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Abstract 

If your neighborhood adopts greener, energy-efficient residential heating, ventilating, and air 

conditioning (HVAC) systems, will your pro-environmental behavior become contagious, spilling over into 

adjacent neighborhoods’ HVAC adoptions?  Objective data on over 300000 detailed single-family house 

sale records in the Greater Chicago area from 1992 to 2004 are aggregated to census block group 

neighborhoods to answer that question.  Spatial lag regression models show that spatial dependence or 

“contagion” exists for neighborhood adoption of energy-efficient HVACs. Specifically, if 625 of 726 homes 

in a demonstration neighborhood upgraded to green HVAC, our data predict that at least 98 upgrades would 

occur in adjacent neighborhoods, more than doubling their baseline adoption rates.  This spatial multiplier 

substantially magnifies the effects of factors affecting adoption rates.  These results have important policy 

implications, especially in the context of new standards for neighborhood development, such as LEED_ND 

or Low Impact Development HUD standards.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/46958012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Introduction 1 

Due to the growth in energy consumption and the pressures to reduce carbon dioxide emissions, there 2 

has been an increased demand for energy efficiency. According to Chandler and Brown (2009), fully 3 

deploying current cost-effective energy-efficient technologies could reduce residential electricity 4 

consumption 12% by 2020. Moreover, according to the 2009 Building Energy Data Book, heating, 5 

ventilating, and air conditioning (HVAC) together consume nearly one-third of building energy end-use, 6 

which is the largest end-use among all residential energy consumption activities (D&R International, 2009). 7 

Thus, if the goal is to reduce the residential energy consumption by improving energy efficiency, the 8 

efficiency of HVACs should be a high priority.  9 

While recent research reveals the benefits of adopting energy-efficient HVACs, research on the 10 

adoption behavior is limited. Evidence indicates that adopting energy efficient technologies benefits 11 

homeowners, but homeowners frequently forgo cost-effective technologies due to other reasons (Krause, 12 

2009; Sovacool, 2009; Stern, 2011). Designing policies to enhance the adoption of energy-efficient HVACs 13 

requires improving our understanding of adoption behavior.   14 

This study assesses adoption patterns for energy-efficient technologies at the neighborhood level. 15 

Considering adoption rates at a neighborhood level makes sense when determining the impact of land-use 16 

policies or other geographically targeted policies. Several environmentally minded programs focus on the 17 

neighborhood level. The U.S. Green Building Council developed the Leadership in Energy and 18 

Environmental Design (LEED) certification system for individual buildings and has recently expended the 19 

rating system to include “LEED for Neighborhood Development” (U.S. Green Building Council, 2010). 20 

Another example is low-impact development (LID) projects. The U.S. Department of Housing and Urban 21 

Development (HUD) (2003) supports LID projects to mitigate development activities’ environmental 22 

impacts, especially on water. Addressing urban development means LID often focuses on the neighborhood 23 

level. Moreover, traditional zoning regulations (and large-scale planned developments) target rules to 24 

specific geographic areas or neighborhoods.   25 

To determine the factors that affect the adoption of energy-efficient HVACs, this study seeks to 26 

explain energy-efficient HVAC adoption behaviors with adoption costs, estimated savings, and spatial 27 

contagion. This study is especially interested in contagion (i.e., spatial effects) of energy-efficient 28 
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technology adoption. Learning from neighbors’ experiences, suggestions from the same real estate agent, 1 

competing for resale value, or simply mimicking the behavior of neighbors can result in the “spillover” of 2 

adoptions and thus spatially cluster the adoptions. Diffusion of innovation theory explains how one’s 3 

technology adoption behavior affects other individuals or groups through either learning from success, peer 4 

effects, or copycatting (Rogers, 1995). In this sense, technological change and social change are 5 

interrelated, and the social structures involved in technological change are important (Schot & Geels, 6 

2008). Innovation, in this sense, is both an individual act and a collective act (Hekkert, Suurs, Negro, 7 

Kuhlmann, & Smits, 2007). 8 

This study delves deeper into the mechanisms behind the adoption behavior of energy-efficient 9 

HVACs by investigating the spatial interdependence of adoption and interactions across neighborhoods. 10 

This is a novel contribution to the literature on household adoption of energy-efficient technologies. Most 11 

previous studies are based on survey data with stated preferences, attitudes, or claims of adoption. Rather 12 

than use survey data that may be prone to biases such as social desirability bias, this study uses data on 13 

actual technology adoptions listed in home sales records in the greater Chicago area from 1992 to 2004 to 14 

explain neighborhood adoption behavior.  15 

Literature review 16 

Most studies about HVAC or residential energy efficiency concentrate on either barriers to 17 

technology diffusion or the modification of regulations (Jaber, Mamlook, & Awad, 2005; Lawrence, 18 

Mullen, Noonan, & Enck, 2005; Menanteau & Lefebvre, 2000; Mills & Schleich, 2010). Several studies 19 

directly analyze the adoption behavior of energy-efficient HVACs via case studies or through surveys. 20 

Mlecnik (2010), based on a case study of space heating in Belgium, concludes that education, 21 

communication via actor networks, economic incentives, and spatial spillover from neighbors may affect 22 

the adoption of energy-efficiency improvements. Niemeyer (2010) and Nair, Gustavsson, and Mahapatra 23 

(2010) use surveys to determine the factors affecting adoption behavior in Nebraska and Sweden, 24 

respectively. The results of these studies are similar: they indicate that both personal factors (such as 25 

knowledge and education), economic constraints, obstacles to making changes, demographic variables, 26 

attitudinal and belief constraints, and contextual factors (such as the age of the house, thermal discomfort, 27 

and perceived energy cost) affect homeowners’ adoption behavior. We improve on this past research by 28 
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relying on house sales records, which provides a more comprehensive sample and avoids the self –1 

presentation biases inherent with survey data.  2 

This study focuses on groups’ adoption of energy-efficient HVAC technologies. Several previous 3 

studies examine the determinants of technology adoption and diffusion, in particular focusing on peer 4 

effects. In particular, previous research focuses on the importance of family and social networks on 5 

technology adoption (Baerenklau, 2005; Bandiera & Rasul, 2006; Goolsbee & Klenow, 2002; 6 

Gowrisankaran & Stavins, 2004; Oster & Thornton, 2009). Much of this research tests the proposition that 7 

social networks enhance learning, and that technology diffuses through learning by doing (Arrow, 1962). 8 

Under this model, productivity can increase through learning and experience, and can be enhanced by 9 

social institutions, such as education and research (Foster & Rosenzweig, 1995). Several articles also model 10 

a neighborhood diffusion model. Baerenklau (2005) identifies the drivers of farms’ adoption of agricultural 11 

pollution protection practices in the U.S., including testing for neighborhood effects by grouping farms into 12 

geographic groups. Kok, McGraw, and Quigley (2011) recently estimate the determinants of adoption 13 

behavior by geographic groups in modeling the diffusion of energy-efficiency certified buildings at the 14 

metropolitan-area level.  15 

Based on the determinants identified in these studies, we hypothesize that three sets of variables 16 

affect energy-efficient HVAC adoption behavior: cost to adopt, estimated cost savings, and spatial 17 

contagion. For example, house vintage has an effect on costs to adopt, since the age or type of a house will 18 

affect the feasibility of adoption (Nair et al., 2010). House size will influence the estimated savings, since 19 

houses with larger square footage benefit more by adopting energy-efficient HVACs (Niemeyer, 2010). And 20 

peer-group influences (Baerenklau, 2005) and diffusion (Kok et al., 2011) suggest the possibility of spatial 21 

contagion. This study emphasizes the effect of contagion because this impact has not been addressed by 22 

previous literature on household HVAC technology and because these spatial spillovers are often absent in 23 

theoretical models of adoption. 24 

Spatial econometric approaches can identify spatial contagion effects and are especially well-suited in 25 

the presence of social norms, neighborhood effects, or copycatting. Ioannides and Zabel (2003) offer 26 

considerable evidence that homeowners’ decisions about maintaining their houses are greatly 27 

interdependent and that neighbor effects like “keeping up with the Joneses” are powerful phenomenon. 28 
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However, spatial econometric models have not been used to explain the adoption behaviors of households 1 

and neighborhoods for energy-efficiency technologies. Anselin (2000, 2001, 2003) develops several 2 

econometric models to determine spatial dependence. Spatial regression models with aggregated data is 3 

now common in urban and environmental related areas (e.g., Fragkias & Seto, 2007; Kühn, Bierman, 4 

Durka, & Klotz, 2006; Longley & Tobón, 2004).   5 

 6 

Methods 7 

First, consider a linear adoption model at the household level: 8 

       𝑦𝑖𝑔 = 𝑿𝑖𝑔′ 𝛃 + ε𝑖𝑔                    (1) 9 

where y denotes whether the household has adopted the technology, X is a vector of explanatory variables, 10 

ε is a stochastic error term, and β is a vector of corresponding parameters. Household i (where i = 1, …, Ig) 11 

is observed in block group g (where g = 1, …, G). With Ig households in block group g, the aggregated 12 

ordinary least squares (OLS) model becomes: 13 

𝑦�𝑔 = 𝑿�𝑔′ 𝛃 + ε�𝑔 

where each variable is calculated as a group mean and is represented with a bar, such as 14 

𝑦�𝑔 ≡ �∑ 𝑦𝑖𝑔
𝐼𝑔
𝑖=1 � 𝐼𝑔� .  In this model 𝑦�𝑔 indicates the adoption rate in block-group g, and it is explained by 15 

group-level averages of X.   16 

An assumption in this basic model is that the adoption rates of neighborhood g are independent of 17 

neighborhood h’s (for any g, h in G where g≠h). Similarly, the error term (ε�𝑔) is assumed to be independent 18 

across neighborhoods. OLS is an inconsistent estimator when 𝑦�ℎ affects 𝑦�𝑔 and is inefficient when ε�𝑔 19 

and ε�ℎ are correlated. Yet nearby neighborhoods might share some unobservable characteristics or a 20 

neighborhood’s adoption rate might affect its neighbor’s. A model that is robust to these spatial dependence 21 

issues is needed.  22 

There are two basic ways to introduce spatial dependence into standard linear regression model: a 23 

spatial lag model or a spatial error model. The spatial lag model directly controls for the influence of the 24 

values of the dependent variable in nearby observations – where “nearby” is defined by the analyst’s choice 25 

of a spatial weights matrix. The spatial error model, in contrast, separates the residual caused by spatial 26 
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dependence from the white noise error term, essentially allowing for the neighboring observations to share 1 

unobservables or unexplained portions of their adoption rates. This model is appropriate when the spatial 2 

dependence is more a statistical “nuisance” rather than a spatial effect of direct interest (Anselin, 2001).  3 

Since the main purpose of this study is to determine the spatial effects of HVAC adoption behavior at 4 

the neighborhood level, it is more appropriate to adopt spatial lag model. However, the selection of either 5 

the spatial lag or the spatial error model can be evaluated by statistical tests, such as the Lagrange 6 

Multiplier (LM) test (Anselin, 2000). The GeoDa software is used to estimate both the test statistics and the 7 

spatial regressions. 8 

The classical spatial lag model can be written as: 9 

𝑦� = ρ𝑾𝑦� + 𝑿� ′𝛃 + ε� 

(with subscripts dropped for parsimony here). The spatial autoregressive coefficient ρ is a parameter 10 

representing the strength of the spatial lag, W is a (G×G) spatial weights matrix, and all the other terms are 11 

as defined above. As mentioned previously, the spatial lag model can be viewed as an OLS regression 12 

model plus a spatial correction term, and this correction term will reflect the strength of spatial effects on 13 

the adoption behavior of energy-efficient HVACs. This analysis defines W based on first-order queen 14 

contiguity, meaning that each block group adjacent neighbors receive a positive weight (row-standardized) 15 

and can directly affect it while all others have a zero weight. Of course, each block group can still be 16 

affected by more distant block groups indirectly.  (Other weights matrices were examined but the results 17 

change negligibly and this W offers a simpler interpretation.) 18 

The energy-efficient HVAC adoption rate in a block group results from decisions by property 19 

developers and homeowners. The adoption rate due to developers can be isolated by looking at the adoption 20 

rate of new construction only, since developers usually choose the HVAC systems used in new properties. 21 

Looking at this sample has the added advantage of eliminating many unobservable determinants of 22 

adoption that vary across older houses but are relatively uniform or unimportant for new homes (e.g., 23 

wear-and-tear on HVAC).  24 

Even with detailed house sale records, some variables that belong in equation (1) are unavailable in 25 

this dataset. One way to address this, while also isolating owner-occupants’ adoption decisions, involves 26 

looking at the adoption rate only among houses that appear multiple times in the dataset. Examining the 27 
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differences (in y and X) controls for potential omitted variable bias that can result when static elements of X 1 

are omitted because they are unobserved. Thus, we estimate the model for the new construction sample and 2 

for the repeat-observation sample to mitigate omitted variable concerns and to isolate and better understand 3 

the adoption behavior by developers and homeowners, respectively.  4 

The aggregation process for the repeat-observation sample is somewhat different than that of other 5 

samples. It starts with the linear model in equation (1), modifies it to incorporate a time index t, 6 

decomposes the regressors into time-varying (X) and time-invariant (Z) vectors, and allows for parameters 7 

to vary over time: 8 

                 𝑦𝑖𝑔𝑖 = 𝑿𝑖𝑔𝑖′ 𝛃𝑖 + 𝒁𝑖𝑔′ 𝛄𝑖 + ε𝑖𝑔𝑖      9 

The new Z vector includes all of the time-invariant explanatory variables (e.g., location).  For 10 

observations observed multiple times, in period t and again in period s, we can assess the change in y 11 

between sales as follows: 12 

 𝑦𝑖𝑔𝑖 − 𝑦𝑖𝑔𝑖 = 𝑿𝑖𝑔𝑖′ 𝛃𝑖 − 𝑿𝑖𝑔𝑖′ 𝛃𝑖 + 𝑿𝑖𝑔𝑖′ 𝛃𝑖 − 𝑿𝑖𝑔𝑖′ 𝛃𝑖 + 𝒁𝑖𝑔′ 𝛄𝑖 − 𝒁𝑖𝑔′ 𝛄𝑖 + ∆ε𝑖𝑔      13 

 ∆𝑦𝑖𝑔 = ∆𝑿𝑖𝑔′ 𝛃𝑖 + 𝑿𝑖𝑔𝑖′ ∆𝛃 + 𝒁𝑖𝑔′ ∆𝛄 + ∆ε𝑖𝑔           (5) 14 

This model in equation (5) serves as the basis for the repeat-observations sample.  Zoned HVAC adoption 15 

between sales is explained by trends in X and trends in the effects of the determinants (X and Z). 16 

Time-invariant factors that have constant parameters will drop out in the differencing model, effectively 17 

controlling for those influences – observed or otherwise. Aggregating the data to the block-group level as 18 

above, and including the spatial lag model yields: 19 

          ∆𝑦����𝑔 = ρ𝑾∆𝑦����𝑔 + ∆𝑿����𝑔
′𝛃𝑖 + 𝑿�𝑔𝑖

′∆𝛃 + 𝒁�𝑔
′∆𝛄 + ∆ε���𝑔   (6)  20 

where ∆𝑦����𝑔 refers to the rate of new installations in block group g in repeat-observation sample (i.e., 21 

∆𝑦����𝑔 = �∑ ∆𝑦𝑖𝑔
𝐼𝑔∗

𝑖=1 � 𝐼𝑔∗�  is the count of new adoptions, between sales, divided by 𝐼𝑔∗, the number of 22 

repeat-observations within block group g), ∆X����g represents the average change in X in block group g, 𝑿�𝑔 23 

represents the average of X in block group g at the time of the initial sale, and 𝒁�𝑔 represents the average 24 

of Z in block group g. Parameters ρ, βt, ∆β, and ∆γ remain to be estimated. (To be clear, ∆𝑦����𝑔 and ∆𝑿����𝑔 are 25 

the block-group averages of differences, not the differences in block-group averages between sales.) 26 

Equation (6) models the trends in neighborhood adoption rates and draws flexibly on a micro-level 27 
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adoption model. It allows for some parameters’ influence to vary over time, and also for trends in important 1 

factors to influence adoption choices.  2 

 According to the discussion in previous section and limited by data availability, the factors (X) that 3 

affect the adoption rate of zoned HVACs can be divided into four categories: cost to adopt; estimated 4 

savings; spatial contagion; and other control variables that influence HVAC demand. In order to mitigate 5 

the possible bias from unobservables, additional factors that might affect the demand of energy-efficiency 6 

are controlled for, such as neighborhood characteristics and time trends.  7 

Data 8 

This study employs a dataset on home sales in over 160 municipalities in the greater Chicago area, 9 

containing over 340,000 sale records (of roughly 260,000 unique houses) from January 1, 1992 to June 30, 10 

2004. The property data are originally from the Multiple Listing Service (MLS) of Northern Illinois, an 11 

information clearinghouse for most residential property sales in that area. All the records are for 12 

single-family houses from counties surrounding the city of Chicago (i.e., Cook, DuPage, Kane, Lake, 13 

McHenry and Will counties). (The City of Chicago is not included in order to keep the population of 14 

suburban areas with single-family homes more comparable.) The estimated effective property tax rate, 15 

detailed school quality information, and local impact fees, are derived from multiple sources. The 16 

demographic information is from the 2000 Census. Unlike the sales record data which is at the household 17 

level, these demographic data are only available at the block-group level using the GeoLytics database. 18 

In the dataset, the majority of heating systems is forced air with natural gas. More than 88% 19 

households use forced air heating systems, and 90% of households use natural gas as the energy source for 20 

heating. The majority of A/C systems is central air, which is used in over 80% of homes. This study uses 21 

zoned heating and air conditioning systems to represent more energy-efficient HVACs. Actual energy 22 

savings of zoned HVAC systems depends on the size of the house and many other factors. Ardehali and 23 

Smith (1996), however, note a 50-53% savings from zoned HVAC systems. The adoption rate of zoned 24 

HVACs is relatively low in the dataset. Only 2.2 percent and 3.1 percent of houses have zoned heating 25 

systems and zoned A/C systems installed, respectively. The frequency of installation is about six times 26 

greater for new construction. The adoption rates by block groups are mapped in Figure 1. Both figures are 27 
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classified by natural breaks, and darker shades indicate higher adoption rates. Spatial clustering in the 1 

adoption rates appears in both figures.  2 

The variables used in the analysis are defined in Table 1. Table 2 shows their descriptive statistics. 3 

They fall into several categories. 4 

1. Cost to adopt: The house vintage, 30-year mortgage interest rate, mean effective property tax rate, 5 

median household income, and median house value proxy for the cost of upgrading the HVAC system. 6 

This study hypothesizes that block groups with newer houses, where it is easier to adopt new HVAC 7 

technology, will have higher adoption rates. Moreover, homeowners may be more willing to invest to 8 

keep newer vintages updated. The prevailing mortgage interest rate, as a proxy for the cost of capital 9 

investments, should affect the cost to adopt, since the interest rate affects the high up-front costs of 10 

renovations. Previous research shows that higher tax rates will lower the rate of return on property 11 

investment (Tse & Webb, 1999) and thus lower the adoption rate. Block groups with higher median 12 

income and house value should exhibit higher adoption rates, since greater wealth and access to capital 13 

makes adoption more affordable. 14 

2. Estimated savings: This study uses the average lot size, average square footage, and share of college 15 

graduates in a block group to estimate the perceived savings. Block groups with more large houses 16 

should have higher adoption rates, since the estimated energy savings for large houses are usually 17 

greater. The education variable, percent of college graduates, might affect adoption if it proxies for the 18 

ability of homeowners to understand information related to the energy savings from HVAC adoption.  19 

3. Contagion: The spatial dependence in the spatial lag model will be used to directly measure the 20 

contagion effect.  21 

4. Control variables: Block-group means for neighborhood amenities, distance to central business 22 

district (CBD), vacancy rate, population density, percent of households that are renters, and county 23 

dummies, serve as control variables in these models. We have no prior expectation of the relationships 24 

of these variables to the adoption rate. We control for them because they may be correlated with the 25 

demand for HVACs. Some variables reflect the quality of a neighborhood and thus might influence the 26 

adoption rate of energy-efficient HVACs insofar as the goods are complements or substitutes. The 27 

percentage of a population renting also suggests the presence of principal-agent problems, where the 28 
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incentives of the property owner are not aligned with the incentives of the renter – something 1 

frequently claimed to undermine adoption (Lawrence, et al., 2005). Since property owners lack 2 

incentives to invest in expensive energy efficiency improvements for rental properties, block groups 3 

with higher percentages of renters should have lower adoption rates. Also, the county dummies are 4 

used in our models to control for the possible effects of different regulations.   5 

Since the sales data span twelve years, it is important to control for the effect of time on the change in 6 

adoption rates. More recent sales in a block group might increase the adoption rate as technology improves, 7 

public awareness of sustainability issues grows, incomes rise, or prices fall over time. In order to control 8 

for the effect of time in the models, the share of sales that occur within each year in each block group is 9 

included in the model. Also, for the purpose of controlling for the effect of sales occurring in different 10 

seasons, the shares of sales in the four seasons are included. Although perhaps unlikely to matter at the 11 

aggregate level, this allows for a block group with, for example, a disproportionate share of fall sales to 12 

have higher zoned heating adoption rates. 13 

 14 

Results 15 

Tables 3, 4, and 5 show the results of spatial lag regressions and the robust LM test statistics for the 16 

full sample, repeat-observation sample, and the new-construction sample, respectively. For each sample, 17 

two regression models are estimated to determine the effects of independent variables on two dependent 18 

variables: the share of zoned heating systems in the block group, and the share of zoned A/C in the block 19 

group.   20 

The robust LM diagnostic tests, derived from OLS regressions and reported at the bottom of the 21 

tables, show the applicability of spatial lag and spatial error models for each model and sample.  22 

(Interested readers can find the OLS regression results using the same data and model specification in the 23 

on-line Appendix.) According to Anselin (2000), the Robust LM (Error) statistic tests for spatial error 24 

robust to the presence of spatial lag, and the Robust LM (Lag) statistic tests for spatial lag robust to the 25 

presence of spatial error. Both Robust LM test statistics are distributed chi-square with one degree of 26 

freedom. The p-values for the Robust LM (lag) test in all six models are below conventional values of α, 27 

letting us confidently reject the null hypothesis and employ the spatial lag model. The spatial error model is 28 
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not appropriate to the zoned A/C model in the repeat-observations sample or to the zoned heat model in 1 

new-construction sample. Because a primary purpose of this study is to determine the effects of spatial 2 

interdependence on HVAC adoption behavior, it is more useful to adopt the spatial lag model. Moreover, 3 

the greater LM test statistic for the lag model than the error model in all instances offers consistent 4 

diagnostic evidence to support the spatial lag specification (Anselin, 2000). 5 

Table 3 shows the spatial lag regression results of the full sample, for both zoned heating and zoned 6 

air conditioning systems. The spatial dependence in both cases is explicit and statistically significant. 7 

Holding all the other variables constant, if the weighted average of the adoption rate of zone heating 8 

systems for the neighboring block groups increased by one percentage point (or if every neighbor’s rate 9 

increased uniformly), then we expect an increase the adoption rate in this block group of 0.39 percentage 10 

points. In a rough sense, nearly two-fifths of changes in a neighborhood’s adoption behavior spills over to 11 

its neighbor. For air conditioning systems, the effect is even higher: ρ = 0.44.   12 

The full sample analysis in Table 3 shows the broad picture of how both spatial and non-spatial 13 

factors influence adoption rates. Overall, the model fit is substantial, explaining most of the variation in 14 

neighborhood adoption rates. The repeat-observations and new-construction sample models, however, offer 15 

more focused results that should also be less susceptible to confounding effects from unobserved 16 

characteristics. The results of these models warrant emphasis here. The repeat-observations sample model 17 

(Table 4) helps identify the adoption decisions made by the homeowners within the neighborhood. Next, 18 

using only the sample of new-construction sales (Table 5) enables a comparison between homeowners and 19 

developers.  20 

The results in Table 4 resemble the full sample spatial lag results, with a few key modifications. As 21 

described in the previous section, the dependent variable in the repeat-observations model represents the 22 

adoption rate by existing homeowners as renovations or replacements. New and Rehabilitated are dropped 23 

because they make less sense in a differenced model. Also, the variables showing the average difference 24 

between each sales record (∆𝑿����𝑔) are listed near the bottom of the table. All the other independent variables 25 

represent the conditions at first sale. As in the full sample, the spatial effects of the repeat-observation 26 

sample are also positive and statistically significant. The spillover of the adoption rate is roughly 0.15 for 27 

both zoned heating and A/C systems. This statistically significant result is much smaller in magnitude than 28 
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the ρ in the full sample. This more conservative estimate may also be a more accurate estimation of the 1 

contagion effect, since differencing controls for some unobserved home traits that may be spatially 2 

clustered. In addition, this estimate more directly measures the behavior of homeowners, which may not be 3 

as clustered as developer decisions. 4 

Table 4 illustrates how cost variables determine neighborhood adoption rates. The house vintage 5 

variables are not as easily interpreted here as in the full sample, because they only measure the average 6 

house age at the time of first sale and the date of adoption is unknown. Still, the results suggest that newer 7 

homes and much older homes are significantly more likely to upgrade to zoned HVAC systems. Adoptions 8 

are more common in wealthier neighborhoods, although the average home prices do not explain adoptions. 9 

Unsurprisingly, average interest rates at the time of the initial sale have only a marginal impact on adoption 10 

rates, likely because that interest rate poorly proxies for the rates facing current owners making the 11 

investment decisions. The change in (average) interest rates between sales, on the other hand, exhibits 12 

unexpected effects. The change in interest rates does not matter for zoned A/C adoption, and it has a 13 

positive effect on the adoption of zoned heating system. This is inconsistent with the theory that predicts 14 

that rising interest rates will discourage adoption of high up-front-cost investments. We attribute this 15 

unexpected result to a poor proxy for actual interest rates faced by homeowners, although the lack of 16 

evidence that lower interest rates drive adoption certainly merits further research with better data, ideally at 17 

the household level. 18 

The energy savings measures exhibit straightforward effects in Table 4. The role of lot size in the 19 

repeat-observations sample is simply positive. Larger lots at the time of initial sale and increasing lot sizes 20 

predict greater neighborhood adoption rates. Ten percent larger lot sizes at the time of first sale are 21 

associated with roughly 0.2 percentage points greater adoption rates of zoned HVAC systems, which is 22 

substantial relative to the baseline average adoption rate of two percent. The case of square footage is even 23 

stronger. In both models, larger average square footage of the first sale has positive effects on the adoption 24 

behavior. For example, block groups with average square footage ten percent larger will tend to have 25 

adoption rates 0.5 percentage points greater. Unlike the full sample results, the model in Table 4 shows 26 

higher adoption rates in neighborhoods with larger homes and with homes that are growing in size. 27 

Increasing the average difference in square footage between sales by ten percent is associated with the 28 
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share of repeat-observation homes adopting increasing by 0.7 percentage points for zoned heating, and 0.9 1 

percentage points for zoned A/C. Renovations and expansions clearly play a vital role in the adoption of 2 

green HVAC technologies, perhaps because the cost to install is relatively lower when bundled with other 3 

home renovations and because the energy savings rise as homes’ footprints grow.   4 

Some of the demand-shifting control variables in the repeat-observation sample have significant 5 

effects on the adoption rate. Neighborhoods with higher vacancy rates have higher adoption rates, perhaps 6 

because vacancy facilitates the installation of HVAC and thus lowers the cost to adopt. Park and lake 7 

access, population density, the percent renters, and the host county do not appear to influence adoption 8 

rates. 9 

Finally, Table 5 illustrates the results of spatial lag models for the sample of new constructions. Note 10 

that all the house vintage variables are dropped in the new sample models, because the age of houses in this 11 

sample are all zero. The most striking result in Table 5 is the spatial dependence. The spatial “contagion” ρ 12 

parameter in the new-construction sample is not larger than that of the repeat-observations sample. This 13 

might be due to a limitation of the data. The full sample dataset contains 2,539 block groups, but only 1,142 14 

of them have new construction home sales records during this timeframe. Aside from leaving a possibly 15 

biased subsample of block-groups, this means that many block groups lose some adjacent block groups, 16 

and leaving some of them more isolated. This could bias the true spatial contagion effect. Still, it is 17 

remarkable that the lag effect ρ for new-construction adoption – presumably driven by developers who 18 

certainly produce suburban housing in highly positively spatially correlated ways – is similar in magnitude 19 

to the ρ for existing homeowners in Table 4. This might be a result of spatial competition among 20 

developers, where the expected clustering is at least partially offset by developer efforts to differentiate 21 

their products from nearby substitutes. This negative spatial lag process might explain the weaker net 22 

spillover effect in the new-construction sample.    23 

Other results in Table 5 differ from those in Table 4, reflect different adoption patterns of 24 

homeowners and developers. Home value, not income, has a strong positive effect on adoption rates in the 25 

new-construction sample, nearly opposite that of the repeat-observation sample. Apparently developers’ 26 

installation decisions track with home values more than neighborhood wealth, and vice versa for 27 

homeowners. Interestingly, the percent of college graduates positively influences adoption rates in the 28 
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new-construction sample only; it is insignificant in Table 4. The negative effect of parks in the 1 

new-construction sample is interesting to note. It seems that parks and indoor energy efficiency are 2 

substitutes. The geographic and temporal controls add little explanatory power to the new-construction 3 

model, although zoned heating is more common when more of the newly constructed homes are sold in the 4 

fall and winter. 5 

 6 

Discussion 7 

In this study, the spatial effect is a very strong factor affecting neighborhood adoption behavior for 8 

energy-efficient residential HVACs. The estimated spillover parameter, ρ, ranged from 0.11 to 0.44 across 9 

different models and samples, indicating roughly that 11% – 44% of neighboring block-groups’ adoptions 10 

spill over or are reflected in each block group. We illustrate this mechanism further below. Since the 11 

repeat-observation models focus on owners making changes to their own properties, this more conservative 12 

estimate of ρ (roughly 0.14) might also be more reliable and meaningful.  13 

The mechanisms behind this contagion effect remain to be explored empirically. However, several 14 

socially-oriented mechanisms (e.g., shared information, spatial competition, mimicking) have been 15 

explored in recent research. Ambrahamse, Steg, Vlek, and Rothengatter (2005) review 38 studies that 16 

examine decision-making behind household level energy consumption and emphasize the role that social 17 

pressure and feedback play in relationship to information or learning. Osbaldiston and Schott (2011) 18 

provide an overview of 253 experimental treatments across 87 published articles, noting that social 19 

modeling – which includes the diffusion of technology and norms – plays a role in individual level 20 

environmental behavior. And Stern (2011) suggests that social motives and learning play a major role in 21 

influences of energy efficiency equipment adoptions. While these studies do not speak directly to spatial 22 

diffusion, they explore social mechanisms that could be drivers of spatial diffusion.  23 

Building codes might be another important driver for adopting energy efficiency. This study does not 24 

directly control for building codes due to the unavailability of data spanning over 160 municipalities and 12 25 

years. Limiting the analysis to only sales records for single-family houses should keep zoning 26 

classifications relatively consistent. Though we do have controls for different counties, variation in 27 

single-family residential building codes across municipalities and even across time is not observed in this 28 
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data. We are not aware of differences in building codes in these suburbs that might play a major role in 1 

neighborhood adoption. If variation in building codes does help explain the variation in adoption rates, the 2 

spatial regression models (tables 3 – 5) will at least partly capture this effect. Interestingly, a spatial error 3 

model would treat the omitted regressor of “building codes” as part of a spatially autocorrelated error. Yet 4 

the diagnostic tests clearly indicate that a spatial lag model is more appropriate given this data. In short, 5 

explicitly incorporating the spatial dependence into these models mitigates the concerns about missing 6 

variables like these. 7 

Market-based data might have their own limitations. For example, the dataset lacks micro-level data 8 

regarding the attitudes and demographics of individual homeowners, and the sample of sales might not be 9 

representative of the housing stock. Houses with higher turnover might have different determinants (i.e., β 10 

is different) of adoptions than the population as a whole. Moreover, weaker local connections for more 11 

transitory homeowners might affect the strength of spatial spillovers, which is consistent with the lower lag 12 

effects (ρ) observed in the repeat-observation and new-construction samples than the full sample. A more 13 

direct test of this hypothesis, however, finds little support. Including the block-group’s share of population 14 

living in the same home over the past ten years, as a proxy for social networks, adds little to the models 15 

reported here, and a comparison of maps of this variable and maps of local measures of spatial 16 

autocorrelation shows no clear relationship. Less neighborhood turnover neither promotes nor detracts from 17 

localized spillovers. Further tests of mechanisms for this spatial diffusion are needed. 18 

According to the results from the full sample models, neighborhoods with more newly constructed or 19 

recently rehabilitated houses, with larger square footage, and with higher median income and lower 20 

population density areas tend to adopt energy-efficient HVACs. These factors reflect the adoption behaviors 21 

of both developers and owners. Using the results from the repeat-observations models, neighborhoods with 22 

homes experiencing larger remodels and expansions tend to have greater adoption rates for energy-efficient 23 

HVACs. Also, neighborhoods with houses with larger lot sizes and square footage, with greater wealth, and 24 

lower tax rates are more likely to adopt energy-efficient HVACs. Importantly, across all the models, it is 25 

lower property tax rates that tell a consistent story in promoting energy-efficient HVAC adoption (rather 26 

than lower interest rates). 27 
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The implications for policy are significant. When designing a policy to promote the adoption of green 1 

HVACs, according to our results, the effect of picking several demonstration block groups as the “seeds” of 2 

contagion might be significant. For example, suppose a LEED-certified development project occurred in a 3 

block group that previously had no green HVAC systems. A seed project that upgraded 90% of the block 4 

group homes to zoned A/C and zoned heat systems would have 650 adoptions in an average block 5 

containing 726 homes. If that block group had four neighboring block groups (which each had four 6 

neighboring block groups), according to our estimates using the repeat-observations sample, holding all 7 

else equal, this shift in the adoption rate would bring an increase in the adjacent block groups’ adoption 8 

rates of 3.4% (bringing the adoption rate up to 5% from under 2%). (This is computed by multiplying the 9 

increase in the weighted average of the four neighbors, 0.9/4=0.225, by the lag operator, ρ=0.15.) Those 10 

650 adoptions would translate to an additional 98 adoptions across the four immediate neighboring areas. 11 

These adoptions, in turn, affect their adjacent neighbors, and so on. This suggests that small-scale localized 12 

efforts to promote energy efficient adoption among homeowners might diffuse outward and have much 13 

greater effect than originally anticipated. (In principle, this cuts both ways: the adoption of inefficient 14 

HVAC systems may have similar contagion effects.) It also suggests that strategic placement of efficiency 15 

enhancements (e.g., in areas with many neighbors and other variables predicting adoption rates, such as 16 

locating projects farther away from parks) could have particularly large impacts on adoption behavior. This 17 

is consistent with theory that suggests that niche markets that nurture new technologies are important for 18 

technological diffusion (Schot & Geels, 2008). In fact, the “LEED for Homes” program offers additional 19 

points toward certification for homes offering outreach and promoting public awareness (via tours, 20 

websites, signage, etc.). Programs like LEED already leverage the power of diffusion of green homes. 21 

Beyond “seeding” demonstration projects, other findings presented above point to ways that 22 

policymakers can stimulate the adoption rates of energy-efficient HVACs – and how spatial contagion can 23 

amplify those impacts. Suppose a policy to boost green HVAC installations lowered tax rates by half a 24 

percentage point. Based on Table 4, this policy should increase adoption rates by about one percentage 25 

point for zoned HVAC systems. This large impact, relative to the low mean adoption rates, is a direct policy 26 

effect. It does not take into account the spatial spillovers identified above. The spatial multiplier of 1/(1 – ρ) 27 

magnifies the marginal impact of the tax break by a factor of 1.18 for zoned heating and 1.16 for zoned A/C 28 
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(Kim, Phipps, & Anselin, 2003). Neglecting this spatial contagion would substantially underestimate the 1 

policy impact on adoption rates. The possibility of a threshold or tipping point in the contagion, also, 2 

warrants further investigation, as this analysis assumes a linear spillover effect. 3 

All the results in this study are based on the aggregation of individual-level transactions into the 4 

block-group level. Though we still have a large dataset of over 2,500 observations after the aggregation, 5 

and those data exhibit considerable geographic variation, the aggregation process will obscure some 6 

information. Exploring the mechanisms for individual-level, rather than neighborhood-level, spatial 7 

interdependence in adoption behaviors for energy efficiency requires applying a spatial econometric 8 

approach to data at the household level. In light of these results showing strong spatial dependence at the 9 

neighborhood level, future work that seeks to inform policies promoting energy efficiency adoption at the 10 

household level would do well to investigate these interactions. 11 

It remains to be seen whether these results generalize to other contexts or green technologies. We 12 

expect similar results for similar models of other major appliances, but this study offers no direct evidence 13 

on this. As our findings are consistent with previous research that shows social factors matters and that 14 

simple economics plays a modest role, this consistency suggests some generalizability to other residential 15 

technology adoptions. The limited success of energy-efficient technologies in penetrating markets generally 16 

is consistent with our findings. Although we look at just one type of technology, admittedly a major one, 17 

there are obviously other residential technologies that merit studies of their own. 18 

 19 



18 
 

References 1 

Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at 2 

household energy conservation. Journal of Environmental Psychology, 25(3), 273-291.  3 

Anselin, L. (2000). Spatial econometrics: Oxford: Basil Blackwell. 4 

Anselin, L. (2001). Spatial Effects in Econometric Practice in Environmental and Resource Economics. 5 

American Journal of Agricultural Economics, 83(3), 705-710.  6 

Anselin, L. (2003). Spatial Externalities. International Regional Science Review, 26(2), 147-152.  7 

Ardehali, M. M., & Smith, T. F. (1996). Evaluation of variable volume and temperature HVAC system for 8 

commercial and residential buildings. Energy Conversion and Management, 37(9), 1469-1479.  9 

Arrow, K. (1962). The economic implications of learning by doing. Review of Economic Studies, 29, 10 

155-173.  11 

Baerenklau, K. A. (2005). Toward an Understanding of Technology Adoption: Risk, Learning, and 12 

Neighborhood Effects. [Article]. Land Economics, 81(1), 1-19.  13 

Bandiera, O., & Rasul, I. (2006). Social Networks and Technology Adoption in Northern Mozambique. The 14 

Economic Journal, 116(514), 869-902.  15 

Chandler, S., & Brown, M. (2009). Meta-Review of Efficiency Potential Studies and Their Implications for 16 

the South. Georgia Institute of Technology, School of Public Policy Working Papers 51.   17 

D&R International, L. (2009). 2009 Buildings Energy Data Book. 18 

Foster, A., & Rosenzweig, M. (1995). Learning by doing and learning from others: Human capital and 19 

technical change in agriculture. Journal of Political Economy, 103(6), 1176-1209.  20 

Fragkias, M., & Seto, K. C. (2007). Modeling urban growth in data-sparse environments: a new approach. 21 

Environment and Planning B: Planning and Design, 34(5), 858-883.  22 

Goolsbee, A., & Klenow, P. J. (2002). Evidence on Learning and Network Externalities in the Diffusion of 23 

Home Computers. Journal of Law & Economics, 45(2), 317-343.  24 

Gowrisankaran, G., & Stavins, J. (2004). Network externalities and technology adoption: Lessons from 25 

electronic payments. RAND Journal of Economics, 35(2), 260-276.  26 

Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. H. M. (2007). Functions of 27 

innovation systems: A new approach for analysing technological change. Technological 28 

Forecasting and Social Change, 74(4), 413-432.  29 

Ioannides, Y. M., & Zabel, J. E. (2003). Neighbourhood effects and housing demand. Journal of Applied 30 

Econometrics, 18(5), 563-584.  31 

Jaber, J. O., Mamlook, R., & Awad, W. e. (2005). Evaluation of energy conservation programs in residential 32 

sector using fuzzy logic methodology. Energy Policy, 33(10), 1329-1338.  33 

Kim, C. W., Phipps, T. T., & Anselin, L. (2003). Measuring the benefits of air quality improvement: a spatial 34 

hedonic approach. Journal of Environmental Economics and Management, 45(1), 24-39.  35 



19 
 

Kok, N., McGraw, M., & Quigley, J. M. (2011). The Diffusion of Energy Efficiency in Building. American 1 

Economic Review, 101(3), 77-82.  2 

Krause, R. (2009). Energy Efficiency and Conservation. Paper presented at the The Search for Wise Energy 3 

Policy Conference, Washington, D.C.  4 

Kühn, I., Bierman, S. M., Durka, W., & Klotz, S. (2006). Relating Geographical Variation in Pollination Types 5 

to Environmental and Spatial Factors Using Novel Statistical Methods. New Phytologist, 172(1), 6 

127-139.  7 

Lawrence, T. M., Mullen, J. D., Noonan, D. S., & Enck, J. (2005). Overcoming Barriers to Efficiency. ASHRAE 8 

Journal, 47(9), S40-S47.  9 

Longley, P. A., & Tobón, C. (2004). Spatial Dependence and Heterogeneity in Patterns of Hardship: An 10 

Intra-Urban Analysis. Annals of the Association of American Geographers, 94(3), 503-519.  11 

Menanteau, P., & Lefebvre, H. (2000). Competing technologies and the diffusion of innovations: the 12 

emergence of energy-efficient lamps in the residential sector. Research Policy, 29(3), 375-389.  13 

Mills, B. F., & Schleich, J. (2010). Why don't households see the light?: Explaining the diffusion of compact 14 

fluorescent lamps. Resource and Energy Economics, 32(3), 363-378.  15 

Mlecnik, E. (2010). Adoption of Highly Energy-efficient Renovation Concepts. Open House International, 16 

35(2), 39-48.  17 

Nair, G., Gustavsson, L., & Mahapatra, K. (2010). Factors influencing energy efficiency investments in 18 

existing Swedish residential buildings. Energy Policy, 38(6), 2956-2963.  19 

Niemeyer, S. (2010). Consumer voices: adoption of residential energy-efficient practices. International 20 

Journal of Consumer Studies, 34(2), 140-145.  21 

Osbaldiston, R., & Schott, J. P. (2011). Environmental Sustainability and Behavioral Science: Meta-Analysis 22 

of Proenvironmental Behavior Experiments. Environment and Behavior. Advance online 23 

publication. doi: 10.1177/0013916511402673.  24 

Oster, E., & Thornton, R. (2009). Determinants of Technology Adoption: Private Value and Peer Effects in 25 

Menstrual Cup Take-Up. NBER Working Paper 14828.   26 

Rogers, E. M. (1995). Diffusion of Innovations (4th ed.). New York: Free Press. 27 

Schot, J., & Geels, F. W. (2008). Strategic niche management and sustainable innovation journeys: theory, 28 

findings, research agenda, and policy. Technology Analysis & Strategic Management, 20(5), 537 - 29 

554.  30 

Sovacool, B. K. (2009). The cultural barriers to renewable energy and energy efficiency in the United 31 

States. Technology in Society, 31(4), 365-373.  32 

Stern, P. C. (2011). Contributions of psychology to limiting climate change. American Psychologist, 66(4), 33 

303-314.  34 

Tse, R. Y. C., & Webb, J. R. (1999). Property Tax and Housing Returns. Review of Urban & Regional 35 

Development Studies, 11(2), 114-126.  36 



20 
 

U.S. Department of Housing and Urban Development Office of Policy Development and Research. (2003). 1 

The Practice of Low Impact Development. 2 

U.S. Green Building Council. (2010). Leadership in Energy and Environmental Design (LEED), from 3 

http://www.usgbc.org/ 4 

 5 
 6 

  7 

http://www.usgbc.org/


21 
 

Appendix   1 

Figure 1. Map of zoned heating and zoned A/C adoption 2 
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Table 1. Definitions of variables 1 

Variable Description 

Zoned Heating Share of zoned heating system in the block group (BG) 

Zoned A/C Share of zoned A/C system in the BG 

New Share of New-ready, New-proposed construction, New-under construction 

or New-will built to suite properties in the BG 

1 - 5 years Share of property age in the BG 

6- 10 years  Share of property age in the BG 

11- 25 years Share of property age in the BG 

26- 50 years Share of property age in the BG 

51- 100 years Share of property age in the BG 

100+ years Share of property age in the BG 

Age unknown Share of age unknown properties in the BG 

Rehabilitated Share of recent rehabilitated houses in the BG 

30-yr mortgage rate Averaged 30 year fixed mortgage rate in the BG, from HSH Associates 

National Monthly Mortgage Statistics 

Effective tax Mean Effective tax rates in the BG 

Median household 

income (log) 

Block Group Median Household Income, interpolated 1992-2004 

Median house value (log) Block Group Median House Value, interpolated 1992-2004 

Lot size (log) Average lot size in the BG 

Square footage (log) Average square footage in the BG 

Percent college graduate Percent of college graduates in the BG, interpolated 1992-2004 

Clubhouse Share of properties listing a clubhouse 

Park Share of properties listing a Park/Playground around 

Lake Share of properties listing a Pond/lake around 

Distance to CBD (log) Distance to Central Business District, measured from the center of BG 

Vacant housing unit rate Interpolated rate of vacant housing units in the BG 

Population density (log) block group population density (people per square mile) , interpolated 

1992-2004 

Percent renters Percentage of housing units occupied by renters in the BG 

Cook county Dummy of BG in Cook county 

DuPage county Dummy of BG in DuPage county 

Kane county Dummy of BG in Kane county 

Lake county Dummy of BG in Lake county 
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McHenry county Dummy of BG in McHenry county 

Will county Dummy of BG in Will county 

Spring Share of properties sold in spring (March – May)  in the BG 

Summer Share of properties sold in summer (June – August) in the BG 

Fall Share of properties sold in fall (September – November) in the BG 

Winter Share of properties sold in winter (December – February) in the BG 

Sales in (year) Thirteen variables represent the share of properties sold in each block 

group, each year from 1992-2004  
 1 

  2 
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Table 2. Descriptive statistics 1 

  Full sample 
Repeat-observations 

sample 

New-construction 

sample 

Number of Obs. 2539 2411 1142 

Variables Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Zoned Heating 0.021  0.053  0.018  0.059  0.120  0.255  

Zoned A/C 0.031  0.071  0.022  0.062  0.184  0.320  

New 0.021  0.059  - - - - 

1 - 5 years 0.061  0.133  0.059  0.141  - - 

6- 10 years  0.053  0.096  0.055  0.120  - - 

11- 25 years  0.162  0.218  0.165  0.242  - - 

26- 50 years 0.437  0.302  0.435  0.332  - - 

50- 100 years 0.195  0.243  0.191  0.266  - - 

100+ years 0.021  0.065  0.018  0.069  - - 

Age unknown 0.049  0.065  0.058  0.115  - - 

Rehabilitated 0.010  0.018  0.008  0.031  - - 

30-yr mortgage rate 7.377  0.226  7.628  0.327  7.273  0.732  

Effective tax 1.664  0.316  1.664  0.315  1.645  0.335  

Med. household income (log) 10.989  0.363  10.974  0.356  11.115  0.378  

Med. house value (log) 12.101  0.487  12.111  0.479  12.232  0.491  

Lot size (log) 9.046  0.323  9.032  0.303  9.138  0.332  

Square footage (log) 7.192  0.255  7.157  0.278  7.443  0.333  

Percent college graduate 0.330  0.198  0.328  0.195  0.379  0.213  

Clubhouse 0.018  0.050  0.022  0.058  0.013  0.091  

Park 0.034  0.077  0.029  0.077  0.037  0.140  

Lake 0.013  0.050  0.011  0.050  0.018  0.099  

Distance to CBD (log) -0.993  0.453  -0.990  0.453  -0.902  0.433  

Vacant housing unit rate 3.072  3.270  3.016  3.169  3.138  3.162  

Population density (log) 8.268  0.938  8.272  0.914  7.970  0.950  

Percent renters 20.284  19.543  19.712  18.928  16.083  15.812  

Cook county 0.549  0.498  0.541  0.498  0.421  0.494  

DuPage county 0.192  0.394  0.201  0.401  0.243  0.429  

Kane county 0.082  0.274  0.084  0.278  0.078  0.268  

Lake county 0.061  0.240  0.060  0.238  0.102  0.302  

McHenry county 0.041  0.199  0.042  0.200  0.070  0.255  
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Will county 0.074  0.263  0.072  0.258  0.087  0.282  

Spring 0.218  0.132  - - 0.216  0.313  

Summer 0.256  0.150  - - 0.206  0.297  

Fall 0.193  0.124  - - 0.182  0.294  

Winter 0.140  0.096  - - 0.154  0.265  

Sales in 1992 0.026  0.043  0.035  0.075  0.022  0.111  

Sales in 1993 0.029  0.062  0.041  0.083  0.020  0.101  

Sales in 1994 0.035  0.057  0.055  0.093  0.033  0.142  

Sales in 1995 0.058  0.058  0.095  0.125  0.055  0.171  

Sales in 1996 0.066  0.069  0.098  0.124  0.055  0.169  

Sales in 1997 0.066  0.060  0.084  0.105  0.068  0.186  

Sales in 1998 0.077  0.062  0.088  0.117  0.073  0.192  

Sales in 1999 0.079  0.065  0.082  0.114  0.077  0.200  

Sales in 2000 0.081  0.070  0.082  0.121  0.074  0.194  

Sales in 2001 0.079  0.067  0.061  0.110  0.069  0.190  

Sales in 2002 0.081  0.066  0.046  0.103  0.067  0.188  

Sales in 2003 0.088  0.076  0.025  0.082  0.092  0.237  

Sales in 2004 0.042  0.041  0.004  0.029  0.055  0.187  

Difference in lot size (log) - - -0.010  0.117  - - 

Diff. in square footage (log) - - 0.044  0.109  - - 

Diff. in 30-yr mortgage rate - - -0.586  0.469  - - 

Diff. in year of sale  - - 3.262  1.235  - - 
 1 

  2 



26 
 

Table 3. Spatial lag regression results for the full sample 1 

  Zoned Heating Zoned A/C 

Variables Coef. Std. Err.   Coef. Std. Err.   

Spatial lag (ρ) 0.384  0.023  *** 0.445  0.021  *** 

Constant -0.393  0.084  *** -0.699  0.100  *** 

New 0.136  0.014  *** 0.134  0.017  *** 

1 - 5 years 0.019  0.008  ** 0.011  0.010    

6- 10 years  0.011  0.012    0.036  0.014  ** 

26- 50 years 0.018  0.005  *** 0.024  0.006  *** 

50- 100 years 0.025  0.006  *** 0.040  0.007  *** 

100+ years -0.018  0.014    0.019  0.017    

Age unknown 0.073  0.016  *** 0.097  0.020  *** 

Rehabilitated 0.154  0.047  *** 0.258  0.056  *** 

30-yr mortgage rate -0.031  0.008  *** -0.037  0.009  *** 

Effective tax -0.012  0.004  *** -0.018  0.004  *** 

Med. household income (log) 0.008  0.002  *** 0.014  0.003  *** 

Med. house value (log) -0.002  0.001  * -0.003  0.002  ** 

Lot size (log) -0.018  0.004  *** -0.011  0.004  *** 

Square footage (log) 0.104  0.005  *** 0.139  0.007  *** 

Percent college graduate -0.027  0.007  *** -0.034  0.008  *** 

Clubhouse 0.041  0.017  ** 0.066  0.020  *** 

Park -0.045  0.012  *** -0.056  0.015  *** 

Lake -0.036  0.017  ** 0.011  0.021    

Distance to CBD (log) -0.001  0.004    0.002  0.004    

Vacant housing unit rate 0.001  0.000  ** 0.001  0.000  * 

Population density (log) -0.004  0.001  *** -0.005  0.001  *** 

Percent renters 0.000  0.000    0.000  0.000    

Summer 0.033  0.012  *** 0.018  0.014    

Fall 0.019  0.012    0.031  0.014  ** 

Winter -0.008  0.014    0.007  0.017    

 
Value Prob 

 
Value Prob 

 
Robust LM (lag) 31.699  0.000    68.238  0.000    

Robust LM (error) 19.974  0.000    34.871  0.000    

Number of obs. = 2539 2535 

Log likelihood = 4729.98 4253.55 



27 
 

R2 = 0.507  0.605  

*p < .10. **p < .05. ***p < .01. 1 

Note. The above analyses control for the six counties listed in Table 2 and the proportional sales in each of 2 

the 13 years from 1992-2004.   3 
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Table 4. Spatial lag regression results for the repeat-observations sample 1 

  Zoned Heating Zoned A/C 

Variables Coef. Std. Err.   Coef. Std. Err.   

Spatial lag (ρ) 0.151  0.029  *** 0.142  0.029  *** 

Constant -0.782  0.116  *** -1.007  0.119  *** 

1 - 5 years 0.022  0.010  ** 0.041  0.010  *** 

6- 10 years  -0.011  0.011    0.007  0.012    

26- 50 years 0.007  0.006    0.020  0.006  *** 

50- 100 years 0.013  0.007  * 0.023  0.007  *** 

100+ years 0.033  0.017  ** 0.075  0.017  *** 

Age unknown 0.039  0.012  *** 0.058  0.012  *** 

30-yr mortgage rate 0.015  0.008  * 0.007  0.008    

Effective tax -0.024  0.005  *** -0.016  0.005  *** 

Med. household income (log) 0.019  0.007  *** 0.028  0.007  *** 

Med. house value (log) 0.002  0.002    0.003  0.002    

Lot size (log) 0.017  0.006  *** 0.024  0.006  *** 

Square footage (log) 0.050  0.007  *** 0.051  0.007  *** 

Percent college graduate -0.014  0.011    -0.007  0.011    

Clubhouse 0.010  0.019    0.009  0.020    

Park -0.026  0.016    -0.023  0.017    

Lake -0.018  0.038    -0.009  0.039    

Distance to CBD (log) -0.010  0.005  ** -0.019  0.005  *** 

Vacant housing unit rate 0.001  0.000  *** 0.001  0.000  ** 

Population density (log) 0.000  0.002    0.000  0.002    

Percent renters 0.000  0.000    0.000  0.000    

Difference in lot size (log) 0.005  0.010    0.022  0.010  ** 

Diff. in square footage (log) 0.077  0.011  *** 0.091  0.011  *** 

Diff. in 30-yr mortgage rate 0.013  0.005  ** 0.009  0.005    

Diff. in year of sale  0.005  0.002  *** 0.000  0.002    

 
Value Prob 

 
Value Prob 

 
Robust LM (lag) 39.105  0.000    9.376  0.002    

Robust LM (error) 22.979  0.000    1.698  0.193    

Number of obs. = 2411 2411 

Log likelihood = 3721.16 3668.63 

R2 = 0.233  0.271  
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*p < .10. **p < .05. ***p < .01. 1 

Note. The above analyses control for the six counties listed in Table 2 and the proportional sales in each of 2 

the 13 years from 1992-2004.  3 
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Table 5. Spatial lag regression results for the new-construction sample 1 

  Zoned Heating Zoned A/C 

Variables Coef. Std. Err.   Coef. Std. Err.   

Spatial lag (ρ) 0.115  0.032  *** 0.136  0.031  *** 

Constant -2.189  0.541  *** -2.631  0.631  *** 

30-yr mortgage rate -0.008  0.015    -0.018  0.018    

Effective tax -0.051  0.032    -0.108  0.037  *** 

Med. household income (log) -0.046  0.043    -0.059  0.050    

Med. house value (log) 0.100  0.034  *** 0.113  0.040  *** 

Lot size (log) 0.030  0.023    0.026  0.027    

Square footage (log) 0.160  0.030  *** 0.251  0.035  *** 

Percent college graduate 0.144  0.066  ** 0.205  0.077  *** 

Clubhouse 0.042  0.082    0.075  0.095    

Park -0.077  0.046  * -0.121  0.053  ** 

Lake -0.116  0.086    0.003  0.101    

Distance to CBD (log) -0.004  0.029    -0.015  0.034    

Vacant housing unit rate 0.006  0.002  *** 0.002  0.002    

Population density (log) 0.017  0.009  * 0.014  0.010    

Percent renters 0.000  0.001    0.000  0.001    

Summer 0.041  0.027    0.020  0.031    

Fall 0.052  0.028  * 0.019  0.032    

Winter 0.061  0.029  ** 0.052  0.034    

 
Value Prob 

 
Value Prob 

 
Robust LM (lag) 4.660  0.031    13.224  0.000    

Robust LM (error) 1.084  0.298    4.564  0.033    

Number of obs. = 1142 1142 

Log likelihood = 173.057  -2.190  

R2 = 0.338  0.428  

*p < .10. **p < .05. ***p < .01. 2 

Note. The above analyses control for the six counties listed in Table 2 and the proportional sales in each of 3 

the 13 years from 1992-2004. 4 

  5 
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Online Appendix   1 

Table A1. OLS regression results for the full sample 2 

Number of obs. = 2539 2539 

Log likelihood = 4588.59 4035.71 

Prob. > χ2 = 0.0000  0.0000  

R2 = 0.432  0.512  

  Zoned Heating Zoned A/C 

Variables    Coef. Std. Err.      Coef. Std. Err.   

Constant -0.510  0.090  *** -0.960  0.112  *** 

New 0.141  0.015  *** 0.143  0.019  *** 

1 - 5 years 0.026  0.009  *** 0.020  0.011  * 

6- 10 years  0.009  0.013  
 

0.031  0.016  ** 

26- 50 years 0.019  0.005  *** 0.024  0.006  *** 

50- 100 years 0.024  0.006  *** 0.041  0.008  *** 

100+ years -0.026  0.015  * 0.011  0.019  
 

Age unknown 0.099  0.018  *** 0.141  0.022  *** 

Rehabilitated 0.212  0.051  *** 0.404  0.063  *** 

30-yr mortgage rate -0.031  0.008  *** -0.034  0.010  *** 

Effective tax -0.026  0.004  *** -0.041  0.005  *** 

Med. household income (log) 0.009  0.002  *** 0.018  0.003  *** 

Med. house value (log) -0.002  0.001  * -0.004  0.002  ** 

Lot size (log) -0.018  0.004  *** -0.009  0.005  * 

Square footage (log) 0.120  0.006  *** 0.167  0.007  *** 

Percent college graduate -0.015  0.007  ** -0.015  0.009  * 

Clubhouse 0.050  0.018  *** 0.082  0.022  *** 

Park -0.055  0.013  *** -0.070  0.017  *** 

Lake -0.031  0.019  * 0.017  0.023  
 

Distance to CBD (log) -0.005  0.004  
 

-0.003  0.005  
 

Vacant housing unit rate 0.001  0.000  *** 0.001  0.000  *** 

Population density (log) -0.006  0.001  *** -0.008  0.001  *** 

Percent renters 0.000  0.000  
 

0.000  0.000  
 

DuPage county 0.056  0.026  ** 0.075  0.032  ** 

Kane county 0.012  0.005  ** 0.009  0.006  
 

Lake county 0.027  0.004  *** 0.023  0.005  *** 
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McHenry county 0.003  0.005  
 

0.000  0.007  
 

Will county 0.011  0.004  *** 0.008  0.005  
 

Summer 0.035  0.013  *** 0.021  0.016  
 

Fall 0.023  0.013  * 0.035  0.016  ** 

Winter -0.005  0.015  
 

0.013  0.019  
 

Sales in 1993 0.072  0.032  ** 0.114  0.040  *** 

Sales in 1994 0.138  0.031  *** 0.122  0.038  *** 

Sales in 1995 0.091  0.028  *** 0.129  0.035  *** 

Sales in 1996 0.052  0.027  * 0.084  0.033  ** 

Sales in 1997 0.010  0.028  
 

0.036  0.035  
 

Sales in 1998 0.001  0.030  
 

-0.009  0.038  
 

Sales in 1999 0.039  0.028  
 

0.015  0.035  
 

Sales in 2000 0.055  0.027  ** 0.136  0.033  *** 

Sales in 2001 0.017  0.029  
 

0.039  0.036  
 

Sales in 2002 0.005  0.031  
 

0.028  0.039  
 

Sales in 2003 -0.041  0.032  
 

-0.017  0.040  
 

Sales in 2004 0.025  0.038    0.076  0.047    

*p < .10. **p < .05. ***p < .01. 1 

  2 
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Table A2. OLS regression results for the repeat-observations sample 1 

Number of obs. = 2411 2411 

Log likelihood = 3707.33 3655.71 

Prob. > χ2 = 0.0000  0.0000  

R2 = 0.221  0.260  

  Zoned Heating Zoned A/C 

Variables    Coef. Std. Err.      Coef. Std. Err.   

Constant -0.850  0.118  *** -1.055  0.121  *** 

1 - 5 years 0.021  0.010  ** 0.041  0.010  *** 

6- 10 years  -0.012  0.012  
 

0.007  0.012  
 

26- 50 years 0.008  0.006  
 

0.021  0.006  *** 

50- 100 years 0.014  0.007  ** 0.025  0.007  *** 

100+ years 0.033  0.017  * 0.079  0.018  *** 

Age unknown 0.042  0.012  *** 0.060  0.012  *** 

30-yr mortgage rate 0.016  0.008  * 0.007  0.008  
 

Effective tax -0.029  0.005  *** -0.020  0.005  *** 

Med. household income (log) 0.021  0.007  *** 0.030  0.007  *** 

Med. house value (log) 0.002  0.002  
 

0.004  0.002  
 

Lot size (log) 0.019  0.006  *** 0.025  0.006  *** 

Square footage (log) 0.053  0.007  *** 0.054  0.007  *** 

Percent college graduate -0.010  0.011  
 

-0.002  0.011  
 

Clubhouse 0.010  0.019  
 

0.014  0.020  
 

Park -0.028  0.017  * -0.025  0.017  
 

Lake -0.015  0.038  
 

-0.007  0.039  
 

Distance to CBD (log) -0.012  0.005  ** -0.022  0.005  *** 

Vacant housing unit rate 0.002  0.000  *** 0.001  0.000  *** 

Population density (log) -0.001  0.002  
 

0.000  0.002  
 

Percent renters 0.000  0.000  
 

0.000  0.000  
 

DuPage county -0.021  0.020  
 

0.029  0.020  
 

Kane county 0.008  0.007  
 

0.011  0.007  * 

Lake county 0.005  0.006  
 

0.000  0.006  
 

McHenry county 0.001  0.008  
 

0.013  0.008  
 

Will county 0.006  0.005  
 

0.005  0.006  
 

Sales in 1993 -0.075  0.025  *** 0.041  0.026  
 

Sales in 1994 -0.055  0.022  ** 0.018  0.022  
 



34 
 

Sales in 1995 -0.064  0.019  *** 0.032  0.019  * 

Sales in 1996 -0.050  0.019  *** 0.018  0.019  
 

Sales in 1997 -0.068  0.020  *** 0.012  0.021  
 

Sales in 1998 -0.025  0.021  
 

0.042  0.022  * 

Sales in 1999 -0.006  0.020  
 

0.065  0.021  *** 

Sales in 2000 -0.009  0.020  
 

0.031  0.021  
 

Sales in 2001 -0.037  0.023  
 

0.027  0.023  
 

Sales in 2002 -0.020  0.025  
 

0.025  0.026  
 

Sales in 2003 -0.016  0.029  
 

0.027  0.029  
 

Sales in 2004 0.036  0.046  
 

0.049  0.047  
 

Difference in lot size (log) 0.004  0.010  
 

0.021  0.010  ** 

Diff. in square footage (log) 0.080  0.011  *** 0.092  0.012  *** 

Diff. in 30-yr mortgage rate 0.014  0.005  *** 0.009  0.005  * 

Diff. in year of sale  0.005  0.002  *** -0.001  0.002  
 

*p < .10. **p < .05. ***p < .01. 1 

  2 
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Table A3. OLS regression results for the new construction sample 1 

Number of obs. = 1142 1142 

Log likelihood = 166.975 -11.4167 

Prob. > χ2 = 0.0000  0.0000  

R2 = 0.328  0.415  

  Zoned Heating Zoned A/C 

Variables    Coef.   Std. Err.      Coef. Std. Err.   

Constant -2.366  0.553  *** -2.903  0.646  *** 

30-yr mortgage rate -0.009  0.016  
 

-0.017  0.018  
 

Effective tax -0.061  0.032  * -0.131  0.038  *** 

Med. household income (log) -0.047  0.044  
 

-0.063  0.051  
 

Med. house value (log) 0.113  0.035  *** 0.134  0.041  *** 

Lot size (log) 0.031  0.024  
 

0.027  0.028  
 

Square footage (log) 0.163  0.031  *** 0.259  0.036  *** 

Percent college graduate 0.164  0.067  ** 0.236  0.079  *** 

Clubhouse 0.043  0.084  
 

0.065  0.098  
 

Park -0.078  0.047  * -0.122  0.055  ** 

Lake -0.114  0.088  
 

0.005  0.103  
 

Distance to CBD (log) -0.008  0.030  
 

-0.022  0.035  
 

Vacant housing unit rate 0.006  0.002  *** 0.002  0.003  
 

Population density (log) 0.018  0.009  ** 0.015  0.011  
 

Percent renters 0.000  0.001  
 

0.000  0.001  
 

DuPage county 0.025  0.068  
 

0.027  0.080  
 

Kane county 0.004  0.035  
 

0.029  0.041  
 

Lake county -0.012  0.030  
 

0.023  0.035  
 

McHenry county 0.016  0.039  
 

0.033  0.046  
 

Will county 0.026  0.031  
 

0.047  0.036  
 

Summer 0.044  0.028  
 

0.020  0.032  
 

Fall 0.057  0.028  ** 0.025  0.033  
 

Winter 0.063  0.030  ** 0.057  0.035  
 

Sales in 1993 0.007  0.091  
 

0.139  0.107  
 

Sales in 1994 -0.057  0.074  
 

-0.056  0.087  
 

Sales in 1995 -0.038  0.070  
 

0.057  0.082  
 

Sales in 1996 0.052  0.070  
 

0.035  0.082  
 

Sales in 1997 -0.009  0.069  
 

0.026  0.081  
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Sales in 1998 -0.040  0.071  
 

-0.053  0.083  
 

Sales in 1999 0.056  0.068  
 

0.116  0.080  
 

Sales in 2000 0.025  0.068  
 

0.045  0.079  
 

Sales in 2001 0.073  0.071  
 

0.122  0.083  
 

Sales in 2002 0.054  0.075  
 

0.074  0.087  
 

Sales in 2003 0.087  0.076  
 

0.078  0.089  
 

Sales in 2004 0.123  0.079    0.073  0.093    
*p < .10. **p < .05. ***p < .01. 1 

 2 

 3 


