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ABSTRACT 

Prajaya Prajapati 

 

BIOLOGICAL OXIDATION AND DIFFUSION LIMITATION OF METHANE 

OXIDATION IN NO-TILL SOILS 

Long term no-till (NT) farming can improve the CH4 oxidation capacity of 

agricultural lands through creation of a favorable soil environment for methanotrophs and 

diffusive gas transport. However, limited data is available to evaluate the merit of that 

contention. Although the potential for biological CH4 oxidation may exist in NT soils, 

restricted diffusion could limit expression of that potential in fine-textured soils. A study 

was conducted to assess the CH4 oxidation potential and gaseous diffusivity of soils 

under plow till (PT) and NT for > 50 years. Intact cores and composite soils samples (0-

10 and 10-20 cm) were collected from NT and PT plots located at a well-drained site 

(Wooster silt loam) and at a poorly-drained (Crosby silt loam) site in Ohio. Adjacent 

deciduous forest soils were also sampled to determine maximum rate expected in 

undisturbed soils in the region. Regardless of study sites and soil depth, CH4 oxidation 

rate (measured at near ambient CH4) and oxidation potential (Vmax, measured at elevated 

CH4) were 3-4 and 1.5 times higher in NT than in PT soils, respectively. Activity in the 

NT soils approached (66-80 %) that in the forest soils. Half saturation constants (Km) and 

threshold for CH4 oxidation (Th) were lower in NT (Km: 100.5 µL CH4 L-1; Th: 0.5 µL 

CH4 L-1) than in PT soils (Km: 134 µL CH4 L-1; Th: 2.8 µL CH4 L-1) suggesting a greater 

affinity of long-term NT soils for CH4, and a possible shift in methanotrophic community 

composition. CH4 oxidation rates were lower in intact soil cores compared to sieved soils, 
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suggesting that CH4 oxidation was limited by diffusion, a factor that could lead to lower 

field-measured CH4 uptake than suggested by biological oxidation capacity measured in 

the laboratory. Regardless of soil drainage characteristic, long-term NT resulted in 

significantly higher (2-3 times) CH4 diffusivity (mean: 2.5 x 10-3 cm2 s-1) than PT (1.5 x 

10-3 cm2 s-1), probably due to improved soil aggregation and greater macro-pores volume 

in NT soils. Overall, these results confirm the positive impact of NT on the restoration of 

the biological (Vmax, Km and Th) and physical (diffusivity) soil attributes essential for 

CH4 uptake in croplands. Long-term implementation of NT farming can therefore 

contribute to the mitigation of CH4 emission from agriculture.   

 

Pierre-Andre Jacinthe, Ph.D., Chair 
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INTRODUCTION 

Statement of the problem 

 Methane is a major greenhouse gas and an ozone-depleting substance. With a 

global warming potential (GWP) of 25 compared to CO2 over a 100 year time horizon, 

CH4 contributes an estimated 20% of the radiative forcing added to the atmosphere 

(IPCC, 2001; IPCC, 2007). Atmospheric CH4 concentration has grown from 700 ppb at 

the beginning of industrial revolution in the 1850’s to 1784 ppb in 2005 (IPCC, 2007). 

Both natural and anthropogenic sources contribute to atmospheric CH4 increase (IPCC, 

2001). Natural sources of CH4 are mainly wetlands, while human-induced sources 

include rice paddies, enteric fermentation, natural gas exploration, landfills, sewage, and 

land management activities. Agricultural activities account for 50% of the global 

anthropogenic CH4 emission (IPCC, 2001).  

 There are two significant sinks for atmospheric CH4: the reaction with OH 

radicals in the troposphere estimated at 490±85 Tg y-1 (IPCC, 1996), and microbial 

oxidation in aerobic soils estimated at 40-60 Tg y-1 (Cicerone and Oremland, 1988; 

Schütz et al., 1990; IPCC, 2001). More recent assessments have estimated the biological 

CH4 sink to be in the range of 30±15 Tg y-1 (IPCC, 1996; IPCC, 2001). Therefore, as a 

CH4 sink, world soils contribution corresponds to just about 6-9 % of the total annual 

CH4 removal from the atmosphere. However, despite the relatively small sink represented 

by CH4 oxidation in soils, it is nearly the same magnitude as the net annual atmospheric 

CH4 increase of 37 Tg y-1 (IPCC, 1996; IPCC, 2001).   

In well aerated soils, CH4 is oxidized by methanotrophs - a special group of soil 

bacteria that are unique in their ability to utilize CH4 as a sole carbon and energy source. 
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Kinetic approach, phospholipid fatty acid (PLFA) profiles, DNA fingerprinting and C 

assimilation pathways (ribulose monophosphate pathway for type I and serine pathway in 

type II) have been used to categorize CH4-oxidizers into type I and type II organisms 

(Hanson and Hanson 1996). Methanotrophs have also been categorized as high affinity 

microorganisms that can grow in low CH4 environments, and low affinity methanotrophs 

that dominate in CH4-rich systems such as landfills and rice fields (Bender and Conrad, 

1992; Hanson and Hanson, 1996; Bull et al., 2000). Consumption of atmospheric CH4 in 

upland soils has been found to be carried out by methanotrophs with Km in the nanomolar 

(nM) range.  

Methane can also be co-oxidized by autotrophic ammonia oxidizing bacteria (AAOB) 

with no apparent benefit to the cell (Bedard and Knowles, 1989; Hanson and Hanson, 

1996). These AAOB microorganisms have a complete pathway for oxidation of 

ammonium (NH4
+) to nitrite (NO2

-) and derive their energy from that reaction. Apparent 

Km values for CH4 oxidation by AAOB are in the millimolar (mM) range (Bedard and 

Knowles, 1989; Hanson and Hanson, 1996), indicating much lower affinity for CH4 

compared to true methanotrophs  

In agricultural and forest soils, CH4 can be produced under anaerobic condition by 

methanogens either via CO2 reduction or acetate fermentation (Conrad, 1996). Since both 

methanogenesis (production) and methanotrophy (consumption) can occur 

simultaneously, it is the difference in the intensity of these processes that determines the 

direction of CH4 exchange between soil surface and the atmosphere. If production >> 

consumption, then soil is a net CH4 source. Conversely, soil is a net sink (negative flux) 

when consumption exceeds production. Methane uptake in soils requires both favorable 
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soil biological and physical conditions. The biological component entails the presence of 

an abundant and active population of methanotrophs. The physical component refers to 

the development of soil physical conditions that are favorable for the transport of CH4 

and O2 to methanotrophs.   

Change in land use, especially the conversion of formerly undisturbed forest and 

grassland soils to farmland, has generally led to a decline in the CH4 sink capacity of 

soils (Keller et al., 1990; Ojima et al., 1993; Singh et al., 2007). Various ecosystem 

studies have reported significantly higher CH4 uptake rates in forest than in cultivated 

soils (Dobbie and Smith, 1996; Macdonald et al., 1996; Prime and Christensen, 1999). 

From CH4 flux measurements at several study sites across Europe, Dobbie et al. (1996) 

reported a 60 % reduction in CH4 oxidation when natural ecosystems were converted to 

agriculture. In the US Great Plains, Bronson and Mosier (1993) reported a 90 % 

reduction in CH4 oxidation capacity of tilled soils under wheat (Triticum aestivum) and 

corn (Zea mays) compared to soils supporting native grassland. Oxidation of atmospheric 

CH4 occurs in specific units (individual soil crumbs, sand grains covered by microbial 

bio-film) within the soil volume (Conrad, 1996). Frequent plowing leads to the 

destruction of these centers of methanotrophic activity when undisturbed natural 

ecosystems are converted to farmland. The extent of the decline in CH4 oxidation due to 

cultivation also depends on the soil texture (Hutsch et al., 1996). Well aggregated and 

fine-textured soils generally offer greater protection to microorganisms and thus can 

better withstand disturbance, whereas sandy soils tend to easily lose methanotrophic 

activity when disturbed. In the light of these past studies (Bronson and Mosier, 1993; 

Dobbie et al., 1996; Hutsch et al., 1996) and considering the sensitivity of methanotrophs 
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to soil disturbance, it can be expected that reduced tillage could be beneficial for the 

restoration of methanotrophic activity in soils.  

No-till (NT) farming represents a major shift in agricultural land management 

practices during last several decades. Unlike with conventional tillage farming or plow 

till (PT), annual plowing and seedbed preparation are eliminated under NT, and seeds are 

planted directly in the dead residue left by the previous crop. NT practice can bring 

remarkable changes in soil biological properties that can improve CH4 oxidation. 

Commonly reported changes in soil biology with NT include soil organic carbon and 

nitrogen accretion, increased soil microbial biomass and greater enzyme activity (Dick et 

al., 1986; Feng et al., 2003). Along with all these improvements in soil properties, 

increased soil carbon availability and quality under NT can also stimulate the size and 

activity of the soil methanotrophic population (Conrad, 1984; Hutsch et al., 1993). 

No-till adoption also brings numerous improvements in soil physical properties, 

including greater stability of soil structure, larger soil aggregates, and greater soil macro-

porosity (Mahboubi and Lal, 1998). The lack of tillage disturbance under NT is 

conducive to the formation and preservation of water-stable soil aggregates (Fengyun et 

al., 2011). West et al. (1992) reported 50 % to 67 % higher water stable aggregates in 

soils under NT compared to conventional tillage. Similarly, Mahboubi and Lal (1996) 

found water stable soil aggregate to be consistently higher (regardless of season) under 

NT compared to moldboard plow (PT). Similar trends were reported by others (Bruce, 

1990; Unger, 1994) - that is, higher stability of soil aggregates under NT compared to 

conventional tillage (PT). Therefore, given the positive impact of NT on soil aggregation 

and the relationship between aggregation and porosity (Lal et al., 1994; Ball et al., 
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1997b), more efficient soil-atmosphere exchange of gases can be expected in soils under 

NT. Thus, from the above discussion, one can expect that both the biological and 

physical soil attributes required for CH4 uptake to be present at a higher level in NT soils 

compared to soils under conventional tillage.    

No-till farming has been viewed as a practice that has the potential to off-set 

GHGs emission (CH4 in particular) from the agricultural sector without decreasing land 

productivity (Cole et al., 1997; Council of Agricultural Science and Technology, 2004). 

Conservation tillage practices such as no-till (NT) and chisel till (CT) are increasingly 

being adopted due to their profitability and environmental benefits over PT (CTIC, 2012). 

No-till farming has grown in popularity during the past three decades with 35 % of the 

US farmland under NT in 2009 (USDA, 2010). However, limited information is available 

regarding the effects of NT on GHG emission (Johnson et al., 2005; Venterea et al., 

2005). 

   A number of studies have shown that fertilizers containing ammonium (NH4
+) 

can lead to a reduction in soil CH4 oxidation (Bronson and Mosier 1994; Hutsch et al. 

1994). However, other experiments have shown no effect (Lessard et al., 1997; Stiehl-

braun et al., 2011), transient effects (Hartmann et al., 2010) or even a positive effect of N 

application (Bodelier et al, 2000), indicating that the effect of N fertilization on CH4 

oxidation in soils is complex and may be confounded with other soil properties (Bodelier 

and Laanbroek, 2004). Although the underlying mechanisms of these effects remain 

unclear, it has been speculated that in the short term, NH4
+ may interfere with the CH4 

monooxygenase enzyme (MMO), but repeated N application may, in the long run, induce 
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a shift in soil methanotrophic composition resulting in low CH4 oxidation (Adamsen and 

King, 1993).   

CH4 flux measurements in upland soils have generally shown considerable 

seasonal variability (Prieme and Christensen, 1997). Seasonal fluctuation in CH4 flux has 

generally been attributed to change in soil moisture and temperature - physical factors 

that control CH4 production and transport. Soil moisture influences CH4 uptake by 

controlling the diffusion of atmospheric CH4 and O2 in the soil profile (King and 

Adamsen, 1992; Adamsen and King, 1993). Soil moisture limits CH4 and O2 diffusion by 

occupying the small pore networks and then the macro-pores at high soil moisture. Due 

to the slow rate of gaseous diffusion in water and the low water solubility of CH4, 

elevated soil moisture can effectively block CH4 movement in soils. On the other hand, 

extreme water deficit can reduce soil CH4 uptake due to the physiological stress imposed 

by dry soil conditions on soil microbes (Nesbit and Breitenbeck, 1992). Soil temperature 

is an additional factor explaining the seasonal fluctuation in CH4 uptake reported in 

several studies (Castro et al. 1995; Prieme and Christensen 1997). However, the influence 

of temperature on CH4 oxidation tends to be much stronger in high CH4 environments 

(landfills, bogs, Born et al., 1990; Crill et al., 1994) than in upland soils exposed to near 

ambient atmospheric concentration (Steudler et al., 1989; Sitaula et al., 1995).  

 Gas movement in soil is controlled by convective and diffusive processes. 

Convective processes can dominate during transient periods of atmospheric pressure 

change, and at locations where subsurface geologic or biologic gas sources are 

substantially large (Hillen, 1998). Diffusion - the movement of gaseous molecules due to 

concentration gradient - is the dominant process controlling the movement of gases 
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through the soil profile, and the exchange of gases between soil and the atmosphere. Gas 

diffusivity is a property that expresses the rate of gas movement through soils and, in the 

context of this study, the transport of O2 and CH4 to the sites of CH4 oxidation within the 

soil volume (Dorr et al., 1993; Kruse et al., 1996).  

Diffusion controls the supply of CH4 to the microorganisms responsible for its 

oxidation (Ball et al., 1997a; Ridge-well et al., 1999). For a given soil type, gas 

diffusivity and air-filled porosity are related to bulk density, soil moisture content soil 

structure, and the connectivity of soil pores (Ball and Smith 1991; Czepiel et al., 1995). 

Past studies have shown that, more than total porosity, the large soil pores (macro-pores) 

are the main contributor to gaseous transport in soils. Jacinthe and Lal (2006) reported a 

negative relationship between soil macro-pore volume and CH4 fluxes in a meadow, 

underscoring the improvement in soil CH4 uptake with greater availability of large soil 

pores. Borken and Brumme (1997) reported a significant increase in CH4 oxidation due to 

amelioration in soil structure following lime application to forest soils. 

Under NT, the decomposition of crop residue left on the soil surface is generally 

slow due to limited mixing with other soil constituents and decomposers (Gregorich et 

al., 2006). Thus, accumulated residue and litter may act as a diffusion barrier to gaseous 

exchange in NT systems (Ball et al., 1999). This, in addition to reports of increased soil 

bulk density and thus lower total soil porosity under NT (Cassel, 1982; Tebrugge and 

During, 1999; Wander and Bollero, 1999), would suggest that gaseous exchange may be 

impeded in NT soils. Further, as a source of labile organic substrate, the presence of 

surface residue could stimulate soil biological activity, leading to the development of O2-

deficient pockets in NT soils where CH4 production can take place. These physical 
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factors could therefore result in lower CH4 uptake under NT in comparison to PT, despite 

the improvement in soil biology that NT farming could bring. 

Once a soil is disturbed, the loss of CH4 oxidation capacity persists for long 

periods ranging from months (Willison et al., 1995), years (Mosier et al., 1991; Hutsch et 

al., 1994; Chan and Parkin, 2000; Regina and Alakhu, 2010) or decades (Ojima et al., 

1993; Kruse and Iversen, 1995; Omonode et al., 2007). Most studies have shown that the 

restoration of CH4 oxidation capacity of previously cultivated soils is a slow process 

requiring several decades (Prieme et al., 1997; Hutsch, 1998). The slow recovery may be 

due to the difficulty to remediate the damage sustained by methanotrophs (Sitaula et al., 

2000), and to the slow development of favorable soil structure following disturbance 

(Mapa, 1995). Damages to methanotrophic community include the destruction of 

ecological niches most suitable to methanotrophs, and possible shifts in the soil microbial 

population due to a progressive replacement of methanotrophs by nitrifiers, especially in 

cultivated soils subjected to annual N fertilizer application (Castro et al., 1994).  

Due to the absence of soil physical disturbance, it has been suggested that the CH4 

sink capacity of cultivated soils can be restored with NT adoption. Although available 

results are mixed, this assumption is nevertheless supported by the studies of Mosier et al. 

(2006) and Ussiri et al. (2009) in which soils under NT acted as significantly stronger 

CH4 sink compared to similar soils under conventional tillage. A more recent evaluation 

at several sites across Ohio has shown a progressive increase in CH4 uptake with NT 

duration (Shrestha et al., 2013). Data from that study (Shrestha et al., 2013, unpublished) 

have also shown that the mean CH4 uptake at 2 experimental plots under NT for 48 years 

was 7 times lower at location with poorly drained soil (-0.021 mg CH4-C m-2 d-1) than at 
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location with well-drained soil. These results suggest a possible diffusion limitation of 

CH4 uptake at the poorly drained location. Therefore, even though soils under NT may 

have the potential for biological CH4 oxidation, this potential may be masked by 

diffusion restriction. 

So far, the mechanisms by which tillage practice affect soil CH4 uptake are not 

completely understood. Restoration of CH4 uptake with NT farming may be due to 

positive changes in soil microbial properties (microbial biomass, species composition, 

cell-specific activity of methanotrophs) and/or improvement in soil diffusivity due to 

increased soil macro-porosity. This study was conducted to develop a better 

understanding of the improvement in both soil biology and soil diffusivity with the 

adoption of NT farming. 

 

Project significance 

NT farming has been viewed as a promising option to mitigate GHG emission in 

the agricultural sector. But, consideration of long-term NT as a strategy to minimizing the 

adverse effects of cultivation on soil CH4 sink strength is still a working hypothesis. The 

benefits of NT farming on several soil quality parameters are well documented, but there 

is a paucity of data regarding the impact of NT on GHG fluxes, and more specifically on 

the soil factors controlling CH4 oxidation in NT soils. Many studies (Kessavalou et al., 

1998; Mosier et al., 2006; Jacinthe and Lal, 2008; Ussiri et al., 2009) have reported 

recovery of CH4 uptake capacity after adoption of NT. Yet, less is known whether the 

restoration is mediated by improvement of soil biology or better gas transport properties. 

This study will improve our understanding of the mechanisms controlling CH4 uptake in 
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NT soils, and will help reduce the uncertainties regarding the overall impact of NT 

agriculture on regional GHG budget. 

Very few studies have been carried out to assess the impact of tillage on the CH4 

uptake capacity of soils under long-term NT independently of other management 

practices. The proposed study provides a unique opportunity to assess the CH4 oxidation 

potential of soils under long-term NT in comparison to soils under conventional tillage 

practices (PT). Soil samples for this study were from research plots that have been under 

NT for about 50 years -  to our knowledge, this is the longest running continuous NT 

experiment in the world. Experimental plots are under different tillage methods but all 

other management practices (crop, fertilizer) are similar. No previous evaluation of the 

impact of tillage on CH4 oxidization capacity has been made using soils under NT for 

such a long period of time. Results of the proposed study will be a valuable contribution 

to society and agricultural sciences. 

 

Research questions and hypotheses 

1. How does long term adoption of NT affect the methane oxidation capacity of soils? 

 With the absence of soil disturbance for a long period of time, it is hypothesized 

that a large and active population of methanotrophs will evolve, resulting in increased 

CH4 oxidation. 

2. How does tillage practice and soil type affect diffusion of CH4 in soils?  

Methane uptake in upland soils depends upon optimum transport of CH4 and O2 

to methanotrophs. The transport of these gases is expected to vary with soil type. It is 

therefore hypothesized that, due to improved soil aggregation, gas diffusivity will be 
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significantly greater in NT compared to PT soils. However, due to increase in bulk 

density and higher moisture content, NT can lead to lower soil diffusivity in fine-textured 

and poorly-drained soils. 

 

Research objectives 

The specific objectives of this research study are as follows: 

1. To characterize the methane oxidation potential of NT soils in comparison to PT.  

2. To assess the significance of diffusion restriction on CH4 oxidation in NT soils.  

11 
 



MATERIAL AND METHODS 

Site Description  

This study was carried out with soil samples collected in 2012 from experimental 

plots located near the towns of South Charleston (39o45’, 83o36’W) and Wooster 

(40o45'48"N, 81o54'20"W) in Ohio (USA). These plots were established by the Ohio 

Agricultural Research and Development Center (OARDC) to study the effect of tillage 

practices on land productivity and soil properties. Tillage practices investigated include 

no-till (NT), chisel till, and conventional moldboard plow (PT). Tillage treatments were 

distributed in a randomized complete block design with four replicate plots per treatment 

(Van Doren et al., 1976; Dick, 1983). Experimental plots measure 8.4 x 37 m at the 

Wooster site, and 5 x 61 m at South Charleston. The experimental plots have been under 

continuous corn (Zea mays L.) since their establishment in 1962. The climate at each site 

is continental (Ohio Agronomy Guide, 1988). Long-term (30 y) mean annual temperature 

and precipitation are 10.7 oC and 1,104 mm at South Charleston, and 10.2 oC and 1,020 

mm at Wooster, respectively. At the Wooster site, soil is predominantly well-drained silty 

loam classified as Wooster (Fine, mixed, mesic Aeric Epiaqualfs) and Canfield (Fine-

loam, mixed, mesic Aquic Fragiudalfs). At the South Charleston site, however, soil is 

poorly-drained and classified as Crosby (Fine-loamy, mixed, mesic Oxyaquic 

Fragiudalfs). Soil texture information at the study sites is reported in Table 1. General 

characteristics of soils at the locations are reported in Mahboubi et al. (1993). 

Since the experimental plots have been under the same tillage practice for the 

same length of time but have contrasting soil drainage characteristics (moderately well 

drained in Wooster and somewhat poorly drained in South Charleston), they offer a 
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unique opportunity to evaluate the effect of soil drainage on CH4 oxidation and associated 

soil properties.  

Table 1. Surface soil texture at the study sites 
 

Parameter South Charleston Wooster 
Soil classification Crosby silt loam Wooster silt loam 

 
(Aeric Ochraqualf) (Typic Fragiudalf) 

Slope 1% 2.5 - 4.5 % 

Sand (%)a 15 25 

Silt (%) 65 60 

Clay (%) 20 15 
 

a Mineral soil composition data are from Mahboubi et al. (1993) 
 

In the present study, two tillage practices were investigated:  no-till (NT), and 

conventional tillage (or plow till, PT). Soil samples were also collected from a secondary 

growth deciduous forest (hereafter referred to as woodlot, WL) located near the 

experimental plots. The woodlots are treated as reference sites during data analysis and 

interpretation to represent the maximum oxidation potential of undisturbed soils in the 

region.   
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Fig 1. Location of the study sites in Ohio.  
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Soil sampling  

 Soil samples were collected on two occasions: summer and fall 2012. Soil 

samples (composite and intact soil cores) were collected from the 0-10 cm and 

10-20 cm soil depths. For each tillage practice, three plots were selected for the 

collection of soil samples and, within each plot, samples were extracted from 2 

sampling points. For each depth, soil material from these six sampling points was 

thoroughly mixed to make one composite soil sample per tillage practice. At the 

woodlot, soil samples were also collected at six randomly selected sampling 

points.  Next to each sampling point, an intact core (5 cm diam., 5 cm length) was 

also extracted for determination of bulk density. This sampling procedure was 

adopted in order to capture natural site variability. The summer sampling occurred 

on June 6 (Wooster) and June 13, 2012 (South Charleston). Sieved soil samples 

were used for assessing CH4 oxidation kinetics and soil intact cores for 

determining soil gas diffusivity. In addition, sieved soil samples were also used 

for determination of background soil properties at the study sites. 

A second soil sampling was conducted during the fall of 2012 (Wooster on 

November 23 and South Charleston on November 29). Composite soil samples 

were collected using the sampling procedure described above and was used to 

assess seasonal variation in CH4 oxidation capacity. For each tillage treatment, 6 

intact soil cores (3 from surface and 3 from subsurface) were also collected for 

assessment of CH4 oxidation capacity and possible limitation of diffusion on the 

process. A similar number of intact cores were also obtained for the woodlots.  

Cores were covered with parafilm to reduce evaporative water loss, and 
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composite soil samples were stored in plastic bags.  All samples were transported 

in a cooler over ice pads, and stored in a laboratory refrigerator at 4 oC until used. 

 

Physicochemical properties of soil  

  Bulk density was determined by the core method. Intact soil cores were 

placed in an oven (105 oC), and allowed to dry for at least 72 h. Bulk density was 

computed as the ratio of the dry weight of soil to core volume. Soil pH was 

measured with a pH meter (Accumet 25, Fisher Scientific) using a soil suspension 

(2:1 water to soil ratio). Gravimetric soil moisture content was determined by 

oven drying 5 g moist sample in aluminum trays (105 oC, 48 h). Gravimetric 

moisture (θ) was computed as: 

 






 −

2

21

W
WW  

where, W1= weight of moist soil, W2 = weight of dry soil. Total porosity (Ø) was 

computed by equation: 







 ρ
−

652
1 b

.
  

where, 𝜌𝑏 is bulk density. Air-filled porosity (𝜀𝑎, cm3 cm-3) was determined by 

deducting gravimetric moisture content from total soil porosity: 

𝜀𝑎= ∅ - 𝜃. 

Total carbon (TOC) and total N (TN) were measured by dry combustion 

(900 oC) using a Vario-TOC Cube analyzer (Elementar Inc., NJ). Oven-dried soil 

samples were sieved to a fine powder (150 µm), and approximately 8-12 mg of 

soil material was used for analysis. Soil material was transferred into tin capsules 
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and pressed into pellets. The exact weight of the pellets were measured with a 

micro-balance (Mettler Toledo) and recorded. Then the pellets were loaded into 

the carousel in Vario-TOC Cube analyzer.  Each sample was analyzed in 

duplicate. 

 Microbial biomass carbon (MBC) was determined using the substrate-

induced respiration (SIR) procedure (Anderson and Domsch, 1978). Duplicate 

field moist soil (20 g) was placed in a beaker and amended with 600 mg of 

glucose-talc (1:4) mixture. The beaker content was thoroughly mixed with a glass 

rod, and placed inside a mason jar (volume: 900 mL). After 30 minutes of 

acclimation, each jar was closed with a lid fitted with a sampling port and was 

incubated at room temperature (25 oC). After 2 h, air samples from each jar 

headspace were taken and stored in evacuated gas vials. Air samples were 

analyzed for CO2 concentration using gas chromatography. MBC was computed 

as:  

  













 µ=

soildwg
L45.0

Lh
CO LSIR 2   

Where, dwg = dry weight of soil, g; MBC, mg biomass-C kg-1 soil = 40.04 SIR 

(Anderson and Domsch, 1978) 

 

Mineral Nitrogen 

The pool of mineral N (NO3
- and NH4

+) in soil sample was determined 

using the KCL extraction procedure. Field-moist soil (10 g) was weighted in a 

disposable centrifuge tube and mixed with 40 ml of 1M KCl. The suspension was 

shaken for 1 h at 200 rpm on a shaker. The suspension was allowed to settle, and 

17 
 



then was filtered using Whatman no.1 filter placed in a glass funnel. The extracts 

were collected in scintillation polypropylene vials. All the extracts were stored 

frozen until analyzed. Nitrate content was determined using a Konelab (Aquakem 

250) analyzer.  

 Ammonium concentration was measured spectro-photometrically using 

the micro-plate procedure described by Sims et al. (1995). Quadruplicate 100 µL 

aliquots of each sample were transferred to a 96 well micro-plate. Each well then 

received 25 µL of a citrate reagent (5 g citric acid and 2 g NaOH in 100 ml of 

water). After waiting for 1 min, 50 µL of nitroprusside reagent (7.183 g of sodium 

salicylate and 0.125 g Na nitroprusside in 100 mL water, pH adjusted to 6-7 with 

NaOH) was added to each well. After standing for 20 min, 25 µL of hypochlorite 

(1g Na3PO4 dissolved in 2 mL of 2 M NaOH, 10 mL of  bleach  and water to 

bring to 100 mL, pH adjusted to 12-13 with NaOH ). After standing for 40 min 

for color development, the absorbance was read on a spectrophotometer 

(Versamax, Sunnyvale, CA) at a wavelength (λ) of 650 nm. A standard curve was 

developed using solutions of known NH4
+ concentration against absorbance. 

Using this standard curve, respective NH4
+ concentration in soil extracts were 

calculated based on absorbance reading. 

 

Determination of methane oxidation potential 

  Methane oxidation potential was assessed using intact soil cores and 

field-moist sieved (5 mm) samples. Field-moist sieved (20 g of 2-5 mm size soil 

aggregates) soil samples were placed in 900 mL wide-mouth Mason jars. For each 

18 
 



soil sample, incubation was conducted at five different initial CH4 concentrations 

(range: 3 to 300 µL CH4 L-1) in the jar headspace. Various amounts of methane 

(from a main stock of 990,000 µL CH4 L-1 and subsequent stock made from the 

main stock) were added to obtain the targeted starting concentration in the jar 

headspace. Three jar replicates were used for each initial targeted CH4 oxidation. 

Change in CH4 concentration was monitored over a period of 7-8 days. Air 

samples were taken using gastight syringes (15 mL), and stored in crimp-sealed 

evacuated glass vials (10 mL) fitted with butyl rubber septa. Air samples were 

analyzed for CH4 and CO2 by gas chromatography (Varian CP 3800). In general, 

decrease of methane concentration in all the soil samples followed a first-order 

decay model  

kt
oeAA −=   

Where, “A” is concentration of substrate (CH4) at time “t”, “Ao” is the 

initial CH4 concentration (at t = 0) and k is the rate constant (k, h-1). Rate constant 

was computed using non-linear regression procedure (NLIN available in SAS, 

2012). Rate of CH4 oxidation (µL CH4 L-1 h-1) was computed as a product of rate 

of constant (k) and corresponding initial CH4 concentration. 

Using the same non-linear regression procedure (NLIN procedure, SAS 

2012), rate of CH4 oxidation (v) and initial CH4 concentration (S) were fitted to 

the Michaelis-Menten model to derive maximum oxidation rate (Vmax) and half 

saturation constant (Km): 









+
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To determine kinetic parameters, attempts were made to fit the data to the 

Lineweaver and Burk plot (linear form of the Michaelis Menten model).  The 

procedure was found non satisfactory for a large number of samples. Therefore, as 

proposed by Ranaldi et al., (1995; 1999), nonlinear regression methods were used 

to derive kinetic parameters.  Saturation curves [that is rate (v) vs. substrate [S]) 

were drawn using the Sigma plot (2009) graphing and statistical software (Systat 

Software Inc, San Jose, CA). 

Sieved soil samples from the 10-20 cm layer were allowed to incubate for 

close to 400 h to determine the CH4 oxidation threshold (Th) defined as the CH4 

concentration below which no CH4 oxidation occurs. The threshold value (Th) for 

CH4 oxidation was obtained through examination of the CH4 decay curve for the 

soil samples incubated at near ambient CH4 concentration (3 µL CH4 L-1) and for 

close to 400 h. “Th” value was determined by inspecting the CH4 consumption 

curve down to the lowest CH4 value at which CH4 concentration in the incubation 

vessel remained constant for more than 2 days.  

Methane oxidation was also investigated using intact soil cores, but with 

one initial CH4 concentration (3-4 µL CH4 L-1). Methane concentration during the 

incubation period was fitted to a first order model and oxidation rate was 

computed as described above.  Results of the CH4 oxidation assays conducted 

with sieved soil were compared to those obtained with intact cores in order to 

assess the impact of diffusion limitation on CH4 consumption. 

When sieved soil was incubated at an initial CH4 concentration of 3 µL 

CH4 L-1 during the CH4 oxidation assays, the rate of CO2 production was taken as 
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a measure of basal soil respiration. Air samples (20 mL) were taken periodically 

(7-8 times over an 8-9 day period) from jar head space and analyzed for CO2 by 

gas chromatography. CO2 concentration (µL CH4 L-1) obtained was plotted 

against time (h) to determine the slope of the regression line (ppm CO2 h-1). Basal 

soil respiration (BSR) was expressed as mg CO2-C kg-1 soil h-1 taking into 

account the incubation jar volume and gravimetric soil moisture content. 

 

Determination of soil gas diffusivity  

 For this assessment, intact soil cores collected in November 2012 were 

used, and CH4 was the diffusing gas.  Since the soil cores contain both CH4-

producing and CH4-consuming microorganisms, sterilization was necessary to 

overcome calculation errors that might be caused by biological activity. 

Therefore, soil cores were taken to a gamma radiation facility at Purdue 

University in West Lafayette (IN) for sterilization. The soil cores were loaded 

inside a radiation chamber which delivered 2 Megarads (20 kGy) of radiation over 

a period of approximately 80 hours. Soil cores were sterilized by direct and 

indirect action. In direct action, the ionizing event causes direct damage to cell 

DNA inducing a mutagenic or lethal effect. Indirect effects can occur as a result 

of radiolysis of cellular water and the formation of active oxygen species, free 

radicals and peroxides causing single double strand DNA breaks (Jackson et al., 

1967; Romanovskaya et al., 1999). Sterilized cores were carried back to the Soil 

Biogeochemistry laboratory in Indianapolis with caution and stored in a 

refrigerator. 
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  Gaseous diffusivity of soils was determined using the procedure proposed 

by Rolston et al. (1978). A diffusion apparatus was assembled, and included an 

intact soil core securely fastened between two boards made of PVC material. A 

plastic gasket was placed around the lip of the aluminum cylinder containing the 

soil core to ensure air-tight contact between soil core and the PVC boards. Each 

soil core was interfaced with 2 jars: one representing the CH4 source and the other 

the sink (Fig. 1). For the source jar, CH4 was added (40 ml of 99 % CH4) to bring 

CH4 concentration to 24 × 103 µL CH4 L-1 at the beginning of a run. To prevent 

convective flow of the gas, a volume of 40 mL of ambient air was added to the 

sink jar.  Because of the concentration gradient created, this set-up allowed a 

constant flow of CH4 from the source to the sink jar through the intact soil core. 

Each diffusion run lasted 7-9 days to complete.  

 Air samples (15 ml) were taken from the headspace of the sink and the 

source jars and transferred to evacuated glass vials for CH4 analysis. The data 

were fitted to a first order diffusion model: 

kt  )C(C ln sinksource =−   

where, Csource  is the concentration of sink at time t; Csink  is the concentration of 

source at time t = 0 ; k = first order rate constant (min-1);  t = time (min). The rate 

constant “k” was calculated by using slope function in the Excel 2010 

(  )C(C ln sinksource − vs. time) 

The diffusion coefficient (Ds, cm2 s-1) was determined using the model proposed 

by Rolston et al. (1978) for diffusion of gases through porous media:  

VL
ADK s=   
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where, A is the cross sectional area of soil core (cm2); V is the volume of 

diffusion chamber (liter), L is the thickness of soil sample (cm). 

 

Analytical methods 

 Air samples were analyzed for CO2 and CH4 using a Varian (CP-3000) gas 

chromatograph interfaced with a Combipal headspace auto-sampler. The 

stationary phase consisted of a Hayesep DB column (300 cm long, 0.3 cm id) 

connected to a thermal conductivity detector (100 oC, for CO2 detection) in series 

with a flame ionization detector (FID at 150 oC, for CH4 detection). Analytical 

conditions were: carrier gas (Helium: 20 mL min-1), flame gases (Hydrogen: 25 

mL min-1 and hydrocarbon-free compressed air: 300 mL min-1) and oven 

temperature 90 oC.  

 

Fig 2. Experimental set up for estimation of soil gas diffusivity in soil cores 
 

Statistical Analysis 

Data was analyzed using two-way ANOVA PROC GLM procedure 

available in SAS (SAS Institute, 2012) with tillage and study site as experimental 

source Si
nk

 

Sterilized cores 

CH4 
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factors at two depths: 0-10 cm and 10-20 cm. In the analysis, response variable 

were SOC, TN, bulk density, NH4-N, NO3
-, moisture, Vmax, Km, CH4 oxidation 

rate and BSR. Sample sets not large enough for ANOVA were compared using 

paired t-test. Statistical significance was determined at P < 0.05. 
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RESULTS 

General properties of soil  

Soils used in the study were slightly acidic to neutral (pH: 5.7-7.4, Table 2 

and 3). The bulk density (ρ) of soils ranged from 1 to 1.5 g cm-3. Significant 

effect of tillage on bulk density was detected. Bulk density was significantly 

higher in PT plots than in NT plots (Table 2 and 3).  

In the surface soil layer (0-10 cm), SOC was significantly higher in NT 

than in PT soils. The opposite was observed in the 10-20 cm layer (Table 2 and 

3).  There was no significant effect of tillage in TN. In most of the cases, C/N 

ratio was generally higher in woodlot soils and lowest in PT soils (Table 2 and 3). 

 

Mineral nitrogen at the study sites 

NH4-N was higher in the woodlots (both the surface and the subsurface 

layers) at the South Charleston site whereas, no particular trend was seen in the 

Wooster plots. A significant effect of the tillage and its interaction with site were 

observed with regard to nitrate (NO3
-) concentration.  

 

Soil moisture content 

Soil moisture content varied significantly with sites and tillage practices 

both in the June and November sampling events (Table 5). Regardless of the sites 

and sampling dates, moisture content followed the order WL > NT > PT.  

Moisture content was generally higher in the samples collected in November than 
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in June (Table 5). Soils from the South Charleston site had consistently higher soil 

moisture compared to soils from Wooster.  

 

Soil respiration (BSR) and microbial biomass carbon (MBC) in relation to tillage, 

soil type and season 

Significant effects of tillage on biochemical soil properties (for MBC and 

BSR, P < 0.001) were detected. The effects varied with site and the soil properties 

considered (Table 7). Regardless the of sites and depths, soil respiraiton was 2 

fold greater in NT than in PT in the surface layer. MBC decreased with increasing 

intensity of tillage disturbance and followed the order: WL > NT > PT (Fig. 2).  

The rate of CO2 production in soil samples incubated at near ambient CH4 

was taken as a measure of soil respiration. Results from incubation of the soil 

samples collected in June, 2012 were used to examine the effect of tillage and soil 

type on soil respiration. In addition, results obtained in June were compared with 

that of November to examine the effect of season on soil respiration. While no 

significant effect of location on MBC was found, the location of sites had 

significant effect on soil respiration. In general, soil repiration was greater in soil 

from the moderately well-drained Wooster site compared to the poorly drained 

soil from South Charleston. 
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Methane oxidation as related to soil biochemical properties   

Interrelationships between CH4 oxidation (rate and Vmax) and physical soil 

properties (NH4-N, NO3
-, SOC, BSR, MBC, TN, C/N and Ds) were examined 

using linear regression analysis. At both sites, CH4-oxidation was strongly related 

(r2 > 0.6, P < 0.05) to MBC, BSR and Ds (Table 9). With the South Charleston 

soils, CH4 oxidation capacity and Vmax were positively related to NH4-N. 

However, negative relationship between inorganic nitrogen and CH4 oxidation 

was observed at the Wooster site. 
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Table 2. Physico-chemical properties of soils at the South Charleston experimental plots. 

Tillage 
Soil property a 

pH SOC b 
(g C kg-1 soil ) 

TN 
(g C kg-1 Soil) C/N Bulk density 

(g cm-3) 
0-10 cm      

WL 7.4 (0.5) 31.4 (0.0)a 2.3 (0.1) 13.7 1.0 (0.1)b 
NT 6.7 (0.4) 23.4 (0.1)b 2.1 (0.1) 11.1 1.1 (0.1)b 
PT 6.4 (1.1) 11.8 (0.0)c 1.5 (0.0) 7.9 1.4 (0.2)a 

      
10-20 cm      

WL 6.1 (0.2) 9.7 (0.2)c 1.2 (0.0) 8.1 1.1 (0.0)b 
NT 5.8 (0.3) 10 (0.0)b 1.3 (0.0) 7.7 1.2 (0.2)b 
PT 7.4 (0.3) 12.3 (0.3)a 1.7 (0.0) 7.2 1.5 (0.1)a 

 
 a pH Values are mean of 2 measurements. All other values are mean of 3 measurements with standard deviation in parenthesis.  
b In a given column and soil depth, values followed by different letters are significantly different at P < 0.05. 
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Table 3. Physico-chemical properties of soils at the Wooster experimental plots. 

Tillage 

Soil property a 

pH SOC b 
(g C kg-1 soil ) 

TN  
(g C kg-1 Soil)  C/N Bulk density 

(g cm-3) 

0-10 cm      

WL 5.7 (0.2) 25.6 (0.8)a 2.1 (0.3) 12.2 1 (0.1)b 
NT 6.4 (0.1) 21.4 (0.0)b 2.1 (0.0) 10.2 1.1 (0.2)b 
PT 6.9 (0.1) 13.6 (0.2)c 1.8 (0.0) 7.6 1.3 (0.3)a 

      
10-20 cm      

WL 6.5 (0.1) 13.3 (0.2)c 1.8 (0.0) 7.4 1.1 (0.4)b 
NT 6.9 (0.0) 13.9 (0.3)b 1.7 (0.3) 8.2 1.2 (0.1)b 

PT 7.3 (0.1) 16.7 (0.0)a 1.7 (0.1) 9.8 1.4 (0.3)a 

 
 a pH Values are mean of 2 measurements. All other values are mean of 3 measurements with standard deviation in parenthesis. 
b In a given column and soil depth, values followed by different letters are significantly different at P < 0.05. 
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Table 4. Mineral nitrogen content in soils at the South Charleston and the Wooster plots at the time of soil sampling in June 2012. 
 

Tillage Soil property a 

  South Charleston     Wooster  
NH4-N b 

(mg NH4-N kg-1 Soil ) 
 
 

NO3
- 

(mg NO3
- kg-1 Soil ) 

 
 

NH4-N 
(mg NH4-N kg-1 Soil ) 

 
 

NO3
- 

(mg NO3
- kg-1 Soil ) 

0-10 cm        

WL 7.3 (0)  11.7 (0.4)c  9.0 (0)  25.2 (0.7)b 
NT 6.2 (3)  16 (3.0)b  7.6 (4.5)  14.7 (0.4)c 
PT 4.7 (1.5)  25.4 (9.7)a  11.8 (3.2)  34 (1.3)a 

        

10-20 cm        
WL 8.9 (4.9)  17.8 (0.6)a  7.2 (0.2)  5.2 (0.4)c 
NT 3.7 (1.3)  23.0 (0.4)a  8.3 (2.4)  21.6 (3.5)b 
PT 4.6 (0.7)  19.7 (0.6)a  7.8 (1)  29.9 (1.6)a 

 
a Values are means of 3 measurements with standard deviation in parentheses.  
b In a given column and soil depth, values followed by different letters are significantly different at P < 0.05. 
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Table 5. Temporal variation in soil moisture at the study sites. 
  

Tillage Moisture b 

 

 South Charleston    Wooster  

June b  
 Nov  

 June  
 Nov 

0-10 cm        

WL 29.5 (1.0)a  33.1 (1.3)a  23.1 (0.2)a*  31.5 (2.1)a* 
NT 24.5 (1.3)b  25.6 (1.9)b  19.8 (1.4)b  21.2 (0.2)b 
PT 14.6 (1.0)c*  19.5 (0.7)c*  14 (0.7)c  17.6 (0.8) b 

        
10-20 cm        

WL 24.5 (1.1)b  25.8 (0.4)a  21.1 (1.4)a  24.3 (0.4)a 
NT 22.6 (1.3)a  24.9 (0.1)b  18.8 (1.7)a  20.1 (0.2)b 
PT 19.7 (0.8)ab  20.9 (0.2)c  15.8 (1.5)a  18.5 (2.1)b 

  
a Values are means of 3 measurements with standard deviation in parenthesis.  
 b In a given column and soil depth, values followed by different letters are significantly different at P < 0.05. 
* Pair that are significantly different at P < 0.05 
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Table 6. Two-way ANOVA results for soil physico-chemical properties.  
 

Response Variables  

Class Variables df SOC 
 

TN 
 

Bulk density 
 

NH4-N 
 

NO3
- 

 
Moisture (%) 
June Nov 

Depth (0-10)         

Site 1 *** NS NS NS *** *** * 
Tillage 2 *** NS *** NS *** *** *** 

 
Site X Tillage 2 ** NS NS NS *** * NS 

         
 

Depth (10-20)         

Site 1 *** * NS NS *** ** ** 
Tillage 2 *** NS *** NS *** * *** 

Site X Tillage 2 *** NS NS NS *** NS NS 
 
*P < 0.05, **P < 0.01, ***P < 0.001, NS = Not significant 
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Table 7. Two way ANOVA results for soil biological and physical properties. 
 

Response Variables  

Class Variables df MBC Vmax Km (CH4)R
a BSR DS 

Depth (0-10)        

Site 1 NS *** NS *** *** NS 
Tillage 2 *** *** *** *** *** *** 

Site X Tillage 2 NS NS NS *** *** NS 
 

Depth (10-20)        

Site 1 NS *** NS *** *** NS 
Tillage 2 *** *** *** *** *** *** 

Site X Tillage 2 NS * NS *** * NS 
 

*P < 0.05, **P < 0.01, ***P < 0.001, NS = Not significant 
a rate of methane oxidation in sieved soils
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Fig 3. Microbial biomass carbon (MBC) at the South Charleston and Wooster 
sites as related to tillage practice. For a given soil depth, vertical bars with 
different letters are significantly different. 
 
a. South Charleston 
 

 
b. Wooster 
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Table 8. Basal soil respiration (CO2-C kg-1 soil hr-1) at the study sites as related to 
land-use and tillage practice. Each value is mean of 2 replicates. 
 

  Location 

Land-use Tillage South Charleston  Wooster 

  June a Nov  June Nov 
0-10 cm       

Woodlot WL 0.93a* 0.88a  1.18a 0.96a 
Cropland NT 0.34b 0.33b  0.36b 0.35b 
Cropland PT 0.16 c 0.15c  0.24c 0.19c 

10-20       
Woodlot WL 0.35a 0.33a  0.47b 0.47a 
Cropland NT 0.27b 0.25b  0.53a 0.32b 
Cropland PT 0.19c 0.17c  0.22c 0.17c 

 
a Within a column and for each soil depth, values followed by different letters are 
significantly different at P < 0.05. 
 
* BSR in soil samples collected in June and November at both the sites was not 
significantly different for all the observation when tested with paired t-test at P < 
0.05.  
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Table 9. Coeffient of determination (r2) for the relationships between CH4 consumption and soil properties.  

 
a Regression coefficients greater than 0.50 are in bold letters and those that are significant at 5 % are listed in parentheses. 
b Rate of methane oxidation  
c Maxiumum rate of methane oxidation 
d (-) Negative relationship  
   

 

 

Site Variables SOC TN C/N NH4-N NO3
- MBC BSR CH4(R)

b Ds 

South Charleston           

 CH4(R) 0.1 0.003 0.24 0.53 (-) 0.15 (0.67) (0.83) 1 (0.66) 

 Vmax
c 0.005 (-) 0.02d 0.05 0.17 (-) 0.13 0.17 0.14 (0.81) 0.47 

           
Wooster           

 CH4(R) 0.08 0.18 0.03  (-) 0.31 (-) 0.64 (0.7) (0.75) 1 (0.68) 

 Vmax 0.014 0.06 0.0002 (-) 0.30 (-) 0.6 0.24 0.28 (0.95) 0.65 
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Fig 4. Relationship between CH4 oxidation rate and NH4-N at a) South Charleston, and b) 
Wooster.    

a. South Charleston 
 

 

b. Wooster 
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Fig 5. Relationship between CH4 oxidation rate and NO3-N at  a) South Charleston, and 
b) Wooster.   
 
a. South Charleston 
 

 
b. Wooster 
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 Soil CH4  diffusivity  

Tillage practices had a significant effect (P < 0.01) on soil-CH4 diffusivity. 

Irrespective of the study sites, diffusivity was significantly greater in NT soils compared 

to PT soils (Fig. 5). Overall, soil-CH4 diffusivity was 2-3 fold greater in NT compared to 

PT soils. Diffusivity was higher in soils from the moderately well-drained Wooster plots 

compared to the poorly-drained South Charleston plots, but difference was not 

statistically significant. 

Air-filled porosity (𝜀a) differed significantly between tillage practice. Despite 

higher soil moisture, air-filled porosity was significantly higher in NT than in PT soils 

(Fig. 6). In some cases, air-filled porosity values in NT soils were even greater than in 

WL soils, indicating larger pore volume in NT soils. Regression  analysis showed a 

strong linear (r2 = 0.8, P < 0.001) relationship between soil-gas (CH4) diffusivity and air-

filled porosity. 

 

Methane oxidation kinetics 

All the soil samples tested, irrespective of the tillage practices and land-use, 

manifested some ability to oxidize methane. In general, CH4 consumption followed a first 

order kinetic model. Variation in CH4 concentration in jar headspace typically followed a 

concave pattern (Fig. 8). In the case of WL and NT soils, the concavity was more 

pronounced when incubation was conducted with a high (~ 250 µL CH4 L-1) initial 

methane concentration (Fig. 8). Consumption of CH4 by PT soils also followed a first 

order model but, due to very low rates [rate constant (k) in the order of 10-4 h-1], the 

decay curve was seemingly linear when incubation was conducted at near ambient CH4 
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concentration. However, at higher initial CH4 concentration (~ 250 µL CH4 L-1), some 

degree of concavity was observed even with the PT soils suggesting greater 

methanotrophic activity with increased availability of CH4. 
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Fig 6. Soil-CH4 diffusivity in intact cores from the (a) South Charleston and (b) Wooster 
sites as related to tillage. Vertical bar with different letter indicates values that are 
significantly different. 
 

a. South Charleston 
 

  
b. Wooster 
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Fig 7. Relationship between soil-CH4 diffusivity (measured with intact cores) and air-
filled porosity. The regression line is drawn using data for all types of land-use and tillage 
practices.    
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Fig 8. Time line of CH4 consumption at initial concentration of 3 µL CH4 L-1. Panel a = 0-10 cm depth; panel b = 10-20 cm depth. 
Thw, Thn, and Thp are the threshold values for Woodlot, NT and PT soil samples, respectively. 
 

South Charleston                                                            Wooster 

a. 

 

 

 

 

 

 

b.  

Thn 

Thp 

Thw 
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Fig 9. Time line of CH4 consumption at intial concentration of 250 µL CH4 L-1. Panel a = 0-10 cm depth; panel b = 10-20 cm depth. 

                                                 South Charleston         Wooster 
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Kinetic parameters of CH4 oxidation as related to tillage and soil type   

   Maximum rate of methane oxidation (Vmax) differed significantly (P < 0.001) 

with regard to tillage practices and land use (Table 10). Across study sites, Vmax was (1.5 

times) greater in NT than in PT soils. Further, a significant effect of study sites on Vmax 

was detected (Fig. 10 and Table 10), with the well-drained Wooster soil exhibiting higher 

Vmax than the poorly-drained Crosby soil (South Charleston).  

 Values obtained for the half saturation constant (Km) differed significantly 

between the two tillage practices. Km values were consistently lower in NT than in PT 

soils. Overall, the Km ranking was in the order: WL < NT < PT. This ranking suggests 

higher MMO enzyme activity and greater affinity of methanotrophs for CH4 in soils with 

less physical disturbance.  

Measured thresholds (Th) for CH4 oxidation were significantly lower in NT than 

PT soils (Fig. 8b). Overall, the threshold values for NT soils (0.6 µL CH4 L-1) were ~ 4 

fold lower than for PT soils (2.7 µL CH4 L-1) but were similar to the Th values recorded 

with forest soils (0.5 µL CH4 L-1).   

 

Methane oxidation rate of soils as affected by tillage and soil type 

The effect of tillage and soil type on the CH4 oxidation capacity of soils was 

examined using results obtained at low (3-4 µL CH4 L-1) initial CH4 concentration.  

Oxidation rates (µg CH4-C kg-1 h-1) were significantly (p < 0.001) higher in NT soils than 

in PT soils (Table 3).  Mean oxidation rates were 3-4 fold greater in NT than in PT soils. 

Under NT, the sub-surface soil layers showed higher oxidation rate than the surface 

layers. In plots under PT, CH4 oxidation was uniformly distributed throughout both soil 
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layers. Irrespective of landuse and tillage practices, the moderately-well drained Wooster 

soil exhibited higher CH4 consumption capacity than the poorly-drained Crosby soil 

found at the South Charleston site  (Fig. 11).  

 

Temporal variation in methane oxidation capacity of soils 

Incubation of the soil samples collected in June and November were carried out at 

near ambient CH4 level (3-4 µL CH4 L-1) to examine temporal variation in CH4 oxidation.  

In general, rates of CH4 oxidation were generally higher in soils collected in June than in 

November (Table 13) but ANOVA showed no significant effect of sampling date. 

However, regardless of sampling date and study site, the effect of tillage practices on CH4 

oxidation persisted (higher rate in forest and NT soils than in PT soils).  

 

Diffusion limitation in intact core compared to sieved soil 

Diffusion limitation was assessed by comparing CH4 oxidation rates in intact 

cores with those measured in sieved soils. In all cases, rates of CH4 oxidation were 

significantly (3-4 fold) lower in the intact cores compared to sieved soils suggesting 

diffusion restriction of CH4 transport in the intact cores (Fig. 12). 

 Regardless of sites and soil depths, CH4 oxidation rate in intact cores extracted 

from WL and NT plots was 34-44% of that in sieved soils. However, with intact cores 

from the PT plots, oxidation rate in intact cores was between 20 % (Wooster) and 6 % 

(South Charleston) of the rate measured with sieved soils. These results illustrate the 

severe restriction of gaseous diffusion on CH4 oxidation in PT soils, especially at poorly-

drained locations. 
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Interrelationships between methane oxidation, bulk density and soil-gas diffusivity 

 Regression analysis showed a strong positive relationship (r2 = 0.68, P < 0.001) 

between CH4 oxidation in cores and soil-CH4 diffusivity (Fig. 14). In comparison to PT 

cores, NT and WL cores showed higher diffusivity values and corresponding higher CH4 

oxidation rates. In contrast, negative relationships were observed between bulk density 

and diffusivity (r2 = 0.6, P < 0.001, Fig. 13a), and between bulk density and CH4 

oxidation (r2 = 0.7, P < 0.001, Fig. 13b). These results are consistent with the other 

indications of gas transport restriction stated above.  

  

47 
 



Fig 10. Maximum rate of CH4 oxidation (Vmax) in soils from the South Charleston (left) and Wooster (right) sites. Panel a = suface 0-
10 cm; Panel b = subsuface 10-20 cm. Vertical bar represents standard deviation of the mean.  
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Table 10. Kinetic parameters of CH4 oxidation in soils in relation to land-use and tillage 
practices. Values are mean of two replications with standard deviation in parentheses. For 
a given soil depth, values in a column are significantly different (p < 0.05) if they are 
followed by different letters. Units: Vmax (µg CH4-C kg-1 h-1), Km (µL L-1) and Th (µL L-1) 

 
† Sieved soils from the 0-10 cm layer were not incubated for a period long enough for 
determination of Th. Standard errors for Th are not reported because values are < 0.1. 
 

  

  
South Charleston  Wooster 

  
Vmax Km Th† Vmax Km Th 

(0-10)      
 

WL 43 (0.6)a* 86.5 (5)b – 48.5 (0.5)a 88.9 (3)b – 
NT 41.2 (0.5)b 98.5 (1)b – 46.2 (0.3)a 103.8 (7)b – 
PT 29.1 (0.3)c 141.7 (6)a – 32.7 (2)b 134.9 (4)a – 

       
(10-20)       

WL 48.5 (0.3)a 79.5 (8)c 0.5b  54 (0.1)a 88.6 (3)b 0.5b 
NT 46.2 (0.6)a 96.8 (2)b 0.6b 51.8 (0.6)a 103.7 (1)b 0.5b 
PT 32.7 (0.7)b 127.8 (2)a 2.8a 32.8 (2.2)b 137.4 (10)a 2.7a 
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Fig 11. Rate of CH4 oxidation in soils from the a) South Charleston and b) Wooster sites 
in relation to land-use and tillage practices. Vertical bar represents standard deviation of 
mean of two replicates. Bars are labeled  with different letters to indicates significant 
difference (p < 0.05). 
 a. 

 

b. 
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  Table 11. Temporal variation in CH4 oxidation (µg CH4 kg-1 soil h-1) at the a) South 
Charleston and b) Wooster sites. Soil samples were collected in June and November 
2012. Values in parentheses are mean of two replications. Incubation was carried out at 
near ambient (~ 3 µL CH4 L-1) CH4 concentration. 
 
a. 

South Charleston 

  WL   NT   PT  
   

 June Nov June Nov June Nov 

(0-10) 0.32 
(0.02) 

0.30 
(0.04) 

0.22 
(0.01) 

0.21 
(0.02) 

0.06 
(0.02) 

0.05 
(0.02) 

(10-20) 0.36 
(0.00) 

0.31 
(0.03) 

0.25 
(0.01) 

0.23 
(0.03) 

0.07 
(0.00) 

0.06 
(0.02) 

 

b.  
 

Wooster 

  WL   NT   PT  
 June Nov June Nov June Nov 

(0-10) 0.41 
(0.01) 

0.39 
(0.02) 

0.33 
(0.01) 

0.28 
(0.02) 

0.07 
(0.02) 

0.06 
(0.01) 

(10-20) 0.46 
(0.02) 

0.43 
(0.030 

0.35 
(0.00) 

0.34 
(0.02) 

0.08 
(0.01) 

0.06 
(0.00) 
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Fig 12. Methane oxidation rate in intact soil core versus sieved soils. Results for the surface (0-10 cm) and subsurface (10-20 cm) soil 
layers are reported in the top and bottom graphs, respectively. For each set of graphs, data are ported for woodlot (left), no-till (center) 
and plow till (right). Note the difference in scale for the PT results. Vertical bars represent standard deviation of mean of two 
replications. The percent value on top of a bar represents CH4 oxidation in intact core expressed as a % of CH4 oxidation in sieved 
soils. Abbreviations: S.C = South Charleston; W = Wooster; WL = woodlot; NT = no-till; PT = plow till 
a. 

 

 

 

 

 

 

b.  
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Fig 13. Relationships between bulk density with a) diffusivity and b) CH4 oxidation rate. 
Each data point is the mean of two replicates. Results for both study sites and soil depths 
(0-10, 10-20 cm) are included in each graph. 
a. 

 

b. 
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Fig 14. CH4 oxidation rates in soil intact cores in relation to diffusivity. Each point is the 
mean of two replication for rates of CH4 oxidation and three replications for diffusivity 
(Ds). Results for both study sites and soil depths (0-10, 10-20 cm) are included in the 
graph. 
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 DISCUSSION 

Tillage and Land use effects on CH4 oxidation in surface soils 

Among terrestrial landscapes, grassland and forest soils have generally exhibited 

the highest capacity to oxidize CH4. Results of the present study confirm this widely 

reported observation (Lessard et al., 1994; Ambus and Christensen, 1995; Dobbie et al., 

1996). However, the conversion of these natural ecosystems to croplands has generally 

resulted in a rapid decline of that capacity. Two factors have been proposed to explain the 

reduction in CH4 consumption with land use conversion. The first factor includes 

disturbance of the original soil structure by tillage operations and the resulting loss in 

ecological niches suitable for methanotrophs (Willison et al., 1995). According to Conrad 

(1996), oxidation of CH4 occurs in soil crumbs or in sand grains with biofilms that can 

offer some protection to methanotrophs from disturbance. This center of methanotrophic 

activity can easily be destroyed by plowing when forests and or grasslands are converted 

into croplands.   

Application of N-fertilizer is another factor thought to contribute to the low CH4 

oxidation in agricultural soils (Steudler et al., 1989; Adamsen and King 1993; Castro et 

al., 1994). The effect of NO3
- has been ascribed to the osmotic stress imposed on 

methanotrophic bacteria by high NO3
- concentration in soil solution (Dunfield and 

Knowles, 1995). In accord with that view, negative relationships between CH4 oxidation 

rate and NO3
- concentration in soils were found in the present study; weak negligible 

relationship (r2 =0.15, p > 0.1, Fig. 5a) with soils from the South Charleston site and 

moderate relationship (r2 = 0.64, p > 0.05, Fig. 5b) with soil samples from Wooster. The 

negative effect of NO3
- on CH4 oxidation has previously been reported when soil NO3

- 
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concentration is in excess of 40 mg NO3
--N kg-1 (Hutsch, 1998a). Since NO3

- 

concentration (mean: 34 mg NO3
- kg-1, Table 4) in the soil samples incubated in this 

study was below the minimum concentration of NO3
- required for osmotic effect, that 

may explain the limited effect of NO3
- observed in this study.  

The decline in CH4 uptake rates in croplands has also been associated with the 

inhibitory effect of NH4
+ fertilization on CH4 monooxygenase enzyme (MMO) (Mosier et 

al., 1991; Hutsch et al. 1993; Hutsch et al., 1996; Hutsch 1998a). Immediate, short term 

effect is usually explained as the competitive inhibition of MMO by NH4
+ (Adam and 

King, 1993; Bronson and Mosier, 1994; Dunfield and Knowles, 1995). Long term effect 

is probably due to repeated applications of NH4
+-based fertilizer which, in the long run, 

can cause change in the ecology and composition of soil methanotrophic community 

(Adam and King 1993; Gulledge et al., 1997). Based on these considerations and the 

results of several past investigations (King and Schnell, 1994; Hutsch et al., 1993; Hutsch 

et al., 1996), negative relationships between NH4
+ concentration and CH4 oxidation were 

expected. This expectation was met in the case of the Wooster soils (r2 = 0.3, p > 0.1; Fig. 

4b). For the South Charleston soils however, the opposite was observed (r2 = 0.52, p > 

0.1; Fig. 4a). Soils from the South Charleston site have higher clay content (Table 1), and 

have higher CEC (122-105 mmol/kg) than the silty-loam soil from Wooster (106-76 

mmol/kg; Mahboubi and Lal, 1993). It is well known that NH4
+ ions participate in cation 

exchange phenomena in soils (Nommik and Vahtras, 1982) and, as a result of its 

retention on the soil exchange complex, there could be less interaction between NH4
+ 

ions in soil solution and the monoxygenase (MMO) enzyme. Therefore, the actual 

concentration of NH4
+ in the soil solution may be much lower than suggested by the total 
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concentration, and this mechanism could thus mitigate the impact of NH4
+ on CH4 

oxidation in clay-rich soils such as those found at the South Charleston site. As reported 

in several other studies (Lessard et al., 1994; Ambus and Christensen, 1995; Dobbie et 

al., 1996), NH4
+ content in the woodlot soils were considerably higher than in the 

cropland soils (Table 4). Therefore, the significantly higher rate of CH4 oxidation in the 

forest soils suggests that NH4
+ availability was not a primary factor controlling CH4 

dynamics at the study sites. Higher NH4
+ concentration in the forest soils is likely the 

result of more rapid decomposition of leaf litter and greater mineralization of soil organic 

matter as suggested by basal soil respiration measurements (Table 8). The C/N ratios also 

indicate relatively higher C quality in organic matter in the forest soils (Table 2 and 3). 

All these factors indicate greater availability of organic C in forest soils, and this may 

stimulate the activity of soil methanotrophs (Conrad, 1984). These considerations suggest 

that NH4
+ concentration may not be the only factor that control CH4 oxidation, other soil 

variables must also be considered. 

It has been suggested that the CH4 oxidation capacity of upland soils can be 

restored with cessation of tillage disturbance. Numerous studies (Dobbie and Smith, 

1996; Prieme et al., 1997; Hutsch, 1998) have shown restoration of activity, but this 

generally occurs at a very slow rate. The slow recovery has been attributed to extreme 

sensitivity to disturbance of the methanotrophs that can grow at the low CH4 

concentration typically found in upland soils (King, 1997; Menyailo et al., 2008). The 

slow recovery may also be due to the slow restoration (over several decades) of the 

original soil environment for methanotrophs (Prieme et al., 1997; Hutsch 1998; Regina et 

al., 2007). Suwanwaree and Robertson (2005) argued that the slow recovery of CH4 
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oxidation in fertilized agricultural soils can be associated to alterations in the soil 

microbial community structure and to soil organic matter quality - both of these soil 

properties evolve very slowly with time. Results of several studies have documented the 

slow recovery of CH4 oxidation in disturbed soils (Jacinthe and Lal, 2005; Suwanwaree 

and Robertson, 2005; Mosier et al. 2006). Mosier et al. (2006) found no effect of tillage 

on CH4 oxidation after 3 years of NT adoption in a Colorado irrigated cropland. Jacinthe 

and Lal (2005) reported similar results for cropland in Central Ohio after 8 years of NT. 

However, in the present study, a significant effect of NT was observed on both the 

biological and physical soil parameters linked to CH4 consumption. Overall, CH4 

oxidation was 5-fold greater in NT soils than in PT soils after 50 years of NT practice 

(Fig. 11). Regardless of the study sites, CH4 oxidation in NT soils was 66-80 % of the 

level in adjacent forest soils (Fig. 11). These results suggest that duration of NT practice 

is an essential factor in considering the benefits of NT to CH4 dynamics in soils. While no 

significant effect is generally noted in the first decade of NT adoption (Jacinthe and Lal, 

2005; Mosier et al. 2006), the present study shows that, after 5 decades of NT practice, 

CH4 oxidation potential of soils is approaching the level in forest soils. This corroborated 

the proposition made in several past reports that, several decades without disturbance 

might be needed to restore the CH4 oxidation capacity of cultivated soils (Prieme et al., 

1997; Sitaula et al., 2000; Jacinthe and Lal, 2004). 

Regardless of the soil depths and study sites, SOC, basal soil respiration and 

MBC were higher in NT soils compared to PT soils, and were close to the level measured 

in adjacent forest soils (Fig. 3). Strong correlation was also found between size of 

microbial population (MBC) and CH4 consumption rate (Table 9). This suggests that 
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higher C content and availability in NT soils compared to PT soils may have favored the 

development of larger population of soil microbes including methanotrophs. This 

observation supports the hypothesis that, in the absence of soil disturbance for a long 

time, CH4 oxidation can increase due to development of a larger and more active 

population of methanotrophs in NT compared to PT soils. 

No-till adoption also affects the vertical distribution of methanotrophic activities 

in soil profiles. In the PT plots, there was no clear change in CH4 oxidation between the 

surface and subsurface soil layers (Fig. 11). Since the top 30 cm soil layer is overturned 

and mixed by an annual plowing, no distinct zone of CH4 oxidation maximum existed in 

the PT soil profile. However, clear zonation of activity was observed in NT plots. CH4 

oxidation rate was higher in the subsurface (10-20 cm) layer than in the surface (0-10 cm) 

layers in the NT plots and woodlots. NH4
+concentration tends to be higher in the surface 

soils than in the subsurface soils (Table 3), and since NH4
+ could be inhibitory to CH4 

oxidation, this distribution may have caused a greater suppression of methanotrophic 

activities in the surface than in the subsurface soil layers. Further, soil water content 

fluctuates rapidly in the top soil layer, making it a less favorable environment for 

methanotrophs than the soil layers just below (Schnell and King, 1996). This may have 

led to greater population size in subsurface layer where water stress is minimal. 

 

CH4 oxidation kinetics as affected by tillage 

In the present study, clear distinction in CH4 oxidation activities were observed 

between the soil samples from NT and PT practice. Vmax values were generally in the 

order: WL ≥ NT > PT soils. This ranking is consistent with the results of Bender and 
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Conrad (1992), and Dunfield and Knowles (1995) who also reported higher Vmax values 

for forest soils compared to PT soils. Consistent with the subsurface maximum observed 

for oxidation rate (Fig. 11), slightly greater activity was generally observed in the 10-20 

cm than in the 0-10 cm layer, though difference was not statistically significant (Fig. 12 

and Table 10). Regardless of the study sites and depths, Vmax value was on average 1.5 

fold lower in the PT than in NT soils (Table 10). The low methanotrophic activity in PT 

soils is probably due to a decline in the biomass of the active methanotrophs with chronic 

soil disturbance (Saari et al., 2004; Menyailo et al., 2008).  

Affinity of methanotrophs for CH4 (Km) followed the order: WL < NT < PT 

(Table 10) in soils from both sites. Km values for all soil samples were within the range 

reported for upland soils under various types of land use (20-60 µL CH4 L-1 - Bender and 

Conrad, 1992; Saari et al., 2004 µL CH4 L-1, ~ 200 µL - Dunfield and Knowles, 1995; 

Conrad, 1996). The same was true for the measured threshold values (Th) in comparison 

to those (0.2-2.7 µLCH4 L-1) previously reported by Bender and Conrad (1992).   

It has been also been demonstrated that ammonia-oxidizing bacteria can oxidize 

CH4 as an alternative substrate for ammonia monooxygenase (Suzuki et al., 1976; Hyman 

and Wood, 1983; Jones and Morita, 1983; Ward, 1987). Methane oxidation by nitrifiers 

has mostly been detected in field and laboratory incubation studies conducted at elevated 

(> 100 µL CH4 L-1) CH4 concentration (Goldman et al., 1995; Chan and Parkin, 2001). 

Further, Km values for CH4 oxidation by nitrifiers are typically > 6,600 µL CH4 L-1 

(Conrad, 1996). Therefore, in the soils tested in the present study, CH4 oxidation has 

probably been carried out predominantly by methanotrophs.  
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In general, measured Km values (127-141 µL CH4 L-1) for the PT soils were 

significantly higher than that for the NT (96-104 µL CH4 L-1) soils (Table 10), and were 

in the same range (189 µL CH4 L-1) reported by Dunfield and Knowles (1995) for 

agricultural soils. Despite the fact that soil samples came from the experimental plots 

under similar management practice (except tillage) and receiving similar amounts of 

fertilizer, the higher Km values in PT soils suggests a possible impact of periodic tillage 

disturbance on growth conditions and affinity of methanotrophs for CH4 (Saari et al., 

2004). In addition, significantly higher Th values in PT soils (2.8 µL CH4 L-1 versus 0.5 

µL CH4 L-1 in NT) also suggest a loss in the vitality of methanotrophs under PT and in 

their ability to oxidize atmospheric CH4 (~1.7 µL CH4 L-1). However under NT, 

methanotrophs appeared to have developed into a more stable community approaching 

the activity measured in the forest soils. Derived kinetic parameters (Table 10) for the NT 

soils (Vmax: 43-48 µg CH4-C kg-1, Km: 97-104 µL CH4 L-1, Th: 0.5 µL CH4 L-1) were 

similar to those obtained for WL soils (Vmax: 46-51 µg CH4-C kg-1; Km: 79-89 µL CH4 L-

1; Th: 0.7 µL CH4 L-1). These results suggest that, after about 5 decades without 

disturbance, the biological conditions of NT soils may have improved to a level similar to 

that of a forest soils. Overall, the observed trend in kinetic parameters (Km and Th) could 

be a reflection of change in either the composition or the activity of the methanotrophic 

community in NT soils (Chan and Parkin, 2001). Although microbial community analysis 

will be needed, these results (Vmax, Km, Th) provide strong support for the hypothesis that 

a large and active population of methanotrophs evolve under long term NT due to the 

absence of physical soil disturbance. Using molecular techniques, Singh et al. (2007) 

showed that afforestation of pasture can cause increment in CH4 oxidation capacity due 

61 
 



to alteration in the community structure of methanotrophs. In contrast, Menyailo et al. 

(2008) observed little change in the composition of high affinity methanotrophs between 

natural grassland, and afforested land which was once grassland. The reduction in 

oxidation capacity in artificially afforested soils as compared to natural grassland was 

attributed predominantly to the decline in biomass and cell specific activity of 

methanotrophs. 

 

CH4 transport as affected by tillage and drainage characteristic 

Methane uptake in soils is a substrate-dependent process. Transport of CH4 to the 

sites of microbial oxidation can be controlled by soil gas diffusivity (Dorr et al., 1993; 

Ball et al., 1997b) - a soil physical property that varies with soil texture, soil moisture and 

land management. Ball et al. (1997) measured higher gas diffusivity in coarse-textured 

than in fine-textured soils. Others (Kruse et al., 1996; Boeckx et al., 1997; Saari et al., 

1997; Kravchenko et al., 2000) showed a similar link between soil texture and CH4 

transport. In the present study, soil texture seemed to have only a marginal effect. 

Although soil texture at both sites is classified as loamy, the higher clay content (Table 1) 

in the Crosby soil at the South Charleston site may have contributed to the lower CH4-

diffusivity in the South Charleston soil cores compared to the Wooster cores. However, 

difference between the sites with regard to diffusivity was not statistically different 

(Table 7). 

To examine the impact of transport processes on CH4 oxidation, incubation was 

conducted using intact cores and sieved soil samples at near ambient (~ 3 µL CH4 L-1) 

CH4 concentration. Methane oxidation was significantly higher (3-4 fold) in sieved soils 
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than in intact cores, indicating diffusion restriction on CH4 transport to the site of 

oxidation inside the soil cores (Fig. 13). The restriction was significantly higher in PT 

cores (oxidation in intact cores was 6-20 % of that in sieved soils) than in NT and WL 

cores (oxidation in intact cores was 34-44 % of that in sieved soils) suggesting greater 

diffusion restriction under PT, especially in poorly-drained soils. Jacinthe and Lal (2006) 

also found a similar trend; in a study using silty loam soil and clay loam soils, reported 

CH4 oxidation rates were 7-10 fold lower with soil cores than with sieved soil samples. In 

contrast, Hutsch (1998) found that in sandy soil, CH4 oxidation rate was higher in intact 

cores than in sieved soils. To interpret these contradictory results, Jacinthe and Lal (2006) 

proposed two possible scenarios which seemed plausible for this experiment as well. In 

contrast to the silt loam examined in the present research, the study of Hutsch (1998) was 

conducted with sandy soil. The diffusion of CH4 from a jar headspace to the site of 

oxidation activity is probably less restrictive in the sandy soils used by Hutsch (1998) 

than in the silty loam soils used in this experiment. Moreover, the present study was 

carried out using < 6.3 mm soil aggregate (sieve opening, 6.3 mm). Therefore, microsites 

of active methanotrophy were probably minimally disturbed by the soil sieving process. 

In contrast, the use of < 5 mm sieve for the sandy soil by Hutsch (1998) might have led to 

severe disruption of these microsites, resulting in reduced CH4 oxidation.  

Tillage disrupts soil aggregates (Mahoubi and Lal, 1998), and the use of heavy 

machinery on cultivated land has also been blamed for soil compaction. Adoption of NT 

improves soil stability and soil aggregation (Mahoubi and Lal, 1998). In well aggregated 

soils, inter aggregate macro-pores are likely to be present, forming a continuous network 

for the passage of soil water and air (Hillel, 1998). In light of the positive impact of NT 
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on soil aggregation, and the positive relationship between aggregation and soil porosity 

(Lal et al., 1994; Ball et al., 1997b), it was hypothesized that NT soils will have greater 

CH4 diffusivity due to improved soil aggregation and greater porosity. The study results 

are in agreement with this hypothesis. Soil-CH4 diffusivity values were within the same 

range as reported in a previous study (10-3 cm2 s-1, Grundmann and Chalamet, 1987) and 

were significantly higher in NT and WL cores than in PT cores. Air-filled porosity was 

also greater in NT (~ 0.37 cm3 cm-3) and WL cores than in PT (~ 0.28 cm3 cm-1) (Fig. 7).  

This suggests that not only soils under NT and WL have large volume of air-filled pores 

but also these pores are presumably continuous. This interpretation is in accord with 

previous reports of greater interconnection of soil pores under NT compared to PT 

(Logsdon et al., 1993; Frede et al., 1994; Reynolds et al., 1995, 2000; Tebrugge and 

During, 1999; Cameira et al., 2003). According to Blackwell (1990), total soil porosity in 

forest soils is likely dominated by macro-pores which are not only of greater size but also 

are well-interconnected. These wide pores are favorable to methanotrophic activity and 

enhanced CH4 oxidation in soils (Bender and Conrad, 1994). A strong relationship (r2= 

0.64, P < 0.01) between diffusivity and CH4 oxidation (µg CH4-C kg-1 soil h-1; Fig. 14a) 

was observed. Ball et al. (1997) found a similar strong relationship (r2 = 0.92) between 

methane uptake (mg m2 d-1) and relative diffusivity. These observations suggest that soil 

gas transport properties improves with NT adoption, and this in turns can have a positive 

impact on CH4 uptake (Dorr et al., 1993; Ball et al., 1997).  

Several soil-gas diffusion models (Penman, 1940; Troeh et al, 1982; Moldrup et 

al., 1996; Ridgwell et al., 1999) suggest exponential relationships between air-filled 

porosity and diffusivity. But in the present study, a linear relationship (r2 = 0.8, p < 
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0.001) was found between these variables. This could be because the porosity values in 

the present study were in the range of 20-60% (> 0.1 cm3 cm-3) - a range where the 

relationship  with gas diffusivity  is generally linear (Troeh et al., 1982; Ball et al., 1997; 

Jabro et al., 2012).  

NT can sometimes lead to soil compaction due to increase in soil bulk density, but 

this outcome depends upon antecedent soil condition, soil texture, and sampling location 

relative to wheel tracks left by farm machinery. For a clay loam soil, Gantzer and Blake 

(1978) reported higher bulk density and lower total porosity under NT than under PT. 

Others have reported similar effects of NT on soil porosity and reduced macropore 

volume (Starr, 1990; Ankeny et al., 1990; Culley et al., 1987a, b). However, Shear and 

Moschler (1969), and Lal et al. (1994) found no significant effect of tillage on bulk 

density. These results highlight the difficulty in restoring soil structure after the cessation 

of tillage disturbance. Mapa (1995) noted that, after 12 years of reforestation in Sri 

Lanka, soil porosity was still far from its maximum. In the present study, it was 

hypothesized that, gaseous transport will be more restricted in NT plots due to increase in 

bulk density, especially in the fine-textured and poorly drained Crosby soil at the South 

Charleston site. Contrary to that hypothesis, no significant effect of soil type on bulk 

density and CH4-diffusivity was found. However, the effect of tillage on both parameters 

was significant (Table 6 and 7). Strong negative relationships between bulk density and 

diffusivity (r2 = 0.6, P < 0.001, Fig. 13a); bulk density and methane oxidation rates (r2 = 

0.7, P < 0.001) were observed (Fig. 13b). MacDonald et al. (1996) found a similar trend 

between bulk density and methane oxidation in agricultural soils. Hansen et al. (1993) 

reported a 52 % reduction in CH4 oxidation rates following increase in the bulk density 
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due to cultivation. Thus, apart from its influence on soil aggregation, tillage operations 

can also influence gaseous transport owing to its impact on bulk density. 

Soil moisture content varied significantly with respect to the site and tillage 

practices (Table 4). Soil moisture content was significantly higher in NT than in PT soils. 

Despite higher soil moisture, CH4-diffusivity in NT soils was greater than in PT soils. As 

discussed earlier, NT practice leads to larger volume of macro-pores compared to PT 

practice (Lal et al., 1994; Buczko et al., 2006; Kumar et al., 2012). Although micropores 

may have been occupied by water, the macro-pores in NT soils were probably not filled 

up. Presumably, these macropores may have continued to provide a pathway for active 

gaseous transport even at relatively high moisture content. Overall, these findings 

underscore the beneficial effect of NT farming practice on CH4 transport compared to PT. 
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CONCLUSIONS 

  Past studies have shown a significant reduction in CH4 oxidation in soils when 

undisturbed natural ecosystems (forests, grasslands) are converted to agricultural land 

use. It has been suggested that, due to the absence of physical land disturbance, NT 

farming could help restore the CH4 sink capacity of cultivated soils, but few studies have 

examined the validity of that suggestion. Most past studies have only investigated soils 

under NT for less than two decades when methanotrophic community was far from full 

restoration. In addition, the comparison of NT and PT practices is often confounded by 

other factors such as soil type, climate, fertilizer management and crop rotation. The 

present study was designed to address this information gap, and with consideration of the 

confounding factors listed above. In this study, CH4 oxidation activity was measured in 

arable soils where tillage disturbance had ceased for five decades. In addition, the soils 

tested were from adjacent experimental plots under similar management. By controlling 

for all these other factors, tillage practice was the only experimental variable in the study.   

Results showed a distinct effect of tillage on CH4 oxidation. Both the CH4 

oxidation capacity (measured at near ambient CH4) and oxidation potential (measured at 

elevated CH4) were significantly greater in the NT soils compared to PT. This trend was 

consistent regardless of sampling season and the natural drainage characteristics (well-

drained vs. poorly-drained) of the soils tested.  CH4 oxidation rates measured with intact 

cores were significantly lower than in sieved soils supporting the contention that 

diffusion could restrict CH4 oxidation. Mean CH4 oxidation rate in NT and PT soils were 

66-80 % and 10-16 %, respectively of the level recorded in adjacent forest soils. 

Likewise, the maximum oxidation rate (Vmax) was on average 1.5 times higher in NT (43-
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48 µg CH4 L-1 kg-1 h-1) soils than in the PT (29-32 µg CH4 L-1 kg-1 h-1). Conversely, the 

half saturation constant (Km) and threshold for CH4 oxidation (Th) - parameters 

expressing the affinity between an enzyme and its substrate - were lower in NT than PT 

soils. These observations suggest the evolution, in long-term NT soils, of a 

methanotrophic community with greater affinity, activity and ability to oxidize 

atmospheric CH4.  

Tillage practice also had a significant impact on CH4 transport. Diffusivity in NT 

(2-3 x 10-3 cm2 s-1) cores were greater compared to PT cores (1.5 x 10-3 cm2 s-1). 

Improved soil structure and soil aggregation in NT plots compared to PT plots probably 

have led to the development of larger number of macro-pores conducive to CH4 transport 

in the NT cores. No effect or a very limited effect of soil type on gaseous transport was 

found. These results indicate that, long term adoption of NT farming can improve both 

the soil biology, and the transport properties suitable for CH4 uptake. Therefore, NT 

farming is a better soil management option compared to conventional farming (PT) in 

mitigating CH4 emission associated with agriculture.  
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LIMITATIONS 

 Although this research has reached its aim, it is not without some limitations.  

First, one must recognize that laboratory-based studies can only provide an indication of 

the potential but not the actual intensity of a soil process. Methane incubation 

experiments conducted under laboratory-controlled conditions may not necessarily 

represent actual field conditions.   

The year 2012 was the 13th driest year on record for Ohio. This may have affected 

soil moisture regime, and thus the population of soil methanotrophs in that year. A 

possible influence of weather conditions on CH4 oxidation capacity of soils cannot be 

ruled out. It would therefore be of interest to conduct a similar assessment of the 

oxidation capacity of soils during a year with near normal precipitation.   

Clear differences were observed between NT and PT soils with respect to Km and 

threshold (Th) for CH4 oxidation. These observations are indicative of change in the 

composition of soil methanotrophs, but there remains some uncertainty with this 

interpretation. Therefore, the next possible research avenue could be the use of molecular 

techniques such as polymerase chain reaction (PCR) and phospholipid fatty acid (PLFA), 

to characterize the community composition and biomass of methanotrophs in soils under 

PT in comparison to long-term NT practices. Such investigations could validate the 

inference made in the present study.  
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APPENDICES 

Appendix A. Methane concentration in jar headspace during incubation of soils from 
different land-use and tillage practices. Soil samples are from the South Charleston site. 
“I” and “II” are the Jar replicates. Abbreviations: WL = woodlot; NT = no-till and PT = 
plow till. 
 

Tillage 
/land-use 

 Duration of Incubation (h) 

0 46.02 70.43 92.68 144.02 165 215.45 

Concentration of CH4 (ppm) 

WL (0-10 cm)        

I 3.37 2.89 2.66 2.47 2.08 1.94 1.64 
 19.56 12.09 9.37 7.43 4.34 3.49 2.06 
 60.10 42.36 35.19 29.71 20.11 17.15 11.69 
 146.02 112.12 97.46 85.78 63.88 56.64 42.40 
 271.32 228.63 208.78 192.20 158.78 146.86 121.73 

II 4.10 3.60 3.36 3.15 2.72 2.57 2.22 
 19.15 11.83 9.16 7.26 4.24 3.40 2.01 
 61.00 43.18 35.94 30.41 20.68 17.67 12.10 
 146.09 112.23 97.58 85.90 64.01 56.76 42.51 
 271.35 227.61 207.34 190.45 156.53 144.48 119.15 
WL (10-20)        

I 3.21 2.76 2.55 2.37 2.00 1.87 1.59 
 17.96 10.83 8.28 6.48 3.68 2.92 1.68 
 62.1 39.19 30.71 24.58 14.71 11.93 7.20 
 141.02 97.14 79.71 66.57 43.92 37.05 24.62 
 205.1 167.50 150.45 136.42 108.83 99.24 79.48 

II 3.21 2.7 2.46 2.26 1.86 1.72 1.23 
 17.39 10.91 8.52 6.80 4.04 3.27 1.96 
 62.59 40.24 31.83 25.71 15.71 12.84 7.91 
 141.93 97.95 80.45 67.24 44.46 37.54 25.00 
 205.3 168.29 151.44 137.56 110.20 100.65 80.94 
NT (0-10)        

I 3.41 3.01 2.90 2.73 2.44 2.30 2.08 
 18.39 12.15 9.76 7.99 5.03 4.17 2.65 
 77.75 61.43 54.21 48.37 37.19 33.40 25.80 
 151.11 39.78 19.60 10.28 2.32 1.26 0.29 
 264.15 225.89 207.90 192.75 161.88 150.73 126.97 

II 4.02 3.42 3.16 2.93 2.46 2.29 1.93 
 17.93 17.94 17.95 17.96 17.97 17.98 17.99 
 76.89 60.78 53.65 47.88 36.83 33.09 25.57 
 151.02 130.34 120.55 112.26 95.25 89.07 75.79 
 261.70 223.90 206.12 191.14 160.61 149.58 126.07 
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NT(10-20)        
I 3.29 2.94 2.77 2.62 2.32 2.20 1.94 
 16.98 8.92 6.33 4.64 2.26 1.69 0.83 
 77.73 52.08 42.12 34.71 22.20 18.50 11.93 
 142.21 104.96 89.34 77.14 54.97 47.86 34.31 
 220.78 177.84 158.56 142.82 112.20 101.66 80.20 

II 3.37 2.61 2.29 2.05 1.59 1.45 1.16 
 17.01 8.95 6.36 4.66 2.28 1.70 0.84 
 82.77 55.72 45.17 37.30 23.99 20.03 12.98 
 144.51 106.85 91.04 78.68 56.18 48.96 35.16 
 219.27 175.73 156.26 140.40 109.68 99.15 77.79 

PT (0-10)        
I 3.16 3.01 2.94 2.89 2.8 2.76 2.71 
 11.03 8.72 7.70 6.88 5.29 4.75 3.68 
 84.87 66.20 58.02 51.45 38.99 34.82 26.51 
 170.80 145.39 133.48 123.48 103.17 95.87 80.35 
 231.60 199.89 184.87 172.16 146.08 136.59 116.23 

II 3.41 3.29 3.23 3.18 3.07 3.03 2.95 
 14.23 11.26 9.94 8.89 6.84 6.14 4.75 
 72.62 57.14 50.31 44.81 34.29 30.74 23.64 
 129.00 109.91 100.96 93.44 78.15 72.65 60.95 
 203.13 176.20 163.40 152.55 130.17 122.00 104.39 

PT(10-20)        
I 3.50 3.36 3.29 3.23 3.12 3.08 2.98 
 16.00 10.11 7.91 6.33 3.79 3.07 1.86 
 73.43 58.58 51.96 46.58 36.20 32.66 25.49 
 147.42 123.94 113.04 103.97 85.66 79.14 65.43 
 250.86 210.90 192.36 176.88 145.76 134.67 111.35 

II 3.42 3.29 3.24 3.18 3.09 3.05 2.96 
 16.00 11.13 7.94 6.37 3.72 3.10 1.88 
 73.43 58.88 52.37 47.06 36.78 33.26 26.11 
 146.42 123.72 113.15 105.30 86.43 80.04 66.55 
 248.86 218.7 204.28 191.80 166.03 156.53 135.84 
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Appendix B. Methane consumption in jar headspace during incubation of soils from 
different land-use and tillage practices. Soil samples are from the Wooster site. “I” and 
“II” are the Jar replicates. Abbreviation WL = woodlot; NT = no-till and PT= plow till. 
 

Tillage/land- 
use 

 Incubation time (h) 

0 46.02 70.43 92.68 144 165 215.45 

CH4 Concentration (ppm) 

Source        
WL(0-10)        

I 4.08 3.49 3.21 2.98 2.51 2.34 1.98 

 19.56 11.74 8.95 6.99 3.95 3.13 1.79 

 60.10 34.60 25.81 19.76 10.67 8.30 4.53 

 146.02 104.79 87.88 74.85 51.69 44.44 30.89 

 271.32 219.93 196.75 177.75 140.63 127.79 101.51 
II 4.20 3.71 3.47 3.27 2.85 2.69 2.35 

 19.15 13.87 11.70 10.01 6.99 6.03 4.24 

 146.09 92.21 72.23 57.83 34.61 28.06 16.94 

 146.00 104.13 87.05 73.93 50.71 43.47 30.01 

 271.35 220.39 197.37 178.48 141.52 128.72 102.47 
WL (10-20)        

I 3.96 3.41 3.01 2.76 2.26 2.08 1.62 

 17.96 8.80 6.03 4.27 1.93 1.39 0.64 

 62.10 36.56 27.61 21.37 11.84 9.30 5.20 

 141.02 96.25 78.60 65.34 42.67 35.85 23.59 

 205.10 169.83 153.66 140.26 113.64 104.27 84.79 
II 3.96 3.28 2.96 2.70 2.19 2.01 1.63 

 17.39 7.75 5.05 3.41 1.38 0.96 0.39 

 62.59 35.85 26.68 20.38 10.94 8.49 4.61 

 141.93 95.15 76.96 63.43 40.60 33.83 21.83 

 205.30 155.05 133.60 116.64 85.28 75.04 55.16 
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NT (0-10)        
I 3.32 2.93 2.75 2.59 2.25 2.13 1.86 

 18.39 12.61 10.33 8.61 5.65 4.76 3.15 
 77.75 54.30 44.89 37.74 25.28 21.47 14.48 
 151.11 114.65 99.03 86.65 63.68 56.15 41.48 
 264.15 222.83 203.61 187.54 155.12 143.55 119.13 

II 4.21 3.75 3.52 3.33 2.92 2.77 2.34 
 18.13 12.60 10.39 8.72 5.81 4.92 3.31 
 76.89 52.38 42.73 35.50 23.13 19.42 12.75 
 151.02 113.01 96.90 84.23 60.95 53.41 38.86 
 260.62 212.55 190.77 172.87 137.73 125.52 100.41 
NT(10-20)        

I 3.35 2.88 2.66 2.47 2.08 1.92 1.63 
 18.98 9.97 7.08 5.19 2.53 1.88 0.93 
 77.73 51.39 41.27 33.79 21.30 17.63 11.20 
 151.21 108.06 90.43 76.87 52.84 45.34 31.37 
 261.78 212.32 190.01 171.71 135.94 123.56 98.22 

II 3.37 2.96 2.76 2.59 2.24 2.11 1.82 
 18.38 8.76 5.91 4.13 1.81 1.29 0.57 
 77.77 52.84 43.04 35.70 23.20 19.45 12.73 
 151.50 107.28 89.34 75.61 51.44 43.95 30.11 
 261.27 210.45 187.64 169.01 132.78 120.31 94.91 
PT (0-10)        

I 3.30 3.19 3.13 3.09 3.00 2.97 2.90 
 11.03 7.85 6.55 5.56 3.80 3.25 2.24 
 84.86 70.93 64.49 59.13 48.40 44.59 36.63 
 170.80 149.46 139.25 130.55 112.49 105.85 91.44 
 231.60 201.42 187.04 174.83 149.61 140.39 120.46 

II 3.18 3.08 3.03 2.99 2.88 2.84 2.75 
 11.23 8.45 7.26 6.33 4.61 4.05 2.96 
 84.62 68.60 61.38 55.45 43.88 39.88 31.68 
 170.00 147.43 136.69 127.59 108.84 102.00 87.25 
 231.13 198.66 183.33 170.39 143.91 134.31 113.77 
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PT(10-20)        
I 3.42 3.29 3.24 3.18 3.09 3.05 2.97 

 11.03 7.85 6.55 5.56 3.80 3.25 2.24 
 84.87 70.93 64.49 59.13 48.40 44.59 36.63 
 170.80 149.46 139.25 130.55 112.49 105.85 91.44 
 231.60 201.42 187.04 174.83 149.61 140.39 120.46 

II 3.18 3.06 3.01 2.96 2.88 2.84 2.78 
 11.23 8.45 7.26 6.33 4.61 4.05 2.96 
 84.62 68.60 61.38 55.45 43.88 39.88 31.68 
 170.00 147.43 136.69 127.59 108.84 102.00 87.25 
 231.13 198.66 183.33 170.39 143.91 134.31 113.77 
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Appendix C. Methane concentration in the “source jar” and “sink jar” during the 
diffusion experiment. The soil cores used were extracted from the South Charleston (A) 
and Wooster (B) experimental plots. I and II are jar the replicates. Abbreviation NT = no-
till; WL = woodlot and PT = plow till. 
 

A. South Charleston 
 

Tillage/land- 
use 

  Duration of incubation (h)   
0 16.35 39.83 64.78 70.13 87.48 140.68 

Concentration of CH4 (ppm) 
Source        

WL (0-10 cm)        
I 24343.0 18256.7 14419.8 12952.1 12793.7 12469.6 12202.8 
II 26108.1 20930.5 16866.4 14817.5 14548.8 13928.5 13223.0 

WL (10-20)        
I 23623.6 19688.3 15624.1 13575.3 13306.6 12686.3 11980.8 
II 23155.8 18713.8 15138.9 13279.4 13030.2 12446.9 11757.8 

NT (0-10)        
I 24834.8 19310.3 15377.1 13622.9 13411.7 12949.8 12495.8 
II 24834.8 19198.5 15261.5 13547.3 13344.4 12905.2 12485.5 

NT (10-20)        
I 25463.9 20376.3 16390.4 14385.8 14123.3 13518.1 12831.7 
II 25591.1 21254.0 17463.1 15277.3 14963.0 14192.5 13158.8 

PT (0-10)        
I 23861.0 20689.5 17550.0 15437.3 15100.0 14213.9 12765.9 
II 25084.4 21705.2 18379.7 16157.8 15804.8 14880.5 13384.2 

PT (10-20)        
I 24587.7 22475.4 19419.0 17170.2 16789.3 15747.2 13832.2 
II 24343.0 21329.3 18257.5 16114.2 15763.8 14827.7 13224.1 

Sink        
WL (0-10)        

I 3.1 6086.3 9923.2 11390.9 11549.3 11873.4 12140.3 
II 3.2 5177.6 9241.7 11290.6 11559.3 12179.6 12885.1 

WL (10-20)        
I 3.3 3935.3 7999.4 10048.3 10317.0 10937.3 11642.8 
II 2.5 4442.0 8016.9 9876.4 10125.6 10708.9 11398.0 

NT (0-10)        
I 2.5 5524.5 9457.7 11211.9 11423.1 11885.0 12339.0 
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II 3.1 5636.2 9573.2 11287.5 11490.4 11929.6 12349.2 
NT (10-20)        

I 3.4 4960.5 8946.4 10951.0 11213.5 11818.7 12505.1 
II 2.9 4337.1 8128.0 10313.8 10628.1 11398.6 12432.3 

PT (0-10)        
I 2.8 3171.5 6311.0 8423.7 8761.0 9647.1 11095.1 
II 4 3379.2 6704.7 8926.6 9279.6 10203.9 11700.2 

PT (10-20)        
I 3.4 2112.3 5168.7 7417.5 7798.4 8840.5 10755.5 
II 3.4 3013.7 6085.5 8228.8 8579.3 9515.3 11119.0 

 

B. Wooster 

Tillage/land- 

use 

Duration of incubation (h) 

0 49 74 101 121 145 167 

Concentration of CH4 (ppm) 

Source        
WL (0-10)        

I 24834.4 16630.0 14826.4 13765.9 13281.0 13024.0 12727.7 
II 26108.1 15750.4 14247.2 13565.9 13321.2 13176.8 13114.1 

WL (10-20)        
I 23623.6 14543.5 13093.2 12395.9 12131.2 11990.9 11891.7 
II 23155.8 14040.9 12684.5 12060.2 11832.7 11696.7 11636.8 

NT (0-10)        
I 25336.5 14238.0 13201.6 12842.2 12741.8 12694.5 12678.4 
II 24100.8 13507.4 12539.2 12207.7 12116.2 12073.6 12059.3 

NT (10-20)        
I 23364.0 13716.9 12893.4 11994.4 11832.1 11744.4 11709.9 
II 25591.1 14839.6 13587.5 13091.5 12934.5 12851.8 12820.1 

PT (0-10)        
I 22247.8 16192.0 14499.5 13337.7 12925.0 12210.4 11885.0 
II 25084.4 18145.2 16236.3 14939.5 14262.0 13698.0 13344.6 

PT (10-20)        
I 24587.7 18264.4 16704.0 15083.3 14365.2 13944.4 13339.7 
II 28001.1 19215.4 17130.3 15842.8 15226.8 14753.9 14482.3 
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Sink 
WL (0-10)        

I 3.8 8204.1 10007.6 11068.1 11553.0 11910.1 12706.3 
II 2.6 10357.6 11860.9 12542.2 12786.9 12931.3 12994.0 

WL (10-20)        
I 3.6 9080.1 10530.3 11227.7 11492.3 11656.6 11731.8 
II 3.2 9114.9 10471.3 11095.6 11323.1 11459.1 11519.0 

NT (0-10)        
I 2.4 11098.5 12134.9 12494.3 12594.7 12642.0 12758.0 
II 3.4 10593.4 11561.6 11893.1 11984.5 12027.2 12041.5 

NT (10-20)        
I 2.7 9747.1 10970.6 11669.6 11531.9 11619.6 11654.1 
II 4.2 10751.5 12003.6 12499.6 12656.6 12739.3 12771.0 
        

PT (0-10)        
I 3.5 6055.8 7748.3 8910.1 9522.8 10037.4 10362.9 
II 3.4 6939.1 8848.0 10144.9 10822.3 11386.4 11739.7 

PT (10-20)        
I 3.5 6323.3 8183.7 9904.3 10222.5 10843.3 11247.9 
II 2.7 8785.6 10870.7 12158.2 12774.2 13247.1 13518.8 
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