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ABSTRACT 

 
Numerous hedonic price analyses estimate price effects associated with hazardous waste 
site remediation or other environmental variation.  This paper estimates a neighborhood 
transition model to capture the direct price effect from Superfund site cleanup and the 
indirect price effects arising from residential sorting and changes in investment in the 
housing stock following cleanup.  First-difference models of neighborhood change and a 
national sample are used.  This approach fails to find consistent positive direct price 
effects.  Positive indirect effects, however, may arise through residential sorting and 
neighborhood investment spurred by remediation.  The findings can be sensitive to policy 
endogeneity and model specification.   
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I. INTRODUCTION 

Hedonic price analysis (Rosen 1974) is frequently used to estimate the implicit 

price of structural or neighborhood characteristics.  It has often been applied to 

environmental goods such as proximity to hazardous sites.  There is a temptation to use 

the coefficients identified in the first-stage price regression from cross-sectional variation 

to predict within-unit price changes associated with policy shocks.  Yet, even if important 

concerns about unobservables are addressed, these hedonic estimates offer limited insight 

into how the change in environmental quality affects markets.  Other (nonprice) impacts 

on neighborhood composition are often overlooked.   

This paper proposes to extend the standard hedonic approach by tracing the 

pathways through which environmental change can affect price.  For prices to change, the 

new equilibrium requires some turnover in the housing market and, most likely, other 

shifts in neighborhood composition and characteristics of the housing stock.  

Neighborhood sorting occurs and reinvestment takes place as hazardous waste sites are 

cleaned up.  High demanders may bid up prices following improved environmental 

quality, yet the ensuing change in residents (and their houses, stores, etc.) will in turn 

affect observed prices.  If neighborhood characteristics affect price, the effect of clean-

ups on price through neighborhood transition and reinvestment will be important parts of 

the total effect of hazardous waste clean-ups.  Conventional studies that neglect the effect 

of environmental quality on neighborhood composition and investment decisions may 

miss these effects.       

 This paper uses panel data to estimate a system of equations that allows for 

endogeneity among prices, neighborhood characteristics, housing stock variables, and 



environmental quality.  Although the data are not ideal, our estimates of the direct effect 

of hazardous waste clean-ups resemble those estimated in other studies using sales data.  

However, our system of equations estimates allow us to compute the indirect effects as 

well, which improves our understanding of expected price changes.  We find some of 

these indirect effects to be substantively significant. 

 The implications of these results are threefold.  First, the presence of substantial 

indirect effects of changes in environmental quality should guide our interpretation of 

existing and future empirical estimates of price effects.  Second, the relative magnitude of 

the indirect effects suggests that these effects should be considered carefully in cost-

benefit analyses of hazardous waste clean-ups, or other policy interventions that might 

cause neighborhood transition.  Third, that sorting does appear to occur because of clean-

up activity has implications for the environmental justice literature.  Cross-sectional 

models of minority group exposure may not be adequate given these dynamic responses 

of housing markets to environmental improvements.   

 The rest of the paper runs as follows: Section II briefly reviews the relevant 

literatures.  Section III lays out the empirical model, derives the total effect of a clean-up, 

and describes the data.  Section IV presents the results, and Section V concludes. 

 

II. ANALYZNG THE EFFECTS OF SUPERFUND SITES 

The hedonic literature concerning price effects of Superfund NPL sites is sizable.  

Kiel and Williams (2007) provide a recent review.  While some studies, such as 

Greenberg and Hughes (1992) use simple means comparisons to draw inferences about 

the effects of environmental hazards on property values, most economic studies estimate 



price effects from first-stage hedonic regressions.  A review of at almost a dozen studies1 

that estimate comparable price effects for proximity to hazardous waste sites reveals 

some general tendencies.  Most include neighborhood-level demographic controls, while 

a few (e.g., Chattopadhyay et al. 2005, Kiel 1995) do not.  Six of these studies report 

adjacency effects, which range from -12% to 1% of the total property value.  The rest of 

the papers estimate price gradients around these sites.  These gradients range from 

insignificant to about six percent per mile away from the hazardous waste site, with most 

effects deemed insignificant between one and six miles from the site.  Ketkar (1992) used 

aggregated census data for the dependent variable.  In that New Jersey sample, hazardous 

waste sites account for 2% lower median housing values. 

The typical approach in this literature is to use results of a first-stage hedonic 

regression, where the key variable is some “distance to site,” often interacted with 

information about or clean-up status of the site.  This conventional research design 

essentially identifies changes in property values by comparing prices near the site with 

prices elsewhere (or by comparing prices before and after a change in status).  

Greenstone and Gallagher (2005) criticize this model specification as being particularly 

susceptible to omitted variable bias, especially using cross-sectional variation in prices 

and proximity to Superfund sites.  The present paper seeks to address Greenstone and 

Gallagher’s concerns through a panel structure and other efforts to mitigate omitted 

variable bias while also exploring nonprice effects of cleanups.  Recent work by Cameron 

and McConnaha (2006), Banzhaf and Walsh (2006), and Bayer et al. (2006) have all 

pointed to the important role of environmentally-induced migration.  If sorting occurs in 

housing markets, conventional hedonic models that include neighborhood composition 



variables risk including controls that are jointly endogenous.  Consistent estimates of 

price (and nonprice) impacts of environmental shocks involves careful attention to both 

unobservables and the interdependence of price and neighborhood dynamics. 

The co-location of NPL sites and residents is a major policy issue, especially in 

terms of the equity of exposure.  The environmental justice movement and literature have 

often focused on hazardous waste facilities.  To varying degrees, assessments of 

distributional equity have accounted for migration and sorting in response to siting 

decisions.  Been (1997), Anderton et al. (1994), and Baden and Coursey (2002) all cast 

doubt on the hypothesis that siting follows race.  Alternatively, Hamilton (1995) finds 

facility expansions to follow neighborhoods where collective political action was 

weakest.  Gayer (2000) finds likewise for levels of risks, while Shapiro (2005) finds 

similarly for changes in risk levels.  One implication is that the EPA may base decisions 

about cleanup, in part, on the political influence of a community.  Another implication is 

that surprisingly little work exists in the environmental justice literature that explicitly 

measures a dynamic model where households migrate and environmental quality 

improves.  Most of these studies examine sorting around existing sites.  Far less effort has 

gone into rigorously investigating neighborhood transition in the wake of Superfund site 

remediation.  If there are price effects associated with environmental remediation, then 

neighborhood sorting should follow.  While this dynamic has yet to be observed 

following siting, at least in the environmental justice literature (Ringquist 2006), we offer 

new evidence on sorting following remediation.  Moreover, shifts in rentership rates are 

also estimated, with implications for whether residents can capture subsequent property 

value gains (see discussion in Sieg et al. 2004). 



  

III. THEORY AND EMPIRICAL METHODOLOGY 

A. Theoretical model 

In general, hedonic studies use cross-sectional data to estimate a first-stage 

equation of the form: 

(1) itiGitMitNitSitEtit GMNSEP 10 εββββββ ++++++=  

where t indexes time, i indexes individual housing units, P is the house value, E measures 

environmental quality (which is a negative function of the presence of a polluted site), S 

is a vector of structural characteristics of a property, N is a set of neighborhood 

demographic characteristics, M is a vector of characteristics of the municipality that may 

vary over time and also affect prices, and G is a set of time-invariant characteristics that 

affect price (such as distance to the CBD).  The hedonic price, βE, is typically taken to 

also represent the willingness to pay – by the marginal consumer in that housing market – 

for a marginal increase in environmental quality. 

One potential problem with a simple OLS approach to the hedonic equation in 

levels is that some of the components of G will be unobserved and correlated with the 

other variables of interest.  To mitigate this problem, we estimate the model in first 

differences (Mendelsohn et al. 1992, Zabel 1999).  This strategy purges our parameter 

estimate of bias from the omission of time-invariant variables, and we thus identify the 

parameters from within-observation changes in environmental quality, neighborhood 

demographic conditions, and structural characteristics, as in Equation (2): 

(2) ititMitNitSitEit MNSEP 10 εβββββ  +++++=  

where 1,, −−= titiit XXX  for any variable X. 



In this paper, we consider the possibility that Equation (2) is part of a larger 

system in which many of the key variables are set simultaneously.  Estimating the system 

that simultaneously determines prices and housing and demographic characteristics 

reveals the direct price effects of environmental clean-ups and enables us to map the 

pathways through which the indirect effects arise.  Our model of structural characteristics 

explains observed levels of S by the lagged level of S and the other variables in the 

system: 

(3) itiGitMitNitEtitSit GMNESS 201 εγγγγγγ ++++++= −  

Here, the housing stock depends on its past levels and environmental quality, 

neighborhood demographics, and other considerations.  Again, taking first-differences to 

control for time-invariant unobservables yields: 

(4) ititMitNitEitSititit MNESSSS 2011 εγγγγγ  +++++=−= −−  

Surely, all of these adjustments will be gradual in the aggregate, as the existing stock, 

built before the changes occurred, will not instantaneously be demolished and rebuilt at 

the new equilibrium specifications.2  That is, if there are no changes in environmental 

quality, neighborhood demographics, or other considerations, the housing stock in an area 

will continue its path towards long-run equilibrium.  However, if environmental quality 

suddenly improves, it might cause people to change the kinds of housing they build.3  

Likewise, neighborhood demographics such as family size and income will also affect the 

equilibrium quantity and quality of the housing stock if the demand for housing is related 

to these demographics.  

 A similar argument holds for neighborhood demographic characteristics.  Let the 

observed neighborhood demographics be explained by: 



(5) itiGitMitSitEtitNit GMSENN 301 εδδδδδδ ++++++= −  

Taking first-differences yields:   

(6) ititMitSitEitNititit MSENNNN 3011 εδδδδδ  +++++=−= −−  

Thus, N follows a partial adjustment process, where changes in environmental quality, 

prices, structural characteristics, and other factors all explain the observed changes in 

neighborhood demographics.  Demographic groups’ differing demands for E may cause 

them to sort into neighborhoods according to their willingness to pay for these attributes 

(Diamond and Tolley 1982).  Similarly, changes in housing stock may attract different 

types of residents, at least when the capital stock is somewhat inelastic. 

Rearranging terms and rewriting the first-differenced system in matrix notation 

yields Equation (7). 
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where 1−−= tt XXX  for any variable X. 

 In this paper, we are specifically interested in the effects of E , especially when E 

changes due to policy intervention, as in the case of Superfund site clean-ups.  Given the 

system of Equations (7), the total effect of a clean-up ( E ) can be seen to depend not 

solely on its direct effect (βE), but also on its indirect effects.  Totally differentiating and 

dividing through by Ed  , while recognizing the lagged differences in P, S, and N will not 

depend on E , yields: 
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We can then use Cramer’s Rule to obtain the total effect of a change in E: 

(8) 
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The first term in the numerator is the direct effect on price.  The second and third terms in 

the numerator are the first-order indirect effect: E ’s effect on P  through S  and N .  The 

third and fourth terms are the second-order indirect effects: E ’s effect on P  through S ’s 

effect on N  and N ’s effect on S .  The final term corrects for double counting.  The 

denominator is a sort of multiplier effect.  If there is no endogeneity in Equation (7),4 this 

total derivative reduces to the first three terms in the numerator.   

 In this application, the system of equations is considerably more complex because 

S, N, and M are vectors of many variables.  Hence, in Equation (3), we assume that each 

variable in S depends on its own lag, the vectors E, N, M, and G, and the 

contemporaneous values of the other variables in S.  Likewise, in Equation (5), each N 

variable depends on its own lag, the vectors E, S, M, and G, and the contemporaneous 

values of the other variables in N.  The system in Equation (7) thus has each S  and N  

equation dependent on that variable’s own lagged difference, E , the other variables in 

the S  and N  vectors, and additional municipal-level controls in the exogenous M  

vector.  The time-invariant vector of geographic controls, G, drops entirely out of the 

system when first-differenced, assuming time-invariant parameters βG, γG, and δG.     

An alternative model of the system might allow for property values to enter into 

Equations (3) and (5) directly.  Thus, they appear as: 



(3a) itiGitMitPitNitEtitSit GMPNESS 201 εγγγγγγγ +++++++= − . 

(5a) itiGitMitPitSitEtitNit GMPSENN 301 εδδδδδδδ +++++++= − . 

In Equation (3a), the substitution towards different types of housing when property prices 

rise suggests an important role of P in explaining S.  Similar arguments hold for the 

inclusion of P in Equation (5a): higher property values may attract different types of 

residents.  First-differencing these equations completes the alternative system.   
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In this alternative model, as above, each S  and N  equation depends on that variable’s 

own lagged difference, E , P , the exogenous M  vector, and the other variables in the 

N  and S   vectors, respectively. 

 

B. Estimation approach 

 To identify the parameters in Equation (8), we estimate the system of Equations 

(7).  In this framework, the preferred data set would include a national sample6 of 

properties and a rich set of housing and resident characteristics over time.  The two most 

obvious candidates (the American Housing Survey and the Public Use Micro Sample) 

only provide geographic information at the county-level.  Since the effects of hazardous 

waste sites have been found to be highly localized (Hite et al. 2001, Mendelsohn et al. 

1992), such large geographic scales are inadequate for our purposes.   

 In the absence of national microdata, we use aggregate measures of housing and 

population characteristics at the neighborhood (block group) level.  Using block-group 



averages and medians, we wish to see how neighborhood transitions induced by site 

clean-ups affect total changes in prices.  There are some advantages to this level of 

aggregation (Goodman 1977).  Coulton et al. (2004) show that the block group matches 

survey respondents’ perceptions of “neighborhood” better than other available levels of 

aggregation.  We use U.S. census data from 1980, 1990, and 2000, processed by 

Geolytics, Inc. so that block-group boundaries do not change from decade to decade.  

This geographic consistency across years enables panel data analysis.  We treat block 

groups, the smallest level of aggregation for which our data are available, as the unit of 

analysis in the first-difference approach.     

The use of aggregated data, even at the neighborhood level, limits our ability to 

infer price effects at the individual level.  Nonetheless, some hedonic research has shown 

that estimates using aggregate data produce reasonably accurate results (Freeman 1979, 

Nelson 1979, O’Byrne et al. 1985).7  Moreover, the median housing value in a 

neighborhood is of considerable policy import.  Learning more about the effects of clean-

ups on this neighborhood measure is informative, even if it does not recover the true 

underlying hedonic price.  The results based on such aggregate measures can be viewed 

in an epidemiological light: the effects of average exposure on average outcomes, while 

not the ideal, are nonetheless interesting.   

The estimation strategy employed here attempts to avoid two kinds of bias that 

would result from estimating Equations (1), (3), and (5) with OLS.  The first arises from 

time-invariant omitted variables.  If we had no time-invariant omitted variables and good 

instruments, then estimating Equations (1), (3), and (5) in levels would be sufficient and 

straightforward.  Yet, to address the serious concerns about unobservable individual-level 



effects and to help with our search for instruments, we estimate the system in first-

differences.  This recovers the same set of parameters as found in the system in levels by 

relying on observations of how these variables respond to changes in the environmental 

good (something that would not be possible with cross-sectional data alone).  

Another source of bias in all three equations stems from endogeneity in the 

system.8  Equation (4) has changes in structural characteristics depending on changes in 

neighborhood demographics just as Equation (6) has demographic trends following from 

changes in the housing stock.  Equation (7a) states that appreciation rates are affected by 

changes in the structural characteristics while also stating that those changes depend in 

part on the appreciation rate.  To correct for this endogeneity, we estimate Equation (7) as 

a system of simultaneous equations.  Having differenced out all time-invariant 

determinants of P, S, and N, the search for instruments is made somewhat less arduous.  

With a few exceptions, we use twice-lagged levels of each variable as instruments. 

 The consistency of our estimator depends on the validity of our instruments.  

Under the assumption of white noise error terms in (7), the twice-lagged levels of each 

variable serve as valid instruments.  This follows the recommendations of Arellano 

(1989).  Thus, while tε  and 1−tε  must be uncorrelated, this implies εt and εt-2 are 

uncorrelated for each equation in the system in (7).  Sargan tests of overidentification and 

Durbin-Wu-Hausman tests of endogeneity – both of which are performed on the 2SLS 

estimation of each equation in the system – serve as diagnostic checks for the validity of 

these assumptions with these data.   

 

C. Variables and Descriptive statistics 



 Data from several sources are combined to estimate the model.  The results are 

presented in section IV, emphasizing the estimation of the P  equation in (4).  P  is the 

change in the block group’s log of median house value from 1990 to 2000.     

 Our variable of interested is E , which represents EPA clean-up activity over the 

1990’s.  Derived from public EPA data (EPA 2003), this variable equals one if a block 

group contains a site that was deleted or partially deleted from the NPL during the 1990s.  

This is the most complete and final designation of a hazardous waste site, indicating that 

the EPA is satisfied that the site has been cleaned enough to pose no further health risk.  

This change in status, more than mere listing or incomplete remediation, should represent 

improved environmental quality (Greenstone and Gallagher 2005).  Because the policy 

variable, E , may not be exogenous, we also estimate models with an instrumented E  

(discussed in detail in section D below) to assess the sensitivity of the results.   

 S  is a vector of housing characteristics expected to affect prices at an individual 

as well as an aggregate level.  S  includes changes in eight variables: median year built of 

housing units, average number of rooms per unit, percent of housing units with gas or 

electric heating, housing density (housing units per square mile), percent of units in small 

buildings (containing four or fewer housing units), percent of housing units with 

complete plumbing, average number of bedrooms, and the percent of housing units that 

are stand-alone.   

 Neighborhood demographic characteristics ( N ) include the changes in the 

following eleven variables: log of the neighborhood median household income; percent 

population that is white but not Hispanic; percent population aged 25 or older who have 

completed at least a bachelor’s degree; percent population below 1.5 times the poverty 



level; percent of the population employed in manufacturing, warehousing, transportation 

or utilities industries; percent renter-occupied housing, percent population aged under 18 

years; average commute time for people working outside the home; percent of 

households who do not have a vehicle available; population density; and average people 

per housing unit.   

 The M vector captures the conditions of the municipality or Census “place”.  

Ideally, M  would measure changes in important variables like school quality, crime, and 

public finance attributes of the area.  Such variables are unavailable, however, for the 

nationwide sample and appropriate dates (1980-2000) needed in this analysis.  Proxies 

are constructed using first-differences in the following place-level variables: number of 

households, median housing value, median rent, median household income, percent of 

households with children under 18, and percent of households that are married families 

with kids.  This approach groups observations not in an MSA into a single rural group to 

compute the group-level trends. 

 Time-invariant components of G will cancel out in the first-difference estimation.  

If we relax the assumption of constant hedonic prices for these characteristics, however, 

geographic variables may re-enter the model.  The βG would then reflect the change in 

the hedonic price from 1990 – 2000.  The same applies for the other equations for 

structural and neighborhood characteristics.  To account for possible changing influence 

of unobserved MSA-level characteristics in the various equations in the system, all 

models are estimated with MSA-level fixed effects.  By subtracting the MSA-level means 

from each variable, the models effectively control for changing prices (and other levels of 

S and N) at the metropolitan level over the 1990s.  Relaxing the assumption of time-



invariant prices also allows a richer set of geographic controls, G, to enter the price 

equation in some specifications.9  The G vector includes a natural amenity index 

computed at the county level by the USDA ERS (USDA 1999) and a set of interactions 

between MSA dummies and distance to CBD, which was derived from various Census 

TIGER files and the National Atlas of the United States (2004).  By including these time-

invariant factors in our price model, it allows housing price trends to vary according to 

climate and topography, and across and within MSAs.  Table 1 presents the variable 

names, descriptions and descriptive statistics of all the variables described above. 

 

Table 1: Variable Names, descriptions and descriptive statistics.  

Vector Name Descriptiona Mean 
Standard 
Deviation 

P  Price Difference in log of median value, owner-
occupied housing 0.3589 0.322 

E  
Clean-up, 

own/adjacent 
Own or adjacent block group has an NPL 

site deleted from list 0.0053 0.073 

E  
NPL in 1990, 
own/adjacent 

Own or adjacent block group had an NPL 
site as of 1990 0.0544 0.227 

S  

Year built Difference in median year structure was 
built 3.3446 20.190 

Rooms Difference in average number of rooms in 
housing units 0.1058 0.457 

Utility heat Difference in percent housing units with 
gas or electric heat 0.0492 0.102 

Housing density Difference in housing units per mile2 52.8743 702.253 

Small structures 
Difference in percent housing units 

sharing structure with 4 or less housing 
units 

0.0004 0.080 

Plumbing Difference in percent housing units w/ 
complete plumbing -0.0007 0.028 

Bedrooms Difference in average number of 
bedrooms in housing units 0.0071 0.243 

Solo unit 
Difference in percent housing units not 

sharing structure with any other housing 
units 

0.0031 0.091 

N  

Income Difference in log of median household 
income 0.3343 0.231 

White Difference in percent non-Hispanic white 
population -0.0678 0.110 

College Difference in percent population age 25+ 
with at least college degree 0.0486 0.079 



Vector Name Descriptiona Mean 
Standard 
Deviation 

Poor Difference in percent population with 
income under 1.5 poverty line -0.0031 0.099 

Blue collar Difference in percent workers employed 
in “industrial” sectors -0.0622 0.087 

Renter Difference in percent occupied housing 
units that are renter-occupied -0.0053 0.096 

Children Difference in percent population aged 18 
or younger -0.0023 0.062 

Commute Difference in average travel time for those 
working outside of home 2.092 4.943 

No vehicle Difference in percent of households with 
no vehicle available -0.0056 0.067 

Population density Difference in people per mile2 199.2871 2117.182 
Household size Difference in people per housing unit -0.0099 4.966 

M  

PlaceHouseholds Difference in place-level number of 
households 18019.47 42207.37 

PlaceValue Difference in place-level median housing 
value 34706.75 34466.24 

PlaceRent Difference in place-level median rent 41.9863 80.549 
PlaceIncome Difference in place-level median 

household income 10366.28 4852.253 

PlaceKids Difference in place-level percent of 
households with children aged 18 or less -0.0095 0.029 

PlaceFamilies Difference in place-level percent of 
households that are married with children -0.0240 0.028 

G 

Natural amenities 
scale 

county-level amenity index  
(composed of topography, temperatures, 

humidity, and sunlight) 
1.0601 3.209 

Distance log of distance to historic city center 2.8742 0.818 

MSA × Distance MSA-specific log of distance to historic 
city center 

  

a All variables are measured as changes from 1990 to 2000, except for E and level variables in G.  Even 
though variables in Table 1 appear in their raw form, all models are estimated after subtracting MSA-
level averages from all variables. 
 

 To identify the system in Equation (7), numerous instruments are needed.  The 

system has 20 equations (for P , S , N ) and 39 endogenous variables when the lagged 

differences of S and N are also included.  In each equation, however, there are only 20 

endogenous variables: the 19 endogenous differences and one endogenous lagged 

difference.  The system includes exogenous M  as regressors in each equation.  Excluded 

instruments include the twice-lagged levels of all P, S, and N variables.10  The three-stage 

least squares (3SLS) approach estimates all endogenous variables using the E , Pt-2, St-2, 



Nt-2, and tM  as independent variables.  Then, the instrumented versions of the 

endogenous variables are used to estimate the equations in the system simultaneously, 

allowing for across-equation correlations in the errors.  The 20 exclusion restrictions 

(twice-lagged levels of P, S, and N) overidentify each of the equations’ 19 endogenous 

regressors (the S  and N  vectors, except for the dependent variable being replaced by its 

lagged difference).  A Sargan test of overidentification (with one degree of freedom) 

offers a specification test for each of the equations. 

The alternative model (equation 7a) differs slightly in that each S  and N  

equation also includes an endogenous P  regressor.  It uses an identical instrument set. 

The exclusion restrictions (20 twice-lagged levels from P , S , and N ) just identify the 

endogenous variables in each of the S  and N  equations (where all of the P , S , and N  

variables appear in each, except for the dependent variable being replaced by its lagged 

difference) and overidentify the price equation (because the lagged difference of price 

does not appear).  A Sargan test is available for the price equation. 

 

D. Endogeneity Issues with E  

 Up to this point, we have maintained the assumption that while P, S, and N are 

determined simultaneously, EPA clean-ups are determined exogenously (i.e., E  is 

uncorrelated with iε  in equations 7 or 7a).  This assumption may not hold.  Empirically, 

Viscusi and Hamilton (1999) show that the clean-up standard chosen by the EPA depends 

on some demographic characteristics of the area surrounding the site.  On the other hand, 

Hird (1993, 1994) shows that the demographics of the county which contains a site has 

little effect on the progress of a site through remediation.  Gupta et al. (1996) found 



similar results: that clean up decisions for NPL sites were more related to clean up costs 

and risk factors than to neighborhood demographics.  More recently, Daley and Layton 

(2004) predict site progress through remediation and find no significant effects of area 

demographics.  These studies offer little evidence that deletion, our variable of interest, 

hinges much on unexplained changes in P, S, and N.   

 Because all of these studies are done conditional on the presence of a hazardous 

waste site, the exogeneity of clean-ups among sites might not generalize to our more 

inclusive sample.  Even in our first-differencing context, this should concern us because 

neighborhoods experiencing clean-ups will be neighborhoods that contained sites in 1990 

(i.e., Et-1 and E  are highly correlated).  If neighborhoods with Superfund sites in 1990 

tended to have systematically higher or lower residual appreciation rates, the βE could be 

biased.  To control for this possibility, we will also estimate models on the subset of 

neighborhoods that contained sites in 1990.  In this subsample, we were unable to reject 

the null hypothesis of exogeneity of E  in most of our equations using a Durbin-Wu-

Hausman test.  Thus, we feel it is safe to take clean-up as exogenous, conditional on the 

presence of a site.  We report results from models run on the full sample with (Models 2 

and 4) and without (Models 1 and 3) instrumenting for E .  We also report comparable 

results for models run on the subsample of observations with sites as of 1990 (Models 1’ 

and 3’).  

 Along the lines of Gayer (2000), we consider an instrumented version of E  in 

Models 2 and 4.  Ê  is estimated from a probit of Pt-2, St-2, Nt-2, Et-1, site-specific 

characteristics, and a variety of other measures from 1980.11  The site-specific 

characteristics include the Hazard Ranking System (HRS) score of the closest site, a 



dummy variable if the HRS score is missing for that site, and the years elapsed since the 

closest site was first “discovered” by the EPA for inclusion on the NPL.  As every 

observation (i.e., block group) has a closest NPL site, the HRS variable should say little 

about the environmental quality of the observation; merely it should indicate the 

likelihood of that site to be cleaned up (Hird 1990, Layton and Daley 2004).  Likewise, 

the time elapsed since discovery should affect the likelihood of clean-up rather than 

environmental quality of that neighborhood.  This instrumented version, Ê , replaces E  

in Models 2 and 4. 

 The concern that E  may be correlated with other unobservables that belong in the 

empirical model motivates several additional models.  First, Model 1’ represents Model 1 

except with only the subsample of neighborhoods with NPL sites in 1990.  Second, 

Model 2 duplicates Model 1 except that E  is replaced by Ê .  Third, the possibility of 

time-varying hedonic prices (β) is explored in Models 2G and 2EG.12  Even an 

instrumented Ê  might give biased price effects if clean-ups tend to occur in areas that 

tended to experience changes in price (due to either demand or supply shocks) during the 

1990s.  Suppose that clean-ups occurred in areas with an NPL site in 1990 or with a rainy 

climate.  Obviously, both attributes are time-invariant and thus cannot explain 

appreciation rates during the 1990s, unless hedonic prices changed during that time.  The 

assumption of time-invariant effects for levels of Et-1 and G are relaxed in order to control 

for the possibility that clean-ups tended to occur in areas that experienced price changes.  

Models 2G and 4G include in the price equation the G vector of the natural amenity 

scale, distance to city center, and MSA-specific distances.  Letting prices for these 

attributes vary controls for the possibility that, for instance, if downtown areas tended to 



get clean-ups and also tended to see large price increases during the 1990s, then βE might 

be biased upwards without controlling for distance-to-downtown.  Finally, Models 2EG 

and 4EG include both the G vector and the Et-1, allowing for the possibility that block-

groups with or near NPL sites in 1990 were somehow different than other areas and 

followed a different price path over the 1990s.  Table 2 summarizes the differences 

between models. 



Table 2:  Summary of Models 
Model Equation Sample Vectors included 
1 (2)  OLS Full S , N , M , E  
1’ (2)  OLS NPL in 1990 only S , N , M , E  
2 (2)  OLS Full S , N , M , Ê  
2G (2)  OLS Full S , N , M , Ê , G  
2EG (2)  OLS Full S , N , M , Ê , E , G  
3 (7)  3SLS Full S , N , M , E  
3’ (7)  3SLS NPL in 1990 only S , N , M , E  
4 (7)  3SLS Full S , N , M , Ê  
4G (7)  3SLS Full S , N , M , Ê , G  
4EG (7)  3SLS Full S , N , M , Ê , E , G  
3a (7a)  3SLS Full S , N , M , E  
3a’ (7a)  3SLS NPL in 1990 only S , N , M , E  
4a (7a)  3SLS Full S , N , M , Ê  
4Ga (7a)  3SLS Full S , N , M , Ê , G  
4EGa (7a)  3SLS Full S , N , M , Ê , E , G  
 

IV.  RESULTS 
 

Table 3 summarizes the results of estimating alternative P  equations based on 

Equation (2).  Table 4 summarizes the results of estimating several alternative 

specifications of the neighborhood transition and NPL clean-up system in Equation (7).  

Table 4a does likewise for the alternative system in Equation (7a).  (Note that the price 

equation is the same in both Equation (7) and (7a), leaving OLS estimates of the P  

equation identical.)  Model 1 is just a first-differenced price equation, Equation (2), 

where S  and N  are treated as exogenous.  Model 3 refers to the system in Equation (7), 

including the P  equation and 19 equations for vectors S  and N .  Models 2 and 4 

replicate Models 1 and 3, respectively, except that the instrumented version Ê  replaces 



E .  Models 1’ and 3’ correspond to Models 1 and 3 except they are estimated using the 

restricted sample of only block groups that contained NPL sites in 1990 or are adjacent to 

those block groups.  This sample restriction reduces the sample size from about 200,000 

to about 11,000. 

Estimates of Models 1 and 2 in Table 3 show median housing value changing 

with changes in structural and demographic characteristics of the neighborhood.  The 

initial first-difference price regression offers results generally consistent with 

expectations and previous literature.  The effects of these controls are relatively stable 

across models in Table 3, especially for the full sample.  Newness, rooms, plumbing, 

income, percent white, education, absence of poverty, and shorter commutes are all 

associated with higher prices in the OLS model.  Model 1’ shows that a somewhat 

different set of prices may hold in the subsample.  Otherwise, the OLS models explain 

about 22% of the variation in appreciation rates in block groups in fairly standard ways.   

 

[Insert Table 3 about here] 

 

NPL site clean-up is associated with a 3.7% rise in prices in Model 1 (with a 95% 

confidence interval of 2.1-5.3%).  This direct effect is robust to a variety of other 

controls, removing the MSA-level fixed effects, or even restricting the sample to only 

block-groups with or near an NPL site 1990.  Model 1’ shows a 4.2% direct price effect 

of clean-ups among the smaller sample.  Instrumenting for E  in Model 2, on the other 

hand, essentially eliminates the direct price effect.  The largest effect is seen in Model 

2EG, where the direct price effect is estimated to be 5.8% but with a 95% confidence 



interval ranging from -3.9% to 15.5%.  OLS estimates an effect size of E  to be about 

4%, whether in the full sample or only among areas with or near NPL sites, while the 

price effect of Ê  is statistically indistinguishable from zero.  Overall, these results are 

within the range of the findings referenced in Section II.   

 The direct price effects of clean-ups are estimated in Tables 4 and 4a using the 

3SLS approach.  Depending on the modeling assumptions and sample, the estimated 

price effects range from -9.5% to 6.5% in Table 4, but only the estimate in Model 3 is 

significantly different from zero.13  The alternative models in Table 4a exhibit a similar 

range in estimates, although most are closer to zero.14  The model that includes Et-1 

proves to be the exception, with the price effect of Ê  tending to be more negative in 

Model 4EGa than its counterpart in Model 4EG.  In Model 3a, median property values in 

block groups with or near clean-ups appreciate a statistically insignificant 2.7% faster 

than other block groups.  The instrumented clean-up variable produces very similar direct 

price effects in Model 4a.  Among neighborhoods with or near NPL sites, however, block 

groups with remediations actually appreciate 1.6% more slowly on average.  Only when 

Et-1 and G are included does the direct price effect of instrumented clean-ups become 

statistically different from zero.  In Model 4EGa, block groups experiencing remediations 

exhibit 20.7% lower appreciation rates than comparable properties.   

[Insert Table 4 about here] 

[Insert Table 4a about here] 

Comparing across Tables 4 and 4a, the results broadly suggest a small and noisy 

direct price effect from de-listings under the null of exogenous clean-ups, and this effect 

erodes further when clean-ups are instrumented.  Omitting the initial proximity to old 



hazardous waste sites from the model may upwardly bias the price effect of E  or Ê .  

Apparently those neighborhoods around NPL sites circa 1990 experienced above average 

appreciation during the 1990s.  This weak result, that βE may be incorrectly attributing 

some of the price growth in “dirty” neighborhoods to the clean-ups that occurred in some 

of them, is evident from comparing βE in Models 3 and 3’, and 4G and 4EG.  The similar 

pattern of upward bias holds in Table 4a.  The bias is so strong in the alternative Model 

4EGa that the negative direct price effect actually becomes significant.  Otherwise, the 

evidence in Tables 4 and 4a point to consistently small and insignificant effects of clean-

ups. 

This result resembles the OLS results presented in Table 3, but it contrasts with 

much of the hedonic literature on Superfund sites.  These single-site studies often find 

significant price effects on properties even farther away than one or two block groups.  

Kiel and Williams (2006) are an exception in this literature, where their multi-site 

approach finds positive price effects of proximity over time for some of their sample.  In 

addition, our results suggest that unobservables associated with the neighborhoods 

around NPL sites and, in particular, sites experiencing remediations may bias the 

observed price effects.15   

 The effects of clean-ups on neighborhood composition and housing stock are 

presented in the bottom panels of Table 4 and Table 4a.  In many cases, NPL site clean-

ups are associated with significant changes in structural and demographic changes in the 

neighborhood.  In Model 3, E  predicts newer housing, a larger share of housing with gas 

or electric heat, and larger shares of small structures and blue-collar workers.  In the 

smaller sample in Model 3’, E  is insignificant in all of the other equations in the system.  



Instrumenting for E  in an auxiliary regression leads to generally larger (and more 

significant) effects of Ê  in the other equations in the system.  These effects differ 

depending on whether Et-1 or G are included.  Some consistent effects are evident, 

however.  The positive effect of Ê  on Years built and negative effect on Income and Blue 

collar appear to be the result of omitting Et-1, a measure of baseline neighborhood 

environmental quality.  Areas with or near NPL sites in 1990 tended to become newer, 

poorer, and less blue collar over the 1990s, rather than just the areas experiencing 

remediations.  Model 4EG, which includes Et-1 in each of the S  and N  equations and 

uses both Et-1 and G as exogenous instruments in the first stage, finds several significant 

non-price effects of clean-ups.  Neighborhoods with or near a clean-up tend to gain more 

rooms per housing unit but fewer bedrooms per unit, a larger share of units using utilities 

for their heat, a larger share of nonwhite residents, a larger share of units occupied by 

renters, and shorter commutes.  As shown in the top panel of Table 4, some of these 

affected variables are significant in the hedonic price equations; others are not.  

Interestingly, block-groups nearby NPL deletions during the 1990s did not appear to 

become much wealthier, more white and educated, and more family friendly as some 

might expect.   

The alternative models in Table 4a show roughly similar effects of clean-ups on 

neighborhood composition when the effects are significant.  With population densities 

rising and median building age becoming younger, one might conclude that new housing 

is being built as new residents move into these areas.  This provides some evidence for 

both supply and demand effects of changes in environmental quality.   



Although housing markets and residential sorting mechanisms appear responsive 

to changes in environmental quality, direct price estimates, from neighborhood-level 

hedonic analyses (as in Models 1 or 2) or from systems models (as in Models 3 or 4), 

capture only part of the effect of clean-ups on prices.  The full price effect of an NPL 

clean-up can be calculated via equation 9 or 9a.  These effects appear in Table 5 along 

with direct price effects reprinted from Table 4.   

 In most of the models estimated, the indirect effect goes in the opposite direction 

of the direct effect.  Relative to the standard errors for βE, these indirect effect sizes are 

often fairly small.  Two exceptions arise in Models 3’ and 4EG – both of which control 

for Et-1 either by directly including it or by restricting the sample.  Clean-ups in either 

case do not have significant direct price effects, but they do induce changes in 

demographics and housing stock such that prices substantially rise.  The indirect price 

effect in Model 3’, which uses a sample restriction to mitigate the policy endogeneity, 

appears substantively large and positive.  The net price effect of clean-ups among the 

eligible neighborhoods is a 3.8% increase, which is a substantial improvement over the 

4.3% decrease that would be expected under a clean-up if the neighborhood dynamics 

were held fixed.  Using G as instruments and including G in the price equation in the full 

sample also obtains positive indirect price effects.  On net, the flexible full-sample 

specification with MSA-specific effects of proximity to city center predicts 7.8% higher 

property values in block groups with or near NPL deletions.  This positive price effect, 

however, arises through neighborhood change occurring and influencing price.  Direct 

price effects alone tend not to be positive and significant in these models.  Overall, the 

results suggest two things: (1) the direct price effects are not large and positive; and (2) 



allowing for indirect price effects can yield significant total price effects from clean-up, 

but much noise remains and the results are highly sensitive to model specification.  

Similar results hold for the alternative model.16  The preferred model points to a +7.8% 

total price effect from clean-ups, with a -9.5% direct and a +17.3% indirect price effect. 

The net result is that clean-ups tend not to appear as an amenity, unless the clean-

up’s induced changes in neighborhood composition are also allowed to affect price.  

Throughout all of the models estimated, the direct price effect is never significant and 

positive, and their total price effects are also centered near zero.  (If the confidence 

interval around the full effect estimate was the same size as that of the direct effect, the 

full effect’s confidence interval would contain zero for all models.)  With a full set of 

controls in Models 4EG and 4EGa, even if the direct price effect appears to be negative 

on average, the indirect effects bring the net price effect to positive through neighborhood 

change.  Much noise surrounds these estimates.   

The Models 3’ and 3a’ offer useful reference points, as they use a sample 

restriction to severely limit the comparison group.  Among these observations eligible for 

receiving an NPL remediation, the direct price effect appears small, negative, and 

insignificant, whereas the full price effect appears positive and small (~4%).  Though 

mixed, there is some evidence for positive indirect (not direct) price effects of NPL 

remediation during the 1990s. 

[Insert Table 5 about here] 

V. DISCUSSION 

In this paper, we consider the price effects of changes in environmental quality in 

two important dimensions often overlooked in the literature.  First, we explicitly model 



neighborhoods (block groups) as panel data in a first-difference model.  This allows for 

better controls of omitted variables and allows explicit estimation of within-observation 

covariation in prices and environmental change.  Second, we treat important attributes of 

the neighborhood (S and N) as simultaneously determined.  We estimate the direct and 

indirect pathways through which changes in environmental quality can affect prices.  The 

evidence suggests that there are weak indirect effects on prices through induced changes 

in S and N in this context. 

 While hedonic prices may be relatively easy to compute, using these estimates as 

predictions of policy effects requires great care.  Hedonic prices derived from variation in 

environmental quality (E) across units are often interpreted as marginal willingness to 

pay to improve E.  This marginal price, β, clears the market when households choose 

among properties with varying environmental quality.  Yet, many unobserved attributes 

of housing likely correlate with E.  Repeat-sales using panel data can help researchers 

avoid attributing price effects of these unobservables to policy interventions.  More 

importantly, as the results here suggest, even unbiased estimates of β may be 

inappropriate for predicting the price effects of a change in E.  An estimated β that 

explains between-observation variation in price may be a poor predictor of within-

observation price changes in response to changes in E.  Shocks to E may induce shifts in 

housing and other markets, and the joint determination of several important variables like 

price and neighborhood composition.  An estimator that reflects the partial price effect, 

holding key neighborhood composition variables fixed, may overlook significant changes 

in those variables induced by the policy intervention.   



 In principle, estimating richer models of the joint determination of prices, 

neighborhood composition, and environmental quality can offer important insight into 

these indirect effects.  This paper estimated those rich models for a major brownfields 

clean-up program, one which has cost taxpayers roughly $30 billion (Greenstone and 

Gallagher 2005), and finds mixed evidence of significant direct or indirect price effects.  

If Superfund has any positive impact on property values, it seems that it must come 

through induced changes in housing stock and neighborhood composition.  How these 

indirect effects should be used in, say, a cost-benefit analysis depends on the context.  If a 

clean-up attracts housing investment or high-income families, some of that investment 

and in-migration is coming at the expense of other areas.  Thus, these indirect effects 

should be used judiciously by policy-makers interested in efficiency.  More local interests 

may care less about effects in other areas or markets.   

 Although evidence on price effects is weak here, estimating the structural models 

(equation 7) reveals much more information than just price effects.  The effects of EPA 

clean-ups on neighborhood composition, as local housing markets adjust to changes in 

the urban environment, can be seen in the bottom panels of Tables 4 and 4a.  In our 

preferred model (4EG), remediations tended to attract a rising share of minorities and 

renters to the neighborhood.17  Remediations do not explain changes in income, 

education, or percent children.  These empirical results contribute to the growing 

literature on neighborhood transition and environmental change (e.g., Banzhaf and Walsh 

2006, Cameron and McConnaha 2006).   

These findings also have important implications for the environmental justice 

debate.  Ringquist (2006) reviews much of the evidence on the spatial correlation of 



disamenities and demographic groups, both in static and dynamic settings.  He finds little 

evidence in the literature that observed inequitable distributions result from sorting 

induced by environmental change, though his review does not consider the recent 

research mentioned here (e.g., Banzhaf and Walsh 2006).  The results in the bottom panel 

of Table 4 suggest that some sorting does indeed take place following environmental 

change.  Remediations precede demographic shifts in neighborhoods, although the shifts 

are small and perhaps act in unexpected directions.  After a site is removed from the 

NPL, the share of minority residents nearby increases.  This suggests that remediating 

brownfields may pave the way for certain demographic groups to move into newly 

cleaned areas.  Conversely, these effects also imply that attempts to catalyze urban 

renewal with brownfield remediation may not lead to the intended outcomes.  As is 

common, individual and market behavior can undermine the best of policy intentions.  

Original residents may depart and new residents may arrive.  Moreover, their ability to 

capture any property value appreciation depends on ownership, and the results in Table 

4a hint at new rental housing following remediations. 

The present research invites further inquiry into simultaneous neighborhood and 

environmental change.  A more robust system would better control for endogeneity in 

listing and remediation of NPL sites.  A general equilibrium approach might also model 

other important markets, such as the labor market, to fully assess the expected price 

changes associated with remediation.  Recent applications to air quality (e.g., Bayer et al. 

2003, Sieg et al. 2004) demonstrate the utility of general equilibrium models in 

examining joint environmental and neighborhood change.  Certainly micro-level data 

would allow for more useful estimates and validation of our findings in local markets.  



Whether price effects of NPL sites vary across sites or metropolitan areas, perhaps using 

a random coefficients framework, warrants additional attention following on Kiel and 

Williams (2006).   

More generally, the approach taken here can be extended to other contexts to 

enrich the use of hedonic estimates to guide and evaluate public policy.  The evidence on 

Superfund clean-ups on property values is weak and inconsistent – adding to recent 

findings by Greenstone and Gallagher (2005) and Kiel and Williams (2006).  More than 

reinforcing these studies, our approach models a large and complex set of relationships 

extending well beyond price effects.  This promises a more detailed picture of the 

neighborhood dynamics following environmental change.  Although Superfund clean-ups 

had relatively small and inconsistent impacts on many variables, as with price, this sort of 

approach may yield great insights in other applications.  For example, Shapiro’s (2005) 

recent analysis of air toxics models risk changes as a function of static demographic 

variables.  As this paper demonstrates, a simultaneous approach with changes in 

demographic variables is likely to produce different, and much richer, results.  Finally, 

the sensitivity of our results to different assumptions about policy endogeneity indicates 

that this is no small concern in the case of Superfund.  How listings or clean-ups are 

assigned is crucial to both identifying the many impacts of the policy and generalizing 

from observed impacts at one site to another. 
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Endnotes 

1 Chattopadhyay et al. (2005), Clark and Nieves (1994), Dale et al. (1999), Deaton and Hoehn (2004), 

Gayer et al. (2000), Ketkar (1992), Kiel (1995), Kiel and Williams (2007), Kiel and Zabel (2001), 

Kohlhase (1991), McCluskey and Rausser (2003), Mendelsohn et al. (1992) and Michaels and Smith 

(1990). 

2 This approach is essentially a partial adjustment model for S.  Let S* be the (unobserved) equilibrium and 

S*=f(P, N, E, M, G)+θ, such that the observed St – St-1 = δ[St
* – St-1].  Thus, Equation (3) in levels can be 

written as St  = (1–δ)St-1 + δf(.) + δθt.  Equation (4) is merely the first-differencing of this equation for an f 

linear in its arguments.   

3 The partial correlation of E and S  would depend on whether housing and environmental quality are 

complements or substitutes. 

4 The assumption of no endogeneity in (4) would be represented by zeros in the off-diagonal elements of 

the coefficient matrix except in the first row. 

5 The total effect of changes in E on appreciation rates is given as Equation (8a):   
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6 A national sample, while arguably lumping multiple markets together, moves away from the single-

market analyses that dominate this literature and provide little more than case studies.  This approach has 

both strengths and weaknesses.  In this, we follow the leads of Greenstone and Gallagher (2005), Bayer et 

al. (2005), and Kiel and Williams (2006) in using a large geographic sample.  The nature of the problem, 

sorting within and across housing markets, necessitates exploring multiple regions simultaneously.  

Ekeland et al.’s (2002) skepticism about justifying a segmented markets approach provides additional 

motivation for including a national sample in the same estimation.  In all of our models, we allow for 

separate market trends by estimating the price equation with metropolitan-area fixed effects.  Further, in 

some models, we estimate metropolitan-area-specific distance gradients as well.  Regardless, the average 

effect across all clean-ups is of primary interest here, and this warrants the use of a national sample. 



7 See Shultz and King (2001) for additional review of the use of aggregated census data in hedonics.  

Greenstone and Gallagher (2005) use a similar data set for similar purposes, although they use the larger 

geography of the census tract. 

8 Up to this point, we have been assuming that environmental quality is exogenous.  This simplifies the 

discussion.  We will discuss this assumption, and relax it, later in the paper. 

9 All models estimated here control for MSA-level fixed effects in all equations in the system.  It should be 

emphasized that, when it is specified that G is included in the model by relaxing the assumption of fixed 

prices, this relaxation is applied only to the price equation.  The G vector enters the price equation only, not 

the other equations for S  and N  in Equation (7) or (7a).  

10 There are a few exceptions because of changes in the census.  First is the percent of units in structures 

containing four or fewer units.  Because of coding changes between census years, the twice-lagged value 

and once-lagged difference are not available.  Instead we use the twice-lagged level and once-lagged 

difference of the percent of housing units in structures with nine or less housing units.  Second, because of 

the changes in definition of race and ethnicity between the 1990 and 2000 censuses, the percent white 

variable might not be precisely comparable across these decades.  Also, while in 1990 and 2000 the data on 

education are reported for person’s aged 25 or older, in 1980 they are reported for those 18 and over, so 

again, the lagged variable is not exactly identical in definition to the endogenous variables. 

11 Other 1980 measures include: median household income; per-capita income; median year built of 

housing units; median rent; median housing value; percents of housing units vacant, with complete 

plumbing, with complete kitchens, with gas or electric heat, not sharing structure with other units, sharing 

structure with 9 or less units, boarded up, with a telephone, with at least 2 bathrooms, with no air 

conditioner, and with central air conditioner; percents of population that is white, aged 18 or less, aged 65 

or more, and with income < 1.5 times poverty line; percent of households that are renters; percent of 

household with no vehicles; percent of adult population with at least bachelor’s degree; percent of 

population aged at least 25 with no HS degree; average commute travel time (in minutes); number of 

bedrooms per housing unit; number of rooms per housing unit; housing units per mile2; population per 

mile2; population per housing unit; population per room; percent of workers employed in “industrial” 

sectors; percent of vacant residences that are boarded up; percent of occupied housing units with 



telephones; ln(median housing value); ln(median contract rent); ln(median household income); ln(per-

capita income); population density2; and MSA population. 

12 Ideally, the possibility of time-varying βS and βN could also be explored, but including additional 

endogenous regressors (St-1 and Nt-1) in the price equation would leave the system underidentified without 

resorting to additional arbitrary exclusion restrictions.  The results thus depend on the assumption that 

significant implicit price changes do not occur if that attribute is correlated with remediation. 

13 The instruments used to identify the system in Equation (7) work well, as expected.  Staiger and Stock 

(1997) suggest first-stage F-statistics as indicators of instrument strength.  The first-stage regressions in the 

3SLS estimation for Models 3 and 4 all yield F-statistics greater than 20 for 38 out of 39 equations, with 

most F-statistics well exceeding 100.  Another concern is that the exclusion restrictions overidentify the 

system.  In Models 3 and 4, the price equation has 19 endogenous variables and 20 exclusion restrictions.  

The Sargan test statistics (distributed χ2 with 1 degree of freedom) for the P  equations, estimating in 

2SLS, in Models 3 and 4 range between 57 and 67.  These large statistics give some concern that the 

system is overidentified.  Consequently, using this instrument set cannot rule out the endogeneity of E  in 

the price equation.  It does, however, appear to be exogenous in many of the other equations in the system.  

Among a restricted sample of neighborhoods with or near NPL sites in 1990, the exogeneity of E  cannot 

be rejected in the price equation for Model 3’ based on the C-statistic in 2SLS.  Overall, the diagnostic 

statistics for the system estimations in Models 3 – 4 point to strong instruments and only moderate concerns 

about overidentification. 

14 The system diagnostics in the alternative models (Models 3a – 4EGa) are similar to the diagnostics for 

the standard models (Models 3 – 4EG).  The instruments all appear quite strong based on first-stage F-

statistics.  The overidentification tests, based on the Sargan statistic calculated from 2SLS estimation, are 

the same for the price equation – where models 3 and 3a are identical – and are zero for the S and N 

equations because they are just-identified.  As in Model 3’, however, restricting the sample size to only 

block groups with or near NPL sites in 1990 in Model 3a’ appears to solve the overidentification problem.  

With the Sargan statistic for the price equation in 3a’ below 0.50, the small C-statistic is also consistent 

with the exogeneity of E  in the price equation of model 3a’.   



15 Incidentally, this result likely does not owe to the choice of comparison group.  When the sample is 

restricted to only the 10,645 neighborhoods with or near NPL sites, the direct price effect of Model 4EG is 

-0.9836 (z-statistic = -3.72).  Clean-ups adversely affect property values even more strongly among the 

subsample.  This result suggests a possible explanation for the negative price effect:  the hazardous waste 

site is a disamenity that harms property values, inclusion in Superfund improves property values, and de-

listing it removes the government support without removing the disamenity associated with the site.  This 

may be because the market valued the eyesore more than the health risk, and the EPA only remediated the 

latter despite high hopes about the former.  The negative price effect of de-listing thus reflects, perhaps, a 

sense of abandonment of the site or neighborhood and only the stigma remains.  Perhaps with a longer 

time-lag after clean-up the negative price effects will dissipate and even become positive.  Among these 

block-groups enjoying a de-listing, the median years passed since deletion is only 2.76. 

16 Large and positive indirect effects are observed for Model 4EGa.  The magnitude of the indirect effects 

in Model 4EGa is comparable to its corresponding indirect effects in Model 4EG.  The total price effect in 

Model 4EGa is estimated to be 4.5%, which is close to the 4.0% estimate from Model 3a’ and roughly 

similar to the 7.8% effect from Model 4EG.  Again, as before, the alternative model does not tend to yield 

positive and significant direct price effects.  The full effects in Models 3, 3’, 4G, and 4EG are roughly 

consistent with the corresponding estimates in the alternative model.  The most glaring difference arises in 

comparing Models 4 and 4a.  Both exhibit small, positive, and insignificant direct price effects, but the 

indirect effect is -9.8% in Model 4 and is 16.0% in Model 4a.  Including P  in the non-price equations, 

without controlling for Et-1 or G, greatly affects the results.  Overall, similar conclusions hold in the 

alternative model: positive direct price effects are not observed; and significant indirect price effects can be 

observed, but they are very sensitive to model specification. 

17 These effects are a bit stronger in Model 4EGa.  Yet under the assumption that clean-ups are exogenous 

in Model 3 or Model 3’, clean-ups appear largely orthogonal to demographic trends.  



Table 3: OLS models of P  equation 
Model 1 1’ 2 2G 2EG 

Vectors included 
S , N , M , 

E  
S , N , M , 

E  
S , N , M , 

Ê  

S , N , M , 

Ê , G  

S , N , M , 

Ê , E , G  
N: 198625 10863 196096 194992 194992 

First-differenced variables: β β β β β 
Year built 0.0013 *** 0.0014 *** 0.0013 *** 0.0013 *** 0.0013 *** 
Rooms 0.1275 *** 0.1250 *** 0.1272 *** 0.1066 *** 0.1066 *** 
Utility heat (%) 0.1927 *** 0.0956 ** 0.1997 *** 0.2112 *** 0.2110 *** 
Housing densitya -0.0026  -0.0135  -0.0025  -0.0004  -0.0004  
Small structures (%) -0.1525 *** -0.0171  -0.1494 *** -0.1522 *** -0.1522 *** 
Plumbing (%) 0.2738 *** 0.1389  0.2640 *** 0.2039 *** 0.2039 *** 
Bedrooms -0.0729 *** -0.0647 ** -0.0746 *** -0.0472 *** -0.0472 *** 
Solo unit (%) -0.0998 *** -0.0420  -0.1037 *** -0.0743 *** -0.0744 *** 
Income 0.1739 *** 0.1320 *** 0.1755 *** 0.1615 *** 0.1615 *** 
White (%) 0.1855 *** 0.1058 *** 0.1864 *** 0.1605 *** 0.1605 *** 
College (%) 0.0915 *** 0.1614 ** 0.0938 *** 0.1349 *** 0.1351 *** 
Poor (%) -0.1210 *** -0.1005 * -0.1255 *** -0.0973 *** -0.0972 *** 
Blue collar (%) 0.0833 *** 0.2120 *** 0.0809 *** 0.0400 *** 0.0400 *** 
Renter (%) 0.0608 *** 0.0782  0.0609 *** 0.0527 *** 0.0525 *** 
Children (%) -0.0224  -0.1625 ** -0.0166  -0.0016  -0.0016  
Commute -0.0003 * -0.0015 ** -0.0003 ** -0.0004 *** -0.0004 ** 
No vehicle (%) -0.0646 *** 0.1696 ** -0.0639 *** -0.0784 *** -0.0782 *** 
Population densitya 0.0001  0.0094 * 0.0001  -0.0010  -0.0010  
Household size 0.0002  -0.0039 ** 0.0002  0.0002  0.0002  
M  Yes  Yes  Yes  Yes  Yes  
NPL in 1990, own/adjacent         0.0087  
Clean-up, own/adjacent (βE) 0.0368 *** 0.0424 *** 0.0065  -0.0057  0.0580  
Natural amenity scale       -0.0113 *** -0.0113 *** 
MSA & distance interactions       Yes  Yes  
  constant -0.0001  0.0015  -0.0005  0.0084  0.0084  

R2 0.1911 0.2322 0.1939 0.2234 0.2252 
 



Table 4: Results for P  equation and selected results for other equations 
Model 3 3’ 4 4G 4EG 

Vectors included: 
S , N , M ,

E  
S , N , M ,

E  
S , N , M ,

Ê  

S , N , M ,

Ê , G  

S , N , M ,

Ê , 1−tE , G  
N: 197050 10779 195293 194992 194992 

First-differenced variables: β β β β β 
Year built 0.0059 *** 0.0078 *** 0.0045 *** 0.0048 *** 0.0044 *** 
Rooms 0.0235  1.5874 *** 0.0046  -0.0695 ** -0.0730 ** 
Utility heat (%) -0.4397 *** 0.2729  -0.4400 *** -1.0336 *** -1.0198 *** 
Housing densitya -0.0138  2.3110 *** -0.0021  -0.0437 ** -0.0414 ** 
Small structures (%) 1.3312 *** 4.9288 *** 1.8352 *** 3.3732  3.3777 *** 
Plumbing (%) 10.0976 *** -32.0523 *** 9.0514 *** -1.0000  0.1434  
Bedrooms -0.9888 *** -1.1482 * -0.8858 *** 0.1641 *** 0.1328  
Solo unit (%) -4.5379 *** 0.7530  -4.7393 *** -6.9482 ** -6.9409 *** 
Income 0.9667 *** -4.2801 *** 1.1223 *** 0.2351 *** 0.2776 *** 
White (%) -0.8743 *** -3.1763 *** -0.9003 *** -0.6964  -0.6813 *** 
College (%) -0.3866 ** 1.4409  -0.2206  -0.0375 *** -0.1230  
Poor (%) 1.5293 *** -13.4137 *** 1.4343 *** -1.6301  -1.3677 *** 
Blue collar (%) 1.1617 *** 0.6513  0.8935 *** 0.2590  0.4109 ** 
Renter (%) 1.1874 *** 5.1639 ** 1.2317 *** 0.1673 * 0.2262  
Children (%) -3.7740 *** -4.7040  -3.6140 *** -0.8175 *** -0.8780 ** 
Commute 0.0191 *** 0.0342  0.0212 *** 0.0518 *** 0.0513 *** 
No vehicle (%) -3.1385 *** -1.7474  -2.7322 *** -2.4506 *** -2.6370 *** 
Population densitya 0.0383 *** -0.5593 ** 0.0331 *** 0.0942 *** 0.0951 *** 
Household size 0.0896 *** 0.0127  0.0777 *** -0.0569 *** -0.0602 *** 
NPL in 1990, own/adjacent         0.0088  
Clean-up, own/adjacent (βE) 0.0318 * -0.0426  0.0652  -0.0473  -0.0954  
  constant 0.0114 *** 0.0076  0.0101 *** 0.0058  0.0050  
      

Dependent variable: Partial effect of “Clean-up in or adjacent” by equation, i.e., γE or δE 
Year built 2.5461 ** -1.0998  17.6817 *** 6.9839 *** 0.9461  
Rooms 0.0393  0.0273  0.1494  0.1149 *** 0.2146 *** 
Utility heat (%) 0.0288 *** -0.0132  0.0962 *** 0.0449 *** 0.0933 *** 
Housing density 7.7698  4.0814  -264.906  -155.829 *** -64.843  
Small structures (%) 0.0067 ** 0.0119  0.0467 *** -0.0016  0.0150  
Plumbing (%) -0.0013  -0.0018  -0.0133 *** -0.0121 *** -0.0011  
Bedrooms -0.0253  0.0248  -0.1626 * -0.0300  -0.1013 *** 
Solo unit (%) -0.0075  0.0006  -0.0306  0.0005  0.0004  
Income -0.0155  0.0114  -0.1115 ** -0.0695 *** -0.0241  
White (%) -0.0245  -0.0072  -0.4895 *** -0.0236  -0.0465 * 
College (%) -0.0262  0.0069  -2.0040 *** 0.0158  -0.0103  
Poor (%) -0.0004  -0.0041  0.0110  -0.0262 *** -0.0005  
Blue collar (%) -0.0083 * 0.0070  -0.0448 *** -0.0174 * -0.0144  
Renter (%) 0.0085  0.0049  0.0108  0.0149  0.0338 * 
Children (%) -0.0048  -0.0011  0.0374  0.0081  -0.0071  
Commute -0.4155  0.1577  -3.1187 *** -0.7774  -1.9675 ** 
No vehicle (%) 0.0017  -0.0028  0.0486 *** 0.0118  -0.0136  
Population density 2.7180  -48.4256  134.3119  234.5556  92.8298  
Household size 0.0295  -0.0197  -0.6007  -0.1538  -0.5178  
      
a measured as 1000s/mi2 

***, **, * for p<0.01, <0.05, <0.10, respectively 



Table 4a: Results for P  equation and selected results for other equations, alternative 
model 

Model 3a 3a’ 4a 4Ga 4EGa 

Vectors included: 
S , N , M ,

E  
S , N , M ,

E  
S , N , M ,

Ê  

S , N , M ,

Ê , G  

S , N , M ,

Ê , 1−tE , G  
N: 197050 10779 196096 194992 194992 

First-differenced variables: β β β β β 
Year built 0.0043 *** 0.0058 * 0.0034 *** 0.0052 *** 0.0049 *** 
Rooms 0.0830  0.9428 ** 0.0630  0.2086 *** 0.2062 *** 
Utility heat (%) -0.3286 *** -0.3296  -0.3351 *** -0.8062 *** -0.7859 *** 
Housing densitya 0.0130  1.4698  0.0219  -0.0989 *** -0.0957 *** 
Small structures (%) 2.0775 *** 2.4964  1.8635 *** 3.3629 *** 3.3891 *** 
Plumbing (%) 3.4392  -18.3533 * 4.0472  -0.7552  0.4104  
Bedrooms -0.7231 *** -0.7002  -0.7151 *** -0.4023 *** -0.4428 *** 
Solo unit (%) -3.9948 *** -1.7865  -3.9726 *** -5.3543 *** -5.3370 *** 
Income 0.9474 *** -1.9055  0.9763 *** -0.0561  -0.0046  
White (%) -0.9552 *** -1.5075  -0.9042 *** -0.8585 *** -0.8470 *** 
College (%) -0.2788  -1.1039  -0.3456 * 0.0429  -0.0329  
Poor (%) -0.2505  -7.6720 * -0.1822  -2.5823 *** -2.3059 *** 
Blue collar (%) 0.4034  0.6094  0.4422  0.7622 *** 0.9162 *** 
Renter (%) 0.5873 ** 0.3469  0.5085 * 0.7643 *** 0.8538 *** 
Children (%) -1.5207 *** 0.1076  -1.4861 *** -1.1289 *** -1.2416 *** 
Commute 0.0067  -0.0102  0.0061  0.0172 *** 0.0160 *** 
No vehicle (%) -1.5077 *** -0.1889  -1.4797 *** -2.5275 *** -2.7198 *** 
Population densitya 0.0096  -0.3268  0.0125  0.1068 *** 0.1074 *** 
Household size 0.0288  0.0093  0.0306  -0.0638 *** -0.0644 *** 
NPL in 1990, own/adjacent         0.0281 *** 
Clean-up, own/adjacent (βE) 0.0270  -0.0159  0.0191  -0.0181  -0.2073 *** 
  constant -0.0055 ** 0.0089  0.0054 ** -0.0044  -0.0048  
      

Dependent variable: Partial effect of “Clean-up in or adjacent” by equation, i.e., γE or δE 
Year built 0.1261  2.0354     10.5347 *** 6.0890 *** 4.3927 * 
Rooms 1.3197 ** 0.0169  3.4809 * 0.1063 *** 0.2507 *** 
Utility heat (%) 0.0353 *** 0.0400     0.0963 *** 0.0448 *** 0.0940 *** 
Housing density -336.897     10.0214  422.8006      -146.708 *** -100.9781  
Small structures (%) -0.0114  0.0069   -0.0037  -0.0024  0.0255 *** 
Plumbing (%) -0.0073   -0.0010  -0.0045  -0.0110 *** 0.0036  
Bedrooms 0.0090  -0.0233   -0.0374    -0.0232  -0.1300 *** 
Solo unit (%) 0.0030  -0.0068  -0.0056   0.0027  -0.0194 * 
Income -0.0236   0.0927   -0.0728  -0.0643 *** -0.0076  
White (%) -0.0132  0.0002   -0.2422  *** -0.0153  -0.0638 ** 
College (%) -0.6789   -0.0114  -2.2250  0.0172 * -0.0160  
Poor (%) -0.0462 ** -0.0021  -0.1754  ** -0.0213 *** -0.0029  
Blue collar (%) 0.0309   -0.3348  0.1945  * -0.0138  0.0103  
Renter (%) -0.0078  0.0327  -0.0072   0.0135  0.0465 ** 
Children (%) 0.0563  0.0200   0.7671  * 0.0083  -0.0158  
Commute 0.4030  3.1192   -2.8637  -0.7646  -1.8354 ** 
No vehicle (%) -0.0544 *** 0.8093  0.1432  *** 0.0093  -0.0316 ** 
Population density 2507.145      -48.7680     5866.63      188.3875  677.8631 * 
Household size -0.0396     1.3606  -0.9646     -0.1147  -0.3077  
      
a measured as 1000s/mi2 

***, **, * for p<0.01, <0.05, <0.10, respectively 

 44 



Table 5: Summary of direct and full price effects of clean-up actions 

Model Vectors included E  
Direct effect 

∂P/∂E 
Indirect 

effect 
Full effect 

dP/dE 
3 S , N , M , E  clean-up in own or adjacent block group 0.0318 -0.0165 0.0153 

3’ S , N , M , E  clean-up in own or adjacent block group -0.0426 0.0802 0.0376## 

4 S , N , M , Ê  
instrumented clean-up in own or 
adjacent block group 0.0652 -0.0976 -0.0324 

4G S , N , M , Ê , G  
instrumented clean-up in own or 
adjacent block group -0.0473 0.0851 0.0378 

4EG S , N , M , Ê , 1−tE , G  
instrumented clean-up in own or 
adjacent block group -0.0954 0.1734 0.0780## 

Alternative model 
3a S , N , M , E  clean-up in own or adjacent block group 0.0270 0.0284 0.0554 

3a’ S , N , M , E  clean-up in own or adjacent block group -0.0159 0.0556 0.0397 

4a S , N , M , Ê  
instrumented clean-up in own or 
adjacent block group 0.0191 0.1600 0.1791## 

4Ga S , N , M , Ê , G  
instrumented clean-up in own or 
adjacent block group -0.0181 0.0348 0.0167 

4EGa S , N , M , Ê , 1−tE , G  
instrumented clean-up in own or 
adjacent block group -0.2073** 0.2523 0.0450## 

** indicates significance at the 5% level.  ## indicates full effect is outside of the direct effect’s 95% confidence interval. 
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