorescent background before the tail vein 
injection; (B) image of the same kidney taken 3 days after the tail vein injection of 
baculovirus vectors; and (C) another image taken from a rat 3 days after it received tail 
vein plasmid infusion.  
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Figure 26. Hydrodynamic renal artery injections of plasmid-DNA rarely facilitated 
transgene expression within the superficial cortex 
Images taken from a rat that received an arterial injection of plasmid EGFP DNA and 
Optison microspheres. Image (A) was obtained close to the renal capsule and illustrates 
regions with a fluorescent signal. However, it was not possible to decipher any specific 
compartment from which these signals emanated. Furthermore, as we imaged deeper into 
the superficial cortex we were unable to observe any fluorescent signals, but merely 
innate tissue autofluorescent patterns, as present in (B). Arrowheads indicate regions of 
transgene expression.  
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Figure 27. Hydrodynamic renal vein injections of plasmid-DNA conducted without 
vascular clamps facilitated limited levels of transgene expression within the 
superficial cortex 
Images taken from a rat that received a renal vein injection of plasmid EGFP DNA and 
Optison microspheres. Image (A) and (B) illustrate regions with transgene-based 
fluorescence. However, it was not possible to decipher any specific compartment from 
which these signals emanated. Furthermore, as we imaged deeper into the superficial 
cortex we were unable to observe any fluorescent signals, but merely innate tissue 
autofluorescent patterns. Arrowheads indicate regions of transgene expression as 
sloughed materials occupying tubular lumens.  
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Figure 28. Hydrodynamic renal vein injections of plasmid-DNA conducted without 
vascular clamps facilitated limited levels of transgene expression within the renal 
medulla  
Images taken from a rat that received a venous injection without clamps of plasmid EGFP 
DNA and Optison microspheres. Image (A) tissue autofluorescence taken prior to the 
injection process in the live animal, and (B) an image taken from a kidney section 
acquired 3 days after transgene delivery. Arrowheads indicate regions of transgene 
expression that appear within tubular debris and throughout an entire tubule.  
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4. Minimal plasmid expression generated from low volume (0.2 ml), fine-

needle renal vein hydrodynamic injections conducted without vascular 

clamps 

We next attempted to deliver plasmid DNA via the renal vein. Hydrodynamic 

injections using relatively low fluid volumes, 0.2 ml, conducted without vascular clamps 

also produced low levels of expression. Particularly, this technique generated rare 

expression in vivo using plasmids. Transgene expression detected in live rat kidneys was 

observed primarily in sloughed cells and debris that filled tubular lumens (Figure 27). 

Realizing our limited in vivo imaging depth confines investigations to superficial 

cortical regions of the kidney, we harvested these rat kidneys and imaged various sections 

within deeper cortical segments and the renal medulla. From these sections we also 

observed tubular transgene expression, this time within intact epithelial cells (Figure 28). 

However, there was no overall significant improvement in the extent of transgene 

expression observed from these tissue sections. 

5. Large volume (0.5-1 ml), fine-needle retrograde hydrodynamic 

injections, conducted without vascular clamps, into the renal vein 

improved levels of viral transgene expresion in live rats 

Relatively large volume (0.5-1 ml) hydrodynamic renal vein injections 

significantly improved the extent of transgene expression in live rat kidneys using viral 

vectors. Baculovirus-based fluorescent protein expression was observed in the 

glomerulus (Figure 29), and in the proximal and distal tubules of live rats (Figure 31).  
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Figure 29. Baculovirus-based fluorescent protein expression within live glomeruli  
Intravital two-photon microscopy images taken of live glomeruli in two Munich Wistar 
rats prior to GFP baculovirus hydrodynamic treatment, images (A) and (C), and 3 days 
post treatment, images (B) and (D). Images (A) and (B) were both taken from one animal, 
while (C) and (D) were taken from the another rat using the equivalent data acquisitions 
settings. Fluorescent transgene expression can be observed within the Bowman’s space of 
the glomerulus (GL) presented in images (B) and (D). The Bowman’s space identified by 
their innate lack of fluorescence. Arrowheads indicate regions of transgene expression.  
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Figure 30. Hydrodynamic injection of saline and null baculovirus vectors do not 
alter tissue autofluorescence 
An investigation of tissue autofluorescence as a direct result of hydrodynamic retrograde 
injections. These intravital two-photon micrographs outline live rat kidney tubules from 
animals that received: (A) no injection (innate tissue autofluorescence in the green 
channel), (B) sham injection, and (C) saline, and (D) null baculovirus vector, via 
hydrodynamic injections. Images were taken 3 days after all injection-related surgeries.  
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Figure 31. Live baculovirus expression persists up to three weeks in the rat kidney 
Data collected using intravital two-photon microscopy from live Sprague Dawley rats 
injected with Actin-GFP baculovirus. This probe targets incomplete segments of both 
filamentous and globular actin protein structures. These images were taken from animals 
across a 3 week time frame, post hydrodynamic viral delivery: (A) tissue 
autofluorescence, (B) Day 1, (C) Day 2, (D) Day 3 (E) Day 4, (F) Day 5, (G) Day 6 and 
(H) Day 21. Arrows are used to indicate regions with transgene expression distal tubules 
(DT) and proximal tubules (PT). 
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We reconfirmed that the hydrodynamic injection process did not affect tissue 

autofluorescence, and the increase in fluorescence intensities did not originate from viral 

vectors lacking the ability to drive fluorescent chimera expression (Figure 30).  

For our glomerular investigations we used Frömter and Simonsen Munich Wistar 

rats, as these strains of rat have superficial glomeruli that are accessible for imaging by 

two-photon microscopy227. Generally, the Bowman’s space of normal glomeruli can be 

identified in fluorescent micrographs as regions absent of fluorescence209, as observed 

from images taken from the kidneys of normal Munch Wistar rats (Figure 29A and 29C). 

In comparison, images collected from the same animals 3 days after hydrodynamically 

delivering CellLight® GFP baculovirus generated GFP expression within live glomeruli 

(Figure 29B and 29D). Similarly, fluorescent protein expression appeared in a variety of 

cortical tubular compartments accessible for imaging with two-photon fluorescence 

microscopy using CellLight® GFP-Actin baculovirus vectors (Figure 31). This 

fluorescent protein expression persisted up to 3 weeks after hydrodynamic delivery. 

During our two-photon intravital studies we observed initial signs of renal injury, 

which was identified by fluorescent cellular debris within the tubular lumens (Figures 

31B and 31C). Such injury may have resulted from mild ischemia-reperfusion damage 

generated from the injection process165, or fluorescent protein over-expression228. 

Nevertheless, these signs of injury subsided 3 days after gene transfer. This indicated a 

viable time point for long-term renal transduction stability and homeostasis. This 

transient injury response was also observed using adenovirus vectors (Figure 32). 
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Figure 32. High titers of adenovirus vectors appear to generate an immunological 
response 
Data collected using intravital two-photon microscopy from live a Sprague Dawley rat 
that received Actin-GFP adenovirus treatment. This probe targets incomplete segments of 
both filamentous and globular actin protein structure: (A) tissue autofluorescence, (B 
through D) taken 2 days after this rat received the adenovirus treatments. Arrows indicate 
regions with transgene expression proximal tubules (PT). Significant levels of sloughed 
fluorescent cells observed throughout the kidney with viral titers of 3×106 - 3×107 pfu.  
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Further, even though baculovirus vectors provided a substantial improvement in 

the extent of transgene expression, their expression patterns generally deviated from 

endogenous tissue morphology. This may have originated from either fluorescent protein 

aggregation or an immunological response to the insect-derived viral expression in vivo. 

Finally, it should be noted that this injection process provided a reliable way to facilitate 

exogenous protein expression using viral vectors. We did not record any improvements in 

the extent of fluorescent protein expression using plasmid vectors when we conducted the 

hydrodynamic injections without vascular cross-clamps. At that point, only few studies 

were done with adenoviral vectors. In those experiments we hydrodynamically injected 

high viral titers (3×106 - 3×107 pfu). These titers generated significant levels of 

fluorescent debris/cast formation (within tubular lumens), which persisted beyond 3 days 

after their hydrodynamic delivery. This indicated a possible immunological response that 

could have been generated from the delivery of the higher viral titers. 

6. Texas red-labeled phalloidin and fluorescent actin colocalization 

observed in vitro verify results obtained from live rats 

To further support claims of targeted in vivo cell transformation obtained, we used 

a immunohistochemical assay to examine fluorescent actin expression218. We 

counterstained kidney sections taken from rats that received hydrodynamic baculovirus 

venous injections, with Texas-red-tagged phalloidin to label F-actin filaments. 

From these sections we observed increased GFP-based fluorescent intensities 

from several cell types. Tissues treated with the GFP baculovirus vectors displayed  
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widespread and non-specific fluorescent labeling of renal cells. Using actin-targeting 

GFP probes (CellLight® Actin-GFP baculovirus), we observed increased levels of 

fluorescence intensities emanating from apical brush borders of proximal tubule epithelial 

cells. These signals coincided with those that originated from the Texas-red-labeled actin 

cytoskeleton (Figures 33G-33I). Significant spatial overlap of these two fluorescent 

signals provided further evidence for the potential to target specific cellular components 

and loci using the hydrodynamic delivery via fine-needle, retrograde renal vein injections. 

The morphological structure of renal tissues infected with the baculovirus vectors 

illustrated in these in vitro studies also deviated from normal tissue morphology, as 

exemplified by kidney sections that received saline hydrodynamic saline injections 

(Figures 33A-33C). If such variations in tissue condition were not a direct result from 

tissue processing, then this evidence further supports the possibility that baculovirus 

vectors may have adversely altered renal tissue structure and function. Moreover, 

reducing the hydrodynamic injection rate correlated with a reduction in the extent of 

transgene expression and an increase in the degree of renal injury (Figure 34D-34L), as 

previously observed in vivo (Figure 18C). 

7. Vascular cross-clamping significantly improved plasmid and adenoviral 

expression in various renal cell types with large volume (0.5 ml) fine-

needle retrograde hydrodynamic renal vein delivery  

In an effort to further improve transgene expression levels and injection efficacy, 

we performed hydrodynamic injections augmented with vascular cross-clamping. These  
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Figure 33. Fluorescent baculovirus expression in proximal tubules observed in vitro 
Confocal laser scanning micrographs of cortical sections taken from animals treated with 
saline, GFP baculovirus and Actin-GFP baculovirus that were counterstained with Texas 
red-labeled phalloidin. Images (A) through (C) were taken form an animal treated with 
saline: (A) fluorescent signal from the green channel, (B) Texas red-labeled phalloidin 
signal and (C) merged image of (A) and (B). Images (D) through (F) were taken from an 
animal treated with the GFP baculovirus: (D) fluorescent signal from the acquired from  
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the green channel showing GFP expressed in proximal tubules, (E) Texas red-labeled 
phalloidin signal and (F) the overlay of (D) and (E). Images (G) through (I) were taken 
from an animal treated with the Actin-GFP baculovirus: (G) fluorescent signal acquired 
from the green channel showing Actin-GFP signals observed from the brush border 
regions, (H) Texas red-labeled phalloidin stained actin filaments, (I) overlay of images (G) 
and (H) illustrating colocalized actin-derived signals from the baculovirus-driven GFP 
and Texas red labeled phalloidin.  
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Figure 34. The rate of hydrodynamic injections significantly affects transduction 
rates and injury levels  
Data obtained to correlate transgene delivery and incorporation, with resulting effects on 
innate tissue conditions 3 days after delivery. Confocal laser scanning micrographs of 
cortical sections taken from animals treated with saline and baculovirus vectors, and 
counterstained with Texas red-labeled phalloidin to compare with the effects of varied 
renal vein injection rates: (A) through (F) rapid hydrodynamic injections; (G) through (I) 
2-minute injections; and ((J) through (I) 4-minute injections. Lower rate injections 
generated significant renal injury. 
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injections generated widespread fluorescent protein expression lasting over a month after 

the introduction of non-viral and viral transgenes (we investigated plasmid and 

adenovirus transgene expression up to 4 weeks in live animals and 6 weeks ex vivo). 

Using plasmids we successfully transfected live rat kidneys with EGFP, (Figures 35B and 

35C), EGFP-tubulin (Figures 35E and 35F), EGFP-actin (Figures 36 and 37); EGFP-

occludin (Figure 40A), and H2B-tdTomato (Figures 40B and 40C); and transduced with 

EGP-actin (Figures 38 and 39) and RFP-actin (Figure 39) adenovirus vectors. Fluorescent 

protein was observed 1) in proximal and distal tubules; 2) within glomeruli; 3) within the 

peritubular interstitum; 4) within the renal capsule; and 5) within the perirenal fat.  

We also visualized intact tissue morphology in nephron cross-sections that were 

transformed by the plasmid DNA and adenovirions (adenovirus treatments containing 

3×105 pfu provided stable transgene expression). These improvements in the level and 

quality of transgene expression were consistent with the use of both plasmids and 

adenoviral vectors. Once more, injections of higher titers of adenovirus (3×106 - 3×107 

pfu) generated lengthy damage illustrated by persistent cellular sloughing and tubular 

blockages. We again observed the structure of renal compartments, which expressed 

baculovirus-derived proteins, generally deviated from normal tissue morphology that 

accompanied extensive fluorescent protein aggregation (Figures 29 and 31). 

In comparison, images obtained from live rats that that expressed EGFP-occludin 

and H2B-tdTomato plasmid-derived fluorescent proteins provided clear signs of the 

expected probe localization and morphology. For instance, EGFP-occludin fluorescence  
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Figure 35. Hydrodynamic delivery conducted with vascular clamps facilitated 
robust GFP and GFP-tubulin expression in live rat kidneys  
Transgene expression recorded in live Sprague Dawley rats that received hydrodynamic 
injections (augmented with vascular clamps) of EGFP and EGFP-Tubulin plasmid 
vectors.  Image (A), was taken from a rat prior to its treatment with EGFP plasmid 
vectors, and (B) and (C) were taken from that animal 3 days after it was treated with 
EGFP plasmid vectors. Similarly, image (D), was taken from another rat prior to its 
treatment with EGFP-Tubulin  plasmid vectors, and (E) and (F) were taken from that 
animal 3 days after it was treated with EGFP-Tubulin  plasmid vectors. Transgene 
expression can be seen within live distal tubules (DT), image (F), and proximal tubules 
(PT), images (B), (C) and (E). Red and green pseudo-colors were merged to differentiate 
between EGFP and autofluorescence signals. Arrowheads indicate regions of transgene 
expression.  
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Figure 36. Plasmid-based fluorescent actin expression in live tubular brush borders 
and interstitium 
Transgene expression recorded in a live Sprague Dawley rats that received hydrodynamic 
injections (augmented with vascular clamps) of EGFP-actin naked plasmid vectors. 
These images were taken from the rat 2 days after transgene delivery. Prior to acquiring 
these images, Hoechst 33342 and a 150 kDa Rhodamine dextran were infused through 
the rat’s jugular vein to better outline renal architecture. Images (A) and (C) were formed 
by merging the blue- and red-pseudo-color channels, and (B) and (D) from merging blue-,  
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green-, and red-pseudo-color channels. Images (C) and (D) are magnified images  
obtained from the microscopic field presented in (A) and (B) respectively to highlight 
fluorescent protein expression in the actin brush border, and endothelial cells of the per 
tubular vasculature. Arrowheads and arrows indicate regions of EGFP-actin plasmid 
expression in the brush border and endothelial cells lining the peritubular vasculature 
respectively. It should also be noted that the teal-colored nuclei don't reflect nuclear 
EGFP actin, but signal crosstalk. 
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Figure 37. Long-lived hydrodynamic-derived plasmid expression in rat kidneys  
Live images were taken from rats that received hydrodynamic injections (augmented with 
vascular clamps) of EGFP-actin plasmids: (A) a rat prior to plasmid treatment, and (B) 
and (C) same rat in (A) 3 days post transgene delivery; (D) a rat prior to plasmid 
treatment, and (E) and (F) same rat in (D) 14 days post transgene delivery; and (G) a rat 
prior to plasmid treatment, and (H) and (I) were taken in the same in (G) rat 28 days post 
delivery (Distal (DT); proximal (PT) tubules). GFP-based fluorescence was intensified 
along the brush border of cells that express the actin transgenes (arrowheads)  
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Figure 38. Long-lived hydrodynamic-derived adenovirus expression in rat kidneys 
Transgene expression recorded in live Sprague Dawley rats that received hydrodynamic 
injections of GFP-Actin adenovirus vectors. Image (A) was recorded prior to transgene 
delivery (innate autofluorescence), and (B) was taken from an animal 3 days post 
adenovirus delivery, (C) was taken from an animal 7 days post adenovirus delivery, and 
(D) was taken from an animal 14 days post adenovirus delivery. Adenovirus-based 
transgene expression can be seen within live distal tubules (DT) and proximal tubules 
(PT) epithelial cells. Again, GFP-based fluorescence was intensified along the brush 
border of cells that express the actin transgenes as compared to cells within tubules that 
do not express the fluorescent proteins these in these images. Red and green pseudo-
colors were merged to distinguish between EGFP and autofluorescence signals. 
Arrowheads indicate regions of transgene expression.  
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Figure 39. A comparison of fluorescent micrographs taken from live Sprague 
Dawley rats treated with hydrodynamic injections of EGFP-actin and RFP-actin 
adenovirus vectors. 
Images obtained from rats that received hydrodynamic treatments of EGFP-actin and 
RFP-actin: (A) was recorded in a rat prior to transgene delivery of EGFP-actin 
adenovirus vectors; image (B) was taken from the same rat 3 days post the delivery of 
EGFP-actin adenovirus vectors; image (C) was recorded prior to transgene delivery of  
RFP-Actin adenovirus vectors; and image (D) was taken from the same rat 3 days post  
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the delivery of RFP-actin adenovirus vectors. Red and green pseudo-colors were merged 
to distinguish between fluorescence (GFP and RFP) and autofluorescence signals. 
Arrowheads indicate regions of transgene expression.  
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Figure 40. Hydrodynamic delivery facilitates the expression of a variety of plasmid 
vectors in live rat kidneys 
Transgene expression is observed in proximal tubule cells (A), distal tubule cells (B), as 
well as in interstitial cells surrounding the peritubular vasculature (D) and (E), within the 
renal capsule (C) and (F) adipose tissue of the perirenal fat. These images were taken 
from live rats 3 days after receiving hydrodynamic injection of EGFP-occludin (image A), 
H2B-tdTomato (images B and C) and EGFP-Actin (images D, E and F) plasmid vectors. 
A 150 kDa TRITC dextran solution was infused through the jugular veins to outline 
vasculature (V). Arrowheads indicate regions of transgene expression.  
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signals ran between adjacent nuclei as punctate fluorescent bands along regions that 

correspond to tight junctions (Figure 40A). Fluorescent H2B-tdTomato signals 

colocalized with Hoechst counterstained nuclei (Figures 40B and 40C).  

Analogously, in fluorescent micrographs taken from live rats that were previously 

treated with EGFP-actin plasmids (Figures 36 and 37), and EGFP-actin (Figure 38 and 39) 

and RFP-actin (Figure 39) adenovirus vectors, there were marked increases in 

fluorescence intensities along brush border of proximal tubules expressing these 

transgenes, as compared to adjacent tubules that did not express these transgenes. This 

fluorescence pattern is consistent with prior studies using fluorescent actin reporters117,180. 

As previously mentioned, significant levels of plasmid- and adenovirus-derived 

fluorescent protein expression were also present in other cells types native to the 

following renal structures: peritubular interstitium, (Figures 40D and 40E); adipose 

tissues (Figure 40F); and glomeruli (Figures 41B through 41D). The cells in the 

peritubular interstitium identified have morphological structure similar to peritubular 

endothelial cells and monocytes117. Glomerular transgene expression was investigated 

primarily in Wistar rats. We also visualized glomerular transgene expression in a Sprague 

Dawley rat on the rare occasion that this structure appeared within the range of two-

photon imaging in this rat strain. Glomerular morphology was grossly normal in rats that 

received hydrodynamic saline injections (Figure 41A). 

Within non-viral and viral infected glomeruli (Figures 41B and 41C), there 

appeared to be transgene expression in podocytes, but the resolution limit of light  
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Figure 41. Fluorescent EGFP-actin plasmid expression in live rat glomeruli 
Hydrodynamic-based transgene expression (arrowheads) in live glomeruli using 
adenovirus and plasmid vectors rats 3 and 7 days post transgene delivery: (A) image of a 
glomerulus taken from a kidney treated with saline (control) 3 days post hydrodynamic 
injection; (B) image of a glomerulus taken from a kidney treated with GFP-Actin 
adenovirus vectors 7 days post hydrodynamic injection; and (C) and (D) images of 
glomeruli taken from kidneys treated with EGFP-actin plasmid vectors 3 days post 
hydrodynamic injection. Prior to obtaining images (C)and (D), 150 kDa TRITC dextran 
solutions were infused through jugular veins to investigate renal structure and function.  
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microscopy does not allow us to state this definitively. Similarly, transgene expression 

was visualized in S1 segments of proximal tubules (Figure 41D) and parietal epithelial 

cells of Bowman's capsule (Figures 41B through 41D). Additionally, 150 kDa TRITC 

dextran molecules, which were introduced via the jugular vein during imaging (Figures  

41C and 41D) were confined to the glomerular capillaries and surrounding vasculature. 

These results provided further evidence that intrinsic nephron structure and function were 

maintained after hydrodynamic injections and gene expression using plasmids and 

adenovirus. We must also emphasize that hydrodynamic-based transformation appears to 

be non-selective relative to cell type and region of the kidney genetically transformed. 

8. Simultaneous expression of multiple transgene vectors generated by single 

hydrodynamic injections augmented with vascular cross-clamps 

Realizing it was possible to produce reliable transgene expression from various 

types of vectors using hydrodynamic delivery, we next considered delivering multiple 

transgenes in a single hydrodynamic injection. We introduced a mixture of EGFP-actin 

and RFP-actin adenovirions (105 pfu of each vector) in MDCK cells and live rat kidneys. 

Cells were imaged 1 day after incubation with adenovirions, while kidneys were 

harvested from rats 3 days after hydrodynamic viral injections. These kidneys were 

imaged within 5 minutes after their excision. The in vitro and ex vivo data illustrate 

regions that simultaneously expressed the EGFP-actin and RFP-actin adenovirus vectors 

(Figure 42). Interestingly, this result identified the potential to generate multiple renal 

genetic modifications in live mammalian kidneys by single hydrodynamic injections. 
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Figure 42. Hydrodynamic delivery facilitates the expression of multiple transgenes 
simultaneously in renal cells 
Simultaneous transgene expression was observed in MDCK cells and Sprague Dawley rat 
kidneys treated with both GFP-Actin and RFP-Actin adenovirus vectors. The cells were 
imaged 1 day after incubation with the adenovirus vectors, while the ex vivo kidney 
images were taken from within the superficial cortex of a freshly excised whole kidney. 
The kidney was harvested from a rat 3 days after it was injected with the adenovirus 
vectors, and was imaged within 5 minutes after its excision. Red and green pseudo-colors 
were merged to distinguish between fluorescence (GFP and RFP) and autofluorescence 
signals, and to highlight regions with co-transgene expression. Arrowheads indicate 
regions of transgene expression.  
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9. Hydrodynamic renal vein injections augmented with vascular cross-

clamping can generate efficient levels of transgene in mammalian kidneys  

We examined tissue sections harvested from rats 3 days after they were treated 

with plasmids, baculovirus and adenovirus vectors to gain insight into the efficiency of 

the hydrodynamic delivery for each type of vector. For this work, we again used two-

photon (Figures 43) and confocal laser-scanning microscopy (Figure 44) to visualize 

fluorescence protein expression in freshly harvested whole kidneys and tissue sections 

respectively throughout the renal cortical and medulla.  

We observed widespread transgene expression throughout the renal cortex and 

medulla in freshly excised kidney sections (Figure 43), and fixed tissue sections (Figure 

44). With plasmid and adenovirus vectors, we typically saw that multiple cells (>50%) in 

a particular tubular cross section simultaneously expressed the fluorescent proteins. 

However, this was not the case with our baculovirus vectors, as we frequently observed 

that only single cells in various nephron cross-sections expressed fluorescent proteins.  

Baculoviral transformation provided lowest delivery efficiency, ranging from 10 

to 50% of nephron cross-sections (Figure 45). Particularly, within most superficial 

cortical regions, which would be accessible by intravital two-photon microscopy, only 

approximately 10% of nephron cross-sections were transduced. At depths below 500 µm 

from the kidney surface, there was a gradual decrease in fluorescent protein expression in 

regions that would correspond to the deeper cortex, corticomedullary junction and 

medulla. Much higher levels of protein expression were observed using plasmid and  



 
 
 
 
 

 
 
 
 
 
 

131 

 

 
Figure 43. Hydrodynamic injections conducted with vascular clamps facilitates 
robust plasmid expression in both the renal cortex and medulla 
Transgene expression recorded in freshly excised whole kidneys acquired from Sprague 
Dawley rats that received hydrodynamic injections augmented with vascular clamps 
EGFP-actin plasmid vectors. Images A through D and E through F were taken from the 
renal cortex and renal medulla of freshly excised whole kidneys. Extensive transgene 
expression can be seen within distal tubules (DT) and proximal tubules (PT). Red and 
green pseudo-colors were merged to differentiate between EGFP and autofluorescence 
signals. Arrowheads indicate regions of transgene expression.  
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Figure 44. A comparison of baculovirus, plasmid and adenovirus fluorescent protein 
expression generated from fine needle renal vein hydrodynamic injections 
A comparison of hydrodynamic-based transgene expression throughout the cortex and 
medulla using plasmid and adenovirus vectors: (A) kidney treated with baculovirus 
vectors, (B) kidney treated with EGFP-Tubulin plasmid, and (C) kidney treated with 
EGFP-actin adenovirus. Whole kidneys were harvested from these rats 3 days after 
hydrodynamic transgene delivery and 100µm thick sections were collected and imaged 
from the cortex to the level of the renal pedicle. Each series of images was then 
reconstructed to outline entire cross-sections of tissue samples treated with the various 
agents.  
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Figure 45. Plasmid and adenovirus vectors generated greater levels of transgene 
expression throughout the rat kidney  
Estimates of hydrodynamic-based transgene delivery efficiencies (3 days after transgene 
delivery) from kidneys treated with plasmid and adenovirus vectors. These efficiency 
measurements were computed from various reconstructed like those presented in Figure 
48.   
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adenovirus vectors (Figure 45). Using these vectors, 40 to 86% of nephron cross-sections  

expressed fluorescent proteins. Within the superficial cortex (<100 µm from the surface 

of the kidney), we saw that approximately 78-86% of nephron cross-sections expressed 

fluorescent proteins, explaining the relative ease with which live expression was detected. 

The high level of fluorescent protein expression in this superficial region of the 

cortex permitted us to investigate the level of expression as a function of time by imaging 

live animals over a period of 4 weeks (Figure 46). During this period, the percentages of 

nephron cross-sections that expressed fluorescent proteins ranged from 80 down to 14% 

using adenovirus vectors and 61 down to 28% with plasmid vectors. Thus, transgene 

expression appears to be relatively long-lived with even the rudimentary vectors we used.  

 

E. Critical parameters and viable mechanisms to support effective hydrodynamic 

gene delivery in the rat kidneys 

1. Rat vital signs are unaffected by hydrodynamic renal vein injections 

We recorded vital signs in live rats throughout hydrodynamic injections were 

conducted with vascular cross-clamps. These measurements showed that hydrodynamic 

injection process did not alter blood pressure, heart rate and body temperature.  

2. Hydrodynamic retrograde renal vein injections augmented with vascular 

clamps produces transient changes in renal venous pressure in live rats 

In order to characterize critical parameters required for effective transformation, 

we recorded changes in renal venous pressures generated during this hydrodynamic  
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Figure 46. Hydrodynamic based expression levels diminished with time  
Estimates of time-dependent hydrodynamic-based transgene delivery efficiencies in live 
kidneys treated with plasmid and adenovirus vectors.  
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injection procedure. From these measurements we observed both the application and 

removal of the vascular clamps produced small and transient changes in renal pressure. 

Additionally, hydrodynamic fluid delivery produced pressure responses (increase up to 

25 mmHg) that generally lasted the duration of the infusions (Figure 47).   

3. Nephron structure and function appear normal after hydrodynamic 

delivery and transgene expression using plasmid and adenovirus vectors 

We looked for evidence of injury following hydrodynamic gene delivery by 

examining kidney structure and function using several approaches. In one approach we 

utilized intravital two-photon microscopy to determine that rat kidneys retained 

microvascular integrity and cells of the various nephron segments remained metabolically 

active after gene delivery and expression. Various animals were injected with high-

molecular-weight dextrans (150-kDa) via the jugular vein, after which we observed 

robust peritubular vasculature perfusion kDa) dextrans labeled with Cascade blue, 

respectively, and gauged renal filtration and endocytic uptake capacities. This analysis 

was conducted 3 to 28 days after the non-viral and viral hydrodynamic injections.  

In all cases, after infusing the dextrans, we observed the rapid appearance of both 

dextrans in the kidney by two-photon microscopy. As stated before, large-molecular-

weight dextran molecules were restricted to the vasculature. The low-molecular-weight 

dextran molecules passed the glomerular filtration barrier, and were endocytosed by 

proximal tubule epithelial cells and concentrated within the distal tubule lumens (Figures 

48-50). These results are consistent with normal nephron function in these animals180. 
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Figure 47. Changes in renal venous pressure recorded during hydrodynamic 
injections 
A measure of the changes in venous pressure that occur throughout a hydrodynamic 
injection (with vascular clamps) of 0.5 ml solution into the left renal vein of a live rat. 
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Figure 48. Renal structure and function appeared unaltered by hydrodynamic 
delivery and expression of plasmids and adenovirus vectors 
These data provide signs of intact renal structural and function capacities post 
hydrodynamic transgene delivery. The data are taken from a live rat 3 days after it was 
treated with EGFP and EGFP-actin naked plasmid vectors. Images (A-C) outline EGFP 
and (D-F) outline EGFP-actin transgene expression in proximal tubule (PT) epithelial 
cells. Solutions containing 3 kDa Cascade blue and 150 kDa TRITC dextrans were 
infused into the jugular veins of live rats. Robust and widespread uptake of the low 
molecular weight dextran solutions was observed after dye infusion, presented in images 
(B) and (E). The Cascade blue dextran was rapidly filtered by glomeruli, and was then 
endocytosed by into proximal tubule epithelial cells. Additionally, the large molecular 
weight dextran molecules were restricted to the vasculature as shown in images (C) and 
(F). Images (C and F) were composed by merging green, blue and red pseudo-colors 
originating from the EGFP transgenes, and low and large molecular weight dextrans 
respectively. These data provided evidence that both transformed and non-transformed 
renal cells retained their functional activity. 
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Figure 49. Vascular flow and renal filtration appear to be hindered by 
hydrodynamic-based baculovirus expression  
Monitoring renal function in live animals 3 days after they received hydrodynamic 
baculoviral treatment. Intravital two-photon micrographs are presented to illustrate the 
simultaneous filtration and endocytic uptake, and vascular distribution of a low (3 kDa 
Cascade Blue) and large (150 kDa TRITC) dextrans respectively. The dyes were 
introduced systemically via a jugular catheter: (A) vascular (V) containment of the red 
large molecular weight dye and regions expressing the GFP transgenes, (B) robust 
accumulation of the filtered Cascade blue dye only along the brush borders of proximal 
tubules (PT) expressing the transgenes and regions absent of the transgene incorporation, 
(C) overlay of images (A) and (B). Images (D) through (F) present a magnified view of 
the region highlighted in (C).  
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Figure 50. Renal cells functional activity appears to be hindered by hydrodynamic-
based baculovirus expression  
Monitoring renal function in live animals 3 days after they received hydrodynamic 
baculoviral treatment. Intravital two-photon micrographs are presented to illustrate the 
simultaneous filtration and endocytic uptake, and vascular distribution of a low (3 kDa 
Cascade Blue) and large (150 kDa TRITC) dextrans respectively. The dyes were 
introduced systemically via a jugular catheter: (A) vascular (V) containment of the red 
large molecular weight dye and regions expressing the GFP transgenes, (B) limited 
accumulation of the filtered Cascade blue dye in the brush border regions of proximal 
tubules (PT) that expressed the baculovirus transgenes and, (C) overlay of images (A) 
and (B). Images (D) through (F) present a magnified view of the region highlighted in (C). 
Again, there was no evidence of these low molecular weight dextrans being internalized 
by vesicles in these epithelial cells.  
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An important result from these experiments revealed the low-molecular-weight 

dextran molecules were taken up equally well by cells that either did or did not express 

fluorescent proteins in rats treated with plasmid and adenovirus vectors. This indicated 

that these cells retained functional activity. However, baculovirus vectors appeared to 

alter renal structure and function, beyond the 3-day period, as the endocytic capacity of 

renal cells that expressed baculovirus vectors appeared to be inhibited. Specifically, 3 

kDa Cascade Blue molecules aggregated along proximal tubule brush borders and were 

not internalized by these epithelial cells as expected (Figures 49 and 50).  

4. Hydrodynamic delivery facilitates robust cellular internalization  of low-, 

intermedicate-, and high-molecular-weight exogenous macromolecules, 

which are comparable in size to transgene vectors, throughout live rat  

kidneys  

We investigated whether hydrodynamic injections augmented with vascular 

clamps could reliably facilitate cellular uptake of exogenous low, intermediate and large 

macromolecules in various live nephron segments. Remarkably, this pressurized injection 

facilitated robust and widespread basolateral distribution (Figure 21), and apical cellular 

internalization of albumin and large-molecular-weight dextran molecules in a manner 

similar to the incorporation of low molecules weight molecules (Figures 19 and 20).   

We also observed albumin and large molecular-weight dextran molecules were 

uncharacteristically able to access the tubule lumen at high concentrations after being 

delivered to the kidney via this hydrodynamic injection technique (Figure 2A). Similarly,  
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when 150-kDa molecules were introduced into the bloodstream before hydrodynamic 

injection of saline, they were internalized within tubular epithelial cells (Figure 22). 

Nevertheless, this atypical access for large-molecular-weight dextrans to tubule lumens 

and tubular epithelial cells was transient and appeared to only occur for molecules 

present at the time of the hydrodynamic injection process, as 150-kDa dextran molecules 

infused via the jugular approximately 20-30 minutes after hydrodynamic pressurized 

injection of saline remained confined to the vasculature (Figure 22). These results 

indicate possible routes of transgene entry that may facilitate renal transformation. 

5. Serum creatinine levels are unaffected by fine-needle retrograde 

hydrodynamic renal vein fluid delivery and transgene expression 

We monitored creatinine levels in normal rats that received hydrodynamic 

injections of saline and transgene vectors. Serum creatinine levels in these rats remained 

within normal baseline levels (0.3 to 0.5 mg/dl) throughout our measurement period (of 

up to 14 days after hydrodynamic fluid delivery). There was no significant difference 

between serum creatinine levels in rats that received transgenes and isotonic fluid.  

6. Renal histology confirms hydrodynamic-based adenovirus/plasmid 

delivery and expression do not adversely affect kidney structure 

Kidney biopsy was performed on rats 3 days after receiving sham, saline and 

transgene hydrodynamic retrograde injections applied with vascular clamping. 

Comparisons were made between these groups of animals demonstrated that the 

hydrodynamic injection process or the transgene (plasmid and adenovirus vectors)  

  



 
 
 
 
 

 
 
 
 
 
 

143 

expression did not adversely affect kidney structure (Figure 51A through 51C). However, 

studies conducted on tissues obtained from rats that received injections with baculovirus 

vectors revealed extensive glomerular deformation and disruptions to proximal tubule 

brush border in integrity (Figure 51D). These data confirmed our intravital two-photon 

and confocal fluorescence microscopy, and serum creatinine observations.  

7. Hydrodynamic delivery facilitates the endocytic uptake of virions in live 

rat kidneys 

As presented earlier, systemic baculovirus delivery did not facilitate transgene 

expression (Figure 25). This result could be due to baculoviral inactivation by the 

complement system229, which would have reduced effective concentrations of viable 

virions capable of effecting renal transformation. To further investigate this phenomenon, 

we examined the interactions between serum complement proteins and the actin-targeting 

baculovirus vectors, in vitro and in vivo, under hydrodynamic conditions.  

In cell culture, we did not observe transgene fluorescence from cells incubated 

with virus in sera with active complement proteins (Figure 52C). Whereas, intense 

fluorescent protein expression was recorded from cells treated with standard doses of 

baculoviral particles (Figure 52B), and those treated with baculovirus vectors incubated 

in sera containing deactivated complement proteins (Figure 52D). An analogous effect 

was observed in vivo, as presented in (Figure 53). Collectively, these data suggested that 

rapid and direct introduction of viral particles through the renal vein likely protected 

baculovirions from complement-based inactivation, and thus facilitated their expression.  
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Figure 51. Histology supports claims of hydrodynamic delivery derived injury 
related only to baculovirus expression  
Histology studies conducted on kidney tissues excised from various groups of rats that 
received: (A) sham injection; (B) hydrodynamic injection of saline; (C) hydrodynamic 
injection of Actin-GFP plasmid vectors; and (D) hydrodynamic injection of baculovirus 
vectors. Comparisons were made between these groups of animals illustrating that the 
hydrodynamic injection process and the transgene (plasmid vectors) expression did not 
adversely affect renal structure. However, tissues obtained from rats that received 
injections with baculovirus vectors had shrunken/deformed glomeruli and reduced 
proximal tubule brush borders (Figure 55D), as outlined by the arrowheads (GL = 
glomerulus and PT = proximal tubule). 
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Figure 52. The complement response inhibits viral transformation in vitro 
Investigating the effect complement immune proteins have on transgene expression 
(standard dose of the Actin-GFP applied to all cases) using MDCK cells incubated in: (A) 
Hepes-buffered saline; (B) Actin-GFP baculovirions  suspended in Hepes-buffered saline; 
(C) Actin-GFP baculovirions  suspended in blood sera containing active complement 
proteins; and Actin-GFP baculovirions  suspended in blood sera containing deactivated 
complement proteins. These confocal micrographs were taken 1 day after treatments. 
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Figure 53. Hydrodynamic delivery provides a way to evade the complement immune 
response to facilitate exogenous gene expression in vivo 
Live intravital micrographs illustrate transgene expression mediated by endocytic uptake 
of baculovirus vectors that were delivered to live rat kidney using hydrodynamic delivery. 
Using standard 1×105 viral particles.ml-1  baculoviral dosage we observed: (A) baseline 
image taken before treatment viral; (B) image of the rat presented in (A) taken 3 days 
post treatment with Actin-GFP baculovirions incubated in blood sera containing active  
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complement proteins; (C) baseline of a 2nd rat prior to viral treatment; and (D) image of 
the 2nd rat presented in (C) taken 3 days post treatment with Actin-GFP baculovirions 
incubated in blood sera containing deactivated complement proteins. Each blood sera 
sample introduced into a given rat was previously drawn from its recipient. Arrowheads 
indicate regions of transgene expression. 
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8. Transgene expression restricted to kidneys that received retrograde 

hydrodynamic injections  

 No signs of fluorescent protein expression were detected in the contralateral right 

kidney  (i.e. non-injected kidney) or the other highly vascular organs examined (heart, 

liver, lung and spleen) harvested from rats that previously received viral and non-viral 

plasmid hydrodynamic or tail vein injections (Figure 54). 

  



 
 
 
 
 

 
 
 
 
 
 

149 

 
 
 
Figure 54. Transgene expression was not generated from tail and portal vein 
injections of baculovirus vectors 
Absence of transgene expression indicating that tail vein baculovirus injections failed to 
deliver transgenes to live rat livers. Two-photon intravital fluorescent micrographs 
obtained from live rats 3 days after they received: (A) GFP tail vein injection of GFP 
baculovirus vectors (Hoechst was added to label nuclei), and (B) portal vein delivery of 
GFP-Actin plasmid vectors.  
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Chapter 2. Hydrodynamic fluid delivery facilitates the live global monitoring of 

actin cytoskeleton alterations induced by ischemia-reperfusion injury 

  

A. Plasmid-derived fluorescent actin transgene expression verified in normal rats 

Using hydrodynamic injections we were again able to generate stable plasmid-

based, fluorescent actin expression in various renal tubules (Figures 55 and 56). Within 

these images, we noted enhanced fluorescence signals along brush borders of transformed 

proximal tubule epithelial cells in live rats, throughout the 2-week measurement period.  

 

B. Actin cytoskeletal alterations visualized in live rats with ischemia-reperfusion 

injury  

After detecting actin-chimeric fluorescent proteins in various renal tubules of rats 

that received hydrodynamic injections of EGFP-actin plasmid vectors, we subjected these 

animals to moderate (30-45 minutes of ischemia using bilateral pedicle cross-clamps) and 

severe (60 minutes of ischemia induced from bilateral renal pedicle cross-clamps) renal 

injury. We monitored transfected regions throughout the first 60-minutes directly after 

renal blood flow was reinstated (Figures 57-59).  

The intact fluorescent protein morphology observed in these rats prior to inducing 

ischemia-reperfusion injury (IRI), were transformed into regions of fluorescent clumps 

and fragments following injury. The lumens of these tubules were in many cases 

narrowed or filled with fluorescent tissue debris, as expected with such ischemic injury. 
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Figure 55. Intravital micrographs of fluorescent actin expression generated 3 days 
after hydrodynamnic delivery in a rat directly before it was subjected to ischemia-
reperfusion injury 
Intravital two-photon micrographs taken: (A) before hydrodynamic delivery (tissue 
autofluorescence ), (B) rat in (A) 3 days after hydrodynamic treatment of saline, and (C) 
3 days after hydrodynamic delivery of Actin-GFP plasmids in another rat. Arrowheads 
indicate the regions of enhanced transgene-based fluorescence along the brush border of 
proximal tubule (PT) epithelial cells and within distal tubule epithelial (PT) cells. Red 
and green pseudo-colors are merged in these images to differentiate between transgene 
and innate tissue fluorescence signals.  
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Figure 56. Intravital micrographs of fluorescent actin experssion generated 14 days 
after hydrodynamnic delvey in a rat directly before it was subjected to ischemia-
reperfusion injury  
Intravital two-photon micrographs taken from a rat in 14 days after hydrodynamic 
treatment of Actin-GFP plasmids. Arrowheads indicate the regions of enhanced 
transgene-based fluorescence along the brush border of proximal tubule (PT) epithelial 
cells and within distal tubule epithelial (PT) cells. Red and green pseudo-colors are 
merged in these images to differentiate between transgene and innate tissue fluorescence 
signals.  
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Figure 57. Intravital micrographs illustrating the disruption of cellular and tubular 
actin-based structures in the setting of severe bilateral ischemia-reperfusion injury 
on day 3 after transgene delivery 
Various intravital two-photon micrographs taken from a rat 3 days after it received 
hydrodynamic treatment of Actin-GFP plasmids. At that time the rat was subjected to a 
severe ischemia/reperfusion injury. Transgene expression was first verified in this animal 
receiving hydrodynamic treatment as shown in Figure 55(B). The animal was then 
subjected to a severe renal injury (60 minute occlusion of renal blood flow). After which, 
we monitored the widespread loss and redistribution of fluorescent actin cytoskeletal 
components (arrowheads) directly after ischemia/reperfusion injury for a period of 60 
minutes. Red and green pseudo-colors are merged in these images to differentiate 
between transgene and innate tissue fluorescence signals. 
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Figure 58. Intravital micrographs illustrating the disruption of cellular and tubular 
actin-based structures in the setting of severe bilateral ischemia-reperfusion injury 
on day 14 after transgene delivery 
Various intravital two-photon micrographs taken from the same rat 14 days after it 
received hydrodynamic treatment of Actin-GFP plasmids. At the 14-day mark it was 
subjected to a severe ischemia/reperfusion injury. Transgene expression was first verified 
in this animal receiving hydrodynamic treatment as shown in Figure 56(B). The animal 
was then subjected to a severe renal injury (60 minute occlusion of renal blood flow). 
After which, we monitored the widespread loss and redistribution of fluorescent actin 
cytoskeletal components (arrowheads) directly after ischemia/reperfusion injury for a 
period of 60 minutes. Red and green pseudo-colors are merged in these images to 
differentiate between transgene and innate tissue fluorescence signals.  
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Figure 59. Widespread alterations to fluorescent actin in the setting of severe 
bilateral ischemia-reperfusion injury on day 3 after transgene delivery 
Various intravital two-photon micrographs taken from the same rat 7 days after it 
received hydrodynamic treatment of Actin-GFP plasmids. The animal was subjected to a 
severe ischemia/reperfusion injury on the 7th day. The animal was then subjected to a 
severe renal injury (60 minute occlusion of renal blood flow). After which, we monitored 
the widespread loss and redistribution of fluorescent actin cytoskeletal components 
(arrowheads) directly after ischemia/reperfusion injury for a period of 60 minutes. Red 
and green pseudo-colors are merged in these images to differentiate between transgene 
and innate tissue fluorescence signals.  
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These data provide demonstrate that hydrodynamic-based fluorescent protein expression 

can serve as a good fluorescent cellular marker for in both normal and injury settings. 

During the reperfusion phase we observed the real-time break down of fluorescent 

tubular structures, cell sloughing, an overall progressive loss of tubular florescence, and 

the migration of fragmented nuclei traveling through tubule lumens and blood vessels 

(Figures 58 and 59). Sloughed fragments of renal tissues travelled through tubular lumens 

where they could eventually form debris clusters.  

In separate experiments, low and large molecular weight dextrans were infused 

into jugular veins after initiating IRI. Using these compounds we further monitored 

structural and functional changes in rats for 60 minutes during reperfusion (Figure 59). 

These studies also revealed evidence of altered renal vascular integrity, as signified by 

the filtration of both low and large molecular weight dextrans into proximal tubule 

lumens. 
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Chapter 3. Hydrodynamic fluid delivery facilitates reliable transgene expression in 

live rats with mild and intermediate ischemia-reperfusion injury 

 

A. Retrograde hydrodynamic injections facilitate delivery of large and low 

molecular weight dextrans and toluidine dye in rats with renal ischemia-

reperfusion injury 

Prior to attempting hydrodynamic transgene delivery in rats with any form of 

renal ischemia-reperfusion injury, we first determined whether it was possible to use this 

injection technique (Figure 2A) to successfully deliver exogenous substances to injured 

kidneys. To answer this question, we compared the results obtained from hydrodynamic 

delivery of fluorescent dextrans in injured kidneys to those obtained from normal kidneys. 

Intravital two-photon micrographs were taken from both groups of rats, within 20 

minutes of them receiving hydrodynamic infusions of 0.5 ml saline containing both 4 

kDa FITC and 150 kDa TRITC dextrans. In normal rats (Figure 60A), and rats with mild 

IRI (Figure 60B), we again observed that hydrodynamically delivered dextran molecules 

appeared within the vasculature, localized along brush borders of proximal tubules and 

within vesicles of tubular epithelial cells (Figure 60A). In comparison, images obtained 

from a rat that received a hydrodynamic injection 1 hour after a 45 minute bilateral renal 

clamp also showed the widespread distribution of the fluorescent probes within the 

vasculature, localized along brush borders of proximal tubules and within vesicles that 

were incorporated inro tubular epithelial cells (Figures 60A through 60D).  
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Figure 60. Hydrodynamic fine needle injections, conducted with vascular cross-
clamps, facilitate the simultaneous delivery of low and large molecular weight 
dextrans to proximal tubule epithelia in normal and injured rat kidneys 
Hydrodyanmic injections facilitate widespeared deilvery of low and high molecular 
weight dextrans in kidneys of rats with mild and moderate forms of renal injury. 
Intravital two-photon micrographs, taken with a 60x objective, from two live rats within  
20 minutes of receiving hydrodynamic infusions of 0.5 ml saline containing 4 kDa FITC 
and 150 kDa TRITC dextrans, and Hoechst 33342 in (A) a normal rat; (B) a rat with mild  
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renal injury (hydrodynamic injection was given 1 hour after a 15 minute bilateral renal  
occlusion); and (C) and (D) rats with moderate renal injury (hydrodynamic injection was 
given 1 and 24 hours after a 30-45 minute bilateral renal occlusion respectively). In 
Figure (A), 1.5x digital zoom, we observe intense TRITC signals confined to the 
vasculature, FITC dextran molecules that appear to adhere to brush borders (arrowheads) 
and as endocytosed puncta within proximal tubule (PT) epithelial cells, and accumulation 
of the FITC dye within the lumens of the distal tubules (DT). These observations provide 
evidence of intact structural and functional renal capacities and widespread delivery of 
exogenous materials. In comparison, the relatively varied and mixed signal from the 
TRITC and FITC dextrans within the vasculature (V) in (B), (C) and (D) signify a 
reduction in renal blood flow, deformed and denatured nuclei within PTs, DTs, and the 
vasculature (arrows) - hallmarks of apoptosis, and reduced level of renal filtration 
(reduced concentration of FITC molecules and blebs within distal tubule lumens), are 
characterized by severe ischemia/reperfusion injuries. There is widespread uptake of the 
exogenous materials in this injury model. Red, green and blue pseudo-colors are merged 
in show the presence of each probe. All images present a merger of signals derived from 
Hoechst 33342 labeled nuclei (blue pseudo-color signal) tissue auto fluorescence (green 
pseudo-color signal) and dye-based fluorescence (red pseudo-color signal). Arrowheads 
outline regions that incoprated the large molecular weigh dextrans.  
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We observed deformed nuclei in intact epithelial cells in both distal and proximal 

tubules, as well as in sloughed cells that occupied tubule lumens and supporting 

vasculature. Other signs of injury were outlined by varied labeling intensty of FITC 

dextran and blebs within tubular lumens, consistent with impaired renal filtration. There 

was also a reduction in TRITC dextran-based fluorescence  signals within the vasculature, 

which could have resulted from the filtration of TRITC dextran molecules generated from 

the hydrodynamic delivery process, and further enhanced by the induced renal injury.  

We again found that hydrodynamic delivery, augmented with vascular clamps, 

provided significant evidence that this method was capable of delivering substantial 

quantities of low molecular weight substances throughout the entire kidney (Figure 61). 

Whole kidneys taken from rats that received hydrodynamic delivery of 0.5 ml of 

toluidine blue dye into the left renal vein after ischemia-reperfusion injury: mild ischemia 

and delivery 1 hour after reperfusion; moderate ischemia and delivery 1 hour after 

reperfusion; and moderate ischemia and delivery 24 hours after reperfusion. These 

kidneys were harvested and sectioned within 20 minutes of injections. The dye appeared 

throughout the cortex and medulla of left kidneys and absent in contralateral kidneys.  

 

B. Efficient transgene expression in rats with renal ischemia-reperfusion injury 

Based on those results, we examined transfection in injured rats at the 3-day time 

point. Two-photon fluorescent micrographs were acquired from live rats that received 

hydrodynamic transgene injections with mild and acute ischemia-reperfusion injury. 
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Figure 61. Hydrodynamic fine needle injections, conducted with vascular cross-
clamps, limits the delivery of exogenous probes to target kidneys in rats with 
moderate forms of ischemic injury 
Hydrodynamic injections facilitate the delivery of exogenous substances throughout the 
entire kidney.Whole kidneys taken from rats that received hydrodynamic delivery of 0.5 
ml of toluidine blue dye into the left renal vein after ischemia-reperfusion injury: (A) 
mild ischemia and delivery 1 hour after reperfusion; (B) moderate ischemia and delivery 
1 hour after reperfusion; and (C) moderate ischemia and delivery 24 hours after 
reperfusion. These kidneys were harvested and sectioned within 20 minutes of delivering 
the dye. The dye appeared throughout the cortex and medulla of the left kidneys and was 
absent in contralateral kidneys.  
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In these micrographs, fluorescent expression is observed within proximal tubule 

epithelial cells and within the lumen of occluded tubules of live rats that received plasmid 

treatments at both investigated injection time points (1 and 24 hours after establishing 

IRI). The distinctive fluorescent pattern observed along proximal tubule brush borders in 

normal rats (Figure 62) was also present in rats, with the mild form of ischemic injury 

(Figure 63), which received hydrodynamic injections of EGFP-actin plasmids. However, 

this pattern was absent in rats with moderate ischemia-reperfusion injury (Figures 64 and 

65). As expected, there was also a substantial disruption to normal renal architecture in 

rats that received moderate injury. This made it at times particularly difficult to make 

morphologic distinctions between proximal and distal tubules (Figure 64D). 

Using intravital two-photon microscopy, we estimated a 70-90% transfection 

efficiency using this injection technique in rats with moderate ischemia-reperfusion 

injury that received hydrodynamic delivery 1 and 24 hours after establishing injury. 

These rates were greater than those obtained for normal rats and those subjected to a mild 

form of ischemia-reperfusion injury, which ranged from approximately 60-70%. 
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Figure 62. Fluorescent plasmid-derived protein expression in live rat proximal and 
distal tubules 
Gene delivery and expression in live renal tubules. Intravital two-photon micrographs 
taken: (A) before hydrodynamic delivery (tissue autofluorescence), (B) 3 days after 
hydrodynamic delivery of Actin-GFP plasmids in the same rat (1.5X optical zoom to 
highlight transgene expression pattern along brush borders). Arrowheads indicate the 
regions of enhanced transgene-based fluorescence along the brush border of proximal 
tubule (PT) epithelial cells and within distal tubule epithelial (PT) cells. Red and green 
pseudo-colors are merged in these images to differentiate between transgene and innate 
tissue fluorescence signals.  
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Figure 63. Hydrodynamic delivery facilitates plasmid-based fluorescent protein 
expression in rats with mild ischemia-reperfusion injury 
Two-photon fluorescent microscopic images taken from a live rats with mild 
ischemia/reperfusion injury 3 days after the initial insult: (A) image taken from a rat that 
did not receive any transgene or saline treatment. Structural damage can be seen within 
proximal tubules (PT) by debris within tubule lumens; (B), (C) and (D) images taken 
from separate rats that were subjected to hydrodynamic transgene delivery of Actin-GFP  
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plasmids 1 hour after a 15 minute bilateral renal clamp. Enhanced transgene-based 
fluorescence can be seen within intact proximal tubule (PT) epithelial cells (arrowheads). 
Again, deformed nuclei within proximal (PT) and distal tubules (DT), and the vasculature 
(arrowheads) are hallmarks of apoptosis, which are expected with this 
ischemia/reperfusion injury. Red and green pseudo-colors are merged in these images to 
differentiate between transgene and innate tissue fluorescence signals.  
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Figure 64. Hydrodynamic delivery facilitates plasmid-based fluorescent protein 
expression in rats with moderate ischemia-reperfusion injury 1 hour after the injury 
was established 
Fluorescent microscopic images taken from a live rats with moderate 
ischemia/reperfusion injury 3 days after the initial insult: (A) image taken from a rat that 
did not receive any transgene or saline treatment. Structural damage can be seen within 
proximal tubules (PT) by debris within tubule lumens; (B), (C) and (D) images taken  
  



 
 
 
 
 

 
 
 
 
 
 

167 

from separate rats that were subjected to hydrodynamic transgene delivery of Actin-GFP 
plasmids 1 hour after a 45 minute bilateral renal clamp. Enhanced transgene-based 
fluorescence can be seen within intact proximal tubule (PT) epithelial cells and within the 
lumens of occluded tubules (arrowheads). In (C) Hoechst 33342 was added to label 
nuclei. Red and green pseudo-colors are merged in these images to differentiate between 
transgene and innate tissue fluorescence signals.  In certain cases the injury was so severe 
that it was difficult to identify specific renal segments as seen in (D). 
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Figure 65. Hydrodynamic delivery facilitates plasmid-based fluorescent protein 
expression in rats with moderate ischemia-reperfusion injury 24 hours after the 
injury was established 
Fluorescent microscopic images taken from a live rats with moderate 
ischemia/reperfusion injury 3 days after the initial insult: (A) image taken from a rat that 
did not receive any transgene or saline treatment. Structural damage can be seen within 
proximal tubules (PT) by debris within tubule lumens; (B), (C) and (D) images taken  
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from separate rats that were subjected to hydrodynamic transgene delivery of EGFP-actin 
plasmids 24 hours after a 45 minute bilateral renal clamp. Enhanced transgene-based 
fluorescence can be seen within intact proximal tubule (PT) epithelial cells and within the 
lumens of occluded tubules (arrowheads). Again, deformed nuclei within proximal (PT) 
and distal tubules (DT), and the vasculature (arrows) are hallmarks of apoptosis, which 
are expected with this form of ischemia/reperfusion injury. Innate tissue autofluoresence 
is significantly altered with renal injury, so red and green pseudo-colors are merged in 
these images to differentiate between transgene-based fluorescence (green) and tissue 
fluorescence signals. 
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Chapter 4. Hydrodynamic isotonic fluid delivery ameliorates ischemia-reperfusion 

injury in live rats 

 

From our serum creatinine measurements we determined that hydrodynamic 

isotonic fluid delivery significantly reduced rises in serum creatinine when administered 

1 and 24 hours after inducing moderate ischemia-reperfusion in live rats. Strikingly 

animals treated with hydrodynamic saline injections from at the 24-hour mark had 

substantial and statistically significant (p-value = 0.02) decreases in serum creatinine as 

compared to control/untreated animals. The creatinine levels in rats that received 

hydrodynamic injections 1 hour after the injury was established were also significantly 

lower (p-value = 0.03) than those recorded in control/untreated rats, when measured the 

24 hours injury was established. Additionally, hydrodynamic isotonic fluid delivery 

administered at both the 1 and 24 hour marks resulted in faster returns to normal baseline 

serum creatinine levels. This return to baseline occurred as early as three days after the 

initial insult.  

In contrast, creatinine levels of injured rats that did not receive hydrodynamic 

treatments had an extended return to baseline, generally occuring  5 days after inducing 

moderate IRI (Figure 66). These latter results, which were obtained from the 

control/untreated group, are consistent with those obtained by Molitoris et al. 217. 

Moreover, we monitored serum creatinine in rats where the injection process was not 

executed well. In those cases hemorrhaging occured at the injection site. Interestingly, the  
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Figure 66. Hydrodynamic isotonic fluid delivery ameliroates moderate forms of 
renal injury 
Influence of hydrodynamic isotonic fluid delivery on serum creatinine levels after 
ischemia-reperfusion kidney injury in rats. Hydrodynamic fluid delivery does not alter 
serum creatinine levels in normal rats, but appears to ameliorate serum creatinine changes 
during bilateral ischemia-reperfusion injury.  
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serum creatinine levels in these rats remained elevated, nullifying the previously 

observed therapeutic effect that was provided with the hydrodynamic fluid delivery.  

Similarly, we also monitored serum creatinine levels in rats with moderate IRI that 

received tail vein injections of the same volume of isotonic fluid. Systemic delivery of 

the given volume, appeared to have no therapeutic effect when administered at either the 

1 or 24 hour time points. 

As a means of further characterizing our delivery process we examined whether 

the hydrodynamic delivery process can adversely affect renal function. For these studies 

we monitored the serum creatinine in normal rats that received hydrodynamic injections 

of either saline or transgene vectors. From our measurements, we observed that 

hydrodynamic delivery has not effect on creatinine levels in normal rats, as there was no 

change from baseline (normal) creatinine during the 2 weeks that followed the 

administration of hydrodynamic fluid injections (Figure 66).  
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Chapter 5. Hydrodynamically delivered mitochondrial proteins protect Sprague 

Dawley rat kidneys against moderate ischemia-reperfusion injury  

 

A. Bilateral clamp injury model   

Serum creatinine measurements obtained from groups of rats that previously 

received hydrodynamic injections of saline and plasmids encoding mitochondrial genes 

(IDH2 and SULT1C1) were monitered across a two week period. On  the 7th day after 

each rat received a hydrodynamic injection containing either saline or a mitochondrial 

plasmid, they were subjected to moderate ischemia-reperfusion injury (IRI). We 

monitored serum creatinine levels for a week after inducing IRI and determined that 

hydrodynamic delivery of IDH2 or SULT1C1 genes was sufficient to blunt the effect of 

IRI in Sprague Dawley rats. Specifically, serum creatinine levels in these rats remained 

within normal levels despite being subjected to moderate IRI, when compared to rats that 

received hydrodynamic or tail injections of saline or fluorescent plasmids (Figure 67).  

The basis for these studies were developed upon the fact that resistance to IRI can 

be induced experimentally (e.g., preconditioning) or can be conferred by genetic factors 

(i.e., as observed in the BN rat). Using Label-free quantative mass spectroscopy 

(LFQMS), 13 proteins were identified in a screen of mitochondria preparations obtained 

from the kidneys of SD rats subjected to ischemia preconditioning and compared to 

control kidneys (Table 2). From these, we randomly selected sulfotransferase (SULT1C1) 

and isocitrate dehydrogenase 2 (IDH2)  proteins for gene delivery studies.  
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Figure 67. Hydrodynamic-based IDH2 and SULT1C1 (Sulfo-Tx) mitochondrial 
enzyme upregulation protects the kidney from moderate forms of renal injury 
Rats hydrodynamically treated with plasmids encoding mitochondrial proteins seven days 
earlier, appear less susceptible to moderate ischemia-reperfusion injury. 
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Gene Symbol Gene Name Fold difference p-value 
SULT1C1 Sulfotransferase 1C2-like 2.4 0.40 
IDH2 Isocitrate dehydrogenase [NADP] 

mitochondrial 
2.2 0.31 

HIST1H2BC Histone H2B 2.0 0.25 
C1QBP Complement component 1 Q 

subcomponent-binding protein 
1.9 0.26 

ACOT2 Acyl-coenzyme A thioesterase 2, 
mitochondrial 

1.5 0.53 

ACSL1 Long-chain-fatty-acid--coa ligase 1 1.7 0.29 
THUMPD2 THUMP domain containing 2 isoform 1 -3.0 0.09 
MTCH2 Mitochondrial carrier homolog 2 -1.9 0.27 
HSDL2 Hydroxysteroid dehydrogenase-like 

protein 2 
-1.6 0.37 

SLC25A13 Solute carrier family 25, member 13 -1.6 0.13 
NDUFA5 NADH dehydrogenase [ubiquinone] 1 α 

subcomplex subunit 5 
-1.6 0.33 

SUCLG1 Succinate-coa ligase, alpha subunit -1.6 0.04 
ISCA2 Iron-sulfur cluster assembly 2 homolog -1.3 0.01 
 
 
Table 2. List of prominent protein alterations in IPC kidney mitochondria as 
determined by LFQMS 
Using proteomics, 13 proteins were identified in a screen of mitochondria preparations 
obtained from the kidneys obtained from Sprague Dawley rats subjected to ischemia 
preconditioning and compared to control kidneys. 
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B. Contralateral nephrectomy and unilateral clamp injury model 

We monitored serum creatinine levels in three groups of uninephrectomized rats 

that received hydrodynamic injections of saline, and IDH2 and SULT1C1 plasmid 

vectors. The right kidney was first removed from each animal, and they were then 

allowed to recover for 26 days. Thereafter, these rats received hydrodynamic injections  

of saline or plasmids, and were again allowed to recover for a week from the 

hydrodynamic injection before inducing moderate IRI. Uninephrectomizations and 

hydrodynamic injections did not alter serum creatinine. Yet, more interistingly, we 

determined that hydrodynamic delivery of either IDH2 or SULT1C1 plasmid was also 

able to blunt the effect of IRI in uninephrectomized Sprague Dawley rats (Figure 68).  

 

C. Enhanced mitochondrial activity observed in rats treated with IDH2 and 

SULT1C1 plasmids, and ischemic-preconditioning 

Jugular vein infusions of the mitochondrial membrane potential-dependent dye 

TMRM were used to gain insight into mitochondria function in various groups of live 

rats. After the infusion in normal Sprague Dawley rats, we observed instantaneous and 

non-uniform basolateral TMRM uptake in proximal and distal tubule epithelia cells 

(Figure 69). We subjected these rats to 30-45 minutes unilateral ischemia, via ligatures 

placed around left pedicle of kidneys that received hydrodynamic injections. This lead to 

abrupt decreases in TMRM fluorescent signals, which were drastically reduced within 30 

minutes of inducing ischemia illustrating rapid mitochondria depolarization (Figure 70).  
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Figure 68. Hydrodynamic-based IDH2 and SULT1C1 (Sulfo-Tx) mitochondrial 
enzyme upregulation protects the kidney from moderate forms of renal injury in 
uninephrectomized rats 
Uninephrectomized rats hydrodynamically treated with plasmids encoding mitochondrial 
proteins appear less susceptible to moderate ischemia‐reperfusion injury. Normal rats 
were subjected to right nephrectomies n Day 0 and allowed to recover from this 
procedure. After which, on Day 26, the rats received hydrodynamic injection of saline or 
plasmid vector (IDH2 or SULT1C1). The rats then were subjected 7 days after 
hydrodynamic saline/gene delivery on Day 33 and monitored for serum creatinine seven 
days thereafter until Day 40.  
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Figure 69. Robust and rapid basolateral uptake of TMRM in a live rat kidney 
outlining mitochondria membrane potential activity in nephron segments of a live 
normal rat  
TMRM was infused through the rat’s jugular vein: (A) before infusion, and at various 
times (B) 5 seconds, (C) 10 seconds, (D) 15 seconds, (E) 20 seconds and (F) 5 minutes 
after infusing the dye. These varied levels of fluorescence potentially outline the varied 
levels of mitochondrial activity in the normal kidney. These images were taken from the 
same microscopic field.  
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Figure 70. Rapid mitochondria depolarization in live nephron segments as a direct 
result of ischemia that was induced for 30 minutes  
TMRM was infused via the jugular vein approximately 5-10 minutes before the ischemia. 
Time 0 min and 30 min mark the beginning and end of the ischemic event respectively. 
150 kDa FITC molecule weight dextran molecules were infused before inducing 
ischemia-reperfusion injury to outline the supporting microvasculature, which constricted 
as blood flow was occluded during ischemia. This dextran enabled us to observe the 
complete disruption to renal blood flow during ischemia and its restoration during 
reperfusion. These images were taken from the rat that was imaged in Figure 69.  



 
 
 
 
 

 
 
 
 
 
 

180 

However, after blood flow was restored, there was a gradual increase in the 

TMRM signal, signifying mitochondrial repolarization in vivo (Figure 71). The TMRM 

signal returned to its initial elevated levels approximately 15 minutes after blood flow 

was restored (Figure 72). This increase in the TMRM-based fluorescence signified the 

regeneration of mitochondrial activity. However, this regeneration was not observed 

throughout the kidney after reperfusion, implying that moderate IRI was significant 

enough to grossly impair mitochondrial repolarization/function. These results outline the 

dynamic depolarization and repolarization of mitochondria as a direct result of significant 

ischemia-reperfusion injury and compare well to previously reported results215.  

In comparison, TMRM fluorescent signal intensities measured in rats that 

previously received hydrodynamic injections of either IDH2 or SULT1C1 plasmid 

vectors, as well as those that received ischemic preconditioning, were significantly 

greater than those measured in rats that received hydrodynamic saline injections and 

uninjected normal rats (Figures 73-75). These data outline a possible increase in 

mitochondrial activity related to the upregulation of the mitochondrial enzymes 

facilitated by hydrodynamic IDH2 and SULT1C1 gene delivery and ischemic 

preconditioning (data to support ischemic preconditioning facilitates the upregulation of 

various mitochondrial enzymes, including IDH2 and SULT1C1, were obtained from 

proteomic studies conducted by Bacallao, R.L., Basile, D.P. and Witzmann, F.A. these 

data were the framework upon which we established these studies). This upregulation in 

mitochondrial enzyme activity was confirmed with Western analysis (Figures 76 and 77).  
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Figure 71. Mitochondria repolarization in live nephron segments when blood flow 
was restored to the kidney after 30 minutes of ischemia 
TMRM was infused via the jugular vein approximately 5-10 minutes before the ischemia. 
Images were acquired 1, 2 and 3 minutes after renal blood flow restored. These images 
were taken from the same microscopic field and the rat presented in Figures 69 and 70.  
  



 
 
 
 
 

 
 
 
 
 
 

182 

 
 
 
Figure 72. Mitochondria function was restored in various in live nephron segments 
directly after ischemia-reperfusion injury  
Images A through F were obtained from adjacent microscopic fields approximately 15 
minutes after renal blood flow was restored. The TMRM and 150 kDa FITC dextran were 
infused via the jugular vein approximately 5-10 minutes before the ischemia to outline 
the renal architecture. The TMRM signal returned to elevated baseline levels observed in 
Figures 69 and 70, before ischemia approximately 15 mutes after reperfusion 
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Figure 73. Robust and rapid basolateral uptake of TMRM in a live rat kidney 
outlining mitochondria membrane potential activity in nephron segments of a live 
rat that ischemic-preconditioning treatment 
TMRM was infused through the rat’s jugular vein: (A) before infusion, and at various 
times (B) 5 seconds, (C) 10 seconds, (D) 15 seconds, (E) 20 seconds and (F) 5 minutes 
after infusing the dye. These varied levels of fluorescence potentially outline the varied 
levels of mitochondrial activity in the normal kidney. There is a significant increase the 
TMRM fluorescence when compared to those generated from a normal rat in Figure 69. 
These images were taken from the same microscopic field.  
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Figure 74. Mitochondria membrane potential activity was examined in nephron 
segments of various live rats 
Image (A) represents baseline autofluorescence in a normal rat that did not receive the 
TMRM dye. In the other cases live rats received hydrodynamic injections of (B) saline; 
(C) IDH2 plasmids; (D) SULT1C1 plasmids; (E) SULT1C1 plasmids in the 
uninephrectomized rats. The rat imaged in (E) was subjected to ischemic-preconditioning 
and did not receive a hydrodynamic injection. Rats (B) through (F) were given TMRM 
via jugular vein after being exposed to 30 minutes of ischemia one week after receiving 
hydrodynamic injections or ischemic preconditioning, and were imaged approximately 
15-20 minutes after receiving jugular vein infusions of TMRM and renal blood flow was 
restored. 
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Figure 75. Comparison of mean TMRM fluorescence signal intensities recorded 
from live kidneys subjected to ischemic preconditioning and hydrodynamic gene 
delivery 
TMRM fluorescence signal intensities were measured in rats that received ischemic 
preconditioning and hydrodynamic injections of saline; and mitochondrial plasmids 
(IDH2 and SULT1C1). SULT1C1 (UNX) = group of right nephrectomized rats that 
received hydrodynamic injections of SULT1C1 plasmids into their left renal veins.  
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Figure 76. Western blot analysis identifying the varied levels of IDH2 protein 
expression in rat kidneys 
Western blot analysis was conducted on tissue sections obtained from rats after various 
treatments presented in (A): hydrodynamic injection of IDH2 (lanes 1 through 3) and 
saline (lanes 7 through 9), and rats that were subjected to ischemic preconditioning (lanes 
4 through 6). The molecular weight of the IDH2 and the actin molecules are 
approximately 47 kDa and 42 kDa respectively. These data illustrate the upregulation of 
IDH2 expression in rats that received hydrodynamic delivery and ischemic pre-
conditioning as compared to the exogenous levels presented in the control rats. These 
data also illustrate the relatively homogenous level of actin expression in rats that 
received IDH2 hydrodynamic delivery and ischemic pre-conditioning as compared to the 
exogenous levels presented in the saline-treated control rats (B).  
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Figure 77. Western blot analysis identifying the varied levels of SULT1C1 protein 
expression in rat kidneys 
Western blot analysis was conducted on tissue sections obtained from rats after various 
treatments presented in (A): hydrodynamic injection of SULT1C1 (lanes 1 and 3) and 
saline (lanes 4 and 6), and rats that were subjected to ischemic preconditioning (lanes 4 
and 5). Similar to the IDH2 data, these data also illustrate the upregulation of SULT1C1 
expression in rats that received hydrodynamic delivery and ischemic pre-conditioning as 
compared to the exogenous levels presented in the control rats. Again, these data also 
illustrate the relatively homogenous level of actin expression in rats that received 
SULT1C1 hydrodynamic delivery and ischemic pre-conditioning as compared to the 
exogenous levels presented in the saline-treated control rats (B).  
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From these data we observed the upregulation of IDH2 and SULT1C1 gene 

expression in rats that received hydrodynamic delivery and ischemic pre-conditioning, as 

compared to the exogenous levels presented in the control rats, which support the 

previously described TMRM data. 
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Chapter 6. Hydrodynamic fluid delivery facilitates efficient exogenous 

macromolecule uptake in large animals  

 

A. Fluid delivery into live normal Ossabaw swine kidneys 

1. Low rate renal vein infusions are unable to facilitate the efficient delivery 

of exogenous macromolecules to Ossabaw swine kidneys 

 In order to investigate whether low rate renal vein infusion could adequately 

deliver exogenous substances to live pig kidneys, we relied on angiography to visualse 

the delviery of these substance in real-time. Ossabaw swine received catheter-guided 

infusions of 50 ml of 0.9% saline containing toluidine blue dye and PET/CT contrast 

agent into either the renal vein. During that time, angiograms were collected across a 5-

second period so that we could outline rapid filling and draining of the renal vein (Figure 

78). From these angiograms we observed that thee low rate infusions were incapable of 

redirecting renal flow and introducing dye into the kidney. Renal venous output inhibited 

entry of these macromolecules into the kidney, thus nullifying its utility for our purposes. 

2. Low rate renal artery infusions facilitates off-target delivery of exogenous 

macromolecules in various organs of Ossabaw swine 

  Live images acquired from a pig during a catheter-guided infusion of 50 ml of 

0.9% saline containing toluidine blue dye and PET/CT contrast agent into the right renal 

artery outlined successful uptake and expulsion of exogenous fluid throughout various 

renal arterial branches (Figure 79). Exogenous uptake was not limited to the right kidney,  
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Figure 78. Live images acquired from a live pig during a catheter-guided infusion of 
50 ml of 0.9% saline containing toluidine blue dye and PET/CT contrast agent into 
the left renal vein 
Images (A) through (E), which were taken across a 5-second period, outline the rapid 
filling and draining of the vein. The low pressure infusion was incapable of redirecting 
renal flow and introducing the dye into the kidney.  
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as the toluidine dye was ultimately transported to the contralateral left kidney (Figure 80), 

and other organs that receive a large fraction of the cardiac output such as the heart, liver 

and spleen. Even though this was a local infusion into the kidney, these results mimic  

those obtained from systemic fluid delivery and hydrodynamic injections conducted 

without vascular cross-clamps  in rats, which does not limit deivery to targeted kidneys. 

 

B. Critical parameters and mechanisms to support effective renal transgene delivery 

in live pigs 

1. Pig vital signs are unaffected by retrograde hydrodynamic renal vein 

injections 

During hydrodynamic retrograde injections into the renal vein of live Ossabaw 

swine, we recorded animal vital signs. As with the rat, these showed the hydrodynamic 

injection process did not alter pig’s blood pressure, heart rate and temperature. 

2. Hydrodynamic retrograde renal vein delivery facilitates the atypical 

internalization of macromolecules in live pigs 

 As previously observed in the rat, hydrodynamic renal vein injections facilitated 

robust and widespread uptake of low and large molecular weight fluorescent dextrans in 

live Ossabaw pigs. Two-photon micrographs of fixed kidney sections obtained from these 

pigs revelaed the uncharacteristic apical and basolateral uptake of large molecular weight 

dextran molecules with proximal tubule epithelial cells within the renal cortex and 

medulla (Figures 81-83), similar to that observed in the rat (Figures 19-21).  



 
 
 
 
 

 
 
 
 
 
 

192 

 

 

 

Figure 79. Live images acquired from a live pig during a catheter-guided infusion of 
50 ml of 0.9% saline containing toluidine blue dye and PET/CT contrast agent into 
the right renal artery 
Images (A) through (L), illustrate, in chronological order, the right kidney before infusion 
of the dye, and the subsequent filling and passage of the mixture of dyes through various 
renal arterial branches.  
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Figure 80. Whole kidneys harvested from an Ossabaw swine that received a low rate 
a catheter-guided infusion of 50 ml of 0.9% saline containing toluidine blue dye and 
PET/CT contrast agent into the right renal artery that was presented in the 
angiograms data in Figure 3.19  
Images (A) and (B) whole sections of both left and right kidneys showing widespread 
uptake of the toluidine dye throughout these organs; and (C) a section highlighting 
cortical and medullary compartments that are filled with the toluidine dye. These data 
compare well with those presented in Figure 3.19 regarding the substantial passage of the 
dye mixture across the kidney. These kidneys were harvested and sectioned within 2 
hours of delivering the dyes.  
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 It should also be noted that during these initial attempts to deliver exogenous 

substance to the pig kidney, it was difficult to adequately restrict blood flow within the 

many bifurications of the renal vein and artery. We believe the anatomy permitted 

leakage of probes to the contralateral kidney. Nevertheless, 150 KDa TRITC molecules 

that were observed in the contralateral kidney remained restricted to the vasculature 

(Figure 81), indicating the need for hydrodynamic injection to facilitate the uptake of the 

high molecular weight dextran molecules by the tubular epithelia. 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 

 
 
 
 
 
 

195 

 

 

Figure 81. Additional ex vivo two-photon fluorescent investigation of kidney tissues 
harvested from an Ossabaw swine that received a hydrodynamic retrograde 
injection of 50 ml solution containing 400 µg of 150 kDa FITC dextran molecules 
These images were taken after the tissues were fixed with 4% paraformaldehyde and 
counterstained with Hoechst 33342 to label nuclei: (A) widefield 20x objective image; (B) 
60x objective image of the region outlined in image A; (C) 60x objective image with 2X 
digital zoom of the region outlined in image A; (D) 60x objective image of an alternate 
microscopic region; and  images (E and F) autofluorescence . Arrowheads identify 
regions with significant concentrations of 150 kDa dextran molecules that have been 
internalized within proximal tubule epithelial cells.  
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Figure 82. Ex vivo two-photon fluorescent investigation of kidney tissues harvested 
from an Ossabaw swine that received a hydrodynamic retrograde injection of 50 ml 
solution containing 400 µg of 150 kDa TRITC dextran molecules 
These images were taken prior to fixation to examine the degree of renal dextran uptake 
by collecting 10 adjacent microscopic fields using widefield 20x objective.  
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Figure 83. Ex vivo two-photon fluorescent investigation of kidney tissues harvested 
from an Ossabaw swine that received a hydrodynamic retrograde injection of 50 ml 
solution containing 400 µg of 4 kDa FITC dextran molecules 
These images were taken prior to fixation to examine the degree of renal dextran uptake 
by collecting 10 adjacent microscopic fields using widefield 20x objective. These  
microscopic fields are paired to those presented in Figure 3.20.  
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IV. DISCUSSION 

 

A. Summary 

 In Chapter 1, we presented results obtained from the various experiments that 

were conducted to optimize the design and characterization of a method to facilitate and 

monitor transgene delivery in the rat kidney. We determined that relatively low-volume, 

fine-needle, hydrodynamic delivery provided optimal delivery characteristics. This 

method provided widespread delivery of low, intermediate and large molecular weight 

molecules, and transgenes in live rat kidneys with minimal injury. Our hydrodynamic 

method facilitated widespread organ-specific non-viral/viral transgene expression, while 

not adversely affecting renal morphology, serum creatinine levels and vital signs.  

 In Chapter 2, we investigated the utility of hydrodynamic transgene delivery for 

the study of IRI. This technique allowed us to track live changes in the actin 

cytoskeleton, which is among the most abundant proteins within eukaryotic cells. Rats 

that expressed hydrodynamic-derived fluorescent actin were subjected to moderate and 

severe ischemia-reperfusion injury (IRI) via unilateral/bilateral renal pedicle clamps. 

Using intravital two-photon microscopy we recorded live cytoskeletal dynamics, in real-

time, during reperfusion. This technique provided a reliable means to observe changes in 

proximal tubule (major site of damage during IRI). 

 In Chapter 3, we extended our transgene delivery investigations to consider rats 

with forms of mild and moderate IRI. Using this technique, we found that hydrodynamic  
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fluid delivery also facilitates robust delivery of low and high molecular weight molecules 

and reliable plasmid expression in live rats with mild and moderate IRI. 

 In Chapter 4, another application of hydrodynamic isotonic fluid delivery was 

identified. In this case we showed that this form of fluid therapy could be useful in 

treating IRI, as it ameliorated serum creatinine changes during IRI. In particular, this 

technique blunted rises in serum creatinine levels within 24 hours of its application in rats 

with moderate IRI. This therapeutic effect was observed with injections delivered as early 

as 1 hour after injury was established, as well as those administered at the time of 

maximal damage (24 hours after the injury was established).   

 In Chapter 5, we again investigated the therapeutic benefit that may be obtained 

from this injection process, and identified a method that protected rat kidneys against 

moderate IRI. In these studies we delivered supraphysiological doses of two types of 

mitochondrial genes to Sprague Dawley rat kidneys, using hydrodynamic retrograde 

venous injections. These genes were previously identified to have been upregulated in 

Sprague Dawley rats subjected to ischemic preconditioning. Sprague Dawley rats  

that received hydrodynamic injections of plasmids encoding these genes were exposed to 

moderate IRI. Strikingly these rats appeared to be resistant to this injury, as their serum 

creatinine levels normal. Western blot analysis confirmed upregulation of mitochondria 

enzyme expression in rats that received hydrodynamic injections of mitochondrial-

expressing plasmids. Moreover, mitochondrial membrane potential analyses revealed 

enhanced mitochondria activity in these rats and those with ischemic preconditioning. 
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In Chapter 6, we again extended the utility of our hydrodynamic delivery 

technique for studies in large animals. For this phase of experimentation, we conducted 

low-rate and rapid infusions in Ossabaw swine (the Ossabaw swine has been used to 

develop a well established model for human vascular studies230). As previously observed 

in the rat, low-rate renal vein infusions were also incapable of efficiently deliver 

exogenous macromolecules to Ossabaw swine kidneys, while low rate renal artery 

infusions facilitates off-target delivery of exogenous macromolecules in various organs of 

Ossabaw swine. However, hydrodynamic retrograde renal vein injections facilitated 

targeted apical and basolateral macromolecule cellular internalization of in live pig 

proximal tubules, without affecting vital signs and generating significant degree of renal 

injury. Overall, these results compare well with those observed in the rat. 

 

B. The effect of hydrodynamic delivery on exogenous macromolecule uptake in 

normal rats 

 We investigated the ability of several systemic and local infusion methods to 

reliably transport low, intermediate and large macromolecules across various renal cell 

membranes in live rats, while generating minimal injury. These studies provided varied 

results regarding kidney-specific delivery, cellular incorporation of exogenous large 

molecular weight substances, and degrees of injury generated from each delivery process.  

 First, from the systemic delivery standpoint, both jugular and tail vein infusion 

techniques initially enabled the circulation of exogenous materials to the heart. Thereafter  
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these materials were redistributed to kidneys via the cardiac output. This phenomenon 

exploited the fact that the kidneys receive greater than 20% of the cardiac output231. As a 

result, this method failed to limit the distribution of delivered agents to the kidney.  

 It should also be noted that, systemic delivery via the jugular vein, is not 

necessarily best suited for survival experiments, even though there is a collateral 

compensation from the other jugular venous line via the dural sinuses232. After reviewing 

these results, we shifted our studies to local infusion techniques.  

 In comparison, fine-needle injections into the renal capsule eliminated off-target 

delivery to other organs. Nevertheless,  delivery was also restricted to the region that 

extended to approximately 40 µm below the capsule, which surrounded the injection site. 

High molecular weight dextran molecules delivered by this method, were also not 

uniformly distributed within these superficial cortical zones. These facts limited our 

interest in this technique, as it merely provided site-specific transgene expression 

comparable to that which is achieved using micropuncture gene delivery218. 

We then focused on designing a delivery method that would facilitate widespread 

internalization of relatively large macromolecules, comparable in size to the transgene 

vectors, and investigated whether hydrodynamic infusions could reliably achieve this 

result. We utilized the full effect of the pressurized injection system, under conditions of 

hydrodynamic equilibrium, by inserting PE-50 catheters into the renal artery and vein, 

through which 150 kDa FITC dextrans were rapidly delivered. 
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Renal artery and vein catheterization facilitated the uptake of albumin and 150 

kDa dextran molecules. Increases in vascular permeability generated from arterial and  

venous ligation-derived injury233 and hydrodynamic fluid forces234,235 were sufficient to 

mediate the widespread and robust internalization of intermediate and high molecular 

weight molecules within renal cells. Unfortunately, these PE-50 infusion processes 

produced significant and irreversible levels of renal injury. 

We then hypothesized that forces produced by hydrodynamic injections may be 

sufficient to facilitate the delivery of exogenous transgenes throughout kidneys, and 

ultimately assist their cellular incorporation. It was also envisioned that the level of injury 

and disruption to regular renal function, generated from 30- gauge needle hydrodynamic 

injections, would be comparably less than that produced by a PE-50 catheter. 

Our initial hydrodynamic retrograde fine-needle renal vein injection studies 

provided promising results as we investigated extent of macromolecule uptake that could 

be attained throughout the entire kidney. We determined that hydrodynamically injecting 

approximately 0.5 ml of toluidine dye solution into the left renal vein of live rats was 

sufficient to facilitate robust delivery throught the organ. Saggital plane sections of left 

and contralateral right kidneys; hearts; livers; lungs; and spleens harvested from the rats 

that received these injections revealed widespread distribution of the toluidine dye only 

within the left kidney, when injections perfomed with vascular clamps. This provided 

proof that this method is capable of delivering ample quantities of exogenous substances 

throughout the kidney, while eliminating unwanted off-target probe distribution.  
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Nevertheless, further investigation was required to detemine whether this process 

would also facilitate transepithelial passage of high molecular weight compounds in 

various renal cells. For these experiments we used dextran reporters, since albumin may 

mask disruptions to vascular structure and normal nephron function. Previous studies 

have demonstrated that albumin can be filtered by normal glomeruli and occupy both 

vasculature and tubular compartments181. This property can confound studies on 

macromolecule passage across renal cell and glomerular membranes in normal rats. 

Our analyses confirmed that was also possible to use hydrodynamic fine-needle 

injection to facilitate renal cellular uptake of large molecular weight compounds with 

minimal injury. Normally, large molecular weight dextrans are unable to transit the 

glomerular filtration barrier. Therefore, these molecules remain restricted to the renal 

vasculature of normal rats122,207; whereas small molecules are filtered by glomeruli, and 

can enter proximal tubule epithelial cells, via clathrin-mediated endocytosis117,207,236. 

In contrast, we observed that the large molecular weight (150 kDa) molecules had 

the uncharacteristic and extraordinary ability to access tubular lumens and be internalized 

within vesicles in tubular epithelial cells. This effect was only observed when these large 

molecules were delivered to the kidney by the hydrodynamic injection process. Even 

though the complete mechanism(s) of hydrodynamic delivery to renal cells is not fully 

understood, these results suggest possible means by hydrodynamic forces generated from 

rapid, fine-needle injections could facilitate reliable delivery and expression of transgene 

vectors (which have molecular weights on the order of 150 kDa) with minimal injury. 
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C. The effect of hydrodynamic delivery on transgene expression in live normal rats 

After determining that our renal hydrodynamic injection process was capable of 

reliably mediating widespread cellular uptake of large molecular weight marcomolecules, 

our studies progressed to gene delivery phase of the project. We then investigated the 

potential to induce reliable renal transgene expression using delivery techniques 

previously outlined. At that point we first verified the quality of our plasmid, baculovirus 

and adenovirus transgene vectors in cell culture before conducting in vivo studies.  

This in vitro work produced anticipated genetic transformation results using 

untagged, and actin and tubulin fluorescent expression vectors.  However, the fluorescent 

actin structures observed in vitro from cells that were incubated with baculovirus 

expression vectors, deviated from normal actin morphology observed with plasmid-based 

and adenovirus-based transgene expression vectors. This may have resulted from the fact 

that, unlike the plasmid and adenovirus vectors, the baculovirus vectors were designed to 

express actin-binding proteins and not actual actin monomers. We also considered that 

insect-derived baculovirions might have generated cytotoxic responses in vivo.   

After completing these in vitro studies, we began our transgene delivery studies in 

live animals. Transgene expression was examined in live animal kidneys and in freshly 

excised tissues with intravital two-photon fluorescence microscopy, and in fixed tissue 

sections with confocal laser scanning microscopy. These studies provided results that 

appeared to depend on the infusion site, infusion technique and transgene vectors.  
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For instance, using hydrodynamic retrograde venous injections to deliver 

baculovirus, plasmid and adenovirus vectors, we detected fluorescent protein expression 

within 24 hours of delivery. With this process we observed robust and lengthy glomerular, 

tubular and vascular transgene expression, generated from single doses of low plasmid 

concentrations or virus titer delivered by the hydrodynamic injection process. However, 

the overall quality and transduction rate of the live baculovirus-based expression raised 

significant concerns. Moreover, in vivo baculovirus-based fluorescent expression rates 

observed in superficial cortical segments limited its utility for live animal-based studies.  

Nevertheless, both plasmid and adenovirus derived transgene expression, 

generated from hydrodynamic injections coupled with vascular clamping, resulted in 

comparably efficient levels of fluorescent protein expression. This distinction was based 

on criteria presented in Chapter 1 to evaluate gene delivery techniques67. Widespread, 

stable and lengthy transformation was observed in various vascular, tubular and 

glomerular cell types. These expression patterns, again unlike those derived from 

baculovirus vectors, did not deviate from normal renal morphology. This vast 

improvement in superficial cellular transformation will readily facilitate live renal studies 

that can be directed to understanding and treating underlying causes of renal disease.  

For instance, the similar levels of transgene expression obtained from both non-

viral and (adeno)viral vectors, which were limited to renal tissues (no signs of expression 

were recorded in other organs), highlighted the utility of the gene delivery method for 

kidney-specific gene transfer. In addition, hydrodynamic delivery may also be used to  
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facilitate long-term investigations using helper-dependent or 3rd generation adenovirus 

systems that are able to provide prolonged transgene expression, and simultaneously 

inhibit the expression of capsid proteins237.   

Moreover, in cases where the potential for mutagenesis derived over a long-term 

may be an issue, as has been reported with recombinant adenovirus systems169, the ability 

to utilize plasmid DNA for genetic transformation offers the benefit of having a potent 

vector with a great safety profile. Plasmids can also be used to readily generate large 

volumes of a wide palate of exogenous transgenes with relatively low costs and waiting 

periods. 

Overall, this simplified method provides an ability to rapidly and reliably deliver 

multiple exogenous genes to various nephron segments in healthy animals with minimal 

injury (Figure 84). Transgene expression observed in podocytes and epithelial cells of the 

S1 segment of proximal tubules may provide evidence that transient increases in 

pressures, generated by hydrodynamic injections, are sufficient to facilitate their passage 

through glomeruli barriers and S1 segments of proximal tubules. This may be plausible, 

because other reports have described glomerular permeability as a function of blood 

pressure238. Overall renal venous pressures increased by as much as 25 mmHg.  This 

implied that hydrodynamic injections generated significant, yet transient increases, in 

renal venous and peritubular capillary pressures239. However, the extent of such pressure 

changes are expected to vary across the nephron, which may be associated with changes 

in renal vascular compliance240.  
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Figure 84. A summary of renal gene delivery procedures outlining the ability of each 
technique to facilitate transgene expression in live rats. 
Efficient renal gene delivery was only facilitated with hydrodyanmic renal vein injections 
of either plasmid or adenoviral vectors, with minimal injury that did not appear to 
significantly alter normal reanl structure and function. There was a direct correlation 
between the delivery of large (150 kDa) molecular weight dexran molecules to tubular 
epithelia and trangene expression.  
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The data also support the claim that renal cells, which expressed 

hydrodynamically delivered transgenes, appear to maintain viable structural and 

functional capacities beyond the gene transfer process. Fluorescent protein distrubution 

appears to be relatively non-selective both in cell type and region of the kidney. 

Moreover, these results also support the possibility of mechanically induced, transient 

increases in vascular permeability that may facilitate atypical passage and internalization 

of macromolecules within the kidney, without inducing significant or long-term renal 

injury. If this is in fact the primary mechanism to facilitate hydrodynamic-based cell 

entry and gene expression, then such transient mechanical disruption of the plasma 

membrane may confer no advantage for viral particle uptake, and may actually be a 

hindrance. 

Alternatively, hydrodynamic fluid delivery may aid transgene uptake by 

basolateral anionic transporters241, and renal mechanotransduction via delivery of 

transgenes through stretch-gated ion channels242. Plasmid DNA and adenovirions may 

benefit from enhanced endocytic uptake by target cells (primarily in the tubules), 

triggered by rapid increases in renal fluid volume after their venous infusion. Our dextran 

studies supported these ideas as we observed that transient variations in fluid pressures 

facilitated entry of large macromolecules into tubule lumens and their internalization by 

the tubular epithelia. This may provide insight into the mechnism by which 

hydrodynamic-based transgne delivery is facilitated, as the large molecular weight 

dextrans are comparable in size to the transgene vectors we used.  

  



 
 
 
 
 

 
 
 
 
 
 

209 

In a separate set of experiments, we attempt to further understand the nature of 

transgene incorporation, we hypothesized that the hydrodynamic forces, generated by 

pressurized injections, were sufficient to facilitate viral endocytic uptake prior to their 

deactivation by the complement response. Both adenovirus243 and baculovirus244 entry 

into mammalian cells have been shown to be primarily dependent on clathrin-mediated 

endocytosis. This endocytic activity can be efficiently deactivated by the complement 

system229,245,246. To test this hypothesis, we conducted a series of experiments that 

monitored baculovirus-derived fluorescent protein expression under standard systemic 

and hydrodynamic renal vein delivery conditions. These studies clearly outlined the 

benefit obtained from the localized injection’s ability to protect viral particles from the 

complement response and mediate the required cellular transformation in vitro and in 

vivo. However, future studies are needed to elucidate exact mechanisms for transgene 

uptake and expression relative transformation vectors, renal compartments and cell types. 

It should be noted that hydrodynamic transgene delivery also has side effects, 

which result in brief, mild, and reversible levels of renal injury. Notably, these side 

effects do not appear to impair overall renal function, as serum creatinine levels are 

unaffected by either the delivery process or the resulting plasmid-based transgene 

expression. Histology has also revealed normal and intact renal morphology following 

transgene delivery and expression. Additionally, this process does not appear to impact 

the overall health of the animal as vital signs are unaffected by this injection process and 

the animals did not present any signs of illness during our prolonged observation.  
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D. Cytoskeletal dysregulation monitored in live rats with ischemia-reperfusion injury 

 Utilizing hydrodynamic delivery, we introduced fluorescent actin plasmid 

expression vectors in the kidneys of normal rats that were then subjected to IRI. With the  

aid of two-photon fluorescence microscopy, we then tracked structural and functional 

cytoskeletal changes in initiated by ischemic injury in live rats. Combing hydrodynamic 

delivery and intravital microscopy facilitated us to monitor loss and remodeling of actin 

components in live proximal tubule epithelial cells, which is the major site of IRI.  

Apart from structural tissue breakdown that was noted, loss of tissue fluorescence 

signals may have occurred via changes pH and fluorescent quenching with continuous 

imaging. Therefore, as discussed by Ashworth et al.247, these results provide an approach 

to potentially study in detail, the cellular and subcellular events associated with renal 

ischemic injury. In turn, this monitoring technique may be extended to the study of other 

live renal structures and nephron segments. 

 

E. The effect of hydrodynamic delivery on transgene expression in rats with 

ischemia-reperfusion injury 

 Traditionally, the development of renal gene therapy has lagged behind other 

organ-directed gene therapies. This is because of reported low frequency renal gene 

transfer efficiencies and difficulty in targeting specific cell types60. But, it appears that 

hydrodynamic delivery may overcome this issue in either normal or injured renal states.  
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We arrived at this conclusion by first determining that hydrodynamic delivery 

could be used to successfully delivery low and large molecular weight dextrans 

throughout nephrons of normal rats and those with moderate IRI. Thereafter, our 

investigations revealed that this relatively simple technique generated efficient transgene 

expression in live renal segments, namely proximal tubule epithelia, which is the major 

site of damage in AKI. These observations made from injured rats were hallmarks of 

acute IRI, which can generate patchy or segmental renal damage180,248.  

Our data illustrated the fact that hydrodynamic delivery facilitated widespread 

distribution of low (5 KDa) and large (150 KDa) molecular weight molecules in rats with 

moderate renal IRI. Moreover, a substantial quantity of both low and large dextran 

molecules were internalized by damaged proximal tubule epitheliala. This in turn 

provided sufficient evidence to support the idea that retrograde hydrodynamic injections 

may facilitate the expression of exogenous transgenes in injured rat kidneys, and in 

particular, at the major site affected by AKI. 

Combining these facts with our estimated transfection rates for injured rats, we 

believed that the combination of hydrodynamic delivery and ischemia/reperfusion injury, 

which is known to promote vasculature and cellular permeability, may have further 

mediated the passage of materials across disrupted tubular epitheial cell membranes. This 

phenomenon may have also directly enhanced the internalization of exogenous materials, 

in the possible absence or reduction in endocytic capacities, resulting from injury-derived 

loss of brush border components in proximal tubules. Kelley et al. provided similar a  
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rationale for transgene expression since they observed expression in rats with injured 

glomeruli using adenovirus vectors66.  

 Interestingly, we were able to facilitate transgene expression in mammalian 

kidneys that had been subjected to acute injury, during both the initial phase of injury and 

at the maximal point of damage. Based on this, it is necessary to consider the state of the 

cells expressing the transgenes. There exists the probability that both injured and  

functional cells populations would express transgenes in some undefined ratio. Naturally,  

it would be of interest to shift this ratio to benefit the injured cells. Nevertheless, due to 

the nature of AKI and proximal tubule function, it would be of interest to target 

functional cells in an attempt to protect them from irreversible damage and foster their 

proliferation to compensate for terminal injured cells249.  

 Overall, these results now provide a novel platform that may be used to address 

the challenges observed in generating reliable renal gene transfer to a variety of cell types 

within normal and injured kidneys. Moreover, from a clinical perspective, we believe that 

this localized delivery of transgenes might potentially maximize welcomed therapeutic 

benefit, by limiting offsite deleterious effects250. 

 

F. The effect of hydrodynamic isotonic fluid delivery on ischemia-reperfusion injury 

 After investigating the therapeutic potential of this delivery technique we 

determined that it is possible to use a relatively low volume (0.5 ml) hydrodynamic 

isotonic fluid delivery to the left renal vein, 1 and 24 hours after inducing moderate IRI,  
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to reduce the level of injury. IRI was established in rats via a bilateral pedicle cross-

clamp for 30-45 minute. These rats then received hydrodynamic isotonic fluid injections 

in their left kidneys. It is still unclear from a mechanistic perspective the manner in which 

this amelioration occurs, but we hypothesize that this approach, as compared to standard 

renal fluid therapy, may reduce tubular blockages and physically disrupt capillary 

congestion and facilitate diuresis to reinstate intrinsic renal function and creatinine levels. 

 Moreover, these results can be compared to those presented by Molitoris et al22. 

In that study this group investigated the therapeutic potential of RNAi to ameliorate 

ischemia-reperfusion derived AKI in rats, using siRNAs delivered intravenously, via tail 

vein injections. The siRNA against p53 provided significant improvements in serum 

creatinine levels in injured rats. Although siRNA preferentially accumulated in the 

kidney, this technique still has a potential to generate unwanted protein silencing in other 

organs. In comparison, the delivery technique utilized for this study appears to provide 

more targeted delivery to the kidney. In previous experiments we verified exogenous 

materials delivered using this cross-clamping hydrodynamic method, restricted the 

uptake/expression of toluidine dye, fluorescent dextrans and EGFP-actin plasmid vectors 

to the injected organ. Transgene expression was absent in contralateral kidneys and other 

highly aerobic organs like the heart, lung, liver and spleen, suggesting this method could 

be useful for organ-targeted gene delivery. 

Overall, this work paves the way for further investigations of fundamental events 

in IRI and extends the present utility of intravital imaging in renal pathophysiological  

  



 
 
 
 
 

 
 
 
 
 
 

214 

studies. The potential therapeutic benefit observed in these results also provides an 

exciting platform to facilitate the future management of IRI.  This may in turn facilitate 

the development of hydrodynamic-based protection- and repair-directed interventions, 

albeit using in a single infusion technique, that may accommodate alternate forms of 

renal therapy, such as RNAi and other types of drug delivery systems.  

 

G. Hydrodynamic-based IDH2 or SULT1C1 transgene expression enhances 

mitochondrial activity and blunts serum creatinine increases in rats with 

moderate IRI 

 Once we established that this delivery method could reliably facilitate efficient 

fluorescent protein expression in the rat kidney, we considered whether this method could 

be used for the management of AKI. In doing so we investigated the possibility of 

delivering genes encoding SULT1C1 or IDH2. The hydrodynamic delivery of plasmid 

vectors that encoded these proteins provided resistance against AKI in rats (in rats with 

two kidneys and uninephrectomized rats) that were subjected from moderate IRI, based 

on serum creatinine measurements. These genes have been suggested to enhance the 

activation of specific signaling pathways that provide protection from IRI251.  

 This phenomenon was first suggested from ischemic preconditioning studies 

conducted in rats. Ischemic preconditioning is an experimental technique that has been 

applied to various tissue types, to produce resistance to reductions in blood and oxygen 

supplies. With specific regard to the IDH2 and SULT1C1 mitochondrial enzymes, their  
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observed renoprotective effect may involve mechanisms related to cell-stress pathway 

activation. Among the cell-stress pathways that have activated by renal ischemia, 

mitochondrial enzymes IDH2 and SULT1C1, have been shown to be upregulated in 

Sprague Dawley rats kidneys subjected to ischemic preconditioning, and aids in this 

animal’s ability to resistant IRI252.  

 Overall, from a mechanistic perspective, ischemic preconditioning has been 

studied for the past 50 years, during which time many ideas have been put forward to 

outline its organ protective role253. For instance, in the context of myocardial ischemia, 

there has been much debate about collateral vascular recruitment as a means of 

improving myocardial oxygenation254.  Other studies have implicated mitochondria as 

key mediators of ischemic preconditioning. Specifically, the opening of a mitochondrial 

channel, called the mitochondrial ATP-sensitive potassium channel or mitoKATP is 

believed to be critical for the induction of this phenomenon, and drugs that activate this 

channel protect against ischemia and inhibitors of mitoKATP reverse these protective 

effects253. Ischemic preconditioning has been shown to reduce post-ischemic tissue 

hyper-oxygenation as it preserves NADH dehydrogenase and cytochrome c oxidase255. 

These events work to prevent oxidative stress, decrease infarction size and increase tissue 

viability on reperfusion255. 

 Using these outlined rationales we delivered relatively large doses of plasmid 

vectors that expressed these genes to normal rat kidneys of Sprague Dawley. The Sprague 

Dawley is not genetically resistant to this form of injury as compared to, for example, the  
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Brown-Norway rat256. Ischemic preconditioning is generally done 3-7 days prior to IRI. 

Based on this time frame, we waited seven days after the gene delivery process and then 

attempted to induce AKI by subjecting these rats to 30-45 minute bilateral renal pedicle 

cross-clamps. Similar studies were conducted on uninephrectomized rats. 

 Strikingly, we determined that either IDH2 or SULT1C1 transgene treatments 

were sufficient to blunt the effect of IRI in these Sprague Dawley rats. Serum creatinine  

levels in rats that receiving hydrodynamic retrograde venous injections of either plasmid 

remained within normal or baseline levels despite being subjected to moderate IRI, when 

compared to rats that received saline injections. Upregulation of either mitochondrial 

enzyme appeared to have protected renal function from the IRI. These results are 

supported by enhanced mitochondrial membrane potential activity in rats with moderate 

IRI that received hydrodynamic injections of either IDH2 or SULT1C1 plasmids.  

IDH2 could clearly change mitochondria function based on its role in the TCA 

cycle, however a potential role for Sult1c1 is not obvious from its known function.  

cDNA for each protein was purchased from OriGene and transfected into immortalized 

S3 murine proximal tubule cells.  Both cDNAs increased mitochondria potential based on 

JC-1 fluorescence and conferred resistance to hypoxic injury in cultured S3 murine 

proximal tubule cells (data not shown).  This set of results led us to test both cDNAs in 

vivo by gene delivery to the kidney. 

At present, little is known about mitochondrial adaptations in experimental or 

genetic models of resistance. This is an important gap in our knowledge since a variety of  
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organisms and tissues have demonstrable adaptations to ischemia/hypoxia or anaerobic 

conditions by altering mitochondria protein expression.  There are knowledge gaps in  

how mitochondria adaptations influence hemodynamics. However, proximal tubules are  

highly dependent on mitochondrial oxidative phosphorylation. Hypoxia or I/R injury 

leads to impaired mitochondrial energetic capacity and/or activation of cell death 

pathways.  Post-hypoxic mitochondria are a source of reactive oxygen species, which  

represent a contributing factor toward cellular injury, and may cause vasoconstriction. 

For example, superoxide enhances effects of other vasoactive factors and may have direct 

actions in reducing renal blood flow257,258.  As a results, we hypothesized that adaptations 

in mitochondrial composition confer protection to ischemia by altering baseline 

mitochondria function. These adaptations preserve mitochondria integrity in response to 

injury, leading to cytoprotection and preservation of renal hemodynamics. 

 

H. Fast rate infusions are essential for fluid delivery to live pig kidneys 

 Angiograms acquired from Ossabaw swine during catheter-guided infusions of 50 

ml of 0.9% saline containing toluidine blue dye and PET/CT contrast agent into the left 

renal vein were incapable of introducing the dye into the kidney, nullifying its viability as 

a reliable renal fluid infusion technique.  

 Similarly, live images acquired from these animals during a catheter-guided 

infusions of the mixture of toluidine blue dye and PET/CT contrast agents into the right 

renal artery, resulted in the successful uptake and expulsion of exogenous fluid  
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throughout various renal arterial branches. This fluid uptake was not limited to the target 

kidney as the toluidine dye was ultimately transported to the contralateral left kidney and 

other organs that received a large fraction of the cardiac output, such as the heart, liver  

and spleen. Even though this was a local infusion into the kidney, these results mimic 

those obtained from systemic fluid delivery in rats, as this method does not limit the 

distribution of the exogenous agents to the targeted kidney. 

 As observed in the rat, hydrodyanmic pressurized injections into the renal vein 

also facilitated the widespread delivery of exogenous susbstances throughout pig kidneys. 

Again, we determined that it was necessary to conduct this injection and clamp various 

bifurications that lead off main renal vein in order to limit delivery to the target organ.  

 

I. Hydrodynamic delivery also facilitates widespread proximal tubule epithelial cell 

internalization of exogenous macromolecules in live pigs 

Low and high molecular weight fluorescent dextrans can be delivered through the 

renal vein of live Obbabaw swine using retrograde hydrodynamic injections. This form of 

delivery results in the robust and widespread uptake of both exogenous probes. As with 

our rat studies, we again utilized two-photon fluorescent microscopy to observe atypical 

localization of large (150 kDa) molecular weight dextran molecules along proximal 

tubule brush borders and within proximal tubule epithelial cellular cytoplasms, viewing 

various fixed tissue sections of the renal cortex and medulla. These results indicate it may 

be possible to utilize hydrodynamic fluid delivery in large mammals in  a manner similar  
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to those previously described in rats. This in turn may facilitate the development of 

transgene delivery systems in large animals that may aid therapeutic and protective 

strategies for the future management of kidney injury. 
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V. CONCLUSIONS 

 

We first designed and characterized a method, using hydrodynamic fluid delivery, 

to facilitate and monitor transgene expression in rat kidneys. In devising this approach we 

hypothesized that hydrodynamic forces, generated from retrograde pressurized injections, 

were able to facilitate widespread delivery of exogenous reagents throughout the kidney. 

This hypothesis was tested by injecting fluorescent albumin and dextrans into rodent 

renal veins under various conditions of hydrodynamic pressure. These molecules were 

observed throughout live renal segments using intravital fluorescence two-photon 

microscopy. Thereafter  plasmids, baculovirus and adenovirus vectors, which express 

EGFP, and EGFP-actin, EGFP-tubulin. EGFP-occludin, EGFP-ZO1, Histone H2B-

tdTomato and RFP-actin fusion proteins, were also introduced into live rodent kidneys.  

Fluorescent protein expression was observed in live and ex vivo kidney segments 

using two-photon microscopy, and in vitro with confocal laser scanning microscopy. We 

recorded widespread transgene expression in live glomerular, tubular and vascular 

segments beyond a month after the introduction of the transgenes. The plasmid and 

adenovirus vectors provided robust levels of fluorescent protein expression throughout 

the rat kidney. Moreover, this process generated low and transient levels of injury that did 

not alter overall kidney.  

Second, after successfully designing and characterizing this method, we 

determined that hydrodynamic delivery used in conjunction with intravital two-photon  
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microscopy facilitated the real-time monitoring of actin cytoskeleton dynamics in live rat  

kidneys. Actin cytoskeletal deregulation was monitored on a widespread scale, at the 

major site of damage during ischemia-reperfusion injury. This provides a novel platform 

to idenfity specific renal cellular and tissue alterations during injury.  

Third, we investigated the potential to use hydrodynamic fluid injection to deliver 

transgenes to rats with various forms of ischemia-reperfusion injury. These pressurized 

renal vein injections of plasmid vectors mediated efficient fluorescent protein expression 

in live rats with mild and moderate ischemia/reperfusion renal injury during the initial 

phase of injury and at the time of maximal damage. 

Fourth, we recognized that a localized form of fluid therapy, administered through 

hydrodynamic fluid delivery, ameliorated serum creatinine changes during IRI as early as 

1 hour after injury, as well as at the later time of maximal damage generated by such 

acute forms of kidney injury.  

Fifth, we identified that hydrodynamic gene delivery could be used as a gene 

therapy strategy to protect rat kidneys against moderate IRI by facilitating the 

upregulation/overexpression of specific mitochondrial enzymes in Sprague Dawley rats. 

The expression of these plasmid blunted rises in serum creatinine, which is the present 

standard clinical marker for AKI.  

Last, we extended the utility of our delivery technique to facilitate targeted, apical 

and basolateral macromolecule cellular internalization in live pig proximal tubules, 

without affecting vital signs and generating significant degree of renal injury. 
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Thus, with the careful selection of reporter constructs, hydrodynamic fluid 

delivery provides a reliable medium to simultaneously contrast and examine innate and  

abnormal cellular dynamics. Moreover, it enables therapeutic fluid delivery and 

monitoring, in small and large animals, while facilitating the widespread expression of 

biochemically relevant genes that can be used to prevent and treat IRI. In conclusion, our 

studies demonstrated that this single and relatively simple method has widespread 

application for the study and management of AKI. 
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VI. FUTURE STUDIES 

 

We will investigate the kinetics of siRNA distribution and silencing in proximal 

tubule epithelial cells of live rats. Our studies will specifically examine the accumulation 

of fluorescently-labeled siRNA constructs and their potential potency in silencing protein 

expression in proximal tubular cells of live animals, generated by hydrodynamic 

transgene delivery. This work will be extended to an investigation on whether it would be 

possible to reduce or eliminate genetamicin toxocity using a combination of 

hydrodynamic delivery and siRNA silencing mechanisms.  

We also aim to investigate renal injury by including additional functional and 

structural analyses such as GFR measurements, and biomarker readouts of NGAL and 

KIM-1. We expect that this research will facilitate the in vivo assessment of siRNA-

mediated tubular protein silencing that may be directed towards therapeutic applications 

related to the inhibition of gentamicin-derived nephrotoxicity. 

Simultaneously, we will focus on the design of a catheter that would facilitate 

minimally invasive hydrodynamic fluid delivery to the kidney. For these studies we will 

utilize injection parameters previously acquired and those that will be obtained from 

future hydrodynamic delivery injections in Ossabaw pigs. 
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EDUCATION 
 
Ph.D. in Biomolecular Imaging and Medical Biophysics (Indiana University, 
Indianapolis, IN, USA)  
Research Topic: Hydrodynamic Delivery for the Study, Treatment and 
Prevention of Acute Kidney Injury - 2013  
 
Research Summary: Advancements in human genomics have simultaneously enhanced 
our basic understanding of the human body and ability to combat debilitating diseases. 
Historically, research has shown that there have been many hindrances to realizing this 
medicinal revolution. One hindrance, with particular regard to the kidney, has been our 
inability to effectively and routinely delivery genes to various loci, without inducing 
significant injury. However, we have recently developed a method using hydrodynamic 
fluid delivery that has shown substantial promise in addressing aforesaid issues. We 
optimized our approach and designed a method that utilizes retrograde renal vein 
injections to facilitate widespread and persistent plasmid and adenoviral based transgene 
expression in rat kidneys. Exogenous gene expression extended throughout the cortex and 
medulla, lasting over 1 month within comparable expression profiles, in various renal cell 
types without considerably impacting normal organ function. As a proof of its utility we 
by attempted to prevent ischemic AKI, which is a leading cause of morbidity and 
mortality across among global populations, by altering the mitochondrial proteome. 
Specifically, our hydrodynamic delivery process facilitated an upregulated expression of 
mitochondrial enzymes that have been suggested to provide mediation from renal 
ischemic injury. Remarkably, this protein upregulation significantly enhanced 
mitochondrial membrane potential activity, comparable to that observed from ischemic 
preconditioning, and provided protection against moderate ischemia-reperfusion injury, 
based on serum creatinine and histology analyses. Strikingly, we also determined that 
hydrodynamic delivery of isotonic fluid alone, given as long as 24 hours after AKI is 
induced, is similarly capable of blunting the extent of injury. Altogether, these results 
indicate the development of novel and exciting platform for the future study and 
management of renal injury. 
 
 
 
 
  



 
 
 
 
 

 
 
 
 
 

M.Eng. in Biomedical Engineering (Rensselaer Polytechnic Institute, Troy, NY, 
USA) 
Research Topic: Time-domain Terahertz Spectroscopy for Non-invasive Skin Diagnostics 
– 2008 
 
Research Summary: Time-domain Terahertz (THz) spectroscopy and imaging are 
currently being evaluated as innovative tools for medical diagnostics. Overall such focus 
is justified as present medical standards warrant enhanced techniques that can provide 
greater sensitivity and specificity as the unique challenges related to cancer and thermal 
injury persist. The application of THz-pulse imaging of human skin tissues and 
associated cancers has been demonstrated recently in vitro and in vivo. In vivo studies of 
basal cell carcinoma have underscored the potential of THz technology as an early 
clinical screening tool. Research has also been directed towards the development of THz-
based systems for imaging burn injury and evaluating the quality of treatments. THz 
pulsed imaging has been used to differentiate burnt from healthy tissue models. Such 
work analogously illustrates the potential clinical utility of THz technology for burn 
injury management. Nevertheless, before such systems can be introduced into clinical 
settings, it is believed that further fundamental insight related to the THz radiation 
propagation in biological media is required. This dissertation seeks to contribute to this 
objective. Herein we present a series of novel and systematic studies related to a 
controlled experimental model comprising of the major constituents of human skin. We 
determined relationships that quantified tissue optical properties for a series of 
physiological states that mimic healthy and diseased conditions at THz frequencies. 
Additionally, we characterized specific molecular markers to investigate the capacity in 
which THz techniques can be used for the enhanced skin cancer and burn diagnostics.  
 
M.S. in Applied Mathematics (Rensselaer Polytechnic Institute, Troy, NY, USA) 
Research Topic: Electrical Impedance Tomography for Myocardial Infarction 
Diagnosis and Treatment – 2006 
 
Research Summary: Myocardial infarctions, heart attacks, remain one of the leading 
causes of death and most expensive disease to treat worldwide. Generally this form of 
cardiovascular disease results from interruptions of blood supply. Such events have direct 
correlations to cardiac electrical properties. Electrical impedance tomography (EIT) has 
been proposed to diagnose early settings of this form of cardiac injury non-invasively and 
in real time. Specifically, EIT is a technique used for determining the electrical 
conductivity and permittivity distributions in the interior of a body from measurements 
made on its surface. Typically, currents are applied through electrodes placed on the 
surface of the body and the resulting voltages are measured. Using this technique, we 
investigated the feasibility of detecting and removing scarred myocardial tissue by 
designing a 3D EIT-based catheter-navigation algorithm, capable of precisely guiding a 
series of electrodes for cardiac ablation treatment.  
  



 
 
 
 
 

 
 
 
 
 

M.S. in Electrical Engineering (Tuskegee University. Tuskegee, 
AL, USA) 
Research Topic: The Fabrication and Characterization of a Phosphosilicate 
Membrane Electrode Assembly – 2003 
 
Research Summary: A biocompatible pacemaker that neither requires recharging nor 
replacement, unless it’s malfunctioning, would be a huge benefit to the medical industry. 
Several groups have tried to create such devices in the past, but the harsh chemical and 
biological environment inside the body rendered them unworkable. However, our novel 
battery system, which is powered by variations between body and ambient temperatures, 
is a solid-state heat engine that works on the Ericsson cycle. This system provides the 
same efficiency as that provided by the Carnot cycle for an engine operating between two 
different temperatures, while capable of withstanding the body’s internal environment. 
This system, which is based on the backbone of fuel cell technology, uses the 
electrochemical potential of the hydrogen pressure that is applied throughout a membrane 
electrode assembly (MEA). Herein, we present a characterization of the MEA that may 
be used to drive this heat engine and power small, surgically implanted internal devices 
to potentially enhance the quality of human life.  
 
B.A. in Mathematics, Hons. (University of the West Indies, St. Augustine, Trinidad & 
Tobago) 
Minor Concentrations: Linguistics and Sociology 
Research Topic: The Harvest of the Trinidad & Tobago Red Brocket Deer – 1999 
 
Research Summary: The Caribbean is well known for its unique and diverse fauna, 
however habitat loss and extensive gaming have significant impact on this natural 
phenomenon. To this end, we attempted to define a guideline that would describe an 
appropriate balance between current rates of harvesting and associated extinction. We 
achieved this aim by utilizing differential (predator-prey) models to describe species 
populations like the red brocket deer, quenk and lappe. Such models may aid 
conversation efforts to safeguard these endangered species and maintain our natural 
habitat. 
 
RESEARCH EXPERIENCES 
 
US and International Patents: Nucleic Acid Molecule Delivery Methods & 
Materials, May 2013 
Indiana University School of Medicine, Indiana 
 
Summary of Inventions: The present inventions provide a simplified technique to 
rapidly induce and monitor transgene delivery and expression in live mammalian 
kidneys. To achieve this aim the inventors utilized two-photon excitation and confocal 
laser scanning microscopy techniques to investigate the hydrodynamic venous delivery of 
transgene vectors, including plasmids, baculovirions and adenovirions. The present 
invention therefore provides methods of delivering nucleic acid molecule into a kidney 
cell of a subject, comprising: administering at least one isolated nucleic acid molecule 



 
 
 
 
 

 
 
 
 
 

into the renal vein of a mammalian subject. Included in the present methods are those 
methods wherein the at least one isolated nucleic acid molecule is administered in a 
manner selected from the group consisting of: using the renal vein as a guide; applying 
retrograde pressure; augmented hydrodynamic delivery; blood vessel clamping; injection. 
Moreover, we have identified specific genes that can be introduced by our delivery 
technique to protect kidneys from acute forms of injury. 
 
Graduate Research Fellow, Indiana University School of Medicine, IN 
Quantitative Confocal and Multiphoton Microscopy Laboratory, Division of 
Nephrology, Indiana Center for Biological Microscopy 
(Group Leader – Simon Atkinson, Ph.D.), 2009 - 2013 
• Acquired training in fundamental wet laboratory techniques 
• Acquired training in Immunofluorescence techniques 
• Research focused on the investigation of the actin cytoskeleton structure as a 

function of renal disease 
 
Graduate Research Fellow, Indiana University School of Medicine, IN 
Department of Cellular and Integrative Physiology 
(Group Leader – David Basile, Ph.D.), 2009 
• Acquired training in rodent animal surgical techniques 
• Acquired training in Immunihistochemistry and Histology 
• Conducted experiments to understand the role of Angiotensin II in renal kidney 

function post ischemia, in relation to acute and chronic kidney disease 
 
Graduate Research Fellow, Indiana University School of Medicine, IN 
Quantitative Confocal and Multiphoton Microscopy Laboratory, Division of 
Nephrology, Indiana Center for Biological Microscopy 
(Group Leader – Kenneth Dunn, Ph.D.), 2009 
• Developed of transient transgenic animal models 
• Animal microsurgery 
• Acquired training in Clinical Ultrasonography 
• Acquired training in confocal, multiphoton and intravital microscopy and 

associated quantitative analyses 
 
Undergraduate  Research Advisor and Mentor, Rensselaer Polytechnic Institute, 
NY 
Terahertz and Ultrafast Spectroscopy Laboratory, Center for Terahertz Radiation 
(Program Advisor – Gwo-Ching Wang), 2005 - 2007 
• Instructed undergraduate students in the areas of biomedical applications of 

Terahertz Wave Science including measuring optical properties of the head 
• Mentored student in academic pursuits by providing career and academic 

counseling, planning, and advising 
• Prepared funded proposal with undergraduate student for summer 2006 research 

support 
• Participated in collaborative efforts with Centre for Biomedical Engineering, 

School of Electronic Engineering at University of Adelaide, Australia 



 
 
 
 
 

 
 
 
 
 

Undergraduate  Abstract Reviewer and Presentation Judge, ABRCMS 
Conference 
Annual Biomedical Research Conference for Minority Students (ABRCMS) Atlanta, 
GA, 2005 
Annual Biomedical Research Conference for Minority Students (ABRCMS) Anaheim, 

CA, 2006 
• Reviewed 30 abstracts for conference submission in the area of Biomedical 

Quantitative Sciences 
• Conducted on-site poster and podium presentation judging 
• Gained invaluable insight into the conference submission and peer review 

process 
 
NSF-IGERT Summer Undergraduate  Research Advisor and Mentor, Rensselaer 
Polytechnic Institute, NY 
Dept. of Physics / Center for Terahertz Radiation (Program Advisor – Gwo-Ching, 
Ph.D.), 2005 
• Instructed an undergraduate student from St. John Fisher College, NY on 

biomedical applications of Terahertz Wave Science 
• Conducted novel experiments on artificial and human skin samples using 

Terahertz techniques 
• Provided career and academic counseling, planning, and advising to students 
• Assisted students in the development of testing strategies, writing skills 

through seminars and workshops 
• Assisted mentee in acquiring first published conference and journal 

proceedings 
 
Graduate Research Assistant, Rensselaer Polytechnic Institute, NY 
Terahertz and Ultrafast Spectroscopy Laboratory, Center for Terahertz Radiation 
(Group Leader – Xi-Cheng Zhang, Ph.D.), 2004 - 2007 
• Operated as the primary student investigator for biomedical applications of 

Terahertz Wave Science 
• Was responsible for primary Biomedical Terahertz and Ultrafast Spectroscopy 

Laboratory, Center for Terahertz Radiation 
• Conducted experiments to characterize terahertz radiation propagation through 

biological tissues 
• Primary research focused in the area of medical diagnostics, and biomedical 

spectroscopy and sensing 
 
Graduate Research Assistant, Rensselaer Polytechnic Institute, NY 
Electrical Impedance Tomography Laboratory (Group Advisor – David Isaacson, 
Ph.D.), Summer 2003 
• Developed mathematical models of the electrical impedance distributions in 

the female breast for early cancer detection 
• Constructed medical phantoms and conducted experiments to verify 

mathematical models and computer simulations 
 



 
 
 
 
 

 
 
 
 
 

Research Intern, Johnson Research and Development, GA 
Electrical Engineering Design, 2001 - 2003 (Group Advisor – Lonnie Johnson, Ph.D.) 
• Designed and characterized a system for the development of novel fuel cells 
• Constructed and tested phosphosilicate electrode membrane assembly to power 

bio-implants 
• Collaborated with Professor Meilin Lui, Center for Fuel Cell and Battery 

Technologies, Georgia Institute Technology 
 
TEACHING EXPERIENCES 
 
Instructor, Division of Diversity and Upward Bound Program, Indiana 
University-Purdue University, IN 
• Courses: Biology, Chemistry, Mathematics, Physics and Spanish 
•     Provided training and education to under-represented  students at regional high 

schools and at the IUPUI  campus 
 
Graduate Teaching Assistant, Rensselaer Polytechnic Institute, NY 
TA in the Department of Biomedical Engineering, 2003 - 2004 for the following 
courses (faculty supervisors listed) 
• Course: Tissue-Biomaterial Interactions, under supervisor - Rena Bizios, Ph.D. 
• Course: Tissue Biomechanics and Biomedical Engineering Design, under 

supervisor - Jan Stegemann, Ph.D. 
 
Graduate Teaching Assistant, Tuskegee University, AL 
TA in the Department of Electrical Engineering, 2000 - 2002 for the following courses 
(faculty supervisors listed) 
• Signals and Design, under supervisor - Daryl Padget, Ph.D. 
• Digital Design, under supervisor - Farud Touati Ph.D. 
• Introduction to Electrical Circuits, under supervisor – Kaylan Das, Ph.D. 
• General Physics II, sunder supervisor – Indulal Kothari, Ph.D. 
• Supervised classes of approximately 30 students in each course, graded course 

work and provided tutorials and lectures 
 
Middle High and High School Teacher, Holy Name Convent, Trinidad & Tobago 
Department of Mathematics, 1999 - 2000 
• Taught 3 courses: Introductory and Advanced Mathematics, and Introductory 

Physics 
• Students age ranged from 12 to 19 years  
• Prepared daily lessons for classes of approximately  40 students 
• Participated in student mentoring council 
• Provided career and academic counseling, planning, and advising to students 
• Assisted students in the development of testing strategies, writing skills, and 

completing college applications 
• Coordinated a special project that provided individual after hours tutoring for 

both disadvantaged and gifted students 



 
 
 
 
 

 
 
 
 
 

ADDITONAL WORK EXPERIENCES 
 
Resident Assistant, Rensselaer Polytechnic Institute, NY 
• Residence Life Program (Supervisors – Amanda Bingel and Lamaar Walker), 

2005 - 2008 
• Was responsible for the safety, integration and general welfare of 80 graduate 

and undergraduate students in residence halls 
• Promoted a comfortable, academically nurturing and recreational environment 

through the development of individualized  activities to match the needs of the 
residents in the campus halls 

 
Student Recruiting Officer, Rensselaer Polytechnic Institute, NY 
The Office of Institute Diversity and The Office of Graduate Admission 
(supervisors – George Robbins, Senior Associate Dean and Kenneth B. Durgans, Vice 
Provost, Institute Diversity), 2003 - present 
• Represented the institution at national conferences/ graduate recruitment fairs 
• Provided campus tours 
• Spearhead a team for international undergraduate recruitment – prepared funded 

proposal for recruitment programs 
• Liaised with faculty and administrative representatives at The University of 

Puerto Rico – Mayaguez, The University of the West Indies – St. Augustine, 
Tuskegee University, Morehouse College, Grown University, Syracuse 
University and Cornell University 

 
Director and Founder, Corridon’s Tutoring Services, Trinidad & Tobago 
Corridon Tutoring Services, Trincity, Trinidad and Tobago, 1998 – 2000 
• Headed a private tutoring firm that was focused on the development of high 

school students 
• Specialized in Mathematics and Physics tutoring services 
 
Operations Supervisor, Little Medford & Associates Limited, Trinidad & Tobago 
Statistical Analysis Division, Summer 1998 
• Supervised a staff of 10 members 
• Collected and analyzed census data on Trinidad & Tobago for various 

governmental projects 
 
Accounting Clerk, Ministry of Energy and Energy Resources, Trinidad & 
Tobago 
Accounts Division, Summer 1997 
• Studied basic accounting principles and prepared ministerial reviews 
 
  



 
 
 
 
 

 
 
 
 
 

PUBLICATIONS A N D  PRESENTATIONS 
 
Proceedings: 
 
1. Corridon, P., Rhodes, G., Gattone, V., Leonard, E., Basile, D., Bacallao, R., 

Atkinson, S .  A Method to Facilitate and Monitor Expression of Exogenous 
Genes in the Rat Kidney Using Plasmid and Viral Vectors, American Journal of 
Physiology, Renal Physiology, March, 2013 

2. Corridon, P., Rhodes, G., Bacallao, R., Atkinson, S. Monitoring Live Actin 
Cytoskeleton Alterations in the Setting of Ischemia-Reperfusion Injury, Kidney 
Week 2011, American Society of Nephrology, San Diego, CA, November, 2012 

3. Hall, A., Rhodes, G., Sandoval, R., Corridon, P., Molitoris, B. In Vivo 
Multiphoton Imaging of Mitochondrial Structure and Function During Acute 
Kidney Injury, Kidney International, September 2012 

4. Corridon, P., Rhodes, G., Leonard, E., Basile, D., Gattone, V., Bacallao, R., 
Atkinson. Visualizing Hydrodynamic Transgene Delivery and Expression in Live 
Mammalian Kidneys, Biophysical Society 56th Annual Meeting, San Diego, CA, 
February, 2012 

5. Corridon, P., Rhodes, G., Bacallao, R., Atkinson, S. Hydrodynamic-mediated 
Transgene Expression of Baculovirus Vectors in Live Mammalian Kidneys, 
Indiana Physiological Society Annual Meeting, Ball State University, Muncie, IN, 
February, 2012 

6. Corridon, P., Rhodes, G., Bacallao, R., Atkinson, S. Hydrodynamic-mediated 
Transgene Expression of Baculovirus Vectors in Live Mammalian Kidneys, 
Kidney Week 2011, American Society of Nephrology, Philadelphia, PA, October, 
2011 

7. Corridon, P., Rhodes, G., Bacallao, R., Atkinson, S. Efficient Transgene 
Delivery in Live Mammalian Kidneys, Indiana Physiological Society Annual 
Meeting, Indiana University School of Medicine, Indianapolis, IN, February, 
2011 

8. Corridon, P. Advanced Technologies for Managing Burn Injuries. 3rd 
International Conference on Appropriate Technology, Kigali, Rwanda, 
November, 2008 

9. Corridon, P., Jackson, J., Hosein, A. A Telehealth Network to Support the 
National Myocardium Infarction Center of Trinidad & Tobago. 3rd 
International Conference on Appropriate Technology, Kigali, Rwanda, 
November, 2008 

10. Corridon, P., Claudio, D., Wilke, I. Does Human Hair Impose a Significant 
Effect on the Propagation of Terahertz Radiation? Optical Terahertz Science 
and Technology Topical Meeting, Optical Society of America (OSA), Orlando, 
FL, USA, March, 2007 

11. Corridon, P., Wilke, I. Monitoring the Dehydration of Artificial Skin by Time-
Domain Terahertz Transmission Measurements.  Optical Terahertz Science 
and Technology Topical Meeting, Optical Society of America (OSA), Orlando, 
FL, USA, March, 2007 



 
 
 
 
 

 
 
 
 
 

12. Corridon, P., Krest , C., Ascazubi, R., Wilke, I. A Characterization  of the 
Optical Properties of Artificial Skin Using Time-Domain Terahertz 
Spectroscopy. 2nd Annual Tech Valley Engineering Symposium, Albany, NY, 
USA, April, 2006 

13. Corridon, P., Krest , C., Ascazubi, R., Wilke, I. Time-Domain Terahertz 
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