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A Quasi-Experimental Evaluation of High Emitter Non-Compliance and its Impact 

on Vehicular Tailpipe Emissions in Atlanta, 1997-2001 

 

Abstract 

A quasi-experimental evaluation is employed to assess the compliance behavior 

of high emitters in response to Atlanta’s Inspection and Maintenance (IM) program 

between 1997 and 2001 and to predict the impact of compliance behavior on vehicular 

tailpipe emissions of ozone precursors, such as carbon monoxide (CO), hydrocarbons 

(HC) and nitrogen oxide (NO).  Remote sensing data of a sample of approximately 0.8 

million observations of on-road vehicles are matched with IM program data and vehicle 

registration data to identify the compliant and non-compliant high emitters. A mixed-pool 

time-series regression analysis is carried out to predict changes in the vehicular tailpipe 

emissions due to the compliance and non-compliance of the high emitters in the Atlanta 

airshed.  
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1: Introduction  

The broader aim of this paper is to study the environmental impact of human 

behaviors that emerge in response to policy interventions. More narrowly, this paper 

focuses on evaluating the compliance behavior of high-emitting vehicle owners 

(henceforth high emitters) in response to the policy intervention of vehicle inspection and 

maintenance (IM) programs.  

Quasi-experiments provide a useful setting for policy analysis and evaluation to 

estimate the effects of policy interventions on the outcome variables for which the 

policies were introduced (Cook and Campbell 1979). Meyer (1995) provides a broad 

review of the previous quasi-experimental studies used in policy analysis. A quasi-

experimental design is employed in this study to investigate in detail answers to the 

following two questions: (1) what is the probability of a high emitter complying with the 

rules of the Vehicle Inspection and Maintenance (IM) program in the Atlanta airshed? (2) 

What is the impact on the outcomes of vehicular emissions due to the compliance 

decisions of high emitters in the Atlanta airshed?  

Previous literature (NRC 2001) suggests that vehicular tailpipe emissions of 

carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) are complex 

functions of three broad groups of parameters: human behaviors (in response to policy 

interventions and market mechanisms), vehicular characteristics (such as vehicle age, 

type, manufacturer), and the physical characteristics of the atmosphere (such as 

temperature and pressure). Figure 1 shows variables in these three broad groups of 

parameters that affect the vehicular tailpipe emissions in a conceptual framework of the 

quasi-experimental research design.  
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As Figure 1 shows, the IM policy intervention leads to identification of two broad 

quasi-experimental groups of vehicle owners: the control and treatment groups. The 

control group represents groups of those vehicle owners who are not directly targeted by 

the policy intervention, such as those owning normal-emitting vehicles, the IM ineligible 

group from inside program, the rest-of-Georgia group from outside program, and the IM-

waived groupsi. The treatment groups represent high emitters who are directly targeted by 

policy intervention. This paper presents decision models with perfect and imperfect 

information available to the program regulators and evaluators for classifying the vehicle 

owners in control and treatment groups. The decision model with imperfect information 

is applied to the case-study of the Atlanta airshed between 1997 and 2001 for identifying 

compliant and non-compliant high emitters and quantifying their impact on vehicular 

tailpipe emissions.  

 

2: A brief review of the literature and hypotheses of the study  

A recent National Research Council (NRC) report evaluating US IM programs 

states that “typically, less than 10% of the fleet contributes more than 50% of the 

emissions for any given pollutant…Thus, the largest potential reductions in emissions 

from IM programs are associated with a small number of high-emitting vehicles” (NRC 

2001:5).  Studies show that between 10% and 27% of vehicles that fail an IM test never 

pass the test and some of these failed vehicles are found operating in IM areas more than 

a year after their last test (Harrington et al. 1998; 1999; 2000; Lawson 1993; 1995; 

Lawson et al. 1990; Stedman et al. 1997; 1998; Wenzel 1999; Wenzel et al. 2000).  

                                                 
i Note that the normal-emitting IM-eligible and waived vehicle owners are also targeted by the IM policy 
intervention, but the explicit objective of the IM program is to identify and repair high emitters. 
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The motorist compliance rate refers to the percentage of vehicles that are required 

to participate in an IM program that actually do so (NRC 2001: 190). NRC (2001: 190-

193) recommends that all kinds of non-compliant behaviors need to be estimated in any 

realistic evaluation of the IM program and the negative effect caused by poor motorist 

compliance needs to be well documented. As recommended by NRC, this study fills the 

knowledge gap at the regional level of Atlanta airshed. 

The first hypothesis tested in this study states that the probability of compliance 

by high emitters is zero. We do not expect to have total compliance nor total non-

compliance, and rather expect that there are both compliant and non-compliant high 

emitters.  

The study tests a second null hypothesis: The difference between the tailpipe 

emissions of non-compliant high emitting vehicles and normal emitting vehicles is not 

decreasing over time. In contrast, it is expected the difference between the tailpipe 

emissions of compliant high emitting vehicles and normal emitting vehicles is decreasing 

over time. This expectation is based on the assumption that compliant vehicle owners 

have carried out repairs on emission control systems of their vehicles according to IM 

program rules, while the non-compliant vehicle owners do not carry out the repairs.  

Finally, third null hypothesis states: Conditional upon similar vehicular 

characteristics and atmospheric and physical conditions, the difference between tailpipe 

emissions of compliant and non-compliant high emitting vehicles is not significantly 

different from zero. We do not expect the third null hypothesis to be rejected because 

vehicular characteristics and atmospheric and physical conditions are expected to account 

for major variation in vehicular tailpipe emissions.  
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3: The decision model with perfect information  

Von Neumann and Morgenstern (1944), Raiffa (1968), Brown et al. (1974), 

Holloway (1979), and Winterfeldt and Edwards (1986) have developed the technique of 

decision trees to analyze the decisions under uncertainty and to suggest normative 

recommendations to the decision maker regarding what s/he should do in the face of a 

given decision problem. Decisions are uncertain because “the outcome of a decision often 

depends not only on the option chosen but also on the external events not under the 

decision maker’s control (Winterfeldt and Edwards 1986: 63).  

A generalized one-stage decision tree represents n possible actions available to 

the decision maker. Each action ai (for i = 1,…,n) entails events eij (for j = 1,…,mi) with a 

probability P(eij), such that ∑j=1
mi P(eij) = 1. Each action ai entailing event eij results in an 

outcome xij. The most commonly employed dominance decision rule has the decision 

maker choosing an action ai that maximizes Expected Value (EV)ii as:  

 EV(ai) = ∑j=1
mi P(eij) xij                                                                                                                                  (1) 

Let ai
* indicate the action in that stage that maximizes EV. 

A multi-stage decision tree can be generalized from the one-stage model.  With ni 

actions available in any stage i (out of L total stages), denote each available action as aij, 

where j = 1,…ni.  Let there be mij possible events eijk following each action aij, where 

k = 1,…,mij.  By construction, ∑k=1
mij P(eijk) = 1.  The final events eLjk have outcomes xLjk 

associated with them.  The decision-maker’s problem can be solved recursively, where 

                                                 
ii In the case that we replace the scalar outcomes xij with a utility function u (xij), the dominance decision 
rule states that the decision-maker should choose the action that maximizes Expected Utility (EU). Savage 
(1954) and Harsanyi (1967) proposed replacing EU with Subjective Expected Utility (SEU), which allows 
use of Bayesian probability theory to implement the dominance decision rule. In addition to dominance 
decision rule, other decision rules, such as Min-Max or Max-Min, can also be employed by a decision 
maker to solve a decision problem under uncertain future states. 
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aij
* in any stage i is chosen conditional upon choosing the optimal ai+1,j

*, ai+2,j
*, and so 

forth until aLj
*.  For an L-stage decision problem, this decision problem reduces to 

choosing a* = {a1
*,…,aL

*} to maximize: 

 EV(a) = ∑i=1
L EV(ai) = ∑i=1

L ∑j=1
ni ∑k=1

mij P(eijk)xijk                           (2) 

Figure 2 depicts the structure of a two-stage decision tree from the perspective of 

the regulated vehicle owners in the Atlanta airshed.iii The IM program in the Atlanta 

Airshed relies on the regulatory punishment strategy of denying the vehicle registration 

inside the 13 county program areas to vehicle owners whose vehicles do not pass the IM 

test. This regulatory punishment strategy sets up an incentive for the high emitters, which 

is one possible mechanism out of many others to attain the policy goal of reducing 

vehicular emissions. Given this incentive mechanism of regulatory punishment, it is the 

voluntary decision of high emitters either to pursue a compliant strategy and carry out 

actual repairs on the emission control systems of their vehicles or to pursue one of the 

following non-compliant strategies: pre-test or post-test fraudulent repairs, false IM 

passes through connivance with the management of the IM program testing stations, 

registering their vehicles inside the program boundaries without passing the IM test by 

bribing the vehicle registration authorities, avoiding the vehicle registration altogether, or 

by registering the vehicles outside the program area through “wash sales”iv or “pseudo 

addresses” and continuing to drive the vehicle inside the 13-county area. High emitters 

                                                 
iii Though the decision game continues for failed vehicles beyond the stage 2, the addition of stage 3 really 
complicates the decision tree but does not substantially change the analysis. In other words, stage 2 may be 
taken as sum of all the stages occurring after the stage 2.  
iv Through a “wash sale”, a vehicle owner retains the use of the vehicle inside the IM program boundaries 
even after selling and/or re-registering it outside. This is contrasted with a “real sale”, when a vehicle 
owner truly sells the vehicle outside the program boundaries to a new owner. 
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also have the choice of scrapping or selling/replacing their vehicles and thus choosing to 

“exit” from the decision game.  

Assuming that program evaluators have perfect information about the actions 

taken by each vehicle owner, the decision paths in the decision tree can be used to 

estimate the “true” high emitter compliance rate. Translating the decision tree of the 

Figure 2 in tabular form, Table 1 lists all the possible 39 paths of actions and events, one 

of which must be followed by an IM test eligible vehicle owner in the Atlanta airshed. 

Table 1 identifies which of the each 39 paths are control, compliant, non-compliant or 

exit in the decision game presented in Figure 2. Suppose, Xijkl represents the total number 

of players who pursue any of the 39 decision paths resulting in outcomes xijkl, as shown 

in Figure 2 and described in Table 1, then the probability of high emitters complying can 

be defined by equation 3, which is essentially the total number of compliant high emitters 

divided by the total number of both compliant and non-compliant high emitters in the 

decision game: 

 Pr [High emitter Compliance] = [X1211 + X21 + X2211 + X3211]/[X1211 + X21+ X2211 

+ X3211 + X1212 + X1221 + X1222 + X123 + X124 + X1251 + X1252 + X126 + X2212 + X2221 + 

X2222 + X223 + X224 + X2251 + X2252 + X226 + X31 + X3212 + X3222 + X323 + X324 + X3251 + 

X3252 + X326 + X4 + X5 + X61 + X62 + X7]                                                                        (3) 

Similarly, the probability of overall compliance can be estimated by a ratio of 

compliant to both compliant and non-compliant vehicle owners, as shown in equation 4: 

 Pr [Overall Compliance] = [X11 +X1211 + X21 + X2211 + X3211]/[ X11 +X1211 + 

X21+ X2211 + X3211 + X1212 + X1221 + X1222 + X123 + X124 + X1251 + X1252 + X126 + X2212 + 
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X2221 + X2222 + X223 + X224 + X2251 + X2252 + X226 + X31 + X3212 + X3222 + X323 + X324 + 

X3251 + X3252 + X326 + X4 + X5 + X61 + X62 + X7]                                                            (4) 

 

4: A decision model with imperfect informationv 

The program designers cannot have the perfect information needed to ascertain 

precisely how many high emitters will pursue compliant and non-compliant strategies. 

Previous researchers have employed the methodology of collecting the data about vehicle 

owners’ actions through randomly testing the vehicles by road-side pullovers; but this 

methodology has proven to be overwhelmingly cost-ineffective and time-consuming 

(EPA 2002). The IM program data cannot capture all the non-compliant strategies listed 

in Figure 2. Although the remote sensing data cannot provide perfect information about 

each of the compliant and non-compliant paths listed in Table 1 and Figure 2, this 

provides the best available information because it lets us track some compliant and non-

compliant actions of high emitters as compared to the IM program data or road-side pull-

over data alone. It should, however, be noted that remote sensing data cannot provide 

perfect information about compliant and non-compliant actions. Before discussing 

informational limitations that arise due to the use of remote sensing data, we explain how 

remote sensing data enables measuring compliant and non-compliant strategies of high 

emitters. 

As shown in Figure 3, the remote sensing sample of on-road data containing 

observations of vehicles found registered in the state of Georgia is subdivided further into 

two fleets. The IM-eligible fleet contains vehicles that were required under the rules of 

                                                 
v A decision model with imperfect information does not imply here informational limitations of vehicle 
owners. Rather, imperfect information here refers to the limited information available to policy makers, 
program regulators or evaluators about the compliance behavior of vehicle owners. 
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the IM program to take an IM test, and the IM-ineligible fleet contains other vehicles. 

The eligibility criteria reflect the rules of the IM program for each evaluation year, such 

as gasoline-powered cars and light-duty trucks under GVWR 8000 lbs between 3 to 25 

years old with odd model years were required to be tested in 1999, and even model years 

in 2000.vi  

The eligible fleet contains vehicles of two additional kinds: Vehicles that were 

exempted from IM test and vehicles that were not exempted from IM test, which is 

checked by tracking the eligible fleet vehicles in the exemption data. The non-exempted 

eligible fleet of vehicles of the on-road sample is tracked in the IM program data using 

the variables: vehicle identification number (VIN) and model year. The vehicles found in 

the IM program data are further sub-divided into three fleets: control fleet if the vehicle 

passed the initial IM test, retest-pass fleet if the vehicle failed the initial test but passed 

the re-test, and retest-fail fleet if the vehicle failed the initial test and again failed the re-

test or did not re-appear in the IM test.  

The eligible-fleet vehicles not found in the IM data of the evaluation year contain 

vehicles of three further kinds: first, vehicles that were found in the previous IM cycle 

and failed an initial test. These vehicles belong to the “missing failed” fleet, as they are 

found registered inside the IM program boundaries without passing the IM test in the year 

of evaluation, but they failed the initial test in the previous IM cycle. Second, similarly, 

the missing IM-eligible vehicles that passed the initial test in the previous IM cycle are 

classified as belonging to the “missing passed” fleet. Third, the IM-eligible missing 

vehicles that were not found in either the current or previous IM cycle are categorized as 

                                                 
vi Detailed IM program rules can be found at http://www.cleanairforce.com/ and at EPA’s website 
http://www.epa.gov/oms/epg/progeval.htm. Some major rules are also discussed in chapter 4 in Zia (2004). 

 

http://www.epa.gov/oms/epg/progeval.htm
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the “missing fleet.” These missing fleet vehicles potentially indicate the error rate in VIN 

and model year variables as well as reporting error in IM, registration, and remote 

sensing databases. 

From the set of unique valid vehicles that were designated as non-eligible 

vehicles, two further sub-fleets are defined. The first sub-fleet includes vehicles that are 

registered inside the 13-county area but are not eligible to appear in the IM test as per IM 

program rules. This fleet is designated as the IM-ineligible fleet inside the 13-county area 

for that particular evaluation year. It is noteworthy that under the biennial IM testing 

program, the ineligible fleet contains vehicles that underwent testing in the previous year. 

The second sub-fleet includes vehicles that are registered in the state of Georgia outside 

the 13-county IM program boundaries.  

The rest of Georgia fleet outside the 13-county area is further subdivided into 

three fleets. First, the “migrated failed” fleet includes vehicles that are found to have 

failed an initial IM test in the previous IM cycle. This category of vehicles represents 

those high-emitting vehicles that appear to have migrated outside the IM boundaries but 

are still being driven inside the IM boundaries. Second, the “migrated passed” fleet 

includes vehicles that are found to have passed an initial IM test in the previous IM cycle. 

Third, the “rest of the Georgia” fleet includes vehicles that have no record in the previous 

IM cycle. 

In summary, as the bold-faced terminal nodes in figure 3 indicate, the sample of 

the on-road remote sensing data that is selected to evaluate the IM program for a given 

year is subdivided into 11 vehicle fleets: control [Q1], IM ineligible inside the 13-county 

area [Q2], waived [Q3], rest of the Georgia fleet [Q4], missing [Q5], retest-pass [Q6], 
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migrated-passed [Q7], retest-fail [Q8], migrated-failed [Q9], missing-failed [Q10], and 

missing-passed [Q11]. These eleven fleet types are coded as eleven binary variables 

(∑q=1
11 Qq = 1), such as the variable “retest pass” [Q6] is valued 1 if the vehicle belongs to 

the retest-pass fleet and 0 otherwise, and so on. Vehicles belonging to retest-pass and 

migrated-passed fleets are characterized as belonging to compliant vehicle owners 

because they duly passed the IM test. On the other hand, vehicles belonging to retest- 

fail, missing-fail, migrated-failed and missing-passed fleets are characterized as 

belonging to non-compliant vehicle owners because these vehicles are observed inside 

the IM program boundaries without having passed the emissions test. 

Classifying a vehicle as a high emitter after it fails the initial IM test as per IM 

emission cut-point rules implies the probability of high emitter compliance is the ratio of 

the compliant high emitters to the total high emitters. Conversely, the probability of high 

emitter non-compliance is equal to 1 minus the probability of high emitter compliance. 

Formally: 

   Pr[High Emitter Compliance] = [Q6 + Q7]/[Q6 + Q7 + Q8 + Q9 + Q10 + Q11]         (5) 

Similarly, the probability of overall compliance is measured by taking a ratio of 

the compliant to both compliant and non-compliant IM eligible vehicles, as shown in 

equation 6: 

Pr[Overall Compliance] = [Q1 +Q6 + Q7]/[Q1 + Q6 + Q7 + Q8 + Q9 + Q10 + Q11]   (6) 

The empirical methodology to estimate probability of compliance, as described in 

equations 5 and 6, has the following limitations relative to an estimate using perfect 

information as in equations 3 and 4:  (1) The probability of high emitter compliance is 

over-estimated because one cannot find those high emitters that simply avoid registration 
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of their vehicles inside the state of Georgia and continue to drive them inside the IM 

program boundaries without valid license plates. (2) The probability of high emitter 

compliance is also over-estimated because the imperfect information methodology cannot 

single out those vehicle owners who register their vehicles out of Georgia state (through a 

wash sale) and still drive inside the program area (note that path 10, 21, 32 and 38 in 

Table 1 are only partially captured). (3) The probability of high emitter compliance is 

under-estimated because the methodology cannot separate the high emitters who do pre-

test actual repairs and pass the initial test (path 12 in Table 1) from the normal emitters 

who pass their initial test without any actual repairs (path 1 in Table 1). (4) The 

probability of high emitter compliance is over-estimated because the methodology cannot 

single out those non-compliant high emitters who fraudulently passed the initial IM test 

(path 23 in Table 1).   

(5) The migrated-pass group of vehicle owners may be acting preemptively to 

avoid the IM program by registering their vehicles outside the IM program area, but they 

cannot be discerned from those vehicle owners who actually sold their vehicles outside 

the program. This results in under-estimation of high emitter compliance rates. (6) The 

missing-pass group of vehicle owners includes those who sold their vehicles after passing 

the IM test to other vehicle owners inside the IM program area (which may cause them to 

avoid the IM test according to IM rules), for which reason not all of them can be 

classified as non-compliant types. On the other hand, the missing-pass group, by 

definition, is a non-compliant type, because as per IM rules they were eligible to appear 

in the IM test, but their VIN records are not found in the IM data of the evaluation year. 

This results in under-estimation of the percent high-emitter compliance. (7) Both IM and 
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remote sensing data methodologies contain the possibility of a matching error due to the 

incorrectly reported VIN and model year variables. This matching error is probably 

represented in the category of “missing-fleet” vehicles, but this is not certain. 

Given these seven serious limitations that arise due to the imperfect information, 

utmost caution is needed to interpret the statistics that reduce 11 fleet types to 3: control, 

compliant, and non-compliant. Due to these limitations, the empirical results for all 

eleven fleet kinds are reported.  

 

5: The data  

We used on-road vehicle emissions remote sensing  data (1997-2001) collected by 

Air Quality Laboratory (AQL), IM program and exemption data (1997-2001) provided by 

the Georgia Department of Natural Resources (GA-DNR), Vehicle registration data 

(1997-2002) provided by the Georgia Department of Motor Vehicles and Safety (GA-

DMVS), and climate data (1997-2001) released by the National Climatic Data Center. 

Table 2 shows descriptive statistics of the mixed-pool remotely sensed sample data 

collected between 1997 and 2001.  

The sample data has a total of 777,408 observations, 85.9% of which are unique 

vehiclesvii. Of the total sample, 109,249 (14.1%) in the sample are vehicles observed at 

                                                 
vii The raw remote sensing data between 1997 and 2001, collected by AQL, contains a total of 1.42 

million observations measured at various years, times, and locations in the Atlanta MSA. In the initial data-
cleaning process of the raw data, we dropped the observations from the sample for which either the license 
plates were not clearly readable from the pictures of the license plates taken by the remote sensors, or the 
license plates that did not match Georgia’s vehicle registration databases. Further, if a vehicle was observed 
multiple times during a year, its last observation in the sample was retained. This way, the sample is 
reduced to observations on “unique” vehicles during a calendar year, which facilitates its tracking in IM 
program data.  
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least twice, 17,320 (2.2%) are observed at least three times, and 2,631 (0.3%) are 

observed at least four times in different calendar years between 1997 and 2001.  

Figure 4 shows 73 remote sensing sites that were used to collect the sample data 

between 1997 and 2001. This figure shows that the sample remote sensing data has been 

collected inside the 13 IM program counties during the five years of the study period. 

Figure 4 also shows percentage of observations as a part of total sample collected at each 

remote sensing site from 1997 to 2001. Table 2 shows that the mean age of the vehicles 

in the sample is 5.4 years. It is noteworthy that both compliant and non-compliant 

vehicles belong in all vehicle age groups, not just older vehicles. Sixty-two percent of the 

total sample contains passenger cars, while the remaining 38% contains trucks, vans, 

mini-vans and SUVs, etc.  

 Figure 5 shows vehicular tailpipe emissions distributed by vehicle age and 

observation year. This figure reveals that CO, HC and NO emissions are an increasing 

function of vehicle age, and as vehicle age increases above 14 years, the standard 

deviation also increases. Further, CO and HC emissions are decreasing over time from 

1997 to 2001, while NO emissions appear to be nondecreasing.  Note that NO emissions 

were not measured before 1999.   

Figure 6 shows the annual trend of CO, HC and NO emission factors by 11 fleet 

types during the study period 1997 to 2001.  While CO, HC and NO emission factors 

have decreased from 1997 to 2001, the vehicles in the five experimental fleets – retest-

pass, migrated-pass, retest-fail, migrated-fail, and missing-fail – continue to emit higher 

CO, HC and NO emissions than the control group vehicles. Only the missing-passed fleet 

of vehicles emits similar emissions as the control group vehicles. Vehicles in the 
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ineligible fleet are also similar to the control group, but the waived group vehicles emit, 

on average, higher emissions than the control group vehicles. Table 2 also shows that 

HC, CO and NO emissions are heavily skewed (in decreasing order).  

  

6: Methodology to estimate the emission impact of compliant and non-compliant 

behavioral actions of high emitters 

Multiple statistical decision theory models, employing mixed-pooled time series 

multivariate generalized linear and non-linear regressions, are used to test hypotheses 

concerning the impacts on vehicular emissions due to the compliant and non-compliant 

behaviors of high emitters, after controlling for technological, vehicular, physical and 

temporal parameters. The following linear equation was initially specified to quantify the 

impact of compliant and non-compliant behaviors on the vehicular tailpipe emissions: 

YP = α0 + ∑q=2
11 βqQq + ∑r=1

29 γrRr + ∑s=1
7 φsSs + ∑t=2

5 δtTt + ∑t=2
5∑q=2

11 ∆tqTtQq + εI, for 

P = [CO, HC, NO]                                                                                          (7) 

Where YP variables show CO, HC and NO emission factors in grams per gallon, Qq 

variables show the 10 fleet types. The control fleet is the reference group in Qq variables. 

Rr variables show vehicular characteristics including their emission control technological 

systems. A Ford car made in the USA of zero years of age is the reference group in Rr 

variables.viii  Ss variables show the physical and atmospheric contextual conditions at the 

time of remote sensing measurements, and Tt variables show the observation year. 1997 

is the base year in Tt variables. The interaction terms (T x Q) track over time the changes 

                                                 
viii In addition, variables age-square and age-cube are added to capture the non-linear trends in vehicular 
tailpipe emissions as a function of vehicle age.  

 



 - 16 -  

in the emission factors of the 11 fleet types during the study period. Column 2 in table 2 

shows the relevant symbol for each individual variable shown in equation 7.  

Since evidence for heteroskedasticity is found in the data, as well as non-normal 

distributions of vehicular emissions are observed in sample statistics, an attempt was first 

made to correctly specify the functional form of the models -- such as through Box-Cox 

regressions.  

In order to estimate the non-linearities in the functional form between the 

dependent and the independent variables, best non-linear fits for the dependent variables 

were estimated. More specifically, the following Box-Cox transformation parameter (λ) 

was estimated by using the maximum likelihood estimation techniques: 

YP
(λ) = α0 + ∑q=2

11 βqQq + ∑r=1
29 γrRr + ∑s=1

7 φsSs + ∑t=2
5 δtTt + ∑t=2

5∑q=2
11 ∆tqTtQq + εI, 

for P = [CO, HC, NO]                                                                                         (8) 

where εI ~ N (0, σ2) and the dependent variables YP [for P = CO, HC or NO] are subject 

to a Box-Cox transformation with parameter λ. The estimated value of the parameter λ 

guides the researcher to approximately estimate the non-linearities through transformed 

values of dependent variables in the Generalized Linear Models (GLMs). Specifically, as 

discussed by Davidson and MacKinnon (1993), a linear form of dependent variable is 

retained if λ is (approximately) equal to 1, a logarithmic transformation of the dependent 

variable is carried out if λ is (approximately) equal to 0, and an inverse multiplicative 

transformation of the dependent variable is carried out if λ is (approximately) equal to –1. 

The Box-Cox regression results (shown in Zia 2004) suggested that the log-linear models 

be run for CO, HC and NO by transforming the dependent variables into their natural 

logarithm equivalents.  
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Heteroskedasticity in the log-linear models was corrected by employing multiple 

methodologies. First, heteroskedasticity was corrected by using White’s (1980) robust 

variance estimator methods. Second, a weightedix least squares (WLS) regression model 

was used to generate more efficient standard errors and correct for heteroskedasticity.  

 Results from five regression models – the linear OLS with the robust errors 

model, Box-Cox regression model, the log-linear with robust errors model, the log-linear 

weighted least squares (WLS) model and the log-linear robust regression model – for 

predicting CO, HC and NO emissions are reported in Zia (2004). Since WLS log-linear 

model presents the parametric values with most efficient standard errors after correcting 

for heteroskedasticity (as well as the highest R2 values), only results from WLS models 

are reported in this paper. 

 

7: Results  

7.1: Probability of high emitter compliance and non-compliance 

Table 3 presents the probability of high emitter compliance in each of the five 

years of study, as computed following equation 5. These results should be strictly 

interpreted in the light of limitations extensively discussed in section 4. Overall, 41.2% of 

the high emitters in the total sample appear to be compliant, and, conversely, 58.8% 

appear to be non-compliant. Except for the base year of 1997, the probability of high 

emitter compliance is between 36.6% and 41% during the period 1998 to 2001.x The null 

                                                 
ix Weights in WLS regression model are generated by regressing a natural log of squared Studentized 
residuals of OLS regression on independent variables in equation 7.  
x The 1997 result, which shows probability of high emitter compliance at 83.7%, is an outlier in the 
temporal trend because no vehicles in the 1997 remote sensing sample were found in four treatment fleets: 
migrated pass, migrated fail, missing fail, missing pass. 1997 is an exception because it was the first year of 
the “enhanced” IM program encompassing 13 counties. No vehicles in these four fleets were matched with 
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hypothesis that the probability of high emitter compliance is zero is rejected. Also, the 

probability of high emitter compliance is not unity, which means that the regulatory 

objective of IM program is not being fully met. Overall compliance rate stands at 88.8%. 

7.2: The impact of high emitter compliant and non-compliant actions on vehicular 

tailpipe emissions 

The impact of high emitter compliance and non-compliance on vehicular 

emissions in the Atlanta airshed between 1997 and 2001 is estimated by the empirical 

measurement of equation 7, as adjusted for non-linearities and heteroskedasticity. Table 4 

presents the predicted parametric values for equation 7 when CO, HC and NO (in 

grams/gallon) are regressed. This table shows the predictors for WLS log-linear model. 

Coefficient values represent ceteris paribus percent changes in the dependent variable for 

one-unit change in the independent parameters. 

7.2.1: Impacts on CO emissions 

The WLS model coefficients on time variables in column 2 of Table 4 predict that 

control group vehicles emitted 18%, 42%, 48% and 66% less emissions in 1998, 1999, 

2000, and 2001, respectively, than their 1997 levels on average. Given this temporal 

trend of decreasing CO emission factors between 1997 and 2001, the ceteris paribus 

effect of compliant and non-compliant strategies of high emitters on CO emission factors 

can be analyzed by a deeper scrutiny of coefficients on 10 decision variables and 36 

interaction terms.  

                                                                                                                                                 
“basic” IM program data that was collected in the four counties of Atlanta in 1995 and 1996. Figure 4 
shows 4 and 13 counties covered respectively under basic and enhanced IM program. 
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Of the two compliant fleets, the retest-pass fleet vehicles are predicted to emit 

34% more CO emissions than the control fleet vehicles in 1997. From 1998 to 2001, the 

difference between retest-pass and control group vehicular emissions did not significantly 

change from their 1997 level difference of 34%. Only in 2000, the difference changed 

such that retest-pass vehicles emitted only 23% more than control group vehicles.  

The second compliant fleet type, referred to as the migrated-pass fleet, emitted 

10% more CO emissions than the control fleet vehicles in 1998. The 10% difference 

between migrated-pass and control group vehicles did not significantly change from 1999 

to 2001. 

Of the four non-compliant fleet vehicles, retest-fail vehicles are among the dirtiest 

CO high emitters in all five years of the study. In 1997, retest-fail vehicles are predicted 

to emit 38% more CO emissions than the control fleet vehicles. In 1998 and 1999, the 

difference between retest-fail and control group vehicular CO emission factors 

significantly increased to 61% and 72% respectively. In 2000 and 2001, the difference 

between retest-fail and control group CO emission factors is statistically not different 

from their 1997 level difference of 38%.  

The second non-compliant fleet, containing migrated-fail vehicles, has also some 

of the dirtiest CO high emitters. From 1998 to 2001, migrated-fail vehicles, on average, 

emitted 55% more CO than the control fleet vehicles.  

The third non-compliant fleet, missing-fail fleet vehicles, are also significantly 

higher in CO emissions than the control fleet vehicles. In 1998, missing-fail fleet 

vehicles, on average, emitted 27% more CO than the control fleet vehicles that year. This 

difference did not significantly decrease during 2000 to 2001. However, in 1999, the 
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difference between missing-fail and control group vehicular CO emissions increased to 

53%.  

The fourth non-compliant fleet, missing-pass vehicles did not produce 

significantly higher CO emissions than the control fleet vehicles in 1998 and 2000. In 

1999, the missing-pass vehicles emitted 7% more CO than control group vehicles. In 

2001, however, the missing-pass vehicles emitted 10% less CO than control group 

vehicles 

An F-test was used to test the null hypothesis that, conditional on the same 

vehicular characteristics (R) and atmospheric conditions (S), the difference between the 

CO emissions of compliant and non-compliant vehicle fleets is zero. The null hypothesis 

could not be rejected. Thus, conditional on the same vehicular characteristics (R) under 

the same atmospheric conditions (S), there is no statistical difference between the CO 

emission factors if that vehicle was in the compliant or non-compliant fleet in the Atlanta 

airshed.  

7.3.2: Impacts on HC emissions 

The coefficients on time variables in column 3 of Table 4 indicate that vehicles 

emitted 16%, 40%, 57% and 102% less HC emissions in 1998, 1999, 2000, and 2001, 

respectively, than their average 1997 levels. Thus, overall, HC emissions drastically 

reduced from 1997 to 2001. On the other hand, the difference between HC emissions of 

treatment and control fleets either stayed the same or even increased from their 1997 

difference level. More specifically, of the two apparently compliant fleets, retest-pass 

fleet vehicles were emitting 12% more HC emissions than the control fleet vehicles in 

1997, and that difference did not significantly change for 1998, 1999 or 2000. In 2001, 
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the HC emissions of retest-pass fleet vehicles were 50% greater than the control fleet’s. 

Migrated-pass vehicles emitted 10% higher HC emission factors than the control fleet 

vehicles in 1998.  That difference did not significantly change for 2000 and 2001, while it 

was eliminated for 1999.  

The four non-compliant fleet vehicles were worse: the retest-fail vehicles emitted 

12% more HC emissions than the control fleet vehicles in 1997. In 1999, 2000, and 2001, 

one of the most important results of this study, the difference in the HC emission factors 

of retest-fail vehicles with the control fleet vehicles increased to 29%, 33% and 52%, 

respectively, above their 12% difference in 1997. Thus, given the temporal trend of 

decreasing HC emissions, the retest-fail vehicles are reducing HC emissions at a slower 

rate than control fleet vehicles. This result is important because it justifies targeting 

special efforts at chronically high-emitting vehicles.  

The same applies to migrated-fail and missing-fail vehicles.  In 2001, migrated-

fail vehicles, on average, emitted 60% higher HC emissions as compared to the control 

fleet vehicles that year. However, the difference between the HC emissions of the 

migrated-fail vehicles and the control fleet vehicles was 0%, 9%, and 33% in 1998, 1999, 

and 2000. Similarly, the difference between the HC emissions of the missing-fail vehicles 

and the control fleet vehicles was 38% higher in 2001 than the 1998 level (when there 

was no significant difference). The HC emissions from the migrated-fail and missing-fail 

vehicles are thus also reducing at a slower rate over time, given the temporal trend of 

decreasing HC emission factors for control group vehicles.  The fourth non-compliant 

fleet, missing-pass vehicles, produced 4% higher HC emissions than the control fleet 

vehicles in 1998, but this difference appears to have vanished by 2001. 
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An F-test was employed to test the null hypothesis that, conditional on the same 

vehicular characteristics (R) and atmospheric conditions (S), the difference between the 

HC emissions of compliant and non-compliant vehicles is not different from zero. The 

null hypothesis is rejected, which suggests there is a statistical difference between the HC 

emission factors of compliant and non-compliant vehicles. The F-test suggests that 

compliant vehicle groups emitted less HC emissions as compared to non-compliant 

vehicle groups, even after controlling for vehicular characteristics and atmospheric 

conditions, during the study period in the Atlanta airshed.   

7.2.3: Impacts on NO emissions 

The vehicles emitted similar NO emissions in 2000 compared to average 1999 

levels; but NO emissions decreased by 29% in 2001. Of the two apparently compliant 

fleets, retest-pass fleet vehicles were emitting 36% more NO emissions than the control 

fleet vehicles in 1999, with the difference rising (but statistically insignificantly) in 2000 

and 2001. The difference in NO emissions of migrated-pass and control fleet vehicles 

was statistically insignificant in 1999, 2000 and 2001. 

The three non-compliant vehicle groups – retest-fail, migrated-fail and missing-

fail – had no statistical difference in NO emissions from control group vehicles in 1999, 

2000 and 2001. The fourth non-compliant fleet, missing-pass vehicles, produced 17% 

higher NO emissions than the control fleet vehicles in 1999. By 2001, however, the 

difference between NO emissions of missing-pass and control fleet vehicles decreased by 

31%, such that missing-pass vehicles emitted 14% less NO than control group vehicles 

on average.  
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An F-test was employed to test the null hypothesis that, conditional on the same 

vehicular characteristics (R) and atmospheric conditions (S), the difference between the 

NO emissions of compliant and non-compliant vehicle fleets is not significantly different 

from zero. As expected, the null hypothesis was not rejected so there is no statistical 

difference between NO emission factors of compliant and non-compliant vehicles during 

the period 1999 to 2001, conditional on vehicular characteristics (R), atmospheric 

conditions (S), and time (T). 

 

8: Conclusions  

The high emitters affected by regulatory environmental policy interventions are 

neither perfectly compliant nor non-compliant. In a case-study of IM program 

intervention in the Atlanta airshed, it is found that about 37% to 41% of the high emitters 

comply, while the other 59% to 63% do not comply and attempt to free ride on the 

common resource of clean air. 

After controlling for vehicle age, type, manufacturer, technology, atmospheric 

and physical conditions and time, there is no statistical difference in the vehicular tailpipe 

CO and NO emissions produced by high emitters in compliant and non-compliant groups. 

However, vehicles in compliant groups emit less HC emissions as compared to the 

vehicles in non-compliant groups. The CO, HC and NO emissions have significantly 

decreased over time for normal emitting vehicles. However, the difference between CO, 

HC and NO emissions of high-emitting fleets and normal-emitting fleets has not 

significantly decreased over time.  
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The challenges posed by the findings of this study can be tackled through several 

policy options, prioritization of which will require a complete policy analysis with a 

much deeper institutional content. Policymakers can use the results of this paper in three 

important ways: (1) assess the determinants of CO, HC and NO emissions by vehicular 

characteristics, atmospheric and physical conditions and compliance behaviors of vehicle 

owners; (2) assess whether there are important un-observables about a car that are 

correlated with compliance status that might affect emissions (and it appears that they do 

for HC but not CO or NO); and (3) assess the emission reduction effectiveness of an IM 

program over time in a major ozone non-attainment region. 
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Tables 
 

Table 1: Possible decision paths, one of which must be followed by a vehicle owner in response 
to IM program  
 
No. Decision Path Nature of Path Outcome Observed 
1  a1 → e11 Control x11 Yes 
2  a1 → e12 → b121 → f1211  Compliant x1211 Yes 
3 a1 → e12 → b121 → f1212  Non-compliant x1212 Yes 
4 a1 → e12 → b122 → f1221  Non-compliant x1221 Yes 
5 a1 → e12 → b122 → f1222  Non-compliant x1222 Yes 
6 a1 → e12 → b123   Non-compliant x123 Yes 
7 a1 → e12 → b124 Non-compliant x124 Yes 
8 a1 → e12 → b125 → f1251  Non-compliant x1251 No 
9 a1 → e12 → b125 → f1252  Non-compliant x1252 No 
10 a1 → e12 → b126  Non-compliant x126 Yes* 
11 a1 → e12 → b127 Exit x127 Yes 
12 a2 → e21 Compliant x21 Yes 
13 a2 → e22 → b221 → f2211  Compliant x2211 Yes 
14 a2 → e22 → b221 → f2212  Non-compliant x2212 Yes 
15 a2 → e22 → b222 → f2221  Non-compliant x2221 Yes 
16 a2 → e22 → b222 → f2222  Non-compliant x2222 Yes 
17 a2 → e22 → b223   Non-compliant x223 Yes 
18 a2 → e22 → b224  Non-compliant x224 Yes 
19 a2 → e22 → b225 → f2251  Non-compliant x2251 No 
20 a2 → e22 → b225 → f2252  Non-compliant x2252 No 
21 a2 → e22 → b226 Non-compliant x226 Yes* 
22 a2 → e22 → b227  Exit x227 Yes 
23 a3 → e31 Non-compliant x31 Yes 
24 a3 → e32 → b321 → f3211  Compliant x3211 Yes 
25 a3 → e32 → b321 → f3212  Non-compliant x3212 Yes 
26 a3 → e32 → b322 → f3221  Non-compliant x3221 Yes 
27 a3 → e32 → b322 → f3222  Non-compliant x3222 Yes 
28 a3 → e32 → b323  Non-compliant x323 Yes 
29 a3 → e32 → b324 Non-compliant x324 Yes 
30 a3 → e32 → b325 → f3251  Non-compliant x3251 No 
31 a3 → e32 → b325 → f3252  Non-compliant x3252 No 
32 a3 → e32 → b326  Non-compliant x326 Yes* 
33 a3 → e32 → b327  Exit x327 Yes 
34 a4 Non-compliant x4 Yes 
35 a5 Non-compliant x5 Yes 
36 a6 → e61 Non-compliant x61 No 
37 a6 → e62 Non-compliant x62 No 
38 a7 Non-compliant x7 Yes* 
39 a8 Exit x8 Yes 
* Partially observed
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Table 2: Descriptive statistics of the sample data (1997-2001) 
 Variable  Symbol N Minimum Maximum Mean Standard

Deviation
 Skewness

Vehicular tailpipe emissions 
CO (%) CRCO 775606 -1.52 14.75 .47 1.07 4.46
HC (PPM) CRHC 741869 -5000.00 55900.00 180.04 1062.96 13.08
NO (PPM) CRNO 136486 -249.00 6961.00 522.00 761.36 2.42
CO (gm/gal) YCO 466640 2.88 4013.13 213.00 396.03 3.57
HC (gm/gal) YHC 466640 .05 1524.35 18.65 52.19 9.45
NO (gm/gal) YNO 89408 .04 269.19 24.73 31.14 2.22
Quasi-experimental fleet types representing vehicle owners’ decision paths 
Control fleet Q1 777408 .00 1.00 .27 .44 1.03
Ineligible fleet  Q2 777408 .00 1.00 .52 .49 -.08
Waived fleet Q3 777408 .00 1.00 .002 .04 20.91
Rest-of-Georgia Q4 777408 .00 1.00 .10 .30 2.63
Missing fleet Q5 777408 .00 1.00 .03 .19 4.84
Retest pass  Q6 777408 .00 1.00 .01 .13 7.06
Migrated pass Q7 777408 .00 1.00 .008 .09 10.62
Retest fail Q8 777408 .00 1.00 .003 .06 16.25
Migrated fail Q9 777408 .00 1.00 .001 .03 29.80
Missing fail Q10 777408 .00 1.00 .003 .05 17.19
Missing pass Q11 777408 .00 1.00 .03 .17 5.37
Vehicular characteristics 
Vehicle age 
(years) 

R1 777408 -2 40 5.40 4.62 1.35

Vehicle type R2 733080 0 1 .38 .48 .50
FORD R3 777408 .00 1.00 .16 .37 1.76
GM R4 777408 .00 1.00 .19 .39 1.52
CHRYSLER R5 777408 .00 1.00 .08 .28 2.91
HONDA R6 777408 .00 1.00 .07 .26 3.13
TOYOTA R7 777408 .00 1.00 .07 .25 3.29
NISSAN R8 777408 .00 1.00 .05 .22 3.88
MAZDA R9 777408 .00 1.00 .02 .15 5.99
MITSUBISHI R10 777408 .00 1.00 .01 .11 8.81
MERCEDES R11 777408 .00 1.00 .01 .10 9.38
VOLVO R12 777408 .00 1.00 .01 .09 9.85
VW R13 777408 .00 1.00 .007 .08 11.36
ISUZU R14 777408 .00 1.00 .008 .09 10.91
Other 
Manufacturers 

R15 777408 .00 1.00 .26 .44 1.07

USA R16 777408 .00 1.00 .60 .48 -.43
JAPAN R17 777408 .00 1.00 .15 .36 1.86
CANADA R18 777408 .00 1.00 .09 .29 2.75
GERMANY R19 777408 .00 1.00 .02 .170 5.52
MEXICO R20 777408 .00 1.00 .02 .15 6.30
SWEDEN R21 777408 .00 1.00 .01 .121 7.98
KOREA R22 777408 .00 1.00 .008 .09 10.45
UK R23 777408 .00 1.00 .003 .05 17.00
Other countries R24 777408 .00 1.00 .05 .23 3.78
AIR R25 716710 0 1 .25 .43 1.16
TWC R26 716715 0 1 .96 .18 -5.01
EGR R27 714765 0 1 .82 .38 -1.65
CLL R28 716714 0 1 .97 .17 -5.26
TAC R29 716714 0 1 .14 .34 2.10
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OXY R30 716711 0 1 .03 .16 5.84
PCV R31 716715 0 1 1.00 .05 -19.02
Atmospheric and physical conditions at the time of remote sensing measurement 
Ambient 
temperature (F) 

S1 777408 17.00 97.00 67.91 13.83 -.53

Relative 
humidity (%) 

S2 777408 14.00 100.00 59.31 17.94 .26

Atmospheric 
pressure 
(inches, Hg) 

S3 777408 28.49 30.22 29.01 .16 1.32

Speed (MPH) S4 777408 .30 74.60 37.71 8.69 .15
Acceleration 
(MPH/sec) 

S5 777408 -13.30 13.30 .70 .57 .19

Road gradient 
(degrees) 

S6
 775273 -6.00 7.50 .77 3.17 -.12

Sine (road 
gradient) 

S6 775273 -.997495 .997495 .22 .66 -.49

Generation of 
remote sensing 
instrument 

S7 777408 0 1 .22 .41 1.35

Temporal parameters 
1997 T1 777408 .00 1.00 .25 .43 1.15
1998 T2 777408 .00 1.00 .18 .38 1.63
1999 T3 777408 .00 1.00 .19 .39 1.51
2000 T4 777408 .00 1.00 .20 .40 1.46
2001 T5 777408 .00 1.00 .16 .36 1.82
 
Table 3: Probability of Compliance  

Probability 
(Compliance) 

1997* 1998 1999 2000 2001  Average 

High emitter 
(N=777,408) 

83.75% 37.86% 39.28% 41.00% 36.64% 41.22%

Overall 
(N=777,408) 

98.87% 87.17% 84.92% 85.85% 87.13% 88.79%

Probability of non-compliance = [1 – probability of compliance] 
* See footnote x for details about 1997 as an outlier
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 Table 4: The WLS regression model predicting the effect of compliance behavior of vehicle owners on 
natural log of vehicular tailpipe CO, HC and NO emissions (dependent variable) 
Predictors  CO 

(N= 
430,114) 

HC 
(N= 

430,114) 

NO 
(N= 86,588)

 Coefficient Coefficient Coefficient
Constant 2.68*** 3.91*** 1.35 
1998 -0.18*** -0.16*** - 
1999 -0.42*** -0.40*** - 
2000 -0.48*** -0.57*** -0.02 
2001 -0.66*** -1.02*** -0.29*** 
Ineligible fleet 0.05*** 0.04*** 0.04 
1998 Ineligible fleet 0.01 0.005 - 
1999 Ineligible fleet -0.08*** -0.06*** - 
2000 Ineligible fleet -0.004 -0.03*** 0.09** 
2001 Ineligible fleet -0.11*** -0.23*** 0.07* 
Waived fleet 0.16 0.14 0.50 
1998 Waived fleet 0.20 -0.19 - 
1999 Waived fleet 0.14 0.07 - 
2000 Waived fleet -0.29** -0.11 -0.06 
2001 Waived fleet -0.20 0.11 -0.21 
Rest-of-Georgia 0.13*** 0.09*** 0.11* 
1998 Rest-of-Georgia -0.01 -0.01 - 
1999 Rest-of-Georgia -0.06*** -0.08*** - 
2000 Rest-of-Georgia -0.007 -0.03** 0.006 
2001 Rest-of-Georgia -0.05*** -0.06*** 0.01 
Missing fleet 0.002 0.001 0.22* 
1998 Missing fleet 0.09*** 0.06*** - 
1999 Missing fleet 0.05 0.03 - 
2000 Missing fleet 0.06* 0.02 -0.07 
2001 Missing fleet -0.04 0.08** -0.28** 
Retest pass 0.34*** 0.12*** 0.36** 
1998 Retest pass -0.03 -0.06 - 
1999 Retest pass 0.03 0.01 - 
2000 Retest pass -0.11** 0.05 0.05 
2001 Retest pass -0.02 0.38*** 0.19 
Migrated pass 0.10* 0.10*** 0.32 
1998 Migrated pass - - - 
1999 Migrated pass 0.03 -0.10** - 
2000 Migrated pass 0.004 -0.05 -0.12 
2001 Migrated pass -0.06 -0.04 -0.28 
Retest fail 0.38*** 0.12* 0.57 
1998 Retest fail 0.23** 0.13 - 
1999 Retest fail 0.34*** 0.17** - 
2000 Retest fail 0.12 0.21** 0.08 
2001 Retest fail -0.04 0.40*** -0.03 
Migrated fail 0.55*** 0.60*** 0.18 
1998 Migrated fail - -0.60*** - 
1999 Migrated fail 0.005 -0.51*** - 
2000 Migrated fail -0.02 -0.27*** 0.02 
2001 Migrated fail -0.11 - 0.18 
Missing fail 0.27** 0.07 0.12 
1998 Missing fail - - - 
1999 Missing fail 0.26* 0.08 - 
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2000 Missing fail 0.05 0.10 0.20 
2001 Missing fail -0.11 0.38*** 0.04 
Missing pass 0.02 0.04** 0.17** 
1998 Missing pass - - - 
1999 Missing pass 0.07* -0.02 - 
2000 Missing pass -0.002 -0.00002 -0.13 
2001 Missing pass -0.10*** -0.05** -0.31*** 
Vehicle age (years) 0.13*** 0.01*** 0.33*** 
Vehicle age squared -0.002*** 0.004*** -0.01*** 
Vehicle age cubed .00001** -0.0001*** 0.0002*** 
Vehicle type -0.04*** -0.03*** 0.12*** 
GM 0.0003 0.02*** -0.07*** 
CHRYSLER 0.004 -0.008 -0.01 
HONDA 0.21*** -0.06*** -0.20*** 
TOYOTA 0.04*** -0.01* -0.08*** 
NISSAN 0.07*** 0.01*** -0.03* 
MAZDA 0.19*** 0.07*** 0.001 
MITSUBISHI 0.12*** 0.12*** 0.24*** 
MERCEDES -0.24*** -0.02 -0.43*** 
VOLVO 0.08*** 0.004 -0.20* 
VW -0.005 0.03** -0.17*** 
ISUZU 0.11*** -0.01 -0.02 
Other Manufacturers 0.06*** -0.002 -0.28*** 
JAPAN -0.10*** -0.04*** -0.11*** 
CANADA 0.02*** 0.01*** 0.06*** 
GERMANY -0.28*** -0.11*** -0.19*** 
MEXICO 0.04*** -0.008 0.11*** 
SWEDEN -0.44*** -0.19*** -0.15 
KOREA 0.03 0.11*** 0.21** 
UK -0.32*** -0.13*** -0.19** 
Other countries -0.10* 0.13*** -0.18 
AIR 0.05*** 0.05*** -0.02** 
TWC 0.17*** -0.06** 0.02 
EGR -0.11*** -0.04*** -0.12*** 
CLL 0.05* 0.03 -0.45*** 
TAC 0.28*** 0.08*** 0.02 
OXY 0.22*** -0.02 0.09 
PCV 0.48*** 0.08*** 0.14** 
Ambient temperature (F) 0.003*** -0.001*** -0.005*** 
Relative humidity (%) -0.004*** -0.001*** -0.004*** 
Pressure (inches, Hg) 0.01 -0.05*** 0.009 
Speed (MPH) 0.004*** 0.008*** 0.02*** 
Acceleration (MPH/sec) -0.004 -0.04*** 0.07*** 
Sine (road gradient) -0.04*** 0.006*** -0.04*** 
Generation of instrument -0.13*** -1.22*** - 
Adj-R2 92.73% 84.12% 80.40% 
Root MSE 2.43 1.92 2.45 
F test statistic 61671.17 24751.48 5075.27 
 
(1) Coefficient value with one * shows significance at 90% confidence level; two ** at 95% confidence level; 

and three *** at 99% confidence level. 
(2) The Log-linear WLS model is run with no constant parameter. Rather, the weight variable is added as 

an explanatory variable, whose coefficient is reported in place of the constant. 
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The Figure Captions 

Figure 1: A conceptual framework of quasi-experimental research design 

Figure 2: A decision tree showing sets of actions, events and outcomes faced by a vehicle 

owner in the Atlanta airshed due to the IM program regulations 

Figure 3: The sampling methodology for characterizing vehicle fleets (shown in bold 

font) by using the on road emissions data 

Figure 4: Observations as a percent of total sample at remote sensing sites in Atlanta 

(1997-2001) 

Figure 5: Vehicular tailpipe emissions of CO, HC and NO distributed by vehicle age and 

observation year 

Figure 6: Annual trend of CO, HC and NO emission factors by 11 fleet types  
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Figures 

Environmental policy intervention 
to regulate the tailpipe emissions from 
high-emitting vehicles, includes 
“enhanced” IM program that began in 
January 1997 in Atlanta

Quasi-experimental control and 
treatment groups of vehicle owners

• Control group [Normal 
emitting vehicle-owners 
inside IM program area] 

•  Treatment groups [ (1) 
Compliant high emitters, (2) 
Non-compliant high emitters 

• Other groups [Outside 
Atlanta fleet] 

Technologies for tailpipe emission 
control systems [AIR, OXY, TWC, 
EGR, CLL, TAC, PCV] 

Context specific parameters 
• Vehicular characteristics 

[vehicle age, vehicle type, 
mileage, fuel regime, vehicle 
manufacturer, country of 
vehicle manufacturer] 

• Physical and natural 
parameters [ambient 
temperature, atmospheric 
pressure, relative humidity, 
road grade and time of 
measurement]

Environmental outcomes 
[Tailpipe vehicular emissions 
of CO, HCs and NOx] 

Figure 1: A conceptual framework of quasi-experimental research design 
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Figure 2: Decision tree showing sets of actions, events and outcomes faced by a 
vehicle owner in the Atlanta airshed due to the IM program regulations (shaded boxes 
show non-compliant actions) 



 36

 
Figure 3: The sampling methodology for characterizing compliant and non-compliant 
vehicle fleets (shown in bold font) by using on-road emissions data 
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Figure 4: Observations as a percent of total sample at remote sensing sites in 
Atlanta (1997-2001) 
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Figure 5: Vehicular tailpipe emissions of CO, HC and NO distributed by vehicle 
age and observation year 
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Figure 6: Annual trend of CO, HC and NO emission factors by 11 fleet types 
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