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Huiying Zhao

PROTEIN FUNCTION PREDICTION BY INTEGRATING SEQUENCE,

STRUCTURE AND BINDING AFFINITY INFORMATION

Proteins are nano-machines that work inside every living organism. Functional

disruption of one or several proteins is the cause for many diseases. However, the

functions for most proteins are yet to be annotated because inexpensive sequencing

techniques dramatically speed up discovery of new protein sequences (265 million and

counting) and experimental examinations of every protein in all its possible functional

categories are simply impractical. Thus, it is necessary todevelop computational

function-prediction tools that complement and guide experimental studies. In this study,

we developed a series of predictors for highly accurate prediction of proteins with

DNA-binding, RNA-binding and carbohydrate-binding capability. These predictors

are a template-based technique that combines sequence and structural information

with predicted binding affinity. Both sequence and structure-based approaches were

developed. Results indicate the importance of binding affinity prediction for improving

sensitivity and precision of function prediction. Application of these methods to the

human genome and structure genome targets demonstrated itsusefulness in annotating

proteins of unknown functions and discovering moon-lighting proteins with DNA,

RNA, or carbohydrate binding function. In addition, we also investigated disruption

of protein functions by naturally occurring genetic variations due to insertions and

deletions (INDELS). We found that protein structures are the most critical features in

recognising disease-causing non-frame shifting INDELs. The predictors for function

predictions are available at http://sparks-lab.org/spot, and the predictor for classification

of non-frame shifting INDELs is available at http://sparks-lab.org/ddig.

Yunlong Liu, PhD, Chair
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Chapter 1 Introduction

1.1 Proteins and their functions

1.1.1 Proteins

Proteins are large biological molecules consisting of amino acids. They play a vast

array of functions within living organisms. Proteins are different from each other

by their sequences and three-dimensional structural properties. A protein sequence

is a series of letters that describe the amino acid composition of protein. Currently,

there are two major direct methods, mass spectrometry [1] and Edman degradation [2],

for determination of protein sequences. It is also possibleto utilize next generation

sequencing technique to obtain the DNA/mRNA sequence that codes the protein

sequence.

Proteins perform their functions with help of their molecular structures. Protein

structures can be divided into four levels: primary structure, secondary structure,

tertiary structure and quaternary structure. Primary structure refers to linear amino-acid

sequence of the polypeptide chain. The primary structure isheld together by covalent

peptide bonds, which are formed during the process of protein biosynthesis or

translation. Protein secondary structure refers to regular protein backbone sub-structure.

There are three main types of secondary structures: alpha helix, beta strand, and coil

[3]. Both alpha helix and beta sheet represent conformations that connect hydrogen

bond donors with acceptors in the peptide backbone. Tertiary structure refers to

three-dimensional (3D) structure of a single protein molecule. The 3D structure of

a protein is formed by protein folding process. In this process, a polypeptide folds

into its characteristic and functional 3D structures from arandom coil. The folding

process is driven by non-specific hydrophobic interactionsand hydrogen bonds. During

protein folding, protein structure becomes stable when thestructure reaches global

minimum of free energy. Quaternary structure is made of multiple subunits of 3D

structures. Protein structures are often referred as structural domains to distinguish
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from intrinsically disordered regions. A structure domainis an element of the overall

structure of a protein. Protein domains can evolve, function and exist independently of

the rest part of the protein. One protein may contain severaldomains, and each domain

can perform multiple functions.

1.1.2 Protein function through binding

Proteins are one of the most important molecular machines inthe living organism.

Proteins contain half the dry weight of an Esherichia coli cell [ 4]. Most of the biological

processes are related with protein activity. Protein functions include enzyme catalysis,

interaction with other molecules, supporting materials, etc. Among these functions, the

interaction with other molecules are contributed by their ability to bind with molecule

partners. The residues in a protein that bind with other molecule are called as binding

sites. The binding ability of a protein is mainly determinedby the binding sites on

protein surface [5].

Proteins can bind to DNA and form protein-DNA complexes (DBP)[6].

These proteins are composed of DNA-binding domains and havebinding affinity for

either single or double stranded DNA. DNA-binding proteinsplay essential roles in

transcription, regulation, replication, packaging repair and rearrangement. For example,

transcription factors modulate the process of transcription; nucleases cleave DNA

molecules; and histones are involved in chromosome packaging and transcription in

the cell nucleus.

RNA-binding proteins (RBP) are another class of important proteins through

binding to RNA in cells and forming ribonucleoprotein complexes. RNA-binding

proteins are important in translation regulation and post-transcriptional processing of

pre-mRNA including RNA splicing, editing and polyadenylation. They play critical

roles in the biogenesis, stability, transport and cellularlocalization [7,8]. RNA-binding

proteins can specifically recognize their RNA targets by complementary shapes. Three

most widely studied RNA-binding domains include double-stranded RNA-binding

motif (dsRBM), RNA-recognition motif (RRM) and zinc fingers.
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Carbohydrate-binding proteins (CBPs) are functional proteins that recognize

cell-surface carbohydrates. CBPs are important for immune systems. For example,

viruses can use carbohydrates to attach themselves to the host cell during infection. On

the other hand, host CBPs can also recognize these carbohydrates and prevent virus

invasion. Therefore, CBPs have been employed as potential drug targets in pathogens.

Proteins can also bind to other partners. For example, iron-binding proteins

are important in metabolism. Their binding with iron can inhibit microbial growth.

Furthermore, proteins can bind to other proteins to regulate enzymatic activity, control

progression through the cell cycle and allow the assembly oflarge protein complexes.

1.2 Annotation of protein functions

1.2.1 Experimental approaches for detection of protein functions

There are many studies to detect protein-DNA interaction experimentally. Recent

strategies relied on sophisticated mass spectrometry technologies. Washburn and

Fournier published their work on identification of DBPs by pulldown experiments

in conjunction with multi-dimensional protein identification technology (MudPIT)

[9,10]. Other standard methods include EMSA, DNAasa I footprinting, exonuclease III

footprinting, southwestern blotting and others [11]. However, experimental approaches

face many challenges. For example, both EMSA and DNase I footprinting methods are

usually combined together to improve experimental accuracy [12]. Unfortunately, many

DNA-binding proteins can only be detected by one type of assay. Thus, the detection is

not guaranteed for those proteins which can only be recognized by one assay.

Similar to identifications of DBPs, most frequently used methods for RBPs are

protein microarray [13] and mass spectrometry [14,15]. Protein microarray and RNA

probes have been used to identify a limited number of RBPs. As analternative to in vitro

approaches, stable isotope labeling by amino acids in cell culture and mass spectrometry

were applied to identify the interaction between protein and RNA [16]. More recently, a

fluorescence-based quantitative method has been developedto monitor mRNA-protein

interactions, and 300 new RDPs were uncovered [17].
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For experimentally detecting CBPs, there are three most commonly used

approaches: X-ray [18], NMR [19,20] and fluorescence spectroscopy [19] studies [21].

1.2.2 Computational approaches for prediction of protein functions

While experimental techniques for determining protein functions are less likely to

produce false positives, they are time consuming and expensive. More importantly,

the number of protein sequences are exponentially increasing with the development

of next generation sequencing technology. There is a widening gap between the

number of proteins with annotated functions and the number of protein with known

sequences. Meanwhile, the structure genome project generated a large number of

structures without known function. Therefore, it is necessary to develop effective

computational approaches for predicting protein functions from their structures or

sequences.

Historically, commonly used approaches for prediction of protein functions

are based on sequence/structure homology [22–26]. The assumption is that similar

sequence/structure encodes similar function. However, this assumption is only partially

true for highly homologous proteins, while most proteins don’t have homologous

proteins with known functions. Thus, it is necessary to develop an alternative approach

for more sensitive protein function detection.

Currently, the most widely-used methods for prediction of protein functions are

machine-learning based methods, which usually employ sequence or structure features

of proteins to train classifiers for protein function prediction. For example, several

sequence-based classifiers for DBP/RBP prediction were based on support-vector

machine (SVM) [27, 28]. Common features in these predictors include amino acid

composition, solvent accessible surface, hydrophobicity, conjoint triad [29], position

specific scoring matrices (PSSM), and interface propensities [30]. There is only one

published method for prediction of CBPs from sequence. This method employed

sequence patterns and frequencies of three neighboring amino acids as input features

for SVM.
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Although machine learning-based methods have achieved reasonable accuracies

in prediction of protein functions, they have several limitations. First, their performance

decrease significantly when they are applied to real large scale database because the

methods are typically trained on datasets with a small, equal number of positive and

negative cases. Furthermore, machine-learning based methods can only provide binary

prediction without information of 3D complex structures. Methods for predicting

binding sites are separate from those methods for predicting functions. A more

recent approach is to utilize protein template structure. Such template-based methods

perform structure comparison to determine target function. For targets having sequence

information only, structure prediction tools were employed. For each structurally

similar template protein, a model complex structure can be generated by modeling the

target protein structure (template-based predicted structure in absence of experimental

structure) and its binding partner from the template complex. For these model complex

structures, binding affinity will be predicted, and only those having high binding affinity

will be kept. Thus, a template-based method considers not only the structural similarity

but also the interaction strength between the target protein and its potential binding

partner. Moreover, the template-based method is able to predict binding residues and

complex structures in addition to binary function prediction.

1.3 Prediction of protein functions by a template-based method

The first template-based method was developed for predicting DNA-binding proteins

[31] from structure. This method was later improved by replacing the contact-based

energy function to DDNA3 [32], a more accurate all-atom, DFIRE [33] -derived

energy function. This approach was extended to the prediction of RNA-binding

proteins from structure [34]. In addition, the template-based method using sequence

only has also been developed. In this method, the target structure was predicted by

recognizing correct structural templates from proteins with known structures in PDB.

The confidence of prediction was evaluated by sequence to structure matching Z-score
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[35,36]. Several techniques utilized by the template-based approaches are described as

following.

1.3.1 Structure comparison

Structure comparison is a useful method for detecting proteins with similar functions

in the absence of sequence similarity. Different from sequence comparison, structure

comparison employs structure alignment and attempts to establish the homology

between two protein structures from their shapes and 3D conformations. This procedure

relies on protein tertiary structures. Structure alignment is useful for prediction of

protein functions because protein structures are more conserved than their sequences

[37], and many proteins with similar functions may converge to similar structure during

evolution. Therefore, structure alignment has been an active research area for more than

30 years. Currently, there are more than 50 published computational methods [38,39].

Critical difference between various structure alignment methods is the scoring

function that measures structural similarity. Structure similarity is often evaluated

by root-mean-square deviation (RMSD). The RMSD between two aligned structures

indicates their divergence from one another. However, RMSD is strongly dependent on

protein size and radius of gyration, and very sensitive to poorly aligned local regions

[40]. Zhang and Skolnick developed TM-score to remove the dependence of structure

similarity score on protein sizes, and later applied to structure alignment [41]. The score

is based on LG-score with an empirical size-dependentd0 [= 1.24(L − 13)1/3 − 1.8].

However, this score assumes that proteins are globular and aligned in a predetermined

sizeL.

To further remove the size dependence, SP-align was developed by us [42]. This

method was proposed by introducing an effective alignment length that avoids the need

to pre-specify a length for normalization. The function is defined as

SP− score =
1

3L1−α
Max





∑

rij<2d0

(
1

1 + r2ij/d
2
0

− 0.2)



 (1.1)
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, wheredij is the distance betweenCα atoms of two aligned residues,d0 was chosen 4.0

Å somewhat in between 3.5̊A in MaxSub and 5̊A in LG score,α is a to-be-determined

parameter for removing the dependence on protein length L, aconstant of 0.2 is used

for a smooth cutoff for SP-score atdij = 2d0, and a factor of 1/3 is used to scale the

threshold for fold discrimination to around 0.5. The new score (SP-score) with its

alignment method (SP-align) was tested in structure classification and prediction of

nucleic-acid binding proteins with comparison to several established methods: DALI,

CE, and TMalign. The comparison indicates that SP-align consistently improves over

other methods.

1.3.2 Structure prediction

Structure prediction attempts to predict protein structure from a given query sequence.

The most reliable structure-prediction technique is to match with existing known

structure templates. Such template-based modeling becomes increasingly powerful

because most popular structural folds are known [43,44]. However, it is still challenging

to recognize structurally similar templates as revealed from the critical assessment of

structure prediction (CASP). Past CASP experiments highlighted the importance of post

treatment of models predicted by individual fold-recognition methods through the use of

consensus predictions. Recently developed new methods include combining fragment

and template comparison [45], utilizing non-linear scoring function from conditional

random field model and profile entropy [46], employing predicted torsion angles and

combined use of profile-profile alignment and pairwise and solvation potentials [47,48].

One common issue in the above methods is that matching predicted 1D profiles

of query sequence with actual profiles of templates is based on simple matrices,

without accounting for the probability of errors in predicted 1D structural properties.

SPARKS-X [49] introduced energy terms based on estimating the matching probability

between target and template. This method also takes advantage of recently improved

torsion angle predictor, SPINE-X [50] in prediction of secondary structure. The

7



matching score calculation of SPARKS-X was described as Eq.1.2.

S(i, j) = − 1
200

[F seq
query(i) ·M seq

template(j) + F seq
template(j) ·M seq

query(i)]

+w1E(SSt(i)|SSq(j), CSS,q(j))

+
∑4

k=2wkE(∆
k
ij|Ck,q(j)) + sshift. (1.2)

with weight parameters (wk) and a constant shiftsshift. The first term in Eq. (1.2) is

the profile-profile comparison between the sequence profile from the query sequence,

M seq
template(j) andM seq

query(i) are the sequence-derived log-odd profile of the template

sequence and that of query sequence, respectively. These sequence profiles are

constructed by three iterations of PSIBLAST searching (E value cutoff of 0.001) against

non-redundant (NR) sequence database, which was filtered to remove low-complexity

regions, transmembrane regions, and coiled-coil segments. The second term in Eq. (1.2)

measures the difference between the predicted secondary structure and the actual

secondary structure of the template. The third term in Eq. (1.2) measures the difference

∆k
ij between two other predicted 1D structural properties of thequery sequence and the

actual properties of the template [real-value torsion angles (φ/ψ) and real-value solvent

accessibility].

SPARKS-X was tested on several benchmarks and compared to other automatic

servers. All the results indicate that SPARKS-X is one of the best single-method

fold-recognition servers. Given the robust performance ofSPARKS-X, it was employed

as a structure prediction tool for predicting protein functions.

1.3.3 Energy function for calculation of Binding affinity

An energy function describes physical interactions between a protein and its binding

partner. A knowledge-based energy function is obtained from statistical analysis of

structures. Different knowledge-based energy functions are mainly different from

their definitions of a reference state. The DFIRE energy function (Eq. 2.1) defines

the reference state based on ideal gas mixture (rα) with α < 2 to account for the
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finite-size effect [33]. Several knowledge-based energy functions were developed for

protein-DNA interactions. For example, a residue base-level energy function was

proposed to calculate the protein-DNA interaction [51]; atom-level energy functions

were developed by extending the DFIRE to protein-DNA bindingaffinity calculation

[52]. The DFIRE energy function was further improved by adding a volume fraction

correction [32,53]. Similarly, an energy function for protein-RNA interaction [34,36]

and protein-carbohydrate interaction (In preparation) were derived. A DFIRE-based

potential satisfies the following equation:

uDFIRE
i,j (r) =















−RT ln Nobs(i,j,r)

( r
rcut

)α( ∆r
∆rcut

)Nobs(i,j,rcut)
, r < rcut,

0, r ≥ rcut,

(1.3)

where R is the gas constant,T = 300K, α = 1.61,Nobs(i, j, r) is the number ofij pairs

within the spherical shell at distance r observed in a given structure database,rcut is the

cutoff distance,∆rcut is the bin width atrcut. The value ofα(1.61) was determined by

the best fit ofrα to the actual distance-dependent number of ideal-gas points in finite

protein-size spheres.

1.4 Overview of the dissertation

As described above, a template-based approach is a powerfuland reliable approach

for prediction of protein functions. This dissertation mainly focuses on development

of template-based approaches for prediction of DNA-binding proteins, RNA-binding

proteins, and carbohydrate-binding proteins. How to fullyutilize protein structural

information is a critical point for template-based approaches. In addition to protein

function prediction, we also predict function disruption due to insertions and deletions

of bases in the human genome.

This dissertation can be divided into four parts. The first part is prediction

of DNA-binding proteins based on structures (chapter2) and sequences (chapter3).

The second part contains four chapters that includes the prediction of RBPs from

structure (chapter4) and sequence (chapter5), application of sequence-based prediction
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method of RBPs to the human genome (chapter6), and the review of current status of

RBPs prediction from low to the highest resolution (chapter7). The third part is the

prediction of CBPs from their structures (chapter8). The final part is the classification

of disease-related non-frame shifting insertion/deletions of bases in the human genome

(chapter9).
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Chapter 2 Structure-based prediction of DNA-binding proteins by structural

alignment and a volume-fraction corrected DFIRE-based energy

function

Abstract

Motivation: Template-based prediction of DNA-binding proteins requires not only

structural similarity between target and template structures but also prediction of

binding affinity between the target and DNA to ensure binding. Here, we propose to

predict protein-DNA binding affinity by introducing a new volume-fraction correction

to a statistical energy function based on a distance-scaledfinite ideal-gas reference state

(DFIRE).

Results: We showed that this energy function together with the structural

alignment program TM-align achieves the Matthews correlation coefficient (MCC)

of 0.76 with an accuracy of 98%, a precision of 93%, and a sensitivity of 64%,

for predicting DNA binding proteins in a benchmark of 179 DNA-binding proteins

and 3797 non-binding proteins. The MCC value is substantially higher than the

best MCC value of 0.69 given by previous methods. Applicationof this method to

2235 structural genomics targets uncovered 37 as DNA-binding proteins, 27(73%) of

which are putatively DNA-binding and only 1 (3%) protein whose annotated functions

do not contain DNA-binding while the remaining proteins have unknown function.

The method provides a highly accurate and sensititive technique for structure-based

prediction of DNA-binding proteins.

Availability: The method is a port of the SPOT (Structure-based function

-Prediction On-line Tools) package available at http://sparks-lab.org/spot

2.1 Introduction

DNA-binding proteins are proteins that make specific binding to either single or double

stranded DNA. They play an essential role in transcription regulation, replication,
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packaging, repair and rearrangement. With completion of many genome projects

and many more in progress, more and more proteins are discovered with unknown

function [54]. The structures for some of those function-unknown proteins are solved

because of structural genomics projects [55]. Functional annotations of these proteins

are particularly challenging because the goal of structural genomics is to cover the

sequence space of proteins so that homology modeling becomes a reliable tool for

structure prediction of any proteins and, thus, many targets in structural genomics have

low sequence identity to the proteins with known function. Therefore it is necessary

to develop computational tools that utilize not only sequence but also structural

information for function prediction [25,31,56–59].

Many methods have been developed for structure-based prediction of

DNA-binding proteins. These include function prediction through homology

comparison and structural comparison [22–26, 60]. Others explore sequence and

structural features of DNA-binding and non-binding proteins with sophisticated

machine-learning methods such as neural network [56,61–63], logistic regression [64],

and support vector machines [22,27,63,65,66].

Recently, Gao and Skolnick proposed a new two-step approach,called

DBD-Hunter [31], for structure-based prediction of DNA-binding proteins. In

DBD-Hunter, the structure of a target protein is first structurally aligned to known

protein-DNA complexes and the aligned complex structures are used to build the

complex structures between DNA and the target protein. The predicted complex

structures are, then, employed for judging DNA binding or not by structural similarity

scores (TM-Score) and predicted protein-DNA binding affinities. TM-align [52] and

a contact-based statistical energy function are employed in the first and second steps

of DBD-Hunter, respectively. DBD-Hunter is found to substantially improve over the

methods based on sequence comparison only (PSI-BLAST), structural alignment only

(TM-align), and a logistic regression technique [67].

In this study, we investigate if one can further improve the prediction of

DNA-binding proteins by employing a different statisticalenergy function for
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predicting binding affinity. Our knowledge-based energy function is distance-dependent

and built on a distance-scaled finite ideal gas reference (DFIRE) state originally

developed for proteins [33,68,69] and extended to protein-DNA interactions [52,53].

Here, we introduce a new volume-fraction correction for theDFIRE energy function

in extracting protein-DNA statistical energy function from protein-DNA complex

structures. This volume fraction correction term, unlike previously introduced one

[53], is atom-type dependent to better account for the fact thatprotein and DNA

atom types are unmixable and occupy in physically separatedvolumes. In addition

to introduction of a new energy function, we further optimize protein-DNA binding

affinity by performing DNA mutation. These two techniques lead to a highly accurate

and sensitive tool for structure-based prediction of DNA-binding proteins.

2.2 Methods

2.2.1 Datasets

We employed the datasets compiled by Gao and Skolnick [31]. One positive and one

negative datasets for training are 179 DNA-binding proteins (DB179) and 3797 non

DNA-binding proteins (NB3797), respectively. These structures were obtained based

on 35% sequence identity cutoff, a resolution of 3Å or better, a minimum length of

40 residues for proteins, 6 base pairs for DNA, and 5 residuesinteracting with DNA

(within 4.5Å of the DNA molecule). As in [31], we use significantly larger number of

non DNA-binding proteins in order to reduce false positive rate because DNA-binding

proteins are only small fraction of all proteins. APO and HOLO testing datasets are

made of 104 DNA-binding proteins whose structures are determined in the absence

and presence of DNA, respectively. A maximum of 35% sequenceidentity was also

employed in selecting these 104 proteins. For APO/HOLO datasets, 93 APO-DB179

pairs and 92 HOLO-DB179 pairs have sequence identity>35%. These pairs are

excluded from target-template pairs during testing.. An additional test set of 1697

proteins (the SG1697 set) was compiled from structural genome targets with a sequence

identity cutoff at 90% by Gao and Skolnick from the Jan 2008 PDB release. We further
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updated the release on November 2009 and obtained 2235 chains(the SG2235 set). This

was done by queried “structural genomic” words in the PDB databank, resulting in 2447

PDB entries. These PDB entries were divided into protein chains and clustered by the

CD-HIT [70]. For the clusters that contain a protein chain in SG1679, wechose the

protein chain as the representation. For other clusters, werandomly chose one protein

chain. There are 538 additional proteins and a total of 2235 protein chains.

To provide an additional test set and examine the effect of a larger database of

DNA-binding proteins, we have also updated DNA-binding proteins from DB179 to

DB250. This updated data set of DNA-binding proteins is selected from PDB released

on December 2009 based on the same criteria that produced DB179. After removing

the chains with high sequence identity (>35%) with any chain contained in DB179 and

with each other, we obtained 71 additional protein-DNA complexes. This leads to an

additional test dataset DB71 and an expanded training set DB250 (DB179+DB71).

2.2.2 Knowledge-based energy function

We employ a knowledge-based energy function to predict the binding affinity of a

protein-DNA complex. We have developed a knowledge-based energy function for

proteins based on the distance-scaled finite ideal-gas reference state (DFIRE) that

satisfies the following equation [33]:

uDFIRE
i,j (r) =















−RT ln Nobs(i,j,r)

( r
rcut

)α( ∆r
∆rcut

)Nobs(i,j,rcut)
, r < rcut,

0, r ≥ rcut,

(2.1)

where R is the gas constant,T = 300K, α = 1.61,Nobs(i, j, r) is the number of ij pairs

within the spherical shell at distance r observed in a given structure database,rcut is the

cutoff distance,∆rcut is the bin width atrcut. The value ofα(1.61) was determined by

the best fit ofrα to the actual distance-dependent number of ideal-gas points in finite

protein-size spheres.

Eq. (2.1) for proteins was initially applied to protein-DNA interactions

unmodified with 19 atom types for both proteins and DNA (DDNA)[52]. In DDNA2
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[53], a low count correction is made toNobs(i, j, r):

N lc
obs(i, j, r) = Nobs(i, j, r) +

75
∑

i,j N
Protein−DNA
ij (r)

∑

i,j,rN
Protein−DNA
ij (r)

(2.2)

In addition, we employed residue/base specific atom types with a

distance-dependent volume-fraction correction defined asf v(r) =

∑

i,j
NProtein−DNA

ij
(r)

∑

i,j
NAll

ij
(r)

.

This volume fraction correction was made to take into account the fact that DNA

and protein atoms with residue/base specific atom types do not mix with each

other. However, we found that DDNA2 is unable to go beyond existing techniques

for predicting DNA-binding proteins. To further improve DDNA2, we introduce

atom-type dependent volume fractions:f v
i (r) =

∑

j
NProtein−DNA

ij
(r)

∑

j
NAll

ij
(r)

. Our final equation

for the statistical energy function is

uDDNA3
i,j (r) =























−η ln Nobs(i,j,r)
(

fv
i
(r)fv

j
(r)

fv
i
(rcut)f

v
j
(rcut)

)β
rα∆r

rα
cut

∆rcut
N lc

obs
(i,j,rcut)

, r < rcut,

0, r ≥ rcut,

(2.3)

where we have introduced a parameterβ. Physically,β should be around 1/2 so that

volume fraction is counted once. We will employ it as an adjustable parameter here for

the same reason that makesα less than 2: proteins are finite in size. As in DDNA2,

we will use residue/base specific atom types (167 atom types for proteins and 82 for

DNA) and rcut=15Å, ∆r=0.5Å. We also set the factorη arbitrarily to 0.01 to control

the magnitude of the energy score. For convenience, we shalllabel the volume-fraction

corrected DFIRE as DDNA3.

2.2.3 Training of the method for predicting DNA-binding proteins

DB179 is used to generate the DDNA3 statistical energy function Eq. (2.3). To avoid

overfiting, we employed the leave-one-out scheme to train DDNA3 statistical energy

function. A target protein is chosen from DB179/NB3797. The TM-align program is

employed to make a structural alignment between this targetprotein with a protein

in DB179 (except itself if it is in DB179). If the alignment score (TM-score) is
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greater than a threshold, the proposed complex structure between the target protein

and DNA is obtained by replacing the template protein from its protein-DNA complex

structure. The binding affinity between DNA and the target protein is evaluated by

the DDNA3 energy function Eq. (2.3). Instead of using template DNA sequences,

we perform exhaustive mutations of DNA base pairs to search for the highest binding

affinity. DNA bases are paired by X3DNA software package [71]. The conformation

of mutated bases are built using default bond length, bond angle and dihedral angle

parameters as defined in AMBER98 forcefield [72]. A DNA base, if does not have a

corresponding pairing base, is not mutated. If the highest binding affinity is greater than

an optimized threshold, the target protein is considered asa DNA binding protein. The

method described above has two important differences from DBD-hunter: the use of

our distance-dependent energy function and the search for the strongest binding DNA

fragment.

2.2.4 Evaluation of the method for predicting DNA-binding proteins

The measures of the method performance are: Sensitivity [SN=TP/(TP+FN)],

Specificity [SP=TN/(TN+FP)], Accuracy [AC=(TP+TN)/(TP+FN+TN+FP)], and

Precision [PR=TP/(TP+FP)]. In addition, we employed a Matthews correlation

coefficient:

MCC =
TP ∗ TN − FP ∗ FN

√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(2.4)

Here TP, TN, FP, and FN refer to true positives, true negatives, false positives, and false

negatives, respectively.

2.3 Results

2.3.1 Training based on DB179/NB3797 (DDNA3)

We have optimized volume-fraction exponentβ, TM-score and binding affinity

thresholds to achieve the highest MCC values. Optimization is performed by a
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Fig. 2.1: Sensitivity versus false positive rate, given by DDNA3 (Filled black circles)
and DDNA2 (Open red circles) reveals the importance of an appropriate
reference state for method performance in predicting DNA binding proteins.
The results of other methods are adapted from [31]. DDNA3U (open black
circles) is the sensitivity versus false positive rate given by DDNA3 based on
updated DB250 dataset. TM-Score dependent energy-score thresholds lead to
DDNA3O (Open Diamond) and DDNA3OU (Red filled diamond), compared
to optimized DBD-Hunter (Open green triangle).

grid-based search. The grids forβ and TM-score are 0.02 and 0.01, respectively. For

the binding affinity threshold, the lowest energy of each aligned complex under different

TM-score thresholds is calculated and these energy values are considered sequentially

as the energy threshold. We found that the highest MCC is 0.73 forβ=0.4, the structural

similarity threshold of 0.60 and the energy threshold of -11.6. The corresponding

accuracy, precision and sensitivity are 98%, 91%, and 60%, respectively. The effect of a

knowledge-based energy function can be revealed by replacing DDNA3 with DDNA2.

The optimized MCC value (Structural similarity threshold of0.53 and energy threshold

of -4.2) is 0.61. (Note, there is noβ parameter in DDNA2.) The corresponding

accuracy, precision, and sensitivity are 97%, 85%, and 55%,respectively. It is clear

that the reference state of a statistical energy function has a significant impact on the

performance in predicting DNA-binding proteins. The largest improvement is 6%

improvement in precision, the fraction of correct prediction in all prediction. The

overall performance of DDNA3 significantly improves over that of DBD-Hunter which

has a MCC of 0.64, 98% accuracy, 84% precision and 55% sensitivity, respectively.
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Table 2.1: Optimized TM-score-dependent energy thresholds based on DB179 and
NB3797 (DDNA3O)

TM-score Energy Max
Range Threshold ∆TP TP ∆FP FP MCC
0.74-1.00 -9.87 53 53 3 3 0.52
0.62-0.74 -13.95 52 105 4 7 0.73
0.58-0.62 -16.50 3 108 1 8 0.74
0.55-0.58 -18.64 4 112 0 8 0.76
0.52-0.55 -29.10 2 114 0 8 0.76

Fig. 2.1 shows sensitivity as a function of false positive rate. Our results were

obtained by fixing structural similarity threshold and varying the energy threshold. It

is clear that DDNA3 yields a substantially higher sensitivity than either DDNA2 or

DBD-Hunter for a given false positive rate.

The predicted binding complexes can be employed to examine predicted DNA

binding residues. An amino-acid residue is considered as a DNA-binding residue if

any heavy atom of that residue is less than 4.5Å away from any heavy atom of a

DNA base. Predicted binding residues from template-based modeling can be compared

to actual binding residues. For the training set (179 DB and 3797 NB proteins),

there are 108 predicted DB proteins with 11 false positives.For these 108 predicted

complexes, specificity, accuracy, precision, sensitivityand MCC of predicting DNA

binding residues are 94%, 89%, 74%, 68%, and 0.64, respectively. For a comparison,

DDNA2 has predicted 99 DB proteins and the corresponding performance in predicting

DNA binding residues are 93%, 88%, 75%, 67%, and 0.63, respectively. These

performances are similar to a specificity of 93%, an accuracyof 90%, a precision

of 71% and a sensitivity of 72% achieved by DBD-hunter. Similar performance in

predicting DNA-binding residues is due to the same structural alignment (TM-align)

method used in the first step by the three methods.

2.3.2 TM-Score dependent energy threshold (DDNA3O)

Obviously, one threshold for energy and one for structural similarity (TM-Score)

are too simple to capture the complex relation between structure and binding. For
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example, one expects that the binding-energy requirement should be stronger for less

similar structures but weaker for highly similar structures between template and query.

This has led Gao and Skolnick to develop TM-Score dependent energy thresholds

(9 energy thresholds for 9 TM-Score bins ranging from 0.40 to1.0 to maximize

MCC value in each bin), and they finally set a minimum TM-score cutoff at 0.55 for

maximum MCC. Here, we slightly changed the way to calculate MCC by including

those predicted positive(TP/FP) in higher TM-score region. The results are shown in

Table2.1. By this way, the cutoff of TM-score is extended to 0.52 ratherthan 0.55

as Gao’s way, and the number of TP increase 2 without increasing FP. We followed

their method and optimized 9 parameters for the MCC value at each TM-Score bin

separately for the same dataset (DB179 and NB3797). We furtherfound that the

top four bins in the table with negative prediction for TM-score<0.55 generate the

highest MCC value of 0.76 for the entire dataset. To distinguish this further optimized

method, we labeled it as DDNA3O. DDNA3O yields a MCC value of 0.76 with

the corresponding sensitivity of 0.64 and specificity of 0.998. By comparison, the

corresponding optimized DBD-Hunter with the same dataset has a MCC value of 0.69

with the corresponding sensitivity of 0.58 and specificity of 0.995 while the DDNA3

has a MCC value of 0.73 with sensitivity of 0.60 and specificityof 0.997. Thus, most

significant improvement from DDNA3 to DDNA3O is significant increase in sensitivity

(from 60% to 64%) also with reduction in rate of false positives (from 11/3797 to

8/3797).

There are 114 complexes predicted as DNA-binding proteins by DDNA3O.

For these 114 complexes, predicted DNA-binding residues are compared with native

complexes. The specificity, accuracy, precision, sensitivity and MCC are 95%, 90%,

77%, 69% and 0.67, respectively. These do not change significantly from DDNA3

because of same complex structures generated by TM-align. The slight difference is

caused by 2 reasons. First, in different potential energy functions, different proteins are

predicted as binding; Secondly, protein may choose different templates.
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Fig. 2.2: Energy threhold versus

TM-score, given by

DDNA3O-L(filled line)

and DDNA3O (slashed line).

All protein located behind the

line is predicted as positive.

Only TP(filled circles) and FP

( open circles) by DDNA3O-L

are shown. For protein with

multiple matching templates,

only template with highest

TM-score is used.

We found the energy threshold is increasing along with TM-score threshold. To

show the relation between energy and TM-score, we changed toa new way to optimize

the energy threshold by linear relation with TM-scoreEcut = γ ·TMscore+ e0, where

γ ande0 are two parameters for training to maximize MCC. The highest MCCis 0.76

when γ = 52.5 and e0 = −49.85 with the TM-score cutoff at 0.5, where there is

higher sensitity 67%(120/179) but also with more number of false positive (17). This

method is labeled as DDNA3O-L. As shown in Fig.2.2, most of true positive points

by this method are far below the boundary, with a few left mixed with false positive

points. Relatively all false positive positive points are gathering around the boundary.

Certaily, a high-order equation can discriminate the pointsbetter, however, limited to

the number of samples, it’s hard to overcome the over-training problem. Also DDNA3

and DDNA3O gives a reasonable boundary. To limit the rate of false positive in the

prediction, we will still use DDNA3O for all future applications.

2.3.3 Test by the APO104/HOLO104 datasets

The methods trained above (DDNA3 and DDNA3O) are applied to predict DNA

binding proteins of APO104/HOLO104 datasets. The numbers of positive prediction

are 50 by DDNA3 and 53 by DDNA3O (out of 104) for the APO sets, and 61 by

DDNA3 and 62 by DDNA3O (out of 104) for the HOLO sets, respectively. That is,

using monomer structures, rather than the complex structures, leads to a reduction of

20



Fig. 2.3: (a) Structural comparison between APO target protein 1mjkA (green) and
template protein 1ea4A(red) . The TM-score between them is 0.79 and the
interaction energy between 1mjkA and template DNA is -20.9.(b) Structural
comparison between HOLO target protein 1mjmA(green) and template protein
(1ea4A). The TM-score between them is 0.76 and the interaction energy
between 1mjmA and template DNA is -20.6.

11% in sensitivity (from 59% for the HOLO to 48% for the APO set) by DDNA3 and

9% by DDNA3O (from 60% to 51%). The corresponding sensitivity values for DDNA2

are 43.3% (45/104) and 53.8% (56/104) for the APO and HOLO sets, respectively.

The performance of DBD-Hunter (47% for the APO and 55% for the HOLO sets) is

somewhat in between DDNA2 and DDNA3. The test confirms a significant increase in

sensitivity by DDNA3O over by DDNA3 for the APO set, in particular.

A more detailed analysis on predictions made by DDNA3O showsthat there is an

overlap of 49 predictions between the APO and HOLO sets. Fig.2.3shows one example

of the test on target proteins 1mjkA (contained in APO104) and 1mjmA (contained in

HOLO104). 1mjkA and 1mjmA are the structure of the same methionine repressor

protein in the absence and presence of DNA fragment, respectively. There is a small

conformational change before and after DNA binding (TM-Score between the two is

0.93). This small conformational change apparently does not prohibit the successful

match to the same template protein 1ea4A with strong bindingaffinity.

On the other hand, there are 12 correctly predicted HOLO targets but incorrectly

predicted APO targets as shown in Table2.2. The difference is caused by significant

local conformational change in binding regions (high TM-align score but low binding

affinity). An example (1le8A in HOLO and corresponding 1f43Ain APO) is shown

in Fig. 2.4a where significant change in binding regions (from red in APOto green
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Table 2.2: Targets predicted as DNA-binding on HOLO set but not on APO set.
APOa HOLOb TMPc Seqidd HOLO HOLO APO AP HOLO

TMPe ENf ENf TMPg APO h

1nfa 1a02N 1hjbC 82 0.67 -25.70 -1.1 0.53 0.64
1uklC 1am9A 1nlwB 70 0.82 -24.99 -6.5 0.84 0.86
1rxr i 1by4A 1kb4A 83 0.90 -29.57 -20.5 0.81 0.80
1es8A 1dfmA 2bamB 88 0.68 -30.68 14.1 0.64 0.89
1jyfA 1efaA 1rzrA 100 0.90 -12.97 -1.6 0.89 0.96
1i11A 1gt0D 1cktA 52 0.78 -26.68 -9.5 0.73 0.74
1ev7A 1iawA 1cf7A 97 0.55 -23.51 -20.0 0.53 0.82
1q39A 1k3wA 2f5pA 90 0.82 -20.67 -18.4 0.48 0.55
1f43A 1le8A 1fjlA 100 0.88 -19.47 -7.5 0.58 0.64
1bgt 1sxpA 1y6fA 93 0.75 -19.17 -2.0 0.78 0.98
1mi7R 1trrA 1gdtA 89 0.68 -21.58 -15.0 0.38 0.52
2audA 1tx3A 4rveB 96 0.56 -24.53 -20.2 0.54 0.95

a. Targets from APO set;b. Targets from HOLO set;c. Template;d. Sequence Identity
between APO and HOLO target calculated by bl2seq in blast2.2; e. TM-score between
HOLO target and template protein;f . Energy value between template-target complex;
g. TM-score between APO target and template protein;h. TM-score between HOLO
target and APO target.i. template used for HOLO is unable to be used for APO because
of >35% sequence ID.

Fig. 2.4: (a) Structural comparison between APO target 1f43A and HOLO target 1le8A.
Red: fragment of binding domain of 1f43A. Green: fragment of binding
domain of 1le8A. Orange: template DNA of 2bamB. (b) Structural comparison
between APO target 1jyfA (red) and HOLO target 1efaA (green). Orange:
template DNA of 1rzrA.
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in HOLO) leads to incorrect prediction despite insignificant structural change in

nonbinding regions of the protein. In another more extreme case (Fig.2.4b), disordered

region in APO structure (1jyfA) changes to ordered binding domain in HOLO structure

(1efaA).

Another cause of incorrect prediction in APO and correct prediction in HOLO

is large overall structural change. The large overall structure changes lead to poor

structural alignment to templates so that their TM-scores are lower than the threshold.

For example, despite 90% sequence identity, TM-score between 1q39A in APO and

1k3w in HOLO structures is only 0.48 and leads to the poor alignment of APO structure

to template (best is 0.48 in TM-score). We also discovered a technical reason for an

APO target (1rxr). We are unable to use the template employed for the corresponding

HOLO target because the sequence identity between the template and its respective

APO target is slightly higher than 35%.

There are also 3 targets identified as DNA binding proteins correctly in the APO

set but not in the HOLO set. All 3 (1llzA, 1bf5A and 1esgA) are just outside of

arbitrary boundaries generated by optimization. This highlights the empirical nature

of the proposed approach.

One can further examine the performance of DDNA3O in predicting binding

residues. We found that the specificity, accuracy, precision, sensitivity and MCC for

predicting binding residues are 94%, 90%, 69%, 64%, 0.59 forthe APO set and 95%,

90%, 75%, 67%, 0.63 for the HOLO set, respectively. The performance for the HOLO

set is close to the results for training set (93%, 89%, 76%, 66%, and 0.64 for specificity,

accuracy, precision, sensitivity and MCC, respectively). This highlights the robustness

of DDNA3O.

2.3.4 Test by the DB71 dataset

The additional 71 proteins contained in the updated protein/DNA complex structural

dataset (DB71) offer a challenging test set. DDNA3 (DDNA3O) predicts 34 ( 39)

out of 71 proteins as DNA binding proteins. Thus, the sensitivity is 34/71(48%) by
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DDNA3 and 55% by DDNA3O. DDNA3O continues to make significantimprovement

in sensitivity over DDNA3. This 55% sensitivity is 5% lower than the sensitivity of 60%

for the HOLO dataset but is higher that the sensitivity of 51%for the APO dataset. This

suggests that more than 50% new complex structures are recognizable by DDNA3O

with DB179 as templates for protein-DNA complexes for all thesets tested (APO,

HOLO, and DB71).

2.3.5 The effect of a larger, updated dataset of DNA-binding proteins (DDNA3U)

To examine the effect of a larger dataset of DNA-binding proteins, we use DB250

and NB3797 as the training set. We found that for this larger, updated dataset, the

highest MCC is 0.75 with the same or similar values for three parameters (β=0.4,

TM-score threshold of 0.55 and energy threshold of -13.7) asDDNA3. This result

highlights the stability of trained parameters with a 40% increase in DNA-binding

proteins. The corresponding accuracy, precision and sensitivity are 97%, 87%, and

67%, respectively. In particular, 45 out of 71 additional proteins outside DB179 are

recognized as DNA binding by DB250-trained DDNA3 (DDNA3U), the same proteins

recognized by DB179-trained DDNA3 (DDNA3) for which 71 proteins are employed

as an independent test set.

Application of this newly trained method to APO104 and HOLO104 sets leads

to 52(50%) and 64(62%) predicted DNA binding proteins, respectively. That is, a 40%

expansion of DNA-binding proteins (from 179 to 250) leads toabout 2% improvement

in sensitivity. For 52 successfully predicted APO targets,the specificity, accuracy,

precision, sensitivity and MCC for predicted binding residues are 94%, 90%, 66%,

63%, 0.58, respectively. The corresponding values for 64 successfully predicted HOLO

targets are 95%, 90%, 74%, 67%, 0.63, respectively. However, as Fig.2.1 indicates,

newly trained DDNA3 (labeled as DDNA3U) yields higher sensitivity only when false

positive rate>0.005. That is, at a lower false positive rate, a larger template database

in fact decreases sensitivity and precision.

24



Table 2.3: Structural Genomics targets (SG1697) predicated as DNA-binding proteins
by DBD-Hunter, DDNA3, and DDNA3O.
Method Prediction Putative Other Function Unknown
DDNA3 32 19 3 10
DDNA3O 27 19 1 7
DBD-Hunter 37 18 3 16
Overlap* 19 15 0 4

∗Overlap between DBD-Hunter and DDNA3O

Here, by applying TM-Score dependent energy thresholds to the updated

DB250/NB3797 databases, MCC hasn’t been changed much. This is caused by the

increase of number of false positive (from 26 to 34), although with more number

of true positive (from 167 to 176). Because we are interested in predicting DNA

binding proteins with very low false positive rate (<0.005), we will employ the methods

(DDNA3 and DDNA3O) trained by DB179 to structural genomics targets.

To further examine the possibility of overfitting in DDNA3U,we perform a

ten-fold cross-validation tests on the DB250/NB3797. That is, all the binding and

non-binding sets are randomly divided into 10 folds. Each time, one fold is chosen as

the test set while the other 9 folds are employed for all training: the statistics of potential

energy function, the structure templates for protein-DNA binding, and re-training of the

parameters. The test is repeated for 10 times. The method performance is analyzed by

1000 times of bootstrap resampling [73]. We found that the average MCC value is

0.70±0.02 with the accuracy of 97%, the precision of 88% and the sensitivity of 58%,

respectively. It is clear that the only significant change from the leave-one-out results is

the reduction of sensitivity from 65% to 58%. This is likely caused by the reduced

number of templates in the ten-fold cross-validation. Indeed, if 249 templates are

permitted to use, the average MCC value is 0.72±0.02. Thus, our results are reasonably

robust with different trainining.

2.3.6 Application to Structural Genomics Targets

As shown in Table2.3, application of DDNA3 leads to 32 DNA-binding proteins from

SG1697. Among them, 19 out of 32 proteins (59%) are putative DNA binding proteins,
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3 out of 32 proteins (10%) are annotated to having other functions while others ( 31%)

have unknown function. DDNA3O decrease the prediction of DNA binding proteins

from 30 to 27 without change on the number of putative DNA binding proteins (19)

and a decreased number of proteins with other annotated function from 3 to 1. This

result further confirms the improvement of DDNA3O over DDNA3. By comparison,

DBD-Hunter predicts 37 DNA-binding proteins. Among the 37 proteins, there are 18

(48.6%) putative DNA binding proteins, 3 (8.1%) with other putative functions, and

16 (43.2%) with unknown function. All the putative functions are according to NCBI

database.

The overlap between predicted proteins by DDNA3O and DBD-Hunter is

only 19 proteins, 15(79%) of which are putative DNA binding proteins. The

large fraction of putative DNA binding proteins in overlapped predictions highlights

significant improvement in confidence of prediction when a consensus prediction is

made. Meanwhile, only 70% proteins predicted by DDNA3O overlap with those by

DBD-Hunter highlights that the energy function plays a significant role in prediction.

There are 4 putative DNA binding proteins (1ug2A, 1y9bA, 2cqxA and 2fb1A)

predicted by DDNA3O but missed by DBD-Hunter. Similarly, there are 3 putative

DNA binding proteins (2hytA, 2iaiA and 2od5A) predicted by DBD-Hunter but missed

by DDNA3O. The complete list of predicted DNA-binding proteins is shown in Table

2.4. Table 2.4 includes 10 additional predicted proteins from SG2235, 8 ofwhich

are putative DNA binding proteins. That is, 80% of predictedproteins from SG2235

are putative DNA binding proteins. This result confirms the prediction quality of the

proposed DDNA3O technique.

2.4 Discussion

We have developed a highly accurate method (DDNA3O) to predict DNA binding

proteins. This is accomplished by developing a new statistical energy function for

predicting DNA-binding proteins. We found that introducing an atom-type dependent

volume fraction correction and DNA mutation in the DFIRE statistical energy function
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Table 2.4: Targets are predicted as DNA-binding proteins byDDNA3O from SG1697
and SG2235 with function based on GO annotations.

Target Template TM-score Energy Putative Function
2keyAd 1p7dB 0.58 -22.19 DB
2khvAd 1p7dB 0.72 -30.06 DB
2kobAd 1p7dB 0.75 -26.52 DBa

3cecAd 3croL 0.75 -21.67 DB
3edpAd 1sfuA 0.74 -13.42 DB
3frwFd 1trrG 0.77 -23.04 DB
3ic7Ad 1cf7A 0.61 -17.48 DB
3ikbAd 4sknE 0.62 -16.54 DB
3iuvAd 1jt0A 0.77 -14.97 UKb

3ke2Ad 1gdtA 0.58 -18.58 UK
1iuyA 1f4kB 0.61 -19.25 NBc

1s7oA 1gdtA 0.67 -14.37 DB
1sfxA 1u8rJ 0.72 -24.89 DB
1ug2A 1fjlA 0.58 -17.92 DB
1wi9A 1repC 0.62 -17.50 UK
1x58A 1w0tA 0.87 -24.86 DB
1y9bA 1ea4A 0.67 -22.76 DB
1z7uA 1u8rJ 0.66 -14.75 DB
1zelA 1cgpA 0.56 -20.67 UK
2cqxA 1akhA 0.69 -17.87 DB
2da4A 1akhA 0.74 -27.67 DB
2e1oA 1akhA 0.87 -18.37 DB
2eshA 1f4kB 0.67 -17.10 DB
2esnA 1u8rJ 0.62 -21.74 DB
2ethA 1u8rJ 0.71 -20.94 DB
2f2eA 1u8rJ 0.71 -14.07 DB
2fb1A 2as5F 0.62 -14.47 DB
2fyxA 2a6oB 0.78 -18.83 DB
2g7uA 1u8rJ 0.70 -15.83 DB
2jn6A 1gdtA 0.70 -17.11 DB
2jtvA 2ex5A 0.61 -21.07 UK
2nx4A 1jt0A 0.76 -16.34 DB
2qvoA 1z9cF 0.80 -10.19 UK
3b73A 1z9cF 0.68 -23.89 UK
3bddA 1u8rJ 0.76 -21.56 DB
3bhwA 1fokA 0.58 -19.04 UK
3bz6A 1u8rJ 0.73 -17.02 UK

a. Targets are annotated as protein which has putative functions related with DNA
binding in PDB.b. It is unknown whether a target has putative functions related with
DNA binding. c. Nonbinding to DNA according to GO annotation.d. Targets in
SG2235
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leads to a significant improvement in the performance in predicting DNA-binding

proteins (MCC= 0.76 for DB179/NB3797 by DDNA3O). This is a significant

improvement from MCC of 0.69 given by optimized DBD-Hunter. Application

of DDNA3O to structural genome targets confirms the accuracyof the proposed

method with 73% potentially correct prediction of DNA-binding proteins (annotated

as putative DNA-binding), 3% potentially false positives (function annotated but not

DNA-binding) and the rest unknown.

For DDNA3, the effect of DNA mutation is small for improving the MCC value

of the training set (from 0.72 to 0.73) but is significant for improving the sensitivity

from 46/104 (44%) to 50/104 (48%) of the APO test set. We further find that the

mutation leads to no significant improvement in sequence identity between template

DNA sequence and wild-type DNA sequence. The sequence identities to wild-type

DNA sequences before and after mutation are both close to therandom value of 25%.

One possible reason is the absence of structural refinement for protein during mutation.

This result also suggests that DDNA3 is not yet specific enough to identify binding

DNA bases.

In principle, exhaustive mutations of DNA base pairs can lead to significant

increase in computing time for a long DNA segment. However, because our energy

function does not consider base-base interaction by assuming a rigid DNA structure

before and after binding, the computing requirement for theexhaustive mutations of

DNA base pairs is only four times more than that without base mutations.

One potential concern is insufficient statistics due to the small number of complex

structures for deriving the DDNA3 energy function. We have addressed this question

by employing the leave-one-out (for both DB179 and DB250 sets)and ten-fold

cross-validation (for the DB250 set) techniques. The consistency between different

training and test sets provides the confidence about the energy functions obtained.

Another concern is potential overfitting due to 5 threshold parameters in

DDNA3O because of the small number of true positives for eachTM-Score bins

(Table 1). This concern is reduced somewhat as the energy threshold mostly satisfies
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the expectation that less similar structures (low TM-Scores) requires higher energy

thresholds. Moreover, there is a consistent improvement insensitivity from training

(DB179) to test (APO/HOLO104, DB71, and structural genomics targets). This

consisteny makes the improvement statistically significant. However, one certainly

can not completely remove the concern of overfitting. More studies as larger data set

becomes available are certainly needed.

One advantage of the proposed structure-based prediction method is the

prediction of protein-DNA complex structures. The predicted complex structures

allow prediction of DNA binding residues. High specificity and accuracy (>90%) are

achieved for binding residue prediction even for the APO structures (protein structures

in the absence of DNA).

The success of DDNA3O is limited by the availability of protein-DNA complexes

as templates. A 40% expansion of template databases from 179to 250 proteins

leads to significant improvement in sensitivity if false positive rate>0.005 (Fig.2.1)

but also slightly decreases sensitivity if false positive rate<0.005. Thus, there is a

clear need to further improve the energy function that discriminates binding from

nonbinding proteins. The rigid-body approximation employed here likely has limited

the performance of DDNA3O. Introducing flexibility to DNA and proteins to DDNA3

is in progress.
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Chapter 3 Sequence-based prediction of DNA-binding proteins by fold

recognition and calculated binding affinity

Abstract

Structure-based methods are limited because they require structure data as input. For

fully understanding the mechanism of protein-DNA interaction, a specialized method

for prediction of DBPs from sequence is necessary. Here, we propose to predict DBPs

from sequence level by integrating structure prediction program HHM with binding

affinity calucation program (DFIRE).

This method was benchmarked on a database with 179 DNA-binding

proteins(DBP) and 3797 non-DNA-binding proteins(NDBPs). The final results indicate

structure prediction program together with energy function can achieve the MCC 0.77

with an accuracy of 98%, precision 94% and sensitivity 65%. These results are

significantly higher than the best MCC value 0.68 from DBD-Threader. This method

was applicated on 20270 human genome targets, and discovered 1975 DBPs. Amonge

these proteins, 1612 (56%) are annotated as DBPs by GO. The newly developed method

is accurate and sensitive in prediciton of CBPs from sequence.

3.1 Introduction

Completion of thousands of genome projects has led to an explosive increase in number

of proteins with unknown functions. The comprehensive Uniprot database [74] contains

107 protein sequences and, yet, less than 5% of these sequences have annotated

functions from Gene Ontology Annotation database [75]. This gap between sequences

and annotations is widening rapidly as inexpensive and moreefficient next generation

sequencing techniques become available. Experimentally identifying function for

millions of proteins is obviously impractical. Thus, it is necessary to develop effective

bioinformatics tools for initial functional annotations.

30



One important function of proteins is DNA-binding that plays an essential role

in transcription regulation, replication, packaging, repair and rearrangement. Function

prediction of DNA-binding can be classified into three levels of resolution (low, medium

and high). A low-resolution prediction is a simple two-state prediction whether or not

a protein will bind to DNA. A medium resolution prediction isto predict the region

in a protein that binds with DNA (DNA-binding residues or DNA-binding interface

regions). A high-resolution prediction is to predict the complex structure between DNA

and a target protein of unknown function.

Most existing methods have been focused on low-resolution two-state prediction

[22, 27, 28, 42, 56, 62, 67, 76–80, 80–84] and medium-resolution prediction of binding

residues [56, 63, 77, 85–89, 89–99].The majority of these techniques are based on

machine-learning techniques ranging from neutral networks, random forest, decision

trees to support vector machines that are trained on the features derived from sequence

(sequence-based) and structure (structure-based). A structure-based technique attempts

to infer functions from known protein structures. Both sequence-based [27, 28, 78,

79, 81, 82, 84, 100] and structure-based [22, 56, 62, 67, 77, 80, 83, 101]prediction of

DNA-binding proteins were developed. The same is true for sequence-based binding

residue prediction [27,86,88,94,96,98–100,102–104].

An alternative approach to above machine-learning techniques is to take

advantage of known protein-DNA complex structures. This can be accomplished

by structural comparison between a DNA-binding template and a target protein

structure [68, 85, 92, 93].For example, we demonstrated that a size-independent,

structural alignment method SPalign makes a significant improvement over several

other commonly used tools to locate functionally similar structures [68]. If the

structure of a target protein is unknown, homology modeling[105, 106] has been

employed. Gao and Skolnick further illustrated the importance of combining the

predicted structure (through structural alignment [31]or threading [35]) with binding

prediction for detecting DNA-binding proteins. One important aspect of this approach

is its ability to predict the complex structure between the target protein and template
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DNA. This high-resolution function prediction at atomic details allows an improved

understanding of binding mechanism and an integration withlow and medium-level

prediction of DNA-binding proteins and DNA-binding residues.

This work will focus on improving the high-resolution function prediction.

The DBD-Threader method developed by Gao and Sholnich [35] first employed the

threading technique called PROSPECTOR [107] to predict structures based on known

DNA-binding domains. Confidently predicted complex structures are then confirmed

for DNA-binding by utilizing a pairwise knowledge-based, contact energy function [31]

. The method has achieved the Mathew correlation coefficient(MCC) of 0.68 for the

two-state prediction of DNA-binding proteins by using a database of 179 DNA-binding

domains (DB179) and 3797 non-DNA-binding domains (DB3797).

In this work, we approach this function prediction problem with different methods

for protein-structure prediction and binding prediction.Instead of a contact-based

energy function employed in DBD-Threader [35] , we will employ a statistical energy

function based on a distance-scaled ideal-gas reference state (DFIRE) [33]extended for

protein-DNA interactions [32, 52, 53]. This DDNA energy function is found useful

in developing a highly accurate structure-based techniquecalled SPOT-Struc (DNA)

that achieves the MCC value of 0.76 for the same database of DB179 and NB3797,

employed by DBD-Threader. In addition to energy functions, we will examine two

fold-recognition techniques to enable a sequence-based prediction as DBD-Threader.

One is a method based on hidden Markov model (HHM) called HHblits [108]. The

other is our in-house built technique called SPARKS X [49]. Both methods are among

the top performers in critical assessment of protein structure prediction techniques

(CASP 9) [49, 109]. This development of SPOT-Seq for DNA-binding proteins is

inspired by the success of prediction of RNA-binding proteins by integrating SPARKS

for structure prediction and DFIRE for binding prediction [36] and its successful

application to human genome [Zhao et al. submitted].
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3.2 Methods

3.2.1 Dataset

Gao-Skolnick domain datasets (DB179 and NB3797).These two datasets were

compiled by Gao and Skolnick that contains 179 DNA-binding protein domains and

3797 non-DNA binding protein domains. These two sets are developed by collecting

the proteins with a resolution of 3 or better, a minimum length of 40 amino acid residues

per protein and at least 6 base pairs of DNA and five residues interacting with DNA.

The redundant data among two sets are excluded by using 35% sequence identity cutoff.

DB179 is used as a template library.

Test set of RNA-binding proteins (RB174). RB174 is a dataset made of 174

high-resolution RNA-binding proteins (whole chains), collected by us in developing

SPOT-Seq (RNA) based on a 25% cutoff. We will employ RB174 to examine if the

proposed method can separate DNA from RNA-binding proteins.

Independent test dataset (DB82).An independent test set was developed by including

the DNA-binding proteins released after December 2009. Theprotein chains were

divided into SCOP domains, and the redundant data was removedby using sequence

identity cutoff 30%. We further excluded the proteins that have sequence identity higher

than 30% with any proteins in DB179. Finally, we generated an independent test dataset

with 82 protein domains and chains.

3.2.2 Function prediction protocol

The prediction protocol proposed here is the same as SPOT-seq (RNA) developed by

us [36] , except that 1) the template library is made of known protein-DNA complex

structures and 2) HHBlits [108], in addition to SPARKS-X [49] is used in structure

prediction. Briefly, HHBlits or SPARKS X is firstly employed to match a target

sequence to the template structures in the template library. If a significant match is

found based on a Z-score, that is based on the alignment score, relative to the average

alignment score for all binding and non-binding proteins inthe dataset. The top
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matched template(s) will be used to construct model protein-DNA complex structure(s)

by copying the query sequence to the template complex structure(s) according to the

alignment result from SPARKS X/HHblits while keeping the template RNA intact. The

model complex structures are then employed to estimate the binding affinity between

the target protein (main-chain only) and the template DNA byutilizing DDNA3 [32].

The target protein is classified as DNA-binding if the binding affinity is higher than

a threshold. Thus, there are only two parameters to be optimized: sequence-structure

alignment Z-score and the binding energy value.

3.2.3 Other Methods

PSI-BLAST was applied for prediction of DBPs by searching homology sequences

from NCBI non-redundant sequence library for four iterations. A target is classified as

DBPs, if it has at least one template with E-value lower than anoptimized threshold.

All templates with sequence identity> 30% with the target sequence are excluded.

The E-value threshold is optimized by maximizing the MCC value. PSI-BLAST

was downloaded from NCBI. HHblits is a fold-recognition technique that extracts

homologous sequences of targets from template library by Hidden-Markov models

(HMM). The HHM matrices of targets and templates were built by searching against

the Uniprot database. Probability of match was calculated by comparing the HHM

matrix of a target to the HHM matrix of a template. We define a target sequence as a

DBP if probability of match is higher than a threshold. The threshold is optimized by

maximizing the MCC value.

3.3 Results

3.3.1 Low-reolution two-state prediction

Leave-one-out cross validation (Gao-Skolnick Domain-level datasets): This work

is accomplished by removing all templates with> 30% sequence identity to the

target. The results were obtained by taking one chain sequence from DB179 or

NB3797 and predicting whether it binds or does not bind to DNA.Figure 3.1

34



Fig. 3.1: Performance of various

methods of DBP prediction

for the Gao-Skolnick domain

datasets.

Table 3.1: Method comparison for prediction of DNA-bindingproteins
Method SN(%) PR(%) SP(%) ACC MCC
Structure based
DBD-Hunter 61 79 92 - 0.681
DDNA3 60 91 99 98 0.73
Sequence based
PSI-BLAST(NCBI) 49 64 87 - 0.540
PSI-BLAST(Uniprot)b 43 75 93 - 0.553
PROSPECTORb 53 74 91 - 0.609
HHblits 61 69 99 97 0.639
SPARKS X 45 95 99 97 0.647
SPARKS X+Energy 53 84 99 97 0.652
DBD-Threaderb 56 86 96 - 0.680
HHblits+Energy 65 94 99 98 0.771

and Table3.1 compared both structure and sequence-based methods where results

of DBD-Hunter, PSI-BLAST (NCBI), PSI-BLAST(uniprot), PROSPECTOR, and

DBD-Threader were obtained from Ref. [35] . We obtained the results of SPARKS

X, HHBlits, SPARKS X+Energy and HHBlits+Energy for the same datasets. For

sequence-based fold/homology-recognition techniques, SPARKS X yields the highest

MCC value (0.647), followed by HHblits (0.639), PROSPECTOR (0.609), and

PSI-BLAST (0.553 or 0.540). Adding the energy function to fold recognition leads to a

small improvement over SPARKS X (MCC from .647 to 0.652) but a large improvement

over PROSPECTOR (MCC from 0.609 to 0.681) and over HHblits (MCC from 0.639

to 0.771). In particular, the best performing HHblits + Energy leads to a sensitivity of

65% and precision of 94%. Such performance is better than thebest structure-based

technique (DDNA3) with a MCC value of 0.73.
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Table 3.2: Detecting DBPs in 19 fold shared by DNA-binding (DB179) and
non-binding (NB-3797) proteins

Fold Fold Name Dataset HHblits HHblits+
(bd/nb) (bd/nb) Energy(bd/nb)

a.38 HLH 5/1 5/0 5/0
a.74 Cyclin 4/10 1/2 1/2
c.52 Restriction endonuclease 14/4 3/0 4/0
a.4 DNA/RNA-binding 3-helical bundle 50/11 23/0 25/0
a.6 Putative DNA-binding domain 2/2 2/0 2/0
c.66 S-adenosyl-L-methionine-dependent

methyltransferases
4/19 4/15 3/0

c.62 vWA 2/10 2/0 2/0
g.39 Glucocorticoid receptor 2/12 1/0 1/0
c.37 P-loop-containing-

nucleoside-triphosphate hydrolases
5/87 2/5 2/0

d.151 DNase I 2/2 2/2 1/2
a.60 SAM domain 7/1 4/0 5/0
d.95 Homing endonuclease 6/1 2/0 3/0
c.55 Ribonuclease H motif 8/35 2/0 1/0
b.82 Double-stranded beta-helix 1/37 0/0 1/0
c.53 Resolvase 1/5 1/0 1/0
h.1 Parallel coiled-coil 5/43 2/0 2/0
d.129 TBP-like 3/13 0/0 1/0
d.218 Nucleotidyltransferase 1/8 1/0 1/0
Total 122/301 57/24 61/4

Separating DNA-binding from non-DNA-binding in the same SCOP fold. One

crucial test for predicting DNA-binding function is the ability of a method to classify

DBPs from non-DBPs within the same structural fold. We analyzed 19 SCOP folds

shared by DNA-binding (DB179) and non-DNA-binding proteins(NB3797). As shown

in Table3.2, after incorporating the DDNA energy function for DBP prediction, the

number of true positives increases from 57 to 61 and false positives decreases from 24

to 4. Thus, removal of false positives is the key factor for large improvement by the

energy function.

Separating RNA-binding proteins from DNA-binding protein s: As the

RNA-protein interaction shares features with DNA-binding proteins (both are positively

charged, for examples), it is important to examine if the proposed method can separate

DBPs from RBPs. We tested the HHblits+energy method with the thresholds optimized

by DB179+NB3797 datasets on the RBP dataset (RB174). It predicts 5 proteins as
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DBPs. Two of the five (1zbiB and 1hysA) are highly homologous (sequence identity

¿70%) to the templates (1zblB and 1r0aA, respectively). As expected, 1zbiB and

1r0aA are two proteins related with both RNA- and DNA-bindingfunctions. 1zbiB

is a protein with 12-Mer RnaDNA hybrid and 1r0aA involves the function related with

RNA-dependent DNA polymerase. Two of the three remaining proteins (2qk9A and

1ooaA) are known DNA-binding. 2qk9A is Human RNase H catalytic domain that

complexed with both RNA and DNA [110] and 1ooaA contains Rel homology domain

(RHD) and DNA binding site [111]. The only remaining protein (PDB ID 2jluA) is

dengue virus 4Ns3 helicase in complex with ssRNA [112] . This helicase was found to

function on both RNA and DNA templates [113]. Thus, there is zero false positive in

DNA-binding prediction.

3.3.2 Medium Resolution Prediction of DNA-binding residues

The complex structures predicted from our method allow us toinfer amino-acid residues

involved in DNA-binding. We define an amino-acid residue as aDNA-binding residue

if any heavy atoms of the residue are less than 4.5 away from any heavy atoms of a

DNA base. The accuracy of binding-residue prediction is examined on 116 true positive

proteins from DB179. The final average values of MCC, precision and accuracy of the

prediction are 0.55, 66%, and accuracy 89%, respectively. Fig. 3.2(a) displays MCC

values of DNA-binding residues for predicted DBPs along withtheir corresponding

probability of match for predicted structures. Here, the probability of match was

clustered into 29 bins and the MCC value is represented by the median value in each

bin. It is clear that the high the probability of match can lead the high MCC value, and

the correlation coefficient is 0.40.

We employed SPARKS-X to predict binding residues of the 116 targets. The

SPARKS-X was used by matching sequences of the targets to their corresponding

templates searched by HHblits. The final prediction achieves a MCC 0.54, a precision

63%, and an accuracy 88%. The relationship between the MCC andZ-score is described

by Fig. 3.2 (b). Fig. 3.2 includes 116 pointes that were generated by the MCC value
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Fig. 3.2: The MCC values for predicting DNA-binding residuesas function of HHblits

matching probability, Z-s core from SPARKSX and SP-score scoring the

similarity between predicted structures and native structu res. (a) Average

MCC and matching probability in 29 bins, and the correlation coefficient is

0.40. (b ) MCC and Z-score of 116 targets, the correlation coefficient is 0.50.

(c) MCC and SP-score of 116 targets, the correlation coefficient is 0.38.

on Y axis and Z-score on X axis. The correlation coefficient between these two values

is 0. 50. The high correlation between the predictions on thebinding residues and on

structure indicates that SPARKS-X is more reliable in prediction of binding residues.

3.3.3 High Resolution Prediction of DNA-binding Complex Structures

The quality of predicted DNA-binding complex structures isexamined by the structural

alignment SPalign [42] that makes a size-independent comparison between native

structures and predicted structures. For 116 correctly predicted targets, the average

SPscore is 0.65 (two structures are considered as in the samefold if SPscore¿0.5

[42]).The structure similarity can also be evaluated by the fraction of aligned residues

with a root mean-squared distance (RMSD) between two compared structures less than

4. We found that the medium value is 67%.

As an example, Fig.8.3compared the predicted binding sites with native binding

sites, and the predicted structures with the native structures. For the target (1yfjD,

DAM ), the predicted (light grey) and actual DNA (orange ) location in a similar to

the real position, the predicted binding sites (cyan) is also close to the native binding

region(yellow) . The MCC value for the predicted binding residues is 0.60. The

sequence identity between the target and the template (2g1pA, dam) is 24%.
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Fig. 3.3: Comparison of predicted (red)

and native structures (green)

of target 1yfjD (DAM).

Native structure and DNA

are represented by green and

orange, respectively. The

predicted structure and DNA

are denot ed by color red and

grey. The predicted binding

sites and native binding sites

are in cyan and yellow colors,

respectively.

3.3.4 Independent test

We further tested the performance of SPOT-seq (DNA) by detecting the DNA-binding

proteins from DB82. Among them, 42 (51%) proteins are correctly predicted as

DNA-binding proteins by using the thresholds, matching probability 84% and energy

-8.6. We further inferred the binding residues from the predicted complex structures,

and compared them with native ones. For 42 correctly predicted DBPs, the MCC 0.64

can be achieved.

3.3.5 Experimental Validation on human TFs

To demonstrate the SPOT-seq DNA is a reliable tool for discover protein-DNA

interaction, we tested it on the proteins that were experimentally confirmed as DBPs

in the study of protein-DNA profiles [114]. In this study, the researchers characterized

the sequence-specificity of 201 TFs, and 136 of them have no binding sites listed in

TRANSFAC but confirmed as DBPs by CHIP experiments in this study.Among 201

proteins, we predicted 117 (58%) as DBPs, and 69 (51%) of them are from 136 novel

DBPs. From 117 predicted DBPs, 76 are predicted as DBPs by templates with NCBI

annoated transcription factor function.
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Table 3.3: Number of annotated and predicted DBPs in human genome
Function #of annotated #of predicted Recovery rate
DNA binding 1508 915 61%
TF 1153 684 59%
Others 222 13 6%
Total 2883 1612 56%

3.3.6 Application to human genome

Our approach was applied on detecting DBPs from human genome.The human

genome with 20270 proteins was downloaded in 2010 from Uniprot. We applied

Gene Ontology (GO) as a tool to annotate the proteins from Human genome. The

DNA-related GO annotation can be divided into 8 protein activities, DNA-binding,

transcription factor, . Here, the annotation DNA-binding means the annotation 2883

out of 20270 proteins are annotated as DNA-binding by Gene Ontology (GO) database

with keywords, DNA binding, transcription factor and others(DNA replication, DNA

repair , DNA recombination , DNA helicase activity and keywords related with

DNA-binding in biological process). The numbers of proteins in each category of

key words are listed in Table3.3. The newly developed method predicted 1975 out

of 20270 proteins as DBPs by using two thresholds [energy: -8.6 and align score:

84.0] as cutoff. 1612 predicted DBPs are also annotated as DBPsby GO. That is,

our method recovered 56% (1612/2883) annotated DBPs. The remained predicted

DBPs include 104 unknown function proteins (not annotated byGO) and 259 proteins

annotated with other functions. The prediction recover rate of targets with keywords of

DNA-binding/transcription factor is close to the recoveryrate 65% in training dataset.

However, the proteins with other functions related with DNA-binding are lower. That

is because we define the protein with other DNA-binding functions by using the GO

annotation not only related molecular function but also with biological process and cell

activity in order to all possible DBPs in human genome. Thus, the proteins in this

category could be not directly related with DNA-binding functions.

For 1612 predicted and annotated targets, 371 of them have experimentally

obtained structures according to Uniprot annotation. Among them, 28 targets are
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Table 3.4: Structure similarity between predicted and native structures of novel DBPs
Target Template Seq Identity(%)a Native structure SP-score
P38919 2p6rA 16.5 2j0qA 0.797
Q96LI5 1dewB 15.5 3ngnA 0.781
O95718 1kb4A 8.2 1lo1A 0.780
Q13206 1z63A 15.4 2pl3A 0.737
Q9H0S4 1z63A 21.2 3berA 0.729
P32019 1dewB 10.8 3n9vA 0.716
Q9Y2R4 1z63A 17.2 3dkpA 0.714
Q13838 1z63A 17.7 1t5iA 0.710
Q86TM3 1z63A 16.3 3iuyA 0.705
Q9NVP1 2p6rA 17.0 3ly5A 0.703
Q14240 1z63A 19.2 3borA 0.693
O75909 1c9bE 10.3 2i53A 0.683
Q9NRR6 1dewB 14.6 2xswA 0.677
P60842 1z63A 20.5 2g9nA 0.675
Q9UJV9 2p6rA 19.2 2p6nA 0.671
Q9UHL0 1z63A 21.9 2rb4A 0.664
P53370 1rrqA 20.1 3h95A 0.646
P26196 2p6rA 16.1 2waxA 0.641
Q9UMR2 2p6rA 17.9 3ewsA 0.621
Q86W50 2ibsA 17.3 2h00A 0.613

obtained their predicted structures by choosing the most significant template as the one

having the same PDB ID as the native structures. For the remained targets, 131 (35%)

targets have the predicted structures with the SP-score [42] higher than 0.6 comparing

to the native structures. The average SP-score is 0.52. Thisresult is expected since

the annotated DBPs with experimental structures have big chance to find their protein

folds from template library. We also examined 366 novel discovered DBPs, and found

74 of them with experimental structures. 20 out of 74 (27%) are with the predicted

structures having SP-score higher than 0.6 comparing to their native structures and they

are shown in Table3.4. The DNA-binding function of targets has high probability to be

further validated experimentally since structural similarity can be used as a criterion to

distinguish DBPs [32].

We further analyzed the results of predicted DBPs from human genome by

employing DAVID database as another protein function annotation tool. We found

that 49 (13%) out of 363 predicted but not annotated targets are annotated as DBPs by

DAVID database. The remained 363 novel targets are inputtedinto KEGG database
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to find their involved pathways. Among them, 72 targets have their related disease

pathways, and 1 target, DDX58 (O95786), is involved in Cytosolic DNA-sensing

pathways and annotated as related with Nucleotide-bindingfunction by Uniprot

database. The remained 66 targets are related with 233 diseases. 19 out of 71 targets

are involved in the disease of congenital disorders of DNA repair systems.
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Chapter 4 Template-based Prediction of RNA-binding Domains and

RNA-binding Sites and Application to Structural Genomics Targets

Abstract

Identifying RNA-binding proteins and RNA-binding sites is animportant first step

toward mechanistic understanding of many key cellular processes. RNA-binding

proteins and RNA-binding sites are often predicted separately by employing

machine-learning methods with sequence and/or structure-based features to separate

RNA-binding from nonbinding proteins or amino-acid residues. Here, we propose

an approach that simultaneously identifies RNA-binding proteins and binding regions

based on structural alignment to known protein-RNA complex structures followed by

binding assessment with a distance-dependent knowledge-based energy function. We

showed the importance of using a Z-score to measure relativestructural similarity and

dividing structures into domains to improve the sensitivity of detecting RNA-binding

proteins. This method achieves an accuracy of 98% and a precision of 87% for

predicting RNA binding proteins and an accuracy of 93% and a precision of 76%

for predicting RNA binding amino-acid residues for a large benchmark of 212

RNA binding and 6761 non-RNA binding domains (leave-one-out cross validation).

Additional tests revealed that the method only makes one false-positive prediction

out of 213 DNA-binding proteins and correctly identified close to one third of 75

unbound (APO) RNA-binding domains with an accuracy of 93% anda precision of

64% for predicted binding residues. Application of this method to 2076 structural

genomics targets predicted 15 targets as RNA-binding proteins, 13 (87%) of which

are putatively RNA-binding with the remaining two having unknown function. The

method is implemented as a part of the SPOT (Structure-basedfunction-Prediction

On-line Tools) package available at http://sparks-lab.org/spot
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4.1 Introduction

RNA-binding proteins (RBPs) make specific binding with RNAs and play an important

role in translation regulation and post-transcriptional processing of pre-mRNA

including RNA splicing, editing, and polyadenylation [7]. Interactions between

proteins and RNA influence the structure of RNA and play an critical role in their

biogenesis, stability, function, transport and cellular localization. RNA and proteins

are stably bound together as Ribonucleoprotein (RNP) complexes throughout journey

from synthesis to degradation in a temporal and spatial manner [8]. Proteomic

studies in human further showed that RBPs are associated with cell cycle checkpoint

defects, genomic instability and cancer [115]. Thus, a comprehensive, mechanistic

understanding of a wide variety of cellular processes requires the identification of

RNA-binding proteins and RNA-binding sites.

Identifying RNA-binding proteins and binding residues is often treated as two

separate problems. Several classifiers dedicated for predicting RBPs are developed by

employed support-vector machines (SVM) [27–29, 116]. In some studies [27, 116],

homologous sequences were not excluded from training or testing. Performance

for most methods was not measured by standard measure of a receiver operating

characteristic (ROC) curve or the Matthews Correlation Coefficient (MCC). The only

reported MCC value for RBP classification is 0.53 for a sequence-based SVM classifier

(5-fold cross validation on 134 RNA binding and 134 nonbinding proteins) [30] and

0.72 for a structure-based SVM classifier for a dataset of 76 RNA binding proteins and

246 non-nucleic-acid binding proteins (leave-one-out test) [117]. The latter, however,

is unable to distinguish RNA binding proteins from DNA binding proteins.

Separately, RNA-binding residues are predicted by employing sequence-based

[30, 118–124] and structure-based [117, 125–129] information. Sequence-based

predictors have employed a number of machine-learning or statistical techniques such

as neural-network [118], SVM [30,121–124], and a naive Bayes classifier [119,120].

Structure-based predictions, on the other hands, relied onpatches built on electrostatics,
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evolution and geometric information [117,125], accessible surface and contact network

topology based on SVM and naive Bayes classifiers [126], linear-regression analysis of

structural neighboring information combined with sequence profiles [127], secondary

structure, solvent accessibility, sidechain environment, interaction propensity and other

features with a random forest method [128], and a simple propensity-based technique

[129]. The best reported MCC values are between 0.47-0.51 [30, 127, 128] for both

sequence and structure-based techniques.

One issue facing binding-site prediction is that it will predict RNA binding sites

even for the proteins that do not bind RNA. In this work, we willpredict RBP and RNA

binding site within a single method. This method is based on arecently developed

approach [31,32] that was successfully employed for identifying DNA-binding proteins

and binding sites. In this approach, protein structures in known protein-DNA complex

structures are employed as templates and structurally aligned to the target protein

structure. If structural similarity between the target structure and a template is observed,

the predicted protein-DNA binding complex structure is confirmed by the prediction of

protein-DNA binding affinity.

Here, we will extend this structure-based approach by developing a

distance-dependent knowledge-based energy function for protein-RNA interactions.

Only a few knowledge-based energy function for protein-RNA interactions have been

developed so far [130, 131]. Here, we will build the statistical energy function based

on a distance-scaled, finite, ideal gas reference (DFIRE) state, initially developed for

proteins [33,68,69] and subsequently extended to protein-DNA interactions [32,52,53].

This new energy function, together with a measure of relative structural similarity

by Z-score makes an accurate domain-based prediction of RNA-binding proteins and

binding residues. The Mathews correlation coefficients forRNA binding domains and

RNA-binding residues are 0.56 and 0.71, respectively, for a large benchmark of 212

RNA-binding and 6761 non-RNA-binding domains. The accuracy of the new technique

is further validated on 213 DNA-binding domains (negatives) and 75 unbound APO

45



structures (positives) and applied to uncover RNA-binding proteins from structural

genomics targets.

4.2 Methods

4.2.1 Datasets

RB250: Template library of RNA-binding domains. A template library was built by

querying the PDB (July 2009 release) to retrieve all protein-RNA complex structures

determined by X-ray (resolution better than 3.0Å). The resulting 419 complex structures

were split into chains and the chains are further divided into domains by using an

automatic domain parser program called DDOMAIN [132] (with the parameter set

that mimics SCOP annotation [133]). These domains were further clustered with a

sequence-identity cutoff of 95% with BLASTClust [134]. One representative was

randomly selected from each cluster. There is a total of 250 representative domain

structures with at least 40 amino acides long and at least 5 residues contacting with 5

or more RNA bases. A protein residue and a RNA base are considered in contact if

the shortest distance between any pair of heavy atoms from them is within 4.5̊A. These

representative structures (RB250) form the template libraryfor predicting RNA-binding

proteins and binding sites.

RB212: Non-redundant RNA-binding domains. We further obtain a non-redundant

RNA-binding domains by using BLASTClust [134] at a 25% sequence identity cutoff.

There is a total of 212 domains (the RB212 set).

NB6761: Non-RNA-binding data set.A non-redundant set of 8770 protein structures

was obtained by using PISCES [135] with a 30% global sequence identity cutoff, a

resolution better than 3̊A and a chain length cutoff of 40 amino-acid residues. We

removed those chains whose function is associated with RNA-binding and whose

PDB records contain the key words ”RIBOSOMAL”, ”UNKNOWN FUNCTION”

and ”RNA” by searching in the title. The remaining 6699 chainswere divided into

domains with DDOMAIN [132] and clustered with a sequence identity cutoff 25% by

BLASTClust [134]. One representative was randomly selected from each cluster. The
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final dataset contains 6761 protein domains that do not binding RNA (NB6761). We

emphasize that DNA-binding proteins are not excluded from this dataset.

APO75/HOLO75 dataset. To examine the effect of binding induced conformational

changes on the accuracy of predicting RNA-binding proteins,we established a dataset

with both bound (HOLO) and unbound (APO) structures. We started with the set

of bound structures (RB250) and performed BLAST [134] search for the sequences

homologous to the sequences in RB250. We selected those homologous sequences

whose protein structures do not contain RNA. These unbound APO structures are

partitioned into domains by using the DDOMAIN program [132]. An all-against-all

sequence alignment between the APO domain set and the HOLO domain set from

RB250 was performed by employing the ALIGN0 program from the FASTA2 package

[136]. The alignment yielded 869 pairs with sequence identity above 45% that are

further culled by excluding redundant sequences with a identity cutoff of 30% and

removing the structure with lower resolution. The final set contains 75 APO domains

whose sequence identity ranges from 45% to 100% to their corresponding HOLO

domains. The majority (56 out of 75 pairs) are more than 85% sequence identity. The

APO and their corresponding HOLO domain sets are labeled as APO75 and HOLO75,

respectively.

DB213: DNA-binding protein database. To examine the ability to distinguish

RNA-binding and DNA-binding proteins, we also obtained a DNA-binding protein

dataset composed by 179 DNA-binding structures [31]. These DNA-binding structures

were divided into domains by DDOMAIN and clustered by BLASTClust [134] sets.

The clustered 232 domains were further reduced with a sequence identity cutoff of 25%

to produce the final dataset of 213 DNA-binding domains (DB213).

SG2076: Structural Genomics targets. A set of 2076 domains is obtained

from previously collected 2235 structural genomics targets [32] by domain parsing

(DDOMAIN) and clustering (BLASTClust) with a sequence identity cutoff of 35%.

RNA binding domain supperfamily(RBD). RBD(RNA binding domain) or RRM(the

RNA-recognition motif) is the most abundant RNA-binding domain in eukaryotes
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[137]. For this domain,the mode of protein and RNA interaction is varible. This

domain can modulate its fold to recognize many RNAs and proteins to achive multiple

biological function [138]. The dataset RRM was built to test the performance of

our method on annotation of RNA-binding proteins of RRM supperfamily. The

dataset is obtained from SCOP supperfamly database. RRM supperfamily is devided

into 5 families:Canonical RRM, Non-canonical RRM, Splicing factor U2AF subunits,

Smg-4/UPF3 and GUCT, which respectively contain 171 PDB, 4 PDB,1 PDB and

1 PDB. These PDBs are split into chains and then divided into 292domains. 280

domains blongs to canonical RRM family, 9 domains are inclued into non-canonical

family, and others are contained into splicing factor U2AF subunits, smg-4/UPF3 and

GUCT families, respectively.

4.2.2 Knowledge-based energy function

We employed exactly the same volume-fraction corrected DFIRE energy function

that generated DDNA3 [32] to produce an DRNA energy function for protein-RNA

interactionuDRNA
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j
NAll

obs
(i,j,r)

, Nobs(i, j, r) is the

number of pairs of atomsi and j within the spherical shell at distancer observed

in a given structure database,rcut is the interaction cutoff distance,∆rcut is the bin

width at rcut, the value ofα (1.61) was determined by the best fit ofrα to the actual

distance-dependent number of ideal-gas points in finite protein-size spheres, the value

of β (0.4) was optimized for protein-DNA interactions [32]. We employ residue/base

specific atom types with a total 253 atom types (167 for protein and 86 for RNA). We

cutoff interactions at 15̊A (rcut) with a bin width of 0.5̊A(∆r) as for the protein-DNA
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interaction [32]. We also set the factorη arbitrarily to 0.01 to control the magnitude of

the energy score. The RB250 set was used to train the statistical energy function (i.e.

to calculateNobs(i, j, r)). To avoid overfitting, we employed the leave-one-out scheme

to training multiple statistical energy functions for different targets. For each target,

we exclude all template proteins whose sequence identity tothe target protein is higher

than 30%.

4.2.3 Prediction protocol

The protocol for predicting RNA-binding proteins and binding sites is as follows.

First, the target structure is scanned against those templates with sequence identity

lower than 30% in the template library (RB250) by using the structural alignment

program TM-align [139]. If the structural similarity score is higher than a threshold,

the protein-RNA complex structure is predicted by replacingthe template structure

with the aligned target structure. Two structural similarity scores are employed: one

is based on the raw TM-Score and the other one is based on Z-score (see results). If

the lowest binding energy between the target protein and template RNA is lower than a

threshold and the structure similarity is higher than a threshold, the target is predicted

as a RNA-binding protein and its RNA binding site can be predicted from the predicted

protein-RNA complex structure. If no matching template is found to satisfy these two

thresholds, this target is predicted as a non-RNA binding protein.

4.2.4 Performance Evaluation

The performance of the proposed method is measured by sensitivity [SN = TP/(TP+

FN)], specificity [SP = TN/(TN + FP )], accuracy [AC = (TP + TN)/(TP +

FN + TN + FP )], and precision [PR = TP/(TP + FP )]. In addition, we calculate

a Matthews correlation coefficient given by

MCC =
TP ∗ TN − FP ∗ FN

√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(4.2)
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Fig. 4.1: Distribution of the top TM-score-ranked templates on RB212/NB6761

Here TP , TN , FP and FN refer to true positives, true negatives, false positives

and false negatives, respectively. This performance measure is applied to both

binding-protein prediction and binding-residue prediction.

4.3 Results

4.3.1 Using structural similarity measured by TM-Score for discrimination

We first examine the ability of the structural similarity measured by TM-Score from

TM-align [139] for discriminating RNA-binding proteins from non-bindingproteins.

TM-Score is 1 for 100% structural similarity and around 0.2 between two random

protein structures. Fig.4.1 shows the fraction of the target domains (binding or

nonbinding proteins) as a function of the highest TM-Score from its alignment to

the templates in the RB250 set, generated by the leave-one-outscheme. 48%

binding targets (from RB212) but only 14% nonbinding targets (from NB6761) have

a TM-Score of more than 0.5 with at least one binding template. When the threshold

of TM-Score is 0.58, 40% binding targets but only 3% nonbinding targets have a hit

to a binding template. Increasing the TM-Score threshold further reduces the fraction

of non-RNA-binding domains relative to that of RNA-binding domains. However, the

highest MCC value is only 0.29 at the TM-score threshold of 0.72. Thus, the structural
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similarity based on TM-Score alone has a weak ability to discriminate RNA-binding

proteins from non-binding proteins.

4.3.2 Using relative structural similarity measured by Z-Score for discrimination

The structural similarity measured by TM-score between twoprotein domains with

significantly different sizes is normalized by the average size. This structural similarity

will be small if the smaller target has a nearly perfect matchto only a small portion of

the larger template (the binding region). To help remediatethis situation, we introduce

a relative structural similarity based on Z-score. For a given target whose TM-Score is

greater than 0.4 with a binding template, the Z-score of thistarget is defined as follows:

Z-score=
TM-ScoretT −∑

i TM-ScoreT i/n√
σ

(4.3)

where TM-ScoretT is the structural similarity score between the targett and a

RNA-binding templateT , TM-ScoreT i is the structural similarity score between the

templateT and a reference structurei, n is the number of reference structures, and

σ are the standard deviation of TM-ScoreT i. Here, we use the mixed binding and

nonbinding proteins (RB212 and NB6761) as the reference structures and choose only

top TM-Score ranked structures (n = 6300) and exclude the structure pairs TM-Score

higher than 0.7 to avoid noises from irrelevant or high homologous structures.

TM-ScoreT i andσ for each binding template can be pre-calculated and stored.

Fig. 4.2 displays the fraction of target structures as a function of the highest

Z-score from its structural alignment to binding templates. 42% binding targets (from

RB212) but only 2.5% nonbinding targets (from NB6761) have a Z-score of more than 1

with at least one binding template. When the Z-score threshold is 2, 20% binding targets

but only 0.01% (11) nonbinding targets have a hit to a bindingtemplate. Increasing the

Z-score threshold further reduces the fraction of non-RNA-binding domains relative to

that of RNA-binding domains. The highest MCC value is 0.48 at the Z-score threshold

of 1.4. Thus, the relative structural similarity based on Z-score alone is a substantially

better than TM-Score to discriminate RNA-binding proteins from non-binding proteins.
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Fig. 4.2: Distribution of the top Z-score-ranked templateson RB212/NB6761

4.3.3 Combined with the DRNA binding energy score for discrimination

To further improve the discriminative power, we calculate the DRNA binding energy

[Eq. (1)] based on the predicted complex structure generated from structural

alignment of the target with the binding template. Using theleave-one-out scheme

on RB212/NB6761, we have optimized TM-Score and binding affinity thresholds to

achieve the highest MCC value by a simple grid-based search. The grid for TM-score is

0.01. For the binding affinity threshold, we obtained the lowest energy in all predicted

complex structures under different TM-score thresholds for a given target. These energy

values are considered sequentially as the energy threshold. The highest MCC is 0.49 for

the TM-score threshold of 0.60 and the energy threshold of−15.3. The corresponding

accuracy, precision, and sensitivity are 98%, 77%, and 32%,respectively.

Similarly, we can combine Z-score with the DRNA energy score for RNA-binding

discrimination. With a grid of 0.1 for the Z-score threshold, we found that the

highest MCC is 0.57 with the Z-score threshold of 1.2 and the energy threshold of

−9.9. The corresponding accuracy, precision, and sensitivity are 98%, 91%, 36%,

respectively. It is clear that combining Z-score and binding affinity score substantially

improves precision (10%) and sensitivity (5%) without changing the accuracy (98%)

over combining TM-score and binding affinity.
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Fig. 4.3: Sensitivity verus false positive

rate, given by TM-align(plus),

PSIBLAST(open triangle),

TM-score combining with the

DRNA energy score (closed

circle), Z-score (open diamond),

and Z-score combining with the

DRNA energy score (solid line).

4.3.4 Methods Comparison

To further benchmark the performance of our approach, the ROC curves given by

various methods are shown in Fig.9.2. PSI-BLAST [134] was performed with 4

iterations of searching against NCBI non-redundant protein sequence library. A target

is identified as a RNA-binding protein by PSI-BLAST if it has at least one template

from RB250 with an E-value higher than a specific threshold (excluding all templates

with 30% or higher sequence identity to the targets). The highest MCC of PSIBLAST

is 0.41 with accuracy 97%, precision 54% and sensitivity 33%. This MCC value is

higher than the method based on TM-align but lower than the method based on Z-score

alone (0.48). The combination of Z-score with energy is the most effective in detecting

RNA-binding proteins. The combined technique can achieve a reasonable sensitivity at

a very low false positive rate.

4.3.5 Test on APO75/HOLO75 datasets

The trained method (combined Z-score and binding affinity) is further benchmarked

on APO75/HOLO75 datasets. For a given target, any template with sequence identity

>30% was excluded from the template library. The number of positive predictions are

31 for the APO set, and 32 for the HOLO set, respectively. These numbers correspond

to a sensitivity of 41% for APO75 and 42% for HOLO75, comparedwith the value of

37% (78/212) observed in RB212. That is, using monomeric unbound structures leads

to 1% reduction of sensitivity.
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Table 4.1: Targets are predicted as RNA-binding on HOLO set but not on APO set.
HOLOa /APOb TMHA

c SeqIDd TMPe TMH
f ZHT

g EH
h TMAT

i ZAT
j EA

k

2atwA2 /1hh2P3 0.95 47.9 2asbA3 0.66 1.4 -17.4 0.57 0.98 -14.7
1uvlA /1hi8B 0.98 96.2 2r7xA 0.43 1.2 -27.9 0.42 1.1 -25.9
2j03S /1ovyA 0.56 54.3 1jj2M 0.60 1.2 -59.3 0.46 1.1 -37.3
a. Targets from HOLO set;b. Targets from APO set;c. TM-Score between HOLO and
APO targets;d. Sequence Identity between APO and HOLO target calculated by bl2seq
in blast2.2;e. Template for HOLO targetf . TM-score between template and HOLO
target;g. Z-score between HOLO target and template;h. Binding energy of template
RNA-HOLO target complex;i. TM-score of APO target and template;j. Z-score of
APO target and template;k. Binding energy of template RNA-APO target complex;

A more detailed analysis on predicted results shows that there is an overlap of

28 predicted positive results between the APO and HOLO sets.These predictions

agree because RNA binding only leads to minor conformationalchanges in these cases.

There are 3 correctly predicted HOLO targets but incorrectly predicted APO targets as

shown in Table4.1.Three APO targets (some even with only small structural changes

due to binding) have strong protein-RNA binding (lower than the energy threshold) but

with borderline Z-score values (0.98−1.1 versus 1.2, the Z-score threshold). The result

suggests the need to further improve structural similaritymeasure. Furthermore, there

are 2 correctly predicted APO targets but missed by HOLO targets prediction.One target

2bggB2 has Z-score 2.4 much higher than threshold 1.2 but witha borderline energy

(-9.8 vs. -9.9, the energy threshold). Another HOLO target 1ec6A is missed which is

caused by technical reason because the sequence identity between the target and the

template is higher than 30%.

4.3.6 Binding sites prediction

The predicted binding complexes can be employed to infer theRNA binding residues.

We define an amino-acid residue as a RNA-binding residue if anyheavy atom of that

residue is less than 4.5Å away from any heavy atom of a RNA base. Predicted binding

residues from template-based modeling can be compared to actual binding residues.

For 77 predicted RNA-binding proteins from RB212, we achieved 75% in sensitivity,

96% in specificity, 93% in accuracy, 76% in precision, and 0.72 for the MCC value.
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For predicted HOLO targets, we achieved 56% in sensitivity,96% in specificity, 92%

in accuracy, 65% in precision, and 0.56 for the MCC value. For predicted APO targets,

we achieved 55% in sensitivity, 97% in specificity, 92% in accuracy, 64% in precision,

and 0.56 for the MCC value.

4.3.7 Discriminate against DNA-binding proteins

We further examine the ability of our method to separate DNA-binding from

RNA-binding proteins because they share common structural features [117]. We apply

our approach to the set of 213 DNA-binding domains. Only four(1sfuA,1h38D2, 1zblB

and 1p7hN) out 213 targets are recognized as RNA-binding proteins. Two of these three

targets (1h38D2 and 1zblB) are annotated as DNA/RNA binding proteins [140,141]

4.3.8 Application to RRM superfamily

Appliation of this method was preformed on prediction of RNA-binding proteins from

RRM superfamily. The trained thresholds (Z-score 1.2 and energy -9.9) was used.

250 (250/290) canonical family are predicted as RNA-binding. All of these 250

domains are RNA-binding domains.4 out of 9 non-canonical family are RNA-binding

domains,which are not recognized by our method. Other 5 domains are leucine-rich

repeat domains(LRR), which is required in cis to the RNP domainsfor CTE RNA

binding [142,143]. The remained domains that blong to Splicing factor U2AF subunits,

Smg-4/UPF3 and GUCT are predicted correctly.

4.3.9 Application to structural genomics targets

This method was applied to 2076 structural genomics domainsof unknown function.

Based on the same thresholds (Z-score of 1.2 and energy of -9.9) that yielded the highest

MCC on the leave-one-out benchmark test of RB212/NB6761, we predict a total of

25 targets as RNA-binding proteins (Table4.2). Among them, 22 out of 25 (88%)

targets are putative RNA-binding proteins according to NCBI annotations. One target
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Table 4.2: Structural Genomics targets (SG2076) predicated as RNA-binding proteins
Target Template TM-score Z-score Energy Putative Function
1vhyA1 2rfkA2 0.56 1.5 -14.0 RBa

1nnhA 1asyA2 0.78 2.8 -13.5 RB
1nzjA 1gaxA1 0.49 1.2 -16.8 RB
2oceA5 2ix1A4 0.65 1.4 -12.2 UKb

2f96A 2a1rB 0.57 1.4 -13.5 RB
2cphA 1fxlA2 0.70 1.3 -17.9 RB
3cymA1 2a1rB 0.56 1.3 -11.9 RB
1tuaA1 1ec6A 0.68 1.4 -11.5 RB
2q07A2 1r3eA2 0.67 2.1 -10.9 RB
1yvcA 2bh2A1 0.72 1.8 -13.5 RB
1t5yA2 1r3eA2 0.77 2.8 -15.3 RB
3go5A2 2ix1A4 0.68 1.5 -13.7 RB
2k52A 2ix1A4 0.63 1.3 -12.4 RB
1zkpA 2fk6A 0.78 2.3 -15.9 RB
1x40A 2f8kA 0.62 1.3 -10.8 UBc

2ogkD 1jj2D 0.62 1.8 -25.5 RB
2cpfA 1fxlA2 0.74 1.5 -12.0 RB
1yezA 2bh2A1 0.69 1.6 -14.9 RB
2e5hA 1fxlA2 0.74 1.5 -13.3 RB
3frnA3 1jj2J 0.51 1.2 -20.4 UK
2jz2A 1jj2P 0.59 1.3 -33.5 UK
3ir9A 1rlgB 0.56 1.2 -11.5 UK
3hp7A1 1h3eA2 0.63 1.4 -12.5 RB
1wi6A 1fxlA2 0.70 1.3 -17.6 RB
1wdtA4 1fjgI 0.55 1.4 -29.7 RB

a. Targets are annotated as having putative functions related to RNA binding in the
NCBI database.b. Function unknown.c. Non-RNA binding
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1x40A has phosphorylation site and may have the putative function related with protein

binding. The function of the remaining two proteins is unknown.

4.4 Discussion

In this study, we developed a new approach to predict RNA-binding proteins and

binding sites simultaneously. This approach is based a similar, successful approach

employed for predicting protein-DNA binding proteins withstructural alignment to

known complex structures followed by evaluation of bindingaffinity [31, 32]. The

main distinction in this paper is the employment of Z-score,rather than TM-Score

to measure structural similarity and development of a statistical energy function for

protein-RNA interaction based on a volume-fraction-corrected DFIRE reference state

[32]. The proposed technique is able to identify RNA-binding proteins with low

sequence homology (<30% sequence identity) but have high structural similarityin

binding regions to known RNA-binding proteins. More importantly, the majority of

HOLO structures (28 in 32) detected for RNA-binding continues to be classified as

RNA-binding when APO structures are employed. The reductionof sensitivity in

detecting binding proteins from 75 HOLO to APO structures is2% (from 41% and

43%). Furthermore, its successful application to structural genomics targets (23 out of

25 predictions are annotated as putative RNA-binding proteins) confirms the usefulness

of the proposed method. This method is applicated to recognize RNA-binding proteins

from RRM supperfamily. The result indicates that this method has the strong ability to

detect the proteins with canonical binding domains but is weak on the recognition the

proteins with non-canonical binding domains. Since this method is template-dependent,

the fold of non-canonical domains is novel and fails to find the template with the similar

fold. The structural comparison results show that the TM-score and Z-score of these

domains are ranged from 0.40−0.59 and 0.11−0.87, respectively.

The employment of Z-score, rather than TM-Score, to measurestructural

similarity is because the TM-score for aligning two proteinstructures with significantly

different sizes strongly depends on how the TM-score is normalized. Z-score provides a
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simple way of removing size dependence through a normalization of standard deviation

of TM-scores against reference structures of mixing RNA-binding and nonbinding

proteins. Z-score alone yields a respectable MCC value of 0.48 and its combination

with the DRNA energy function leads to the MCC value of 0.57. By comparison,

TM-score alone only achieves a MCC value of 0.29. We have chosen about 9/10

top-ranked TM-scores ( 6300 values) and removed the TM-scores larger than 0.7 to

calculate average and standard deviation of TM-score for a given template. This was

an optimized value in order to reduce noises from irrelevantrandom reference and high

homologous structures. The MCC value reduces somewhat to 0.52 if all structures

(RB212+NB6761) are employed as reference structures in calculating Z-score.

Another change in RNA-binding protein prediction from DNA-binding protein

prediction is the use of binding domains as templates. We found that if whole chains

are employed as templates and targets (i.e. the datasets of RB176 and NB5667), the

highest MCC values are 0.39 for the combined use of TM-Score and DRNA energy

score and 0.47 for the combined use of Z-Score and DRNA energy score. The latter

has an accuracy of 98%, a precision of 87%, and, a sensitivityof 26%. Compared to

the domain-based prediction, the employment of domains leads to 9% improvement in

sensitivity without changing accuracy and precision. Thisresult is consistent the fact

that other methods such as phylogenic analysis and protein modeling work best for

single domains [144].

It is difficult to make an exact comparison with existing machine-learning based

techniques because we have used a significantly large database of non RNA-binding

proteins for training and leave-one-out cross validation.This mimics the realistic

situation that RNA-binding proteins are only a small fraction of all proteins. Existing

machine learning techniques are typically trained on equalor similar number of

RNA-binding and non-binding proteins. It is possible that these methods would have

substantially higher false positive rates when they were applied to a significantly

larger set of non-binding proteins most of which are unseen by machine learning

techniques. Nevertheless, we have achieved a comparable MCCvalue of 0.57 with the
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largest nonredundant set of RNA-binding proteins and nonbinding proteins (including

RNA-binding ones), compared to 0.53 for a sequence-based classifier (5-fold cross

validation on 134 RNA-binding and 134 non-RNA binding proteins) [30] and 0.72

for structure-based classifier for a database of 76 RNA binding proteins and 246

non-nucleic acid binding proteins, leave-one-out test) but the latter is unable to separate

RNA from DNA binding proteins [117].

One advantage of the proposed structure-based method is simultaneous prediction

of protein-RNA complex structures. The predicted complex structures allow prediction

of RNA binding residues. High specificity and accuracy(>90%) are achieved for

binding residue prediction even for the APO structures. OurMCC values for binding

site prediction range from 0.71 for leave-one-out cross validation, 0.56 for HOLO

targets and APO targets. These results can be compared to thebest reported MCC

values between 0.47-0.51 for sequence and structure-basedbinding site prediction

[30,127,128].

One potential concern is insufficient statistics due to the small number of complex

structures for deriving the DRNA energy function. However, asmaller dataset of

179 protein-DNA complexes was employed for obtaining the DDNA3 energy function

for protein-DNA interaction and its robustness is found viavarious tests [32]. Here,

we have addressed this question by employing the leave-one-out (for RB212 sets)

technique. The consistency between the leave-one-out and APO/HOLO test sets

provides the confidence about the energy functions obtained.

One possible way to improve our prediction is to introduce anenergy threshold

that is dependent on structural similarity threshold because one expects that the

binding-energy requirement should be stronger for less similar structures but weaker

for highly similar structures between template and query. Previously, we found that

introducing a TM-Score dependent energy threshold makes significant and consistent

improvement in predicting DNA-binding proteins [32]. Here, we found that introducing

TM-Score dependent energy threshold does lead to an increase of the MCC value from

0.49 to 0.52. However, an Z-Score dependent energy threshold leads to no significant
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change (0.5690 versus 0.5694). Thus, we employed two independent (Z-score and

energy) thresholds only in this work.

The success of our proposed technique is limited by the availability of

protein-RNA complexes as templates. It cannot predict RNA-binding proteins with

novel structures or binding modes that are not included in the template library. We have

used DB250 based on 90% sequence-identity cutoff as templatelibrary for the purpose

of maximizing available templates. The low sensitivity (32-39%) in various tests is

likely in part due to lack of structurally matching templates. On the other hand, binding

induced conformational changes suggest that the rigid-body approximation employed

here likely has limited the performance of DRNA to discriminate the binding from

nonbinding proteins. How to improve our method by incorporating protein flexibility is

a challenging problem to be addressed.

Compared to our corresponding method for DNA binding proteins, the present

work indicates that RNA-binding proteins are more difficult to predict. In particular,

sensitivity is more than 50% for predicting DNA-binding proteins, compared to about

35% for RNA-binding proteins. This is likely due to highly flexible and diverse RNA

structures [145] compared to DNA structures. More diverse RNA structures will lead

to more diverse protein structures to bind them. The latter will be more difficult to

detect by structural alignment to a limited number of existing RNA-binding template

structures that is similar to the number of available template structures for protein-DNA

interactions.
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Chapter 5 Highly accurate and high-resolution function prediction of RNA

binding proteins by fold recognition and binding affinity pr ediction

Abstract

A full understanding of the mechanism of post-transcriptional regulation requires more

than simple two-state prediction (binding or not binding) for RNA binding proteins.

here we report a sequence-based technique dedicated for predicting complex structures

of protein and RNA by combining fold recognition with bindingaffinity prediction.

The method not only provides a highly accurate complex structure prediction (77% of

residues are within 4 RMSD from native in average for the independent test set) but

also achieves the best performing two-state binding or non-binding prediction with an

accuracy of 98%, precision of 84% and Mathews correlation coefficient (Mcc) of 0.62.

Moreover, it predicts binding residues with an accuracy of 84%, precision of 66% and

Mcc value of 0.51. in addition, it has a success rate of 77% in predicting RNA binding

types (mRNA, tRNA or rRNA). We further demonstrate that it makesmore than 10%

improvement either in precision or sensitivity than PSi-BLAST, Remmert2012 and our

previously developed structure-based technique. This method expects to be useful for

highly accurate genome-scale, high-resolution prediction of RNA-binding proteins and

their complex structures

5.1 Introduction

Significant new interest in RNA-binding proteins (RBPs) are resulted from the

discovery and characterization of microRNAs in post-transcriptional regulation and

the implication of RBPs in many human diseases including HIV/AIDS, cancer, and

neurodegenerative disorders [115]. RBPs are encoded in large number (thousands)

because their diversity appears to increase during evolution of post-transcriptional

machinery and the increase in number of introns. Despite of their importance,

many of these RBPs are yet to be uncovered and/or characterized. Computational
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prediction methods are therefore essential as initial steps for function annotation and

characterization.

Function prediction for RBPs can be roughly classified into four levels of

resolutions with different levels of details (low, medium,high, and the highest). The

first low level of prediction is a simple two-state classification of binding or non-binding

to RNA. The next medium level is the location of RNA binding residues of RBPs.

A high resolution prediction is to predict the RNA type that the RBP would bind.

This prediction would provide further deeper understanding of the RBP function. The

highest resolution will involve the prediction of the actual binding RNA sequence and

its binding complex structure with the predicted RBP.

Most computational methods developed so far attempted to detect the

sequence homologous and/or evolutionary relationship between un-characterized and

characterized proteins [146, 147]. The principle of these methods is that homologous

sequences have the same biological function. However, lessthan half of identified

proteins are anotated even with help of sequence homology [148]. Morover, many

proteins have hidden function of RNA binding [14,15]. Thus, it is necessary to develop

sequence-based techniques that can detect function similarity in the absence of high

sequence homology to known RBPs.

Several sequence-based classifiers for RBP prediction are based on support-vector

machines (SVM) and limited to the low resolution predictionof binding or non-binding

proteins [27–30, 116, 149]. Early studies [27, 116] did not exclude homologous

sequences from training or testing. Moreover, all these techniques were trained and

tested in a balanced set with equal number of positive (RBP) andnegative (Non-RBP)

data sets [28–30, 149]. The reported Mathews correlation coefficient value for RBP

classification is 0.53 for a sequence-based SVM classifier (5-fold cross validation on

134 RNA binding and 134 non-binding proteins) [30] and 0.72 for a structure-based

SVM classifier for a dataset of 76 RNA binding proteins and 246 non-nucleic-acid

binding proteins (leave-one-out test) [117]. The performance of these techniques for
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such a balance set likely becomes worse when applied to a realworld situation where

RBP is about 15% of all proteins.

Other methods make medium resolution prediction of RNA binding residues (or

binding sites) directly based on either sequence-based [30,94,102,118–120,122–124]

or structure-based [117,125–129] information. The best reported values for Mathews

correlation coefficient are between 0.47-0.51 [30,127,128]. One issue associated with

these techniques is that they will predict RNA binding sites even for the proteins that

do not bind RNA.

This work is inspired by our structure-based prediction of DNA and RNA binding

proteins [SPOT-Struc (DNA) [32], SPOT-Struc (RNA) [34]]. We found that structural

alignment to known protein-RNA complexes coupled with binding assessment with a

statistical energy function based on distance-scaled finite ideal gas reference (DFIRE)

state yields a highly accurate (98%) prediction of RBPs with a reasonable sensitivity of

36% and Mathews correlation coefficient (MCC) of 0.57 for a large benchmark of 212

RNA binding and 6761 non-RNA binding domains (leave-one-out cross validation). Its

applications on additional APO and HOLO benchmarks and structural genomics targets

yielded consistent accuracy and/or sensitivity.

This structure-based technique, however, has a limited application because the

structures for the majority of proteins are unknown. The success of this structure-based

technique motivates us to develop a sequence-based technique by coupling structure

prediction with binding prediction, an approach proven successful for protein-DNA

binding prediction [35]. Here we perform structure prediction by using the latest

version of our fold recognition technique called SPARKS X [49] that are among the best

performing single automatic servers in several critical assessment of structure prediction

(CASP) meetings (CASP 6, CASP 7 and CASP 9 [49]). While many template-based

structure prediction methods exist, the coupling between fold recognition and binding

affinity prediction provides the first dedicated high-resolution function prediction for

RBPs.
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The new technique, called SPOT-Seq, is initially trained and validated

(leave-one-out) on a dataset of 174 RNA-binding protein chains and 5778 non-binding

protein chains, so that it can compare to other methods. SPOT-Seq achieves the

highest MCC value of 0.61, when compared to Altschul1997, thecommonly used

sequence-to-profile homology search technique [134] (MCC=0.48), Remmert2012,

a profile-profile fold-recognition technique based on the hidden Markov model

[108] (MCC=0.50), SPARKS X fold recognition method [49] (MCC=0.57), and

the structure-based prediction technique (SPOT-Struc, MCC=0.56). More than 10%

improvement in either sensitivity or precision or both are observed. Further expansion

of test and training sets (431 RBPs) and template libray (1164 binding domains and

chains) confirms the MCC of 0.61, accuracy of 98%, precision of78%, and sensitivity

of 50%.

5.2 Methods

5.2.1 Function Prediction Protocol

The method proposed here is similar to the structure-based technique called SPOT-Struc

(RNA) developed by us [34] excepted that the structure is predicted by fold recognition

technique called SPARKS X [49]. The flow diagram is shown in Fig.5.1.

First, we perform fold recognition between the target sequence and templates

in the template library of RBPs by SPARKS X [49]. Our template library is built

on a collection of RNA binding and non-binding proteins (see below). SPARKS

X [49] attempts to match the squence profile of the target sequence(generated

from Altschul1997 [134] and predicted one-dimensional structural profiles (secondary

structure, solvent accessibile surface area and backbone torsion angles from SPINE

X [50]) to the corresponding profiles of the template structure inthe library. The

sequence-structure matching score is measured by Z-Score where

Z-score=
Si-Smean

σ
(5.1)
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Fig. 5.1: The flow diagram of the sequence-based function prediction of RBP.
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WhereSi is the alignment raw score between target and templatei andSmean andσ are

the average raw score and the standard deviation for all templates. Typically, a Z-score

of higher than 6.0 is considered as a significant template hit.

If the Z-score for any of RBP templates is higher than a threshold to be

determined, a complex structure of the target protein and template RNA is built

by replacing template protein sequence with target proteinsequence based on the

sequence-to-structure alignment from SPARKS X. For this study, the gap region is not

modeled for simplicity.

Using the complex structure of model target structure and template RNA structure

we can estimate the binding affinition according to a statistical energy function

based on the distance-scaled finite ideal-gas reference state [33] that was extended to

protein-RNA interaction (DRNA) [34]. In this work, we made no changes to the DRNA

energy function. However, the binding affinity is evaluatedwith mainchain atoms and

Cβ atoms only to avoid the need to build sidechains in this initial development of the

technique. If the binding affinity is higher than a to-be-determined threshold, the target

protein is predicted as RNA binding and its complex structuremodel serves as the basis

for the high-resolution prediction of RNA binding function.For convenience, we shall

label our method as SPOT-Seq.

5.2.2 Template Library

For comparison, we initially employ both binding and non-binding chains are from

the structure-based method SPOT-Struc. (RNA) [34]. These 225 high-resolution

RNA-binding protein chains are protein-RNA complex structures (the July 2009

release). They are divided into domains according to SCOP annotations [133] or by

automatic technique called DDOMAIN [132] if SCOP annotations are not available.

A domain is RNA-binding if it has at least 5 amino acid residueswhose heavy atoms

are within 4.5̊A from any heavy atoms of nucleotide functional groups. Redundancy

in resulting domains is removed by using BLASTClust with 95% sequence identity

cutoff [134]. This leads to 255 domains as binding templates. To increase sensitity,
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both original chains and domains are included in our template library and lead to

a final template library of 355 RNA-binding protein structural templates (RB-T355).

Non-binding templates are from the nonbinding protein-domain sets of 6761 domains

obtained previously based on 25% sequence identity cutoff [34]. We only include the

original chains into the template library with a 25% sequence identity cutoff. The final

number of templates after a 25% sequence identity cutoff is 5765 (NB-C5765).

5.2.3 Cross Validation Datasets

RB-C174 and NB-C5765: We built a leave-one-out cross-validation data set of

RNA-binding sequences by removing redundant sequences of all sequences contained

in RB-T355 with BLASTClust [134] at a sequence identity 25% cutoff. A total of 174

sequences (RB-C174) remained. Only full chains (not domains) (RB-C174 for positive

and NB-C5765 for negative sets) are employed for cross validation.

5.2.4 Expanded Template Library and Independent Test Set

The above template library was based on high-resoultion X-ray structure (3̊A or less)

on July 2009. To examine the effect for an expanded template library and provide

an independent test set, we downloaded all pdb structures that contains RNA on

April 1, 2011. After removing the structures contained in the template library, we

obtained 1027 complex structures that are separated into chains and domains according

to SCOP or DDMAIN classifications. After removing domains with less than 60

residues or having less than 5 binding residues and redundant domains with more than

95% sequence identity by BLASTClust, we obtained 612 domains in addition to 255

domains previously obtained. Both domains and their respective chains are included in

our new expanded library with a total of 1164 templates including RB-T355. We shall

label this library as RB-T1164.

There are a total of 566 chains contained in the new template library. These

sequences are clustered with BLASTClust at a sequence identity of 25% cutoff among

themselves and the squences contained in RB-C174. This leads toan independent
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test dataset of 257 chains (RB-IC257). However, this independent test set cannot be

considered as representative because it contains both highand low resolution structures.

Thus, we randomly divide RB-C174 and RB-IC257 into two equal sets of216 and 215

chains, respectively (RB-C216 and RB-C215). One will be used for final training and

one for final testing.

5.2.5 Performance Evaluation

The performance of the method is evaluated by sensitivity [SN = TP/(TP + FN)],

specificity [SP = TN/(TN + FP )], accuracy [AC = (TP + TN)/(TP + FN +

TN +FP )], precision [PR = TP/(TP +FP )], and Matthews correlation coefficient

(MCC)

MCC =
TP ∗ TN − FP ∗ FN

√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(5.2)

Here,TP , TN , FP , FN refer to true positives, true negtives, false positives andfalse

negtives, respectively. A MCC value provides an overall assessment of the method

performance with 1 for perfect agreement. One should note that sensitive can also be

called as coverage of true positive prediction while precision is fraction of corrected

predictions in all positive predictions.

5.2.6 Other Methods and Threshold Optimizations

PSI-BLAST is employed for searching homologous sequences bysearching against the

NCBI non-redundant sequence library for four iterations. If atarget has at least one

template from RB-T355 with an E-value lower than a to-be-determined threshold, the

target is considered as a RNA-binding protein. Any templateshaving>30% sequence

identity with the target sequence is removed. The thresholdis optimized by maximizing

the MCC value.
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SPARKS X is a method without the steps for building the complexstructure and

prediction of binding affinity in Fig.5.1. Z-Score threshold, optimized by maximizing

the MCC value, is 7.

To assess the ability to detect RNA-binding proteins of SPARKSX, relative to

other fold-recognition methods, we employed Remmert2012 asan example because it

is one of the best fold-recognition techniques in CASP [108]. Remmert2012 version

1.5.1 was downloaded from http://toolkit.tuebingen.mpg.de/Remmert2012/. PSSM

generated from Altschul1997 were used to search NR databaseto generate multiple

sequence alignment and profiles. Default parameters, options and scripts were used to

generate HMM profiles for both targets and template proteins. We also tested the option

’-mact’ and results are essentially the same. Probablity was used as a significant score

in the prediction.

Two thresholds of Z-score and binding affinity for SPOT-Seq (i.e. SPARKS

X+DRNA) are optimized by a grid-based search for the highest MCC value. The grid

is 0.1 for Z-score. The binding affinity threshold is obtained by considering the lowest

energy value at different Z-scores of a given target. For theprediction of RNA-binding

proteins, the Z-score threshold is 6.6 and the energy threshold is −0.28. For the

expanded template library (RB-T1164), the Z-score thresholdis 7.0 and the energy

threshold is−0.57, respectively. This was optimized based on the datasetof RB-C174

and NB-C5778. A larger template library leads to stricter Z-score and energy thresholds

to prevent false positives, as expected. The same thresholds are applied to independent

test set of RB-IC257.

5.3 Results

5.3.1 Low Resolution Two-State Prediction

Leave-one-out cross validation. Fig. 9.2 compares the performance of PSI-BLAST

[134], fold recognition method Remmert2012 [108], SPARKS X [49], structure-based

method SPOT-Struc (RNA) [34] and SPOT-Seq. from this work by the leave-one-out

cross validation. The results are also quantitatively summaried in Table5.1 based on
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Fig. 5.2: True positive rate versus false
positive rate as given by
Altschul1997 (Green, dashed
line), SPOT-Struc (Magenta),
Remmert2012 (Blue, dashed
line), SPARKS X (Blue, Solid
line), and SPOT-Seq. (Red,
dashed line for the RB-T355
template library and solid line
for the RB-T1164 template
library) for the low-resolution
two-state prediction (binding vs.
no binding).

Table 5.1: Methods comparison for predicting of RNA-bindingproteins
Method Sensitivity Accuracy Precision MCC
PSI-BLASTa 33% 98% 70% 0.48
Remmert2012a 44% 97% 60% 0.50
SPARKS Xa 45% 98% 75% 0.57
SPOT-Struc (RNA)b 35% 98% 94% 0.56
SPOT-Seq (this work)a 45% 98% 85% 0.61

a Sequence-based method.b Structure-based method.

thresholds optimized for the highest Mathews correlation coefficient. These results

are obtained by taking one chain sequence from either RB-C174 orNB-C5765 and

predicting whether it binds or does not bind to RNA. This largeunbalanced dataset

with 3% binding sequences is employed to mimic real situation where binding proteins

are a minor portion of all proteins. Table5.1 indicates that SPARKS X improves 12%

over PSI-BLAST in sensitity and 5% in precision with similar level of accuracy. On

the other hand, SPARKS X improves over Remmert2012 mostly in precision (15%)

at similar level of sensitivity and accuracy. without significant changes in accuracy

and precision over Remmert2012 [108]. The structure-based technique (SPOT-Struc),

although has a much higher precision than the fold-recognition technique (SPARKS X)

(94% versus 75%), but with a significantly lower sensitivity(35% versus 45%). This

reflects the results obtained by optimizing MCC values. Introduction of binding affinity

prediction further improves the precision from 75% in SPARKSX to 85% in SPOT-Seq

without much change in sensitity or accuracy.
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Table 5.2: Examination of 44 SCOP folds shared by both RNA-binding (RB-C174) and
nonbinding (NB-C5765) proteins.

SCOP Dataset SPARKS X SPOT-Seq
Fold ID (RB/NB) (RB/NB) (RB/NB)
d.58 14/70 4/1 11/1
b.40 11/39 2/0 1/0
c.26 9/18 8/0 7/0
a.4 9/96 1/2 2/4
b.34 8/21 2/0 2/0
g.41 6/5 1/0 1/0
d.104 6/1 3/0 6/0
c.55 6/62 3/3 4/0
e.8 5/3 2/0 2/0
d.79 5/10 1/0 2/0
d.50 4/3 2/0 3/0
b.121 4/26 0/0 0/0
d.52 3/5 0/0 0/0
d.41 3/5 2/0 3/0
d.14 3/10 0/0 0/0
b.43 3/10 2/0 2/0
a.2 3/13 1/0 1/0
g.39 2/10 0/0 0/0
d.67 2/1 0/0 0/0
d.218 2/7 0/0 0/0
c.51 2/6 0/0 0/0
b.122 2/3 2/0 2/0
a.118 2/40 0/0 0/0
d.157 1/8 0/0 0/0
d.1 1/2 0/1 0/0
c.97 1/6 0/2 0/0
c.9 1/1 0/0 0/0
c.66 1/27 1/1 1/1
c.62 1/5 0/0 0/0
c.52 1/17 0/0 0/0
c.37 1/70 0/1 0/2
c.23 1/41 0/0 0/0
c.1 1/136 0/0 0/0
b.82 1/28 0/0 0/0
b.46 1/1 0/0 0/0
b.44 1/1 0/0 0/0
b.38 1/4 0/0 0/0
b.2 1/23 0/1 0/0
a.7 1/20 0/0 0/0
a.30 1/3 0/0 0/0
a.160 1/1 0/0 0/0
a.156 1/2 0/0 0/0
a.144 1/1 0/0 0/0
a.137 1/7 0/0 0/0
Total 134/861 37/12 50/8
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Discriminating binding from non-binding within the same fold. According to the

Structural Classification of Proteins (SCOP) [133], there are 44 folds shared by both

RNA-binding and non-RNA-binding proteins in RB-C174 and NB-C5765.As shown

in Table5.2, the majority (849/861) non-RNA binding proteins are filtered by SPARKS

X while SPOT-Seq further reduces the number of false positives from 12 to 8 and leads

to a very low false positive rate of 0.9%. At the meantime, SPOT-Seq increases the

true positive rate to 37% (50/134) from 28% (37/134) given bySPARKS X. The result

confirms that both fold recognition technique and energy calculation contributes to the

power of distiguishing the RNA-binding proteins from non-binding one even within the

same fold.

5.3.2 Medium Resolution Binding-Residue Prediction

Predicted binding complexes between a target and a templateRNA allow us to infer

RNA binding residues for the target. We define an amino-acid residue as RNA-binding

if any heavy atoms of the residue are less than 4.5Å away from any heavy atoms of a

RNA base. For a few proteins, we found that it is necessary to perform crystal symmetry

operation to yield correct information on binding residues. We examine the accuracy of

binding-residue prediction by focusing on true positive prediction of 78 proteins from

the leave-one-out test on RB-C174/NB-C5765. Compared to native binding residues,

we achieved 53% in sensitivity, 85% in accuracy, and 63% in precision. The MCC value

is 0.47. This value is significantly lower than 0.72, the MCC value given by SPOT-Struc.

This suggests that structural alignment allows a better detection of RNA binding

regions than model complex structures, predicted by SPARKS Xdue to inaccuracy

of models predicted. In other words, SPARKS X improves over SPOT-Struc in

sensitity of detecting RNA-binding proteins (low resolution prediction) while reducing

the accuracy of predicting binding regions (medium resolution prediction). Fig.5.3

displays 78 MCC values (open circles) for the predicted binding residues as a function

of Z-score. Clearly, there is a trend that higher Z-scores (high confidence in the accuracy
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Fig. 5.3: Medium resolution prediction
of RNA-binding sites. MCC
values for predicted RNA-binding
residues are shown as a function
of fold recognition Z-scores.
Results of RB-C174 tested on
small and expanded template
libraries of RB-T355 (open
circles) and RB-T1164 (closed
circles) are shown. The line from
linear regression is employed to
illustrate the trend.

for the model structure) leads to higher MCC values. However,there exist a few proteins

with poorly predicted binding regions when Z-score<15

Fig. 5.4 shows two examples: one with a reasonable prediction of binding

residues but the other with a poor prediction. For the human Rnase H1 (target

2qk9A,Fig. 5.4A), predicted (orange) and actural (magenta) RNA structuresare located

in similar locations, the predicted binding region (in Blue)is also close to the native

binding region (in Red). The MCC value for the predicted binding residues is 0.65

with a sensitivity of 97% and an accuracy of 93%. However, thepredicted and actual

RNA structures for the target A. fulgidus Piwi protein (PDB ID# 1ytuB, Fig. 5.4B) are

different. The native structure binds with double helix RNA and the binding residues are

represented as red, but the predicted structure based on thetemplate (3f73A) binds with

a single strand RNA that only partly overlaps with native RNA strucutre. This leads

to wrongly predicted binding residues (in blue). This is likely caused by the fact that

predicted protein structure (green) for 1ytuB is only a partof the actual native structure.

5.3.3 High resolution prediction of binding RNA types.

The next resolution level of function prediction is to predict the types of RNA that

binds to the target protein. We manually classified the typesof RNA included in our

template library, according to the annotation of DAVID [150] . In the template library

(RBT-355), 272 are annotated into 5 types of RNA-binding proteins. There are 189
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Fig. 5.4: Comparison between the predicted
(green) and actual (yellow)
complex structure for the target
2qk9A with RNA structures
colored in cyan for predicted and
orange for native RNA structure
and binding regions colored in
Red for native structure and Blue
for predicted structure. (A) Target
2qk9A predicted with template
1zbiB (sequence identity between
them is 13%). (B) target 1ytuB
predicted with template 3f73A3
(sequence identity between them
is 2.0%.)

Table 5.3: Mis-predicted binding types for tRNA, mRNA and rRNA-binding proteins.
Native Pred. Native Pred. Native Pred.
tRNA Type mRNA Type rRNA Type
1jj2U rRNA 1yz9A - 1mzpA -
1mzpA - 2gxbB - 1yz9A -
1ytyA mRNA 2ozbA tRNA 2bh2A tRNA
2i82A rRNA 2rfkA tRNA
3bt7A rRNA

binding with tRNA, 148 binding with rRNA, 47 binding with mRNA, 25 binding with

synthetic RNA and 7 binding with SRP RNA. Because some RNAs have more than one

function, the total number of invovled protein is less than the number of RNAs grouped

according to function.

The ability of our method to predict the type of binding RNA is examined by

analyzing 78 true positives (RNA-binding domains). These 78RNA-binding domains

contain 48 tRNA-binding proteins, 34 rRNA-binding proteins,10 mRNA-binding

protiens, 3 synthetic RNA-binding protein, 3 SRP RNA-binding proteins. If we use

the template RNA in the predicted complex structure to predict the binding RNA type

for the target protein, we achieve success rates of 90% (43/48) for tRNA, 91% (31/34)

for rRNA and 70% (7/10) for mRNA. Table5.3 listed all mis-predicted RNA types.

They are betweeen tRNA, rRNA and mRNA.
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5.3.4 The highest resolution: Protein-RNA Complex Structure

To examine the quality of predicted structures, we used TM-Score from TM-Align [139]

to compare the native and predicted structures which is 1 forperfect agreement and

about 0.2 between two random structures. For 78 correctly predicted targets, the average

TM-Score is 0.73. One can also measure the structure similarity by the fraction of

residues in model structure has an root-mean-squred distance (RMSD) of 4̊A or less.

We found that the medium value is 72%. We found that one structure for the target

2j035 (50S ribosomal protein L31) was predicted poorly (TM-Score<0.4 and only

22%residues has RMSD< 4Å). This large error in predicted structure is caused by

the non-globular shape of the native strucure (a small 59 residue protein with a radius

of gyrate 23.4̊A). We further found that the structural accuracy of bindingregions are

higher than that of whole proteins. For example, the bindingregions of 15 targets have

more than 95% residues with RMSD<5Å. By comparison, only 8 targets satisfies the

same criterion for the whole protein.

As an illustrative example, Fig.5.4A showed the predicted and actual complex

structures with RNA for target 2qk9A (human Rnase H1). The template 1zbiB (Bacillus

halodurans RNase H catalytic domain) was located with a Z-score of 18.0 and the

binding energy of−1.62. In this example, 50% aligned residues of native structure

and predicted structure has RMSD< 4Å, much lower than the medium value of 72%.

This is largely due to a helix near binding region in the template, but only a coil in

the native structure. Yet, the binding region is reasonablyaccurately modeled based on

the proximity of blue and red colors (a MCC value of 0.65, a sensitivity of 97% and

an accuracy of 93%). This remote homologous template is identified despite of a low

sequence identity of 13.3%. In this example, the conformation of RNA is also modeled

correctly. For Fig.5.4B, the only part of the targetA. fulgidusPiwi protein (PDB ID#

1ytuB) is predicted. This part was predicted with a TM-Score of 0.75. The sequence

identity between the target and template (3f73A3) is 2.0%.
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5.3.5 Discrimination against DNA binding proteins

We tested the ability of SPOT-Seq for separating RNA and DNA binding proteins by

applying the method to the dataset of 250 non-redundant DNA binding proteins (DBPs)

collected by us previously [32] We employed the thresholds for Z-score and binding

affinity obtained by optimizing the MCC value for RB-C174/NB-C5765. Only 5 out

of 250 DBPs are predicted as RBPs. Among these 5 predicted RBPs, four have high

sequence identity (>77%) with the templates and known for binding with both RNA and

DNA. The remaining target 1sfuA (the viral Zalpha domain [151]) is a remote homolog

of the template 2gxbB with a sequence idenitity of 27.1%. 1sfuA was also predicted

as RNA-binding proteins in previous structure-based study [34]. This poxvirus protein

is E3L protein that has a Z-alpha motif similar with ADAR1 (double-stranded RNA

adenosine deaminase) which is known to bind with Z-RNA [152,153]. Thus, there is

no false positive from DNA-binding proteins.

5.3.6 Effect of the Expanded Template Library

Table 5.4 examines the effect of the expanded template library at all four levels of

prediction resolutions. It is clear that expanding template library from 355 to 1164

protein domains and chains improves sensitivity from 46% to56% at the expense of

reducing precision from 85% to 81%. The effect on the ROC curve can be found in

Fig. 9.2. SPOT-Seq with RB-T355 has a higher sensitivity (or true positive rate) only

at a very low false positive rate (<0.2%) while SPOT-Seq with RB-T1164 has a higher

sensitity at low to moderate false positive rates. The overall MCC value increases from

0.61 to 0.66 due to the expanded library.

For binding residue prediction, expanding templates improve both precision (from

63% to 69%) and sensitivity (from 53% to 60%) with change to accuracy. This leads

to an improved MCC value from 0.47 to 0.53. Fig.5.3compared the MCC values as a

function of Z-Score given by different template libraries.Expanding templates reduce

the number of poorly predicted binding regions (MCC<0.2) from 10 to 7.
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Table 5.4: SPOT-Seq performance for an expanded template library and an independent
test

Resolution T355a T1164a

Level C174b C174b C257b C216b C215b

Two-statec

MCC 0.61 0.67 0.60 0.62 0.62
Accuracy 98% 98% 97% 98% 98%
Precision 86% 81% 82% 84% 84%
Sensitivity 45% 56% 45% 48% 47%

Binding Residued

MCC 0.47 0.53 0.48 0.50 0.51
Accuracy 85% 85% 83% 84% 84%
Precision 63% 69% 63% 66% 66%
Sensitivity 53% 60% 58% 59% 60%

RNA-typee

tRNA 90% 67% 67% 62% 69%
(43/48) (46/69) (24/36) (33/53) (33/48)

mRNA 70% 82% 62% 73% 56%
(7/10) (9/11) (24/39) (16/22) (15/27)

rRNA 91% 92% 91% 91% 96%
(31/34) (48/52) (61/67) (52/57) (54/56)

Complex Structuref

TM-Score 0.73 0.69 0.66 0.66 0.66
RMSD(<4) 72% 78% 76% 76% 77%
# (Whole) 19% 16% 17% 15% 17%
#(Binding) 10% 33% 25% 29% 25%

a The template sets of 355 and 1164 RBPs, respectively.b The target sets of C174 for
training and cross validation, C257 for independent test. C174 and C257 are further
randomly separated into C216 for training and cross validation and C215 for
independent test.c Performance on low-resolution two-state prediction basedon
Mathews correlation coefficient and others.d Performance on medium-resolution
prediction of RNA binding residues based on Mathews correlation coefficient and
others.e Success rate of the high resolution prediction of bound RNA types (tRNA,
mRNA and rRNA): the fraction of correctly predicted RNA bindingtypes in actual
number of proteins in that type.f The highest resolution of complex structure
prediction based on the average strutcural similarity score (TM-Score), medium value
for the percentage of aligned residues in the model structure with RMSD< 4Åfrom
the native structure, percentage of targets with 95% predicted residues within RMSD
<5 Åfrom the native residues for the whole protein and binding regions only.
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The effect of the enlarged template library on prediction ofRNA types is mixed.

There is a reduction of success rate from 90% (43/48) to 67% (46/69) for tRNA,

improved success rate from 70% (7/10) to 82% (9/11) and unchanged success rate [91%

(31/34) versus 92% (48/52)]. This large fluctuation suggests that the dataset may be too

small to assess the accuracy of RNA type prediction.

We further examined the prediciton ability on the highest resolution of

protein-RNA complexes. We found that the average TM-score isreduced from 0.73

to 0.69 while the medium value for the fraction of residues increases from 72% to 78%.

This somewhat conflict result reveals the difficulty to consistently assess the quality of

predicted structures.

5.3.7 Independent Test on RB-IC257

Table 5.4 also displays the results of independent test on RB-IC257 basedon the

thresholds generated by the cross validation set of RB-C174/NB-C5765 with the

template library of RB-T1164. Overall speaking, there is a somewhat reduction of

performance in the two-state prediction (the MCC value reduced from 0.65 to 0.59).

The most reduction is in the sensitivity from 56% to 45%. Thisreduction of sensitivity

is somewhat expected because the RB-IC257 set contains low resolution X-ray

structures and NMR structures. The performance of binding residue prediction for the

independent test set is also reduced in accuracy (2%), precision (6%) and sensitivity

(2%). The accuracy of predicted complex structures also decreases somewhat

(TM-Score from 0.69 to 0.66 and the fraction of residues withRMSD<4Å from 78%

to 76%. We hypothesis that the poorer performance for RB-IC257 may be because it

was complited by including low resolution X-ray structures, EM structures, and NMR

structures and recently solved structures.

To verify this hypothesis, we randomly divided to RB-IC257 and RB-C174 into

two independent sets of RB-C216 and RB-C215. We first employed RB-C216/T1164

to train the thresholds and found that these thresholds are identical to those trained by

RB-C174/T1164. Then, we tested these thresholds to RB-C215. The results are shown
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in Table5.4. Indeed, we found that the result on RB-C216 and RB-C215 are essentially

the same with MCC values for the two-state prediction at 0.61 and 0.62, respectively.

5.4 Discussions

In this paper, we describe the first technique that provides prediction of RNA binding

proteins at all four levels of resolution. At the low resolution level of two-state

prediction, its MCC value based on a large dataset of 216 binding proteins (or

independent 215 binding proteins) and 5765 nonbinding proteins is 0.62 (0.62). This

value is higher than 0.53, the best reported, sequence-based SVM classifier method

(5-fold cross validation on 134 RNA binding and 134 non-binding proteins only) [30].

Its MCC values for the medium resolution prediction of RNA-binding residues [0.50

(0.51)] for RB-C216 (RB-C215) sets are for comparable to 0.47 givenby the same

SVM classifier [30]. More importantly, the high-resolution prediction of binding RNA

types and binding complex structures are highly reliable. The success rates are 62%

(69%) for tRNA, 91% (96%) for rRNA and 73% (56%) for mRNA for the same

two sets, respectively. The average TM-score for predictedstructures are 0.66 (0.66).

One important feature of SPOT-seq is its ability to separateRNA from DNA binding

proteins. It yields zero false positions when applied to 250DNA binding proteins.

We would like to emphasize that we have purposely tested and trained SPOT-seq

in entire chains of proteins, rather than protein domains. This is to mimic the real-world

situation that in most cases, protein domain boundaries areunknown. SPOT-seq will

allow direct identification of RNA-binding domains from the target chain as it searches

for the best matching domain and/or chain from the template libarary.

SPOT-seq has one obvious limitation. It relies on the availability of protein-RNA

complexes as templates. It will not be able to predict RNA-binding proteins whose

structures do not have a template in the template library or when its template in the

library is difficult to recognize. We have used the RB-T355 libary that includes both

domains and chains with 95% sequence-identity cutoff for the purpose of maximizing

available templates. The low sensitivity (46%) is in part due to lack of structurally
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matching templates. Although expanding the number of templates from T355 to T1164

improves sensitivity, it reduces precision at the same timebecause a low resolution

RBP structure will more likely make a false match to a non-binding structure. More

importantly, tripling the number of templates from 355 to 1164 does not expand the

structural space as much. For example, In the RB-IC257 set, there are 141 false

negatives that have 52 targets with TM-score>0.5 to the structures in T355. The

number of structurally similar templates only increases by24 to 76 targets when the

number of templates expands to 1164. It is clear that significantly more high-quality

complex structures of protein-RNA are needed with the current method in order to

further advance the sensitivity and precision at the same time.

The final precision of 81% based on optimized MCC values is likely a upbound

when applying to a genome because our test and validation setcontains significantly

less binding proteins (216/5765 or 3.7%) than in a typical genome (15%). In fact, for

the entire set of nonredudant set of (216+215) RBPs or 7.5% of nonbinding ones, the

precision is 91% with the same number of false positive proteins. Thus, we expect

that application of our method for genome-wide prediction will lead to highly accurate

useful results.

Finally, one important advantage of this SPOT technique is its reasonable speed.

For example, it only takes 1107 CPU hours (46 days) on a single processor PC to

scan about 7380 genes in yeast genomes. We will report these results in a separate

paper. A freely available, easy to use webservers is available for academic users at

http://sparks-lab.org.
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Chapter 6 Charting the unexplored RNA-binding protein atlas of the human

genome by combining structure and binding predictions

Abstract

Detecting protein-RNA interactions is challenging both experimentally and

computationally because RNAs are large in number, diverse incellular location

and function, and flexible in structure. As a result, many RNA-binding proteins (RBPs)

remain to be identified. Here, we applied the RBP-prediction method SPOT-Seq to the

human genome. In addition to cover 42.6% of 1,217 known RBPs annotated in the

Gene Ontology (GO) database, SPOT-Seq detects 2,418 novel RBPs, 48% of which are

poorly annotated in the GO database. The majority (98%) of the remaining predicted

novel RBPs shared specific GO molecular function terms with known RBPs such as

DNA binding and zinc ion binding. The results of SPOT-Seq were independently

tested by a recent proteomic experimental discovery of 860 mRNA binding proteins

(mRBPs). We achieved the coverage (or sensitivity) of 43.6% for human mRBPs,

similar to 42.6% for all RBPs. In particular, 291 predicted novel proteins (in 2418)

were validated by this mRBP set and the majority (70%) were predicted as mRNA

binding. In a more stringent set of 315 previously unknown RBPsin 860 mRBPs that

excluded homology-inferred RBPs and any proteins annotated with a keyword RNA

(not just RNA binding), 19% proteins are predicted novel RBPs. This confirms the

ability of SPOT-seq to go beyond homology-based bioinformatics tools and uncover

truly novel RBPs. Further analysis indicates that predicted,novel RBPs play important

phenotypic roles in disease pathways and their mutations can cause diseases. The

dataset of 2418 predicted novel RBPs along with their predicted confidence levels

and protein-RNA complex structures is available at http://sparks-lab.org for further

experimental validation and hypothesis generation.
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6.1 Background

A comprehensive understanding of cellular processes requires identification of

RNA-binding proteins (RBP) as well as their ligands. Identification of RBPs

is of significant interest because numerous studies have shown that they are key

factors associated with cellular processes such as cell cycle checkpoints and genomic

stability and mutations in RBPs are linked to human diseases, including cancer [115]

. Recent global analysis indicates that transcripts are not only large in number,

but also diverse in localization and function in cells [154–156] . This implies

that underlying post-transcriptional networks are likelylarger and more complex

than either transcriptional networks or protein-protein interaction networks [157].

However, experimental determination of RNA-binding by every protein is inefficient

and impractical, as well as technically challenging and expensive. Attempts at

high-throughput biochemical approaches for identifying RBPs progress slowly and are

fraught with inaccuracy [157–159]. Thus, computational methods [27–30,34,36,116,

148, 149] have become a critical component for function annotation and analysis of

RBPs.

Recently, we have developed a template-based technique called SPOT-Seq

(RNA) that makes sequence-based prediction of RBPs [36] . In this method, a

query sequence is first threaded onto the template structures of proteins by the fold

recognition technique called SPARKS X [49]. The template library contains 1,164

known protein-RNA complex structures on both domain and protein chain levels (95%

sequence identity or less). If one of the templates has a goodmatch (according to

Z-score) to the query, the structure for the query is predicted and a model complex

structure between the predicted structure and the RNA from the template is built. The

model complex structure is then employed to predict affinityfor protein-RNA-binding

using a knowledge-based energy function [34] . If the binding affinity is higher than

a threshold, an RBP is predicted. The method achieves a precision of 84% and

sensitivity of 47% for a test set of 215 RBPs and 5,765 nonbinding proteins. The
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precision and sensitivity of SPOT-Seq are more than 10% higher than those given by the

sequence-to-profile homology search technique PSI-BLAST [134]. More importantly,

unlike some computational methods, SPOT-Seq (RNA) can distinguish DNA-binding

from RNA binding (zero false positives when applied to 250 DNAbinding proteins).

Here, we made a large-scale prediction of RBPs in human genome using

SPOT-Seq and discovered 2,418 novel RBPs in addition to recover 519 known RBPs.

Among these predicted novel RBPs, 1848 proteins possess GO annotations other than

RNA-binding, more than 90% of which are associated with knownRNA-binding

proteins. We further showed that some of these predicted novel RBPs involve in

various disease pathways and associated with disease-causing SNPs. More importantly,

a large subset of predicted novel RBPs (291 proteins, 12%) are confirmed by a recently

published proteomic study limited to mRNA binding proteins (mRBPs) [17]. Similar

sensitivity (42.6% for annotated RBPs in human genome and 43.6% for all mRBPs

from the proteomic study) confirms that SPOT-Seq can make consistent and accurate

detection of RBPs.

6.2 Materials and Methods

Fold-recognition and binding-affinity based prediction by SPOT-Seq. SPOT-Seq

[36] is a method that combines fold recognition and binding affinity prediction for RBP

prediction. Each target sequence is aligned to the structures in a template library of

1,164 non-redundant protein-RNA complex structures (both domains and chains with

95% sequence identity cutoff) by employing the fold recognition method SPARKS

X [49]. If the Z-score of the fold recognition is greater than 8.04, a model complex

structure between the target protein and template RNA is built by replacing template

protein sequence with target protein sequence based on the sequence-to-structure

alignment generated from SPARKS X. The model complex structure is then employed

to estimate binding affinity according to a statistical energy function based on the

distance-scaled finite ideal-gas reference state [33] that was extended to protein-RNA

interaction (DRNA) [34]. If the predicted threshold is lower than -0.57, the target
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protein is predicted as RNA-binding and its complex structure model serves as the basis

for the high-resolution prediction of RNA-binding function. The energy and Z-score

thresholds were obtained by optimizing the Mathews correlation coefficient (MCC)

based on the leave-homolog-out cross validation with a dataset of 216 RBPs and 5765

nonRNA-binding proteins.

6.3 Results

6.3.1 Application of SPOT-Seq to human genome

The human genome dataset from the Uniprot database contains20,270 unique proteins

[74] . The annotations of these genes are obtained from the GO database [160]. We

broadly define a protein as a RNA-binding protein (RBP) if its annotation contains

any of the keywords (RNA binding, ribosomal, ribonuclease, or ribonucleoprotein).

For the protein with keywords RNA polymerase, we limited to 16specific GO terms

as RNA-binding proteins (see Table6.1). This definition leads to 1,217 (6%) proteins

annotated as RNA-binding while 15,595 proteins are annotated with other functions and

3,458 are not annotated (unknown function). Table 1 lists the number of proteins found

according to the keywords used. Although this definition of RNA binding proteins is

subjected to annotation errors/omissions and choices of keywords, it provides a useful

reference for analyzing our predicted RBPs.

Application of SPOT-Seq to human genome identified 2,937 proteins as

RNA-binding after removing those proteins whose predicted structures have overlap

with predicted trans-membrane regions by THUMBUP [161]. This filter is necessary

because our method based on protein-RNA complex structures cannot predict the

structures of trans-membrane proteins. Among 2,937 predicted RBPs, 519 proteins

were annotated as RNA-binding and belong to one of the keywordclasses shown

in Table 6.1. In addition 1,848 proteins were annotated with functions other than

RNA-binding and 570 proteins lack annotations. Fig.6.1 shows a pie diagram

for comparing fractions occupied by predicted RBPs in annotated RBPs, unknown

proteins and proteins with other functions. The result reveals sensitivity (or coverage)
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Table 6.1: The number of annotated RBPs according to keywords,compared to the
number of proteins predicted as RBPs by SPOT-seq

Keywords # of annoated #of predicted #Converage(%)
RNA binding 722 402 56
ribosomal 68 37 54
ribonucleoprotein 240 52 22
ribonuclease 67 12 18
RNA polymerase 120 16 13
Total 1,217 519 43

GO IDs related with RNA polymerase: GO:0000428: DNA-directed RNA
polymerase complex; GO:0003899: DNA - directed RNA polymerase activity;
GO:0003968:RNA -directed RNA polymerase activity; GO:0005665:DNA
-directed RNA polymerase II; GO:0005666: DNA -directed RNA polymerase
III; GO:0005736:DNA -directed RNA polymerase I complex; GO:0006368:RNA
elongation from RNA polymerase II promoter; GO:0006369: termination of
RNA polymerase II transcription; GO: 0016591:DNA -directedRNA polymerase
II; 0030880 RNA polymerase complex;GO:0031379:RNA -directed RNA
polymerase complex;GO:0031380:nuclear RNA -directed RNA polymerase
complex;GO:0034062:RNA polymerase activity;GO:0042789:mRNA transcription
from RNA polymerase II promoter;GO:0042795:snRNA transcription from RNA
polymerase II promoter;GO:0042796:snRNA transcription from RNA polymerase III
promoter; GO:0042797:tRNA transcription from RNA polymerase III promoter

of 42.6% (519/1,217). This sensitivity is consistent with 47% sensitivity from our

benchmark study [36] despite that the latter was based on proteins with experimentally

solved protein-RNA complex structures only. We noted that the sensitivity strongly

depends on specific categories of RBPs. The sensitivity is the highest at 56% for

the proteins annotated with the keyword of RNA binding and lowest at 13% with

the keyword of RNA polymerase. Table6.2lists top 10 templates employed for all

predicted RBPs for human genome. The 60S ribosomal protein L3,RPL3 (chain C

in pdb structure 3o58), is responsible for predicting 1181 proteins with 61 annotated

as RNA binding. Four other 60S ribosomal proteins are also in the top 10 list. The

surprising popular employment of RPL3 leads us to examine theaccuracy associated

with prediction based on 3o58. SPOT-seq was tested by 215 RNA-binding proteins and

5,765 non-RNA-binding proteins [36] . Among these proteins, 11 binding proteins

and 15 non-binding targets employed protein chains contained in structure 3o58 as

templates. Six are true positives and 0 are false positives based on the default thresholds.

The Mathews correlation coefficient (MCC) for the use of 3o58 chains as templates
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Fig. 6.1: A pie diagram for annotated
RBPs (green), unknown proteins
(yellow) and proteins with other
functions (blue). All three regions
contain predicted RBPs (in red) in
significant fractions.

Table 6.2: Top 10 templates employed for all predicted humanRBPs.
PDB Gene Protein #Proteins #Nonredudant
ID Name Name (#A nnotated)
3o58C RPL 3 60S ribosomal protein L3 1181(61) 835
1hvuA gag-pol Gag-Pol polyprotein 223(12) 177
3o58E RPL5 60S ribosomal protein L5 180(10) 150
3ciyB Tlr3 Toll-like receptor 3 149(2) 54
3o58F RPL6A 60S ribosomal protein L6A 123(6) 114
3ivkB 112(0) 17
3a6pA X PO5 Exportin-5 98(5) 91
3o58b RPL32 60S ribosomal protein L32 90(5) 82
3o58T RPL21A 60S ribosomal protein L21A 95(8) 60
1cvjA PABPC1 Polyadenylate-binding protein 1 58(50) 41

is 0.64, similar to the overall MCC value of 0.62 when all templates are employed.

Thus, the performance for prediction based on 3o58 chains isconsistent with the overall

performance.

6.3.2 Molecular functions related to 1848 moonlighting RNA-binding proteins

There are 1,848 predicted novel RBPs were annotated with functions other than

RNA-binding. These proteins perform a moonlighting role of RNA-binding. We assess

our predicted moonlighting RBPs by their shared molecular functions with known

RBPs. In Table 6.3, we tabulate number of proteins and GO terms in molecular

function that are unique or shared between predicted and annotated RBPs. More than

90% of predicted novel proteins [91%, 226/(226+21) for proteins with root annotations
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Table 6.3: GO terms in molecular function that are unique in annotated or predicted
RBPs and/or shared between them.

# of Proteinsb #of GO IDsc

Root Leaf Root Leaf
Typea Total None Unique Shared Unique Shared Unique Shared Unique Shared
A 1217 118 92 477 47 483 95 189 192 96
A-A

⋂

P 698 102 56 221 29 290 84 178 143 83
A
⋂

P 519 16 36 256 18 193 11 11 39 13
P-A

⋂

P 2418 907 21 226 26 1238 148 189 250 96
aAA

⋃

P (annotated but not predicted RBPs), A
⋃

P (annotated and predicted RBPs), and PA
⋂

P
(predicted but not annotated as RBPs).b The total number of proteins, the number of proteins
without GO IDs, with unique GO IDs, and shared GO IDs between predictedand annotated
proteins at root and leaf levels.cThe number of GO IDs that are unique or shared between
predicted and annotated proteins at root and leaf levels.

only or 98%, 1,238/(1,238+26) for proteins with leaf annotations] shared GO IDs with

annotated RBPs. In other words, almost all functions of these predicted moonlighting

RBPs are associated with known RBPs. We note that the entire humangenomes have

1,411 leaf GO IDs and annotated RBPs have 288 leaf GO IDs. That is, 20% of all leaf

GO IDs associated with RBPs indicate the extensive association of RBPs with other

biological functions.

To illustrate shared functions between predicted and annotated RBPs, we showed

four clusters of predicted and annotated RBPs with four GO IDs in Fig. 6.2. Each

GO ID not only contains many predicted and annotated RBPs at thesame time but

also connects with each other through proteins having multiple GO IDs. Top 10

GO IDs (excluding RNA-binding functions) enriched with moonlighting RBPs are

listed in Table 6.4. Many of these 10 GO IDs are associated with transcription

regulatory activity, suggesting DNA-binding activity. Indeed, we found that 350 out

of 1,217 annotated RBPs (29%) are also annotated as DNA bindingproteins according

to GO annotations. Similarly, 22% (114/519) of predicted and annotated RBPs and

39% (728/1848) of predicted novel moonlighting RBPs are DNA binding proteins.

Thus, a significant fraction of proteins can interact with DNA and RNA at the same

time. The full list of predicted RBPs with annotated DNA binding is available on

http://sparks-lab.org
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Table 6.4: Top 10 GO IDs enriched with annotated and predicted RBPs, ranked
according to the number of annotated RBPs

GO-Id Function Proteins A A
⋃

P P-A
⋃

P (A/All) (A+P-A
⋃

P/All)
GO:0008270 zinc ion binding 2307 148 84 604 6% 28%
GO:0030528 transcription regulator

activity
1508 138 98 434 24% 35%

GO:0001883 purine nucleoside
binding

1599 132 66 136 8% 13%

GO:0005524 ATP binding 1475 129 65 133 8% 13%
GO:0016563 Transcription activator

activity
146 44 35 105 30% 79%

GO:0003702 RNA polymerase II
transcription factor
activity

245 37 28 67 15% 31%

GO:0000287 magnesium ion binding 454 34 24 32 7% 9%
GO:0003743 translation initiation

factor activity
58 29 16 5 50% 31%

GO:0016564 Transcription repressor
activity

317 27 19 81 9% 28%

GO:0005525 GTP binding 372 19 14 7 5% 3%

Fig. 6.2: The connection between proteins
with four GO terms (GO:0030528,
GO:0008270, GO:0001883 and
GO:0000287) that are shared by
annotated, not predicted (Grey);
predicted and annotated (Blue),
and predicted, novel (Red) RBPs.
Each node represents a protein.
One protein can connect to one or
more GO terms in yellow
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6.3.3 Validation of predicted novel RBPs by proteomic studies of human HeLa

cells.

Sharing GO IDs between annotated and predicted RBPs support but do not validate

predicted novel RBPs. Direct validation of our predicted RBPs ismade possible by an

recent proteomic experiment that obtained all mRNA-bindingproteins of HeLa cells

[17] . In this study, mRNA-binding proteins (mRBPs) in living HeLa cells were frozen

by covalent UV crosslinking, captured by oligo(dT) magnetic beads after cell lysis, and

identified by high resolution nano-LC-MS/MS. They found 860 mRBPs in which 375

are predicted RBPs. That is, the sensitivity for this dataset is 43.6% close to 42.6%

sensitivity for all GO annotated RBPs. Similar sensitivity despite significantly different

datasets confirms the overall accuracy of SPOT-Seq.

860 mRBPs discovered experimentally contain many novel RBPs. Using the

same definition for RBPs as above, we obtained 746 proteins as novel RBPs in which

291 are predicted as RBPs. Thus, SPOT-Seq can detect novel RBPs in39% sensitivity,

close to the sensitivity for all RBPs (42.6%). In these 291 predicted and validated

mRNA-binding proteins, the most frequently used templates belong to chains in PDB

ID 3o58 (87 times). This validates the use of 3o58 as a template for predicting RBPs.

Moreover, the majority of 291 predicted novel proteins (70%, 203/291) employed a

template protein with mRNA binding function, indicating high accuracy in predicted

binding RNA-type based on template RNA.

Castello et al. also defined a more stringent subset of previously unknown

RBPs by excluding proteins that are previously experimentally validated, inferable by

homology, and/or with a GO annotation containing RNA (not just RNA binding). This

stringent set of previously unknown RBPs contains 315 proteins, 61 of which (19%)

are predicted novel RBPs by SPOT-Seq. This large overlap demonstrates the ability

of SPOT-Seq to go beyond homology-based inference of RNA-binding proteins and

uncover truly novel RBPs.
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Table 6.5: Number of proteins and RBPs involved in 11 differentphenotypes
Disease All Annotated A

⋃

P P-A
⋃

P Pathways
Cancer 372 10 0 41 14
Immune System 1579 53 8 115 30
Nervous System 3740 233 75 253 30
Cardiovascular 2668 157 71 166 44
Endocrine/M etabolic 1603 19 2 106 24
Digestive 2128 41 5 154 27
Urinary/reproductive 1497 14 5 109 20
Musculoskeletal/skin 3152 88 13 225 61
Respiratory 428 0 0 17 4
Congenital/metabolism 3299 103 17 192 101
Congenital/other 3543 198 86 245 83
Total 4602 337 151 284 176

6.3.4 Disease pathways associated with predicted RBPs

Validation of predicted novel RBPs provides incentive for analyzing their relevance

to disease using known disease pathways of Kyoto Encyclopedia of Genes and

Genomes (KEGG) database [162]. The KEGG database classified diseases into

11 types (Cancer, immune system diseases, nervous system diseases, cardiovascular

diseases, digestive diseases, urinary and reproductive diseases, musculoskeletal and

skin diseases, respiratory diseases, congenital disorderof metabolism, and other

congenital disorders). These diseases correspond to 176 pathways and 4602 proteins.

Among these proteins, 337 are annotated RBPs. 151 (44.8%) annotated RBPs are

predicted by SPOT-seq. This is consistent with the overall sensitivity of 42.6%. In

addition to recover known RBPs, SPOT-Seq also predicted 284 novel RBPs. The

overall fraction of RBPs (both predicted and annotated) in allproteins involved in

disease pathways is about 13%, slightly lower than 18% for all proteins in the human

genome. Table6.5 lists 11 diseases and the number of their related annotated RBPs

and predicted RBPs. These newly predicted RBPs in disease pathways are expected

to be useful for understanding disease mechanisms and generating new hypotheses for

experimental testing. As an example, the Aminoacyl-tRNA biosynthesis pathway is

shown in Fig. 6.3 to illustrate the extent of predicted and annotated RBPs involved.

In this pathway, one node may contain more than one protein, and the number of
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Fig. 6.3: Aminoacyl-tRNA biosynthesis
pathway. Red, black and blue
colors label nodes containing
predicted novel RBPs, predicted
and annotated RBPs and annotated
RBPs, respectively. Each node
contains more than one protein.

Table 6.6: Predicted novel RBPs in MutDB and their interactions with annotated RBPs

Predicted RBPs Annotated RBPs Refs.
FANCA (O15360) BRCA1(P38398) [164](Ganesan et al. 2002)
COL7A1(Q02388) HSPA8(P11142) [165–167]
KLF11(O14901) ATXN1(P54253) [168]
NKX2-1(P43699) CALR(P27797) [169]
COL17A1(Q9UMD9) ACTN4(O43707) [170](Jonson et al. 2007)
MSX1(P28360) TBP(P20226),

TAF1(P21675)
[171](Mittal and Hernandez

1997)
VCL(P18206) RAVER1(Q8IY67) [172]
GATA1(P15976) SPI1(P17947) [173]
MEN1(O00255) POLR2B(P30876) [174]

nodes is greater than number of proteins because each node can represent more than

one gene product (proteins). For example, the node labeled as 6.1.1.17 is related

with two proteins, EARS and EPRS. There are 11 annotated RBPs involved in this

pathway, and 7 of them were predicted as RBPs by SPOT-seq. In addition, SPOT-Seq

discovered 18 novel RBPs. One protein is BLM (P54132) that is known to interact with

a RNA-binding protein FEN1(P39748) [163]. Moreover, most of the predicted novel

RBPs (13/18=72%) employed templates that bind with tRNA. Interacting with known

RBPs and predicted binding with tRNA provide additional supports for our predicted

novel RBPs.

6.3.5 Disease-causing SNPs associated with predicted RBPs.

We searched the annotated and predicted RBPs for single-nucleotide polymorphism

(SNP) and their associated phenotypes in the MutDB [175]. We found that 27

annotated/predicted RBPs and 135 predicted, novel RBPs are in the database. Among

them, 6 annotated/predicted and 42 predicted, novel RBPs haveSNPs in predicted RNA

91



Table 6.7: Predicted and annotated SNPs in RNA-binding region
Genename (Uniprot)a Protein name TPLb Zscore Energy SNP regionc Phenotype
COL17A1 (Q9UMD9)** Collagen- alpha-1(XVII)- chain 3o58C 19.91 -4.40 265-265 Epidermolysis- bullosa, junctional, non- Herlitz- type
COL3A1(P02461)* Collagen- alpha-1(III)- chain 3o58C 18.64 -8.54 924-1188 Ehlers- Danlos- syndrome, type- III
COL9A2(Q14055)* Collagen- alpha-2(IX)- chain 3o58C 18.56 -5.35 326-326 Epiphyseal- dysplasia, multiple, 2
COL1A2(P08123)* Collagen- alpha-2(I)- chain 3o58C 18.17 -9.19 877-1148 Ehlers- Danlos- syndrome
COL10A1(Q03692)* Collagen- alpha-1(X)- chain 3o58C 17.95 -3.65 617-618 Metaphyseal- chondrodysplasia, Schmid- type
RPL5(P46777) 60S- ribosomal- protein- L5 3o58E 17.95 -2.78 140-140 diamond- Blackfan- anemia- 6
COL2A1(P02458)* Collagen- alpha-1(II)- chain 3o58C 17.94 -8.19 992-1197 Achondrogenesis, type- II- or- hypochondrogenesis
COL4A5(P29400)* Collagen- alpha- 5(IV)- chain 3o58C 17.06 -6.35 289-609 Alport- syndrome
COL1A1(P02452)* Collagen- alpha-1(I)- chain 3o58C 17.03 -6.16 947-195 Caffey- disease, Ehlers- Danlos- syndrome,
MAPT(P10636)* Microtubule- associated- protein- tau 3o58C 15.99 -1.96 620-654 Dementia, frontotemporal, with- or- without-

parkinsonism
EDA(Q92838)* Ectodysplasin- A 3o58C 14.41 -3.06 61-302 Charcot- Marie- Tooth- disease, type-1D
COL6A2(P12110)* Collagen- alpha-2(VI)- chain 3o58C 14.08 -5.54 498-498 Bethlem- myopathy
MECP2(P51608) Methyl- CpG- binding- protein-2 3o58C 14.05 -3.51 167-305 Angelman- syndrome
GATA1(P15976)** Erythroid- transcription - factor 3o58C 13.23 -1.33 216-218 X- linked, without- thrombocytopenia
EGR2(P11161)* Early- growth- response- protein-2 3o58C 12.76 -2.01 355-383 Charcot- Marie- Tooth- disease, type-1D
KLF11(O14901)** Krueppel- like- factor-11 3o58C 12.04 -1.73 347-347 Maturity- onset- diabetes- of- the- young, type- VII
COL11A2(P13942)* Collagen- alpha-2(XI)- chain 3o58C 11.80 -8.25 808-808 Deafness, autosomal- dominant-13
COLQ(Q9Y215)* Acetylcholinesterase- collagenic- tail-

peptide
3o58C 11.66 -3.26 342-342 Endplate- acetylcholinesterase- deficiency

WAS(P42768)* Wiskott- Aldrich- syndrome- protein 3o58C 11.60 -3.33 131-134 Neutropenia, severe- congenital, X- linked,
Thrombocytopenia

COL7A1(Q02388)** Collagen- alpha-1(VII)- chain 3o58C 11.43 -7.77 2348-2713 EBDr- inversa
FUS(P35637) RNA- binding- protein- FUS 3o58C 11.30 -9.59 244-525 Amyotrophic- lateral- sclerosis- 6, autosomal-

recessive, dementia
FOXL2(P58012)* Forkhead- box- protein- L2 3o58C 11.22 -4.89 105-258 Blepharophimosis, epicanthus- inversus, and- ptosis,

type-1
GLI2(P10070)* Zinc- finger- protein- GLI2 3o58C 10.87 -3.65 932-932 Holoprosencephaly- 9
NKX2-1(P43699)** Homeobox- protein- Nkx-2.1 3o58C 10.68 -4.61 213-213 Chorea, hypothyroidism
ALX3(O95076)* Homeobox- protein- aristaless- like-3 3o58C 10.45 -3.44 203-203 Frontonasal- dysplasia-1
COL4A3(Q01955)* Collagen- alpha-3(IV)- chain 3o58C 10.13 -6.64 1015-1015 Alport- syndrome, autosomal- recessive
CFP(P27918)* Properdin 3o58C 10.00 -1.84 343-343 Cystic- fibrosis
VSX1(Q9NZR4)* Visual- system- homeobox-1 3o58C 9.83 -1.77 159-244 Corneal- dystrophy, hereditary- polymorphous-

posterior
TGIF1(Q15583)* Homeobox- protein- TGIF1 3o58C 9.72 -2.54 280-280 Holoprosencephaly-4
NKX2-5(P52952)* Homeobox- protein- Nkx-2.5 3o58C 9.66 -3.13 7-323 Atrial- septal- defect- with- atrioventricular-

conduction- defects
ZFP57(Q9NU63)* Zinc- finger- protein- 57- homolog 3o58C 9.62 -1.56 166-166 Diabetes- mellitus, transient- neonatal, 1
COL4A4(P53420)* Collagen- alpha-4(IV)- chain 3o58C 9.46 -9.291201-1201 Alport- syndrome, autosomal- recessive
MED25(Q71SY5)* Mediator- of- RNA- polymerase- II-

transcription- subunit-25
3o58C 9.41 -5.56 335-335 Charcot- Marie- Tooth- disease, type-2B2

MSX1(P28360)** Homeobox- protein- MSX-1 3o58C 8.82 -3.26 91-116 Orofacial- cleft- 5
WT1(P19544) Wilms- tumor- protein 3o58C 8.79 -4.74 181-394 Denys- Drash- syndrome
VSX2(P58304)* Visual- system- homeobox-2 3o58C 8.65 -2.60 200-227 Microphthalmia- with- coloboma-3
ZIC3(O60481)* Zinc- finger- protein- ZIC-3 3o58C 8.65 -2.88 323-405 Heterotaxy, X- linked- visceral
TBX19(O60806)* T- box- transcription- factor- TBX19 3o58C 8.61 -4.00 128-128 Adrenocorticotropic- hormone- deficiency
LAMB3(Q13751)* Laminin- subunit- beta-3 3o58C 8.41 -2.97 199-199 Epidermolysis- bullosa, junctional, Herlitz- type
HOXD10(P28358)* Homeobox- protein- Hox- D10 3o58E 8.13 -1.45 319-319 Charcot- Marie- Tooth- disease, foot- deformity- of
VCL(P18206)** Vinculin 3a6pA 10.11 -0.95 975-975 Cardiomyopathy, dilated, 1W
FANCA(O15360)** Fanconi- anemia- group- A- protein 3a6pA 9.24 -0.99 858-858 Fanconi- anemia, complementation- group- A
NIPBL(Q6KC79)* Nipped- B- like- protein 3a6pA 8.29 -0.72 2430-2430
RPS19(P39019) 40S- ribosomal- protein- S19 2xzmT 21.74 -2.52 15-120 Diamond- Blackfan- anemia-1
IGHMBP2(P38935) DNA- binding- protein- SMUBP-2 2xzoA 19.44 -1.76 565-581 Neuronopathy, distal- hereditary- motor, type-VI
TRMU(O75648) Mitochondrial- tRNA- specific-2-

thiouridylase-1
2detA 27.11 -1.18 272-272 Liver- failure, acute- infantile

TUFM(P49411)* Elongation- factor- Tu, -
mitochondrial

1ob2A 25.27 -1.94 336-336

MEN1(O00255)** Menin 1i94L 8.47 -2.18 545-560 Multiple- endocrine- neoplasia-1
a Template PDB IDb Predicted SNP region.c P Predicted RBPs. T annotated RBPs

binding regions (Table6.7). In 6 annotated/predicted RBPs,80 in 170 SNPs (47%) are

in the predicted RNA-binding regions. In 42 predicted novel RBPs, 844 in 1608 SNPs

(52%) are in the predicted RNA-binding regions. Among 42 predicted novel RBPs,

nine proteins interact with 10 annotated RBPs according to human protein reference

database (HPRD) [176]. These 9 proteins and their interacting partners along with

original citations are listed in Table6.6.

Table 6.7 also lists the overlap between predicted RNA-binding residues with

SNPs. For example, 40S ribosomal protein S19 is implicated in DiamondBlackfan

anemia (DBA). Its known RNA-binding region [177, 178] agree with predicted

RNA-binding amino-acid residues with a sensitivity of 42.1%(8/19). The predicted
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Fig. 6.4: Predicted complex structure for
novel RBP: vinculin, related
to cardiomyopathy dilated 1W.
Locations of known SNP are
shown as spheres.

RNA-binding residues in positions 15 (V→F), 47(P→L), 56 (R→Q), 55(T→M),

59(S→F), 62(R→Q, R→W), 101(R→H), and 120(G→R) are associated with known

SNPs in the MutDB database [175]. As a second example of a known RBP, Wilms

tumor protein (P19544) contains 3 disease-causing mutations (C330Y, R394P, R394W)

in zinc finger domain [179–181]. These two mutated residues are predicted as

RNA-binding residues by our method. This protein has three DNA-binding complex

structures available within residue ranges of 318-428 (PDBID#2PRT, #2JP9 and #

2JPA). Fig.8.3shows another example where the SNP is localized in the RNA-binding

region in the predicted complex structure between tRNA and vinculin.

6.4 Discussions

In this study, a new method for RBP prediction based on known RBP complex structures

was applied to human genome. The method uncovered 2,418 proteins that were not

previously annotated as RBPs in the GO database. About half of these predicted novel

RBPs were annotated as ORFs that lack GO annotations of molecular functions (908),

or have only GO root ID (247), suggesting that they were poorly studied proteins. Some

of these predicted novel RBPs (284) directly involve in disease pathways (Table6.5),

indicating their potential phenotypic roles. More importantly, 12% of these predicted

novel proteins (291) are validated by a recent proteomic experiment that mapped all

mRNA-binding proteins in living HeLa cells [17]. The consistent sensitivity (42.6% for
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annotated RBPs in human genome and 43.6% for mRBPs in HeLa Cells) demonstrates

the robustness of SPOTseq in making highly accurate prediction of RBPs.

Among all RBPs predicted, 80.5% are proteins with unknown functions or

annotated with functions other than RNA-binding. This suggests that many more RBPs

exist than those that are currently annotated. If we combinepredicted RBPs with

annotated RBPs and assume that majority of predicted and annotated RBPs are true,

these RBPs would consist of 18% [=(1,848+570+1,217)/20,270]of all genes. Because

the sensitivity of our technique is at about 43%, the actual number of RBPs is likely

greater than 18% even if we take into account of errors in our prediction. The huge

number of RBPs highlights the scope and significance of the protein-RNA interaction

network.

Most of the RBPs predicted here have functions other than RNA-binding. This

so-call moonlighting capability of RBPs is consistent with experimental screens of

yeast and human proteins. It was found that novel RBPs uncovered in screens often

have enzymatic activities [14, 15] as well as RNA-binding kinases and RNA-binding

architectures [17] . Thus, moonlighting aspect of RBPs is likely more common than

previously appreciated. In particular, 39% of predicted moonlighting proteins are

related to DNA-binding. This is not caused by inability of SPOT-seq to distinguish

RNA- from DNA-binding. In fact, the application of SPOT-seq to 250 DNA-binding

proteins did not yield any false positive prediction of RBPs [36] . Thus, many proteins

can interact with RNA and DNA at the same time.

A surprising result from our template-based technique is that many predicted

RBPs employed the templates from 60 S ribosomal proteins (PDB ID 3o58). This

is true for both predicted novel and annotated RBPs. We are confident about these

predictions because our benchmark test indicates the accuracy of prediction based on

3o58 is the same as that based on other templates. Moreover, known and novel RBPs

predicted from 3o58 have interspersed confidence levels as shown in Table 6.2. More

importantly, 87 novel RBPs based on 3o58 templates are validated as mRNA-binding

proteins [17] .
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One caveat of the SPOT-seq method is its reliance on known protein-RNA

complex structures as templates for predicting complex structures. This limitation

contributed to the respectable but low sensitivity (43%) ofthe prediction. This

sensitivity was also resulted from our emphasis on high precision (fraction of correct

predictions in all predictions). As more protein-RNA complex structures are solved, our

method will improve in recovering known RBPs and uncovering novel ones. Increasing

the sensitivity of SPOT-seq by combing it with other sequence- and structure-based

approaches [27–30, 34, 36, 116, 148, 149] is working in progress. Nevertheless, the

ability to double the number of annotated RBPs with such sensitivity suggests that many

more interesting novel RBPs remain to be uncovered.
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Chapter 7 Prediction of RNA binding proteins comes of age from low resolution

to high resolution

Abstract

Evidence is accumulating that the protein-RNA interaction network is substantially

larger than protein-protein and protein-DNA interaction networks combined. Recent

experimental studies begin to uncover more and more unconventional or moonlighting

RNA-binding proteins (RBPs). At the same time, more and more protein-RNA

complex structures are deposited into protein databank. These resources provide

ample statistics for developing computational techniquesdedicated to RBP prediction.

This review compares traditional machine-learning based approaches with emerging

template-based methods at several levels of resolution of prediction ranging from

two-state binding/non-binding prediction, binding residue prediction, to protein-RNA

complex structure prediction. The analysis indicates a promising future for highly

accurate RBP prediction with a reasonable sensitivity using atemplate-based approach.

7.1 Introduction

RNA directly involves a wide variety of functions ranging from protein synthesis,

post-transcriptional modification, to post-transcriptional regulation. Unlike DNA,

located mostly in the cell nucleus, RNA is transcribed in nucleus and transported to

cytoplasm as non-coding RNA or for translation. Diverse localizations and different

functionality of RNA transcripts [154–156] along with only 3% human genome coded

for proteins [182] suggest that the network of protein-RNA interactions is likely much

larger and more complex than those of protein-DNA and protein-protein interactions

combined [157] . These RNA-binding proteins (RBPs) are challenging to locate

experimentally although some progress in high-throughputbiochemical approaches are

made [157–159,183] and hundreds of novel unconventional or moonlighting RBPs have
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Fig. 7.1: Number of Protein-RNA

complex structures deposited

in protein data banks since

2001.

been discovered [14, 15, 17] . This, however, scratched only the surface of RBPs and

their associated post-transcriptional network.

A complete understanding of the protein-RNA interaction between a specific

protein and a RNA requires to determine their complex structure. Despite of difficulty

in solving protein-RNA complex structures [184–186], the number of non-redundant

complex structures deposited in protein databank has been quadrupled from 45 per

year at 2001 to 180 at 2011 (at 90% sequence identity cutoff),as shown in Fig.7.1.

By comparison, the number of deposited structures is less than tripled from 2831 at

2001 and 8091 at 2011 (http://www.rcsb.org/pdb/statistics). The growing number of

protein-RNA complex structures provides an increasingly larger dataset for analyzing

the principles of protein-RNA recognition [137,187–191]. However, not all members

in the same structural folds have RNA-binding activities. For example, the Structural

Classification Of Proteins (SCOP) [133] has 44 folds shared by both RNA and non-RNA

binding proteins [36].

The challenge and expense of experimental determination ofRBPs necessitates

the development of accurate and efficient computational techniques. In this review

article, we will classify different computational methodsaccording to the resolution

of prediction from low, medium, high to the highest. A low-resolution prediction

is a simple two-state prediction of whether a protein is RNA binding or non-RNA

binding. A medium-resolution prediction locates the amino-acid region of a RBP

that binds to RNA (RNA binding site/motif prediction). A high-resolution prediction

indicates the types of RNA binding to a RBP. The highest resolution prediction
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will predict the three-dimensional structure of protein-RNA complexes with predicted

RNA binding sequence. The highest resolution prediction cansimultaneously make

all lower resolution predictions including the RNA type, RNA-binding site, and the

two-state RBP/non-RBP classification, but not vice versa. Most computational methods

developed so far focused on low to medium resolution prediction [192,193].

Here, we will provide a brief review based on the resolution as well as the

information (i.e. sequence versus structure-based) employed in prediction.

7.2 Function Prediction in different resolutions

7.2.1 Low Resolution Function Prediction: Two-State RBP Prediction.

Structure-based Inference of RBPs. Negatively charged RNA preferentially binds

to positively charged proteins. Electrostatic interactions are obviously an important

feature for detecting RBPs. Shazman and Mandel-Gutfreund [117] employed Support

Vector Machines (SVM) to combine electrostatic patches, solvent accessibility, cleft

sizes and other global protein features for RBP prediction. This method trained on

76 RNA binding proteins and 246 non-nucleic acid binding proteins and achieved

a Matthews correlation coefficient (MCC) of 0.72 based on the leave-one-out test.

However, it is unable to distinguish RBPs from DNA-binding proteins. Ahmad and

Sarai [194]employed neural networks that are based on charge, dipole moment, three

eigenvalues of quadrupole moments generated from the structure. It was trained on 160

RBPs and 2441 non-RBPs and achieved 0.79 for an area under the ROC curve based

on the leave-one-out test. Table7.1 provides a list of features for the two methods

described above. More recently, we have developed an alternative approach based on a

template library of known protein-RNA complex structures [34,42]. In this method, a

target structure is aligned to the templates in the templatelibrary and a RBP is predicted

if the structural similarity between the target and a template is higher than a certain

threshold. Several structural alignment programs were tested. Among them, SPalign

[42] was found to give the highest MCC value of 0.37 based on a dataset of 212 RNA

binding domains and 6761 non-RNA binding domains with 250 RNA-binding domains
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as templates. When the query structure is compared to template structures, the templates

with sequence identity ¿30% to the query sequence are excluded in order to test the

ability of the method to detect remote homologs. SPOT-struc(RNA) [34] improves

over the method based on a structural similarity score only by using a relative structural

similarity between RBPs and non-RBPs and by predicting the binding affinity between

the query protein and the template RNA with a knowledge-basedenergy function based

on distance-scaled finite ideal gas reference state (DFIRE) [33] It achieves a MCC

value of 0.57 for the same dataset above. SPOT-struc (RNA) hasthe ability to separate

RNA- from DNA-binding proteins because it yields zero false positives after excluding

proteins known to bind both DNA and RNA when applied to a dataset of 331 DNA

binding domains.

Sequence-based inference of RBPs.The main limitation of a structure-based

technique is that the structures for most proteins are not yet known. One common

technique is homology-based prediction assuming that proteins with similar sequences

are likely to perform the same function. Enzymes [197, 198],for examples, tend to

have a conserved function, if they share more than 40% to 50% sequence identity.

However, such prediction will produce false negatives by failure to detect functionally

identical remote homologs [199] and false positives by ignoring possible functional

divergence for highly homologous sequences [197]. Thus, there is a need to go beyond

simple homology-based search. Several SVM-based tools [27–30, 84, 116, 195]were

developed. Different methods mainly differ in features employed. Commonly used

features are the composition of amino-acid residues, hydrophobicity, amino acid

composition, charge, hydrophobicity and accessible surface area. Early studies [27,116]

did not remove homologous sequences in training and testing. Due to limitation of

SVMs, most methods were trained with nearly equal number of RBPs and non-RBPs

[28–30, 84, 195]. In a real-world situation, RBPs are only a fraction of all proteins.

The reported MCC values are 0.53 for a dataset of 134 RBPs and 134 non-RBPs [30],

0.51 for a dataset of 69 RBPs and 100 non-RBPs by RNApred [84], 0.65 for a dataset

of 687 RBPs and 687 non-RBPs [195]. Recently, we developed a template-based
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Table 7.1: Structure and sequence-based features for RBP prediction
Method[Ref.] Technique Features

Structure-based
[117] SVM Electrostatic surface patches, molecular weight,

solvent accessibility, dipole, quadrupole, patch
size, size of the largest clefts, number of atoms
in positive and negative patches, patch surface
overlap

[194] NN Charge dipole moment, quadrupole moment
and functional property of protein chain

SPalign [42] Template-
based

Structural alignment

SPOT-Struc [34] Template-
based

Structural alignment plus binding affinity
estimation

Sequence-based
[28] SVM Hydrophobicity, secondary structures, solvent

accessibility, van der Waals volume, polarity,
polarizability and amino acid composition

[195] Voting Hydrophobicity, predicted secondary structure,
predicted solvent accessibility, normalized Van
Der Waals volume, polarity, and polarizability

RNApred [84] SVM Residue composition, predicted RNA binding
residues, PSSM

[29] SVM Clustered amino acids according to dipoles and
volumes of side chains.

[27] SVM Pseudo-amino acid composition, charge,
hydrophobicity, accessible surface area

[196] SVM Amino acid composition, periodicities
SVMProt [116] SVM Amino acid composition, charge, polarity, and

hydrophobicity
SPOT-Seq [36] Template-

based
Sequence-to-structure match and binding
affinity estimation
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approach called SPOT-seq [36] which is similar to SPOT-struc [34]except that the

query structure is predicted by a fold-recognition technique called SPARKS-X [49].

More specifically, SPARKS-X attempts to match the query sequence to the templates

of known protein-RNA complex structures. If a match is found (based on a Z-score),

a binding affinity is predicted based on a knowledge-based energy function. The query

sequence is an RBP if the binding affinity is higher than an optimized threshold. This

coupled structure and binding prediction leads to a MCC valueof 0.62 for independent

test on 215 RBPs and 5765 non-RBPs with a template library of 1164 RNA-binding

domains and RNA-binding chains. This MCC value is even higher than 0.56 given

by SPOT-struc for the same dataset despite of using predicted structures in SPOT-seq,

rather than actual structures in SPOT-struc, suggesting possible cancellation of errors

of structure and binding prediction.

Method comparison. There is a lack of comparison between different methods

for RBP prediction. Most methods described above do not have web-servers or

their web-servers are no longer functional. We only found two available servers

(RNApred [84], http://www.imtech.res.in/raghava/rnapred/ and SVMprot [116]). Both

of them are sequence-based methods. They are compared to SPOT-seq along with our

structure-based techniques SPOT-struc and SPalign with a dataset of 257 RBPs and

5765 non-RBPs in Table7.2. This dataset is an independent test set for SPOT-seq

at 25% sequence identity. RNApred predicted 203 out of 257 RBPs and 2415 out

of 5765 non-RBPs as RBPs. RNApred achieved a MCC value of 0.15, sensitivity of

79%, and precision of 8%. SVMprot yields the MCC of 0.19, sensitivity of 50% and

precision of 13%. By comparison, SPOT-seq has a MCC value of 0.60, sensitivity

of 44%, precision of 84% for the same dataset. Thus SPOT-seq is significantly

more powerful in separating RNA from non-RNA binding proteins. It is even more

powerful than structure-based techniques that achieved MCCvalues of 0.46 (SPalign)

and 0.50 (SPOT-struc). Fig.7.2 displays the Receiver Operating Characteristic (ROC)

curves for these sequence and structure-based methods. It is clear that SPOT-Seq, the

template-based technique, is substantially more accuratethan other sequence-based,
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Table 7.2: Comparison of methods for low-resolution, two-state RBP prediction
257 RBPs + 5765 non-RBPs 245 DBPs

Method MCC Sen. Pre. TP FN TN FP FP
Structure-based
SPalign* [42] 0.46 33% 67% 85 172 5723 42 6
SPOT-Str* [36] 0.50 32% 84% 83 174 5749 16 3
Sequence-based
RNApred [84] 0.15 79% 8% 203 54 3350 2415 168
SVMprot [116] 0.19 50% 13% 129 128 4898 867 55
SPOT-seq [34] 0.60 44% 84% 114 143 5743 22 0

Fig. 7.2: The ROC curves for several

RBP predictors. SPOT-seq,

RNA-pred and SVMprot

are sequence-based methods

while SPalign and SPOT-struc

are structure-based.

machine-learning techniques (RNApred and SVMprot) or structure-based techniques

(SPalign and SPOT-struc). For structure-based technique,SPalign, although is less

accurate than SPOT-Struc at low false positive rates, has higher sensitivity at high

false positive rates. This suggests that replacing TMalignemployed in SPOT-Struc

by SPalign for pairwise structure alignment will likely further increase the power of

SPOT-Struc.

Discriminating RBPs from DNA-binding proteins. DNA-binding proteins are

important control for examining the accuracy of RBP prediction because DNA-binding

interfaces are also positively charged as RNA-binding interfaces. Most methods are

either unable to separate RNA from DNA binding proteins or nottested in this aspect.

Table 7.2confirms high false positives given by RNApred ( 69%) and SVM-prot (22%)

when tested on 245 DNA-binding proteins, compared to zero-false positives given by

SPOT-seq. These 245 DNA-binding proteins are a subset of DB250 which are modified

by excluding 5 RNA-binding proteins [34].

102



7.2.2 Medium Resolution Function Prediction: Binding Residues Prediction

Locating functional residues is an important first step for understanding the mechanism

of function. Thus, there are a significant number of studies in predicting RNA-binding

residues. Most studies are machine-learning techniques trained from sequences or

structures of known RBPs.

Structure-based prediction. How to capture key structural features is the challenging

question for accurate prediction of RNA-binding residues from a given structure.

Table 7.3lists structural features employed by several structure-based techniques

[125,126,200–203].The methods range from docking, random forest classifier,neural

network, SVM, nave Bayes classifier to linear regression. Thenotable features are

sequence conservation, secondary structures, types of amino acid residues, solvent

accessible surface area and interface propensity. There are some overlaps between the

features employed for RBP prediction and binding residue prediction, except that one

focuses on the whole protein level and the other is on the residue level. We developed

a template-based approach called SPOT-struc (RNA) [34] that predicts binding sites

based on structural alignment to known protein-RNA complex structures and prediction

of protein-RNA binding affinity. SPOT-struc (RNA) is based on an alignment program

called TM-align [139].Another method SPalign was developed to further improve the

accuracy of alignment and identification of binding regions[42].

Sequence-based prediction.For sequence-based prediction, the prominent feature is

sequence similarity and evolution information [30]. Additional features as shown in

Table 7.3 include properties of amino acid residues, predicted secondary structures

and solvent accessibility. Most methods are based on SVM. These features are

typical features utilized in secondary structure prediction and ASA prediction as well

(e.g. [50] ). All above methods are machine-learning based tools. We developed

a template-based technique called SPOT-seq [36] that infers RNA-binding residues

according to predicted RNA-protein complexes between the model structure of the

target protein and the structure of template RNA.
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Table 7.3: Structure and sequence-based features for RNA-binding residue prediciton
Methods Technique Features
[200] NN Secondary structure, amino acid type
KYG [201] Scoring Residue doublet interface propensity, multiple

sequence profiles
[125] Scoring Surface binding pocket, electropositive atoms,

spatially evolution principle
[126] SVM/Naive

Bayes
residue contacts map, PSI-BLAST profile,
Graph theory properties

Struct-NB [202] surface roughness, interface residue propensity
CX score

[127] Linear Reg. PSSM, secondary structure and solvent
accessibility

OPRA [131] Docking pairwise residue-ribonucleotide interface
propensities

[128] Random forest
classifier

interaction propensities, physicochemical
characteristics, hydrophobicity, rASA,
secondary structure, conservation score
side-chain environment

SPalign [49] Template-based Structural alignment
SPOT-Struc [34] Template-based Structural alignment plus binding affinity

estimation
BindN [94] SVM Side chain pKa value, hydrophobicity index,

molecular mass
RNABindR [120] SVM smoothed PSSM
BindN+ [95] SVM side chain pKa value, hydrophobicity index,

molecular mass, PSSM
NAPS [96] bootstrap

aggregation and
cost sensitivity
learning

PSSM

PBRpred [204] SVM PSSM, predicted secondary structure and
solvent accessibility

PiRaNhA [205] SVM PSSM, residue interface propensity, predicted
residue accessibility value

PRBR [206] Random forest secondary structure, evolution information,
conservation information of physicochemical
properties of amino acids, polarity-charge,
hydrophobicity

SPOT-Seq [36] Template-based Sequence-to-structure match and binding
affinity estimation
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Fig. 7.3: Performance of RNA-binding

prediciton by several

sequence and structure-based

techniques as labeled.

Method Comparison. One conclusion is that structure-based techniques do not have

any advantage over sequence-based techniques. The second conclusion is that all

methods have MCC below 0.6. However, different datasets makecomparisons between

different methods impossible. To compare different methods, we built a dataset of

106 RNA-binding domains (RB106) that were released in 2011 and 2012. RB106 is a

non-redundant dataset with pairwise sequence identity lower than 35%. However, only

67 domains in 106 domains were predicted as RBPs by SPOT-seq because of lack of

templates or low binding affinity. Thus, we also showed results for the RB67 set. In

addition, we further remove the domains that have more than 45% sequence identity

with RNA-binding domains released before 2011. This leads toa small dataset of 20

RBPs (RB20). We employed 45% sequence identity cutoff here because a lower cutoff

will lead to fewer new RNA-binding complex structures.

Table 8.1 lists the performance of various structure and sequence-based

techniques for the three datasets (RB106, RB67 and RB20). In structure-based

techniques, SPalign has a consistent top performance amongthree structure-based

techniques (SPalign, SPOT-struc and KYG). In both SPalign and SPOT-struc,

all templates more than 35% sequence identity to the target are removed. In

sequence-based methods, BINDN+ has the best performance in the MCC value for

RB106 (MCC=0.59), followed by PBRpred (MCC=0.57). For RB20, PBRpred gives

the highest MCC value (0.39), followed by BINDN+ (0.38) and RBABindR (0.37).

SPOT-seq, on the other hand, yields the highest MCC value for those proteins predicted

as RBPs (0.63 for RB67). SPOT-seq achieved an MCC value of 0.33 for RB20 by
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Table 7.4: The performances of structure and sequence-based methods for predicting
RNA-binding residues for three domain datsets(RB106, TP67, RB20)

Method Sensitivity(%) Precision(%) MCC MCC
RB106(TP67) RB106(TP67) PB106(TP67) RB20

KYG [201] 62(61) 61(65) 0.43(0.44) 0.26
SPalign [49] 57(64) 61(67) 0.39(0.50) 0.43
SPOT-Struc [34] 55(61) 60(69) 0.36(0.49) 0.36
BindN [94] 57(56) 59(64) 0.39(0.40) 0.16
RNABindR [120] 69(77) 67(65) 0.52(0.53) 0.37
BindN+ [95] 70 74(77) 0.59(0.62) 0.38
NAPS [96] 42(45) 55(56) 0.28(0.28) 0.18
PBRpred [204] 74(78) 69(70) 0.57(0.59) 0.39
PRBR [206] 55(56) 69(72) 0.46(0.47) 0.22
SPOT-Seq [36] 81(68) 50(82) 0.39(0.63) 0.33

using the templates that have no sequence identity higher than 45% to target (45%

is employed here to be consistent with the cutoff for building this small novel RBP

structure database). It is clear that sequence-based techniques are as accurate as or

more accurate than template-based techniques in predicting RNA binding residues. All

methods, however, have dramatic reduction of accuracy if sequence identities to known

RBPs are lower than 45%. The performance of various methods is also compared by

the ROC curves in Fig.7.3 Regardless of datasets, two best performing methods are

RBPpred and BindN+.

7.2.3 High-Resolution Function Prediction: Binding RNA Type Prediction

Predicting the type of RNA binding with a given RBP provides a more detailed

information on the function of RNA-binding proteins. Yue et al. [28] developed a

sequence-based predictor for separating rRNA-binding fromRNA-binding proteins.

They found that rRNA-binding proteins can be more accuratelypredicted than

RNA-binding proteins. Shazman and Mandel-Gutfreund [117] employed a multi-class

SVM to classify rRNA, tRNA, and mRNA-binding proteins based on electrostatic

properties derived from protein structures. It has the highest success rate for

tRNA-binding proteins (13/13) but a lower success rate for rRNA (32/46) and mRNA

(17/23) binding proteins. This method, however, cannot separate RNA from DNA
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binding proteins. We developed the sequence-based technique SPOT-seq that can

predict the RNA types by assuming that the query protein and its matching template

RBP bind to the same type of RNA [36]. SPOT-seq achieved success rate of

69% (33/48) for tRNA, 56% (15/27) for rRNA and 96% (54/56) for mRNA for an

independent test set of 215 RNA-binding proteins, compared to 62%, 73% and 91%

for the training set of 216 RBPs. It should be noted, however, that the RNA structural

motif, rather than the RNA functional type, is the key for the RBPfunction as many

proteins can bind with different types of RNAs.

7.2.4 Highest Resolution Function Prediction: Protein-RNA Complex Structure

Prediction

To understand the mechanism of protein-RNA binding, atomic resolution of

protein-RNA complex structures is required. One method to predict protein-RNA

complex structures is protein-RNA docking that relies on known protein and RNA

structures. Such docking techniques for protein-RNA interactions can be modified

from many docking software tools for protein-protein and protein-ligand docking after

equipping with a scoring/energy function for protein-RNA interaction. For example,

Zheng et al utilized the RosettaDocking [207] program to generate protein-RNA

complex decoys and evaluate the ability of a knowledge-based energy function based

on a conditional-probability function to discriminate docking decoys [130].Perez-Cano

et al. employed the FTDOCK [208] program plus propensity-based statistical

potentials [131] . Tuszynska and Bujnicki employed the GRAMM [209]docking

program and two separate statistical potentials (QUASI-RNPbased a quasi-chemical

reference state and DARS-RNA based on the reference state fromdecoys) for scoring

[210].Setny and Zacharias employed the protein-docking program ATTRACT [211] and

a knowledge-based energy function employing a quasi-chemical approximation [212].

These studies demonstrated the usefulness of knowledge-based energy functions for

decoy discrimination and selection of near-native dockingdecoys. We also developed

a DFIRE-based statistical potential that increases true positive rates and decreases false
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Fig. 7.4: Comparison between the
predicted (red) and actual
(green) structure and
predicted (yellow) and actual
(blue) binding residues. The
RNA structure of actual is
cyan and that of the predicted
is orange. The target is
1m8yB and the template is
3k5qA.

positive rates in predicting RNA-binding proteins [34]. Protein-RNA docking, however,

is more challenging than protein-protein docking because RNA structures are more

flexible than protein structures. This is demonstrated by critical assessment of predicted

interaction (CAPRI, 2009). CAPRI, which typically assessed protein-protein docking

models, included a protein-RNA complex structure in a recentround [213].All docking

predictions failed for this protein-RNA complex target because of inaccurate model

RNA structure.

Another approach to predict protein-RNA complex structuresis to use known

protein-RNA complex structures as templates. SPOT-seq [36] and SPOT-struc [34] are

sequence and structure-based techniques for predicting protein-RNA binding complex

structures based on template-based structure prediction program SPARKS X and

structural alignment program TM-align [139], respectively. Both methods can provide

quite accurate prediction of binding residues and complex structures if a significantly

matching template is found. For example, SPOT-seq can locate matching templates

with strong predicted binding affinity for 114 out of 257 RBPs targets. One example

is shown in Fig. 8.3. In this figure the target protein is 1m8yB (human Puf protein,

Pumilio1), the SPOT-seq selected template is 3k5qA (Caenorhabditis elegans fem-3

binding factor 2). The sequence identity between these two proteins is 24.9%. The

advantage of SPOT-seq or SPOT-struc is their computationalefficiency that allows large

genome-scale prediction.
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7.3 Summary and Outlook

Constantly increasing number of protein-RNA complex structures makes it possible for

the development of various techniques for predicting RNA-binding proteins at different

levels of functional details. Sequence-based techniques using machine-learning

methods are ineffective in separating RNA-binding from non-RNA binding proteins,

DNA-binding proteins, in particular. Our result shows thata template-based technique

is the only viable approach for RNA-binding discrimination.On the other hand,

for a known RNA-binding protein, the best machine-learning techniques are often

more accurate in locating RNA-binding residues than a template-based approach.

This is true particularly for those proteins that are not predicted as RBPs by the

template-based approach. Only a few techniques have been developed to predict the

types of RNA interacting with a RBP. A template-based approach can make a reasonable

prediction based on the type of RNA in the matching template-RNA complex structure.

Similarly, a template-based approach is the only reliable tool available for predicting

protein-RNA complex structure. As more and more protein-RNA complex structures

deposited into protein databank, one can expect that a template-based approach will

be increasingly useful. An application of such an approach to human genome has

yielded more than 2000 novel RBPs and a recovery of 42.1% in known RBPs and

a recovery of 41.5% newly discovered 860 mRNA-binding proteins [17] [Zhao et

al. submitted]. The consistency of the recovery (or sensitivity) in two separate

datasets highlights the robustness of template-based tools for predicting truly novel

RNA-binding proteins. Further, the machine-learning basedand template-based

approaches are likely complementary each other. Combining these two approaches

will likely further improve the accuracy of RNA-binding function prediction.
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Chapter 8 Structure-based prediction of carbohydrate-binding proteins,

binding residues and complex structures by a template-based

approach

8.1 Introduction

Carbohydrates perform essential roles in cell processes in living organisms by

interacting with proteins through both non-covalent (carbohydrate-protein binding) and

covalent (glycosylation) interactions. Glycosylation ofproteins and lipids coats the

surfaces of all living cells and tissues with carbohydrates. The spatial patterns of

such carbohydrate coating change during cell development1and tumor progression and

metastasis [214,215]. Thus, recognition of cell-surface carbohydrates, one ofthe key

functions of carbohydrate-binding proteins (CBPs), is subject of intensive studies for

biomarker discovery and inhibitor design [214,216]. Abundant carbohydrates in human

cell surfaces are also exploited by carbohydrate-binding proteins in pathogens for cell

invasion and detection avoidance. As a result, CBPs in pathogens have been employed

as potential drug targets [217]. Thus, it is critically important to locate all CBPs and

elucidate their binding mechanisms.

Experimentally, glycan arrays have been developed for high-throughput searching

of novel CBPs and investigation of their binding specificity [218–220]. However, it

is challenging to construct a sizeable, diverse glycan array because of difficulty in

synthesis and isolation of carbohydrates. Here, we focus onan alternative approach:

prediction of CBPs and their binding residues by computational techniques.

Currently, predicting CBPs and their binding residues are treated as two separate

problems [221–225]. Someya et al [221] predicted carbohydrate-binding proteins by

combining protein sequences information with support vector machines (SVM). This

approach employed triple sequence patterns and frequencies of grouped amino acids as

features and has achieved 0.67 for Mathews correlation coefficient (leave-one-out cross

validation) based on a dataset of 345 CBPs and non-CBPs. This method is limited to
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CBP prediction. Most of the methods developed for predicting carbohydrate-binding

residues, on the other hand, assume that their structures are known. For example,

Shionyu-Mitsuyama et al. predicted binding residues by building empirical interactions

rules [222]. Tsai et al. utilized 3D probability density maps [224]. Others employed

machine-learning techniques based on binding propensity and solvent accessibility

[226] or selected geometric and chemical features [227]. These methods, however,

cannot distinguish CBPs from non-CBPs.

Here, we will introduce a single template-based method for prediction of

CBPs and carbohydrate-binding residues. This work is inspired by our highly

effective template-based technique named SPOT-Struc for structure-based prediction

of DNA-/RNA- binding proteins and their binding sites [32, 34]. In this

approach, the target structure is first structurally aligned to the proteins with known

protein-RNA/DNA complex structures. Significantly alignedstructures are then

employed for building model complex structures between target structure and template

RNA/DNA and for predicting binding affinities.

In this work, we will extend SPOT-Struc to CBPs. Such an extension is possible

because of the existence of a reasonable size of complex structures of protein and

carbohydrates in protein databank18 despite their low binding affinity and highly

flexible structures of carbohydrates. This complex structure dataset allows us to develop

the first distance-dependent knowledge-based energy function for protein-carbohydrate

interaction that is essential for the accuracy of SPOT-Struc for CBPs. A distance-scaled,

finite, ideal gas reference (DFIRE) state will be used as for proteins [33] and

protein-DNA/RNA interactions [32, 34]. This knowledge-based energy function is

then combined with a recently developed structure alignment method SPalign [42] for

predicting CBPs and binding residues. This method is tested on122 non-redundant

RBPs and 2880 non-RBPs and achieved the Mathews correlation coefficients of 0.61

and 0.58 for prediction of CBPs and carbohydrate-binding residues, respectively.

The sensitivity and precision of CBP prediction are 45% and 85%respectively. A
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similar-level sensitivity is achieved for APO and HOLO structures. Application of this

method to structural genomics targets revealed several novel CBPs.

8.2 Methods and Materials

8.2.1 Datasets

Template library of carbohydrate-binding proteins (T562). A template library was

built based on the PROCARB database that contains 604 protein-carbohydrate complex

structures [228]. We then selected only those proteins with more than 5 residues binding

with carbohydrates. Here, a residue is defined as a carbohydrate-binding residue if

it has one or more heavy atoms that are within 6.5 distance from any heavy atoms

of carbohydrates. We further divided selected proteins into domains according to

DDomain classifications. Both domains and their corresponding chains are included

in the final template library that has 562 CBPs. We have includedboth domains and

chains in the template library so as to improve the possibility of locating a suitable

template.

Positive Binding-domain Dataset (BD122). We built a positive database of

carbohydrate-binding domains for training and cross validation by firstly excluding the

chains in T562. We further remove the redundant proteins by using BLASTClust24

with a sequence identity cutoff of 30%. The final dataset contains 122 CBPs.

Negative (non-binding) dataset (NB3442). We built the negative dataset by querying

the PDB database and removing all PDB files containing carbohydrates. The protein

chains are splitted into domains by DDomain. All redundant domains are removed

by BLASTClust [134] with a sequence identity cutoff of 30%. One representative

protein was randomly selected from each cluster. The final dataset contains 3442 protein

domains.

APO45/HOLO45 dataset. To examine the effect of binding-induced change of protein

conformations on accuracy and sensitivity of CBP detection, we built a dataset with both

bound (HOLO) and unbound (APO) structures of CBPs. We located the APO structures

by selecting homologous sequences of proteins in BD122. All APO chains are
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divided into domains or by DDomain. Only HOLO and APO domainswith sequence

identity¿50% were selected. Here, the pair-wised sequenceidentity was calculated by

ALIGN0 program from FASTA2 package [136]. We found 45 APO-HOLO domain

pairs. The majority of the pairs (31 out of 45) have sequence identity more than 80%.

Structural genomics targets (SG2076). Our method is applied to 2076 structural

genomics targets that was obtained by us from previous studyon structure-based

prediction of DNA-binding proteins16. This dataset was obtained by querying

structural genomics targets in the protein databank. All structures were divided into

domains by the automatic domain parser DDOMAIN25. Redundancy was removed by

using BLASTClust [134] with a sequence identity cutoff of 30%.

8.2.2 DFIRE-based energy function for protein-carbohydrate interactions

We employed the same equation as the DFIRE-based interactionfor protein-RNA

interactions [34] as below
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, Nobs(i, j, r) is the

number of pairs of atomsi andj within the spherical shell at distancercut observed

in a given structure database,∆rcut is the bin width atrcut, the value ofα (1.61) was

determined by the best fit ofrα to the actual distance-dependent number of ideal-gas

points in finite protein-size spheres19 andβ is set to 0.33. We divided the atom types

into 174, which includes 167 protein and 7 carbohydrate atomtypes.

8.2.3 Prediction protocol

The protocol for CBP prediction is as follows. First, the target structure is aligned

against those templates with sequence identity ¡ 30% from the template library T562 by
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structure alignment tool SPalign [42]. SP-score is employed to measure the structural

similarity between template and query structures. If the structure similarity is higher

than a threshold, the model for the complex structure between the query protein and the

template carbohydrate is constructed by replacing the template protein structure with

the query structure in the template complex structure. The model complex structure

will be utilized to calculate the binding affinity by the DFIREenergy function. The

binding affinity is obtained by simplifying the predicted protein model with carbonα

and carbonβ. If the binding affinity is lower than a threshold, the query is predicted as

CBPs. If binding affinity does not pass the threshold (or structural similarity SP-Score

is lower than a threshold), the query is predicted as non-carbohydrate binding proteins.

These two thresholds are optimized by maximizing the Matthews correlation coefficient

(MCC) (see below).

8.3 Results

8.3.1 SPalign for CBP prediction

We first examine the ability of using SP-score from SPalign for CBP prediction.

SP-score is a structural-alignment score that is independent of the sizes of proteins in

comparison. SP-score ranges from 0 to 2. A higher SP-score indicates higher structural

similarity. A SP-score at about 0.5 indicates the same structural folds likely shared by

the two structures in comparison 21. Fig.8.1 compares the distributions of SP-scores

obtained by comparing template structures to the structures in BD122 (filled bars) to

those in NB2897 (open bars). The comparison is made after removing any templates

with sequence identify more than 30% to the positive query structure. The result shows

that only 6% non-binding targets from NB3442 have a SP-score of more than 0.6

with a template structure. By comparison, 25% of binding targets can find a template

with SP-score ¿0.6. It is clear that a structure-alignment program alone can provide a

reasonable prediction of CBPs. We found that SP-align can achieve the highest MCC

0.56 with sensitivity of 42% and precision of 78% for the SP-score threshold of 0.784.
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Fig. 8.1: Distributions of top SP-score
ranked templates by comparing
proteins in the positive BD122
(filled bars) and negative NB2987
(open bars) datasets to the
template structures (T562) after
excluding templates with more
than 30% sequence identity to the
query sequence from BD122.

Table 8.1: Performance of PSI-BLAST, SPalign, and SPOT-Stucfor DB122 and
NB2987 based on leave-homolog-out cross validation

Method Precision Sensitivity MCC
PSI-BLAST 90% 30% 0.51
SP-align 80% 42% 0.57
SP-align+Energy (SPOT-Struc) 88% 45% 0.62

8.3.2 Combining SP-align with DFIRE-based energy function

To further improve the prediction ability of SP-align, we combined SP-align with

binding affinity based on the extended DFIRE energy function,DCBP [Equation(1)].

Two thresholds, SP-score and binding affinity, were optimized by using the

leave-one-out scheme on BD122/NB3442. The grid for SP-score is 0.01. For a given

SP-score, we locate the binding affinity that yields the highest MCC value. The final

MCC value is 0.61 with 0.72 and -0.30 as the thresholds for SP-score and energy

thresholds, respectively. The corresponding sensitivityand precision are 45% and 84%,

respectively. This result indicates that combining SP-align and binding affinity can

significantly improve over SP-align (9% for the MCC value, 7% for sensitivity, and 6%

for precision) as shown in Table8.1.

For a baseline comparison, we also predict CBPs by using PSIBLAST24 a

commonly used tool for sequence-to-profile homolog search.We made four iterations

of search by PSIBLAST utilizing the NCBI non-redundant proteinsequence library.

It predicts a target as CBP if the most significant template fromT546 has an E-value
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Fig. 8.2: Sensitivity versus false positive
rate, given by PSI-BLAST,
SPalign and SPOT-Struc (SPalign
+ Energy).

smaller than a threshold. As with SPalign-based techniques, the templates are removed

if their sequence identities with a target are higher than 30%. The highest MCC value of

PSIBLAST is 0.51 with precision of 92%, sensitivity of 30%. Asshown in Table8.1,

the MCC value is 10% lower than SP-align and 20% lower than SP-align combining

with energy. The combination of SP-align with energy is the most effective method in

detecting CBPs. The Receiver operating characteristic (ROC) curves for PSI-BLAST,

SPalign and SPalign+ Energy (SPOT-Struc) are shown in Fig.8.2.

8.3.3 The effect of bound/unbound structures on CBP prediction (APO/HOLO

dataset)

We examine the effect of bound/unbound structures on CBP prediction based on the

leave-homolog-out cross validation. For a target protein,if its SP-score and binding

energy value satisfies the above-optimized thresholds, it will be predicted as a CBP. The

numbers of positive predictions for HOLO and APO sets are 21 and 19, respectively,

and the corresponding sensitivities are 42% (19/45) and 36%(16/45), respectively.

Not all correctly predicted targets in the APO set overlap with those in the HOLO

set. For 13 overlapped targets, the conformational change due to binding is small

(SPscore ¿0.74). Six correctly predicted targets in HOLO are missed in APO. Two

of the six targets are not predicted as CBPs because their suitable templates were

excluded due to template-target sequence identities are greater than 30%. The remained

four targets have significant structural changes (SP-scores¡0.2) from the corresponding
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Fig. 8.3: Comparison of predicted and
native binding residues for target
2j1uA. The red and green colors
represent predicted and native
structures, respectively. The
magnate and cyan denote the
template and native carbohydrate
structures, respectively. The
predicted and native binding
residues are colored in yellow and
blue, respectively.

HOLO structures. Interestingly, 3 APO targets are correctly predicted as CBPs but not

the corresponding HOLO targets. These 3 APO targets have significant changes in their

structures from their HOLO structures (SPscores ¡0.36). These large structural changes

made them close to some of the templates that do not match to the HOLO structures.

These results suggest that using APO structures does not lead to a large reduction of the

sensitivity of our method.

8.3.4 Binding sites prediction

Predicted structures from SPOT-Struc can be employed to predict binding residues. A

residue is defined as binding site if any heavy atom for that residue is ¡6.5 away from

any heavy atom of carbohydrate. All other residues are defined as non-binding residues,

regardless if they are on the surface or in the protein core. The predicted binding

sites are evaluated against actual binding sites by using the MCC value, sensitivity and

precision. For 54 correctly predicted CBPs from DB122, an average MCC value of 0.58

with standard deviation 0.29 was achieved with a sensitivity of 66% and a precision of

62%.

As an example, Figure8.3 compares predicted CBP binding sites with native

binding sites for target 2j1uA. This is a Fucolectin-related protein in Streptococcus

pneumoniae serotype 4. For this target, the prediction achieved an MCC of 0.90

although the sequence identity between this target and template 2j7mA is only 17.3%.
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Table 8.2: Structural genome targets predicted as CBPs
Target Template SP-score Energy Function
1t9fA 1v6vA2 0.788 -2.2 CBPa

2jz4A1 1vbpA 0.744 -1.8 CBP
1vdwA 2qvrA 0.883 -1.7 CBP
1y89B 2ri1A 0.952 -1.7 CBP
3hnmA 2j1tA 0.758 -5.7 CBP
1mtpA 8apiA 1.207 -2.0 NBb

3e5zA 1ms1A1 0.734 -2.4 CBP
3ejnA 3ck7B 0.822 -3.2 NB
1ny1A 1w1a1 1.368 -3.0 CBP
3eypA2 2j1uA 0.828 -2.2 CBP
3ebvA 2dt1A 0.842 -5.2 CBP
3cbwA 2cipA 0.900 -9.1 CBP
1oq1A 2d6oX 0.726 -2.1 UKc

3gglA 2bzdA3 0.942 -1.7 CBP
3ibsA 2vdkB 0.788 -0.5 NB
1xpwA 2v72A 0.881 0.9 CBP
1p1mA 2vhlA 0.759 -0.3 NB
1ni9A 2r8tA 1.219 1.0 CBP
1ujtA 2q7nA5 0.724 -1.9 CBP
1zoxA 1mfbH1 0.818 -1.3 NB
2p4oA 1ms1A1 0.733 -1.0 CBP

a Having putative function related to carbohydrate-binding. b Function unknown.c

Annotated with other functions.

8.3.5 Application to structural genomics targets

This method was further applied to 2076 structural genomicsdomains. The trained

thresholds (0.72 for SP-score and -0.30 for the binding energy) were employed. Twenty

one targets from 2076 domains were predicted as CBPs. Among them, 15 out of 21

(71%) are annotated as putative CBPs by NCBI annotations [The NCBI BioSystems

database]. One target is with unknown functions (1oq1A). The remained five targets

(1mtpA, 3ejnA, 3ibsA, 1p1mA and 1zoxA ) are annotated with other functions .

Among these proteins, 2 proteins have the molecular function related with binding

with others as recorded by Uniprot database. Protein 1mtpA (Tfu 1933) is a protein

binding with peptide and annotated as serine-type endopeptidase inhibitor . Protein

1p1mA (MTA/SAH deaminase ) is annotated as metal-binding protein. Table8.2 lists

21 predicted CBPs.

118



Chapter 9 Discriminating between disease-causing and neutral

non-frameshifting micro-INDELs by SVM and integration of

sequence- and structure-based features

Abstract

Micro-INDELs (insertions or deletions of≤ 20 bp) constitute the second most

frequent class of human gene mutation after single nucleotide variants. Despite the

relative abundance of non-frameshifting (NFS) INDELs, their damaging effect on

protein structure and function has gone largely unstudied.We have developed such

a technique (DDIG-in; Detecting DIsease-causing Genetic variations due to INDELs)

by comparing the properties of disease-causing NFS-INDELsfrom the Human Gene

Mutation Database with putatively neutral NFS-INDELs fromthe 1,000 Genomes

Project. The final SVM model yielded a Mathews correlation coefficient of 0.68 for

INDEL discrimination and is robust against annotation errors.

9.1 Introduction

The largest class of human gene mutation is the single nucleotide variant (SNV)

which comprises 67% of known pathological mutations [229] .This is followed by

microinsertions and microdeletions (micro-INDELs of≤ 20 bp) which comprise 22%

of known pathological mutations [230] . In addition, with the broad implementation

of next generation sequencing (NGS) technology in genetic studies, several million

polymorphic micro-INDELs have been identified and analyzedin the human genome

[231–234].Many more genetic variants, including micro-INDELs, arecurrently being

discovered at an unprecedented rate. Obviously, it is impractical to examine the

impact of each variant on biological function individually. Hence, there is a critical

need for effective bioinformatics tools that are capable ofdistinguishing potentially

disease-causing variants from those that are functionallyneutral.
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Most available tools for prioritizing genetic variants arehowever limited to

non-synonymous SNVs. Examples are SIFT [235] , POLYPHEN [236] , and

MutPred [237] (for recent reviews, see [238–241]). These tools are not applicable

to INDELs because INDELs change the number of nucleotides inthe gene and

hence are expected to have a much greater impact on molecularfunction than

single nucleotide substitutions. There are two main types of INDEL within exons:

frameshifting (FS) and non-frameshifting (NFS). NFS-INDELs insert/delete multiples

of three nucleotides leading to the addition or removal of specific amino-acid residues

at the INDEL site. FS-INDELs, on the other hand, insert/delete a discrete number

of nucleotides that are indivisible by three and therefore alter the entire reading

frame resulting in either a completely different amino-acid sequence C-terminal to the

INDEL site, or premature termination of translation. Two bioinformatics methods were

recently designed to discriminate between functional and non-functional FS-INDELs

[242, 243] and nonsense mutations (premature stop codons) [242]. However, to our

knowledge, there is no technique available that is capable of analyzing NFS-INDELs.

Methods for interrogating FS-INDELs would not be applicable to NFS-INDELs

because FS-INDELs modify the entire amino-acid sequence C-terminal to the INDEL

site (unless a second INDEL were to exist), whereas NFS-INDELs simply alter

the amino-acid sequence at the INDEL site. Such a technique for NFS-INDEL

prioritization is urgently required because NFS-INDELs constitute a significant fraction

of all exonic INDELs (theoretically, it is about one third).In practice, we found that

only 26% of 9,327 exonic micro-INDELs are NFS INDELs in the 1,000 Genomes

Project data [244].

In this paper, we have developed a method that we have termed DDIG-in

(Detecting DIsease-causing Genetic variants due to microinsertions/microdeletions)

to prioritize NFS-INDELs by comparing disease-causing INDELs from the Human

Gene Mutation Database (HGMD) [229] with putatively neutral NFS-INDELs from

the 1,000 Genomes Project [244] , respectively. We developed and examined a

total of 58 sequence- and structure-based features of INDELsites and found that
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the feature based on predicted unstructured regions by disorder predictor SPINE-D

[245] was the most discriminating one. This feature can, on its own, achieve a

value of 0.56 for the Mathews Correlation Coefficient (MCC), and 0.82 for the Area

Under the Receiver-Operating Characteristic (ROC) Curve (AUC).We developed

two separate Support Vector Machines (SVM) methods for NFS-microdeletions and

NFS-microinsertions that were 10-fold cross-validated and independently tested on

microinsertions and microdeletions, respectively. A similar level of accuracy between

independent testing and ten-fold cross-validation indicates not only the robustness of

our training procedure but also a similar deleterious impact of NFS microdeletions

and microinsertions. Of the 58 features tested, nine features were selected by

maximizing the discriminatory roles for detecting disease-causing NFS microinsertions

and microdeletions in a non-redundant dataset of micro-INDELs. Our DDIG-in method

received further confirmation from the observation that NFS-INDEL variants with

higher predicted disease-causing probabilities were characterized by lower average

minor allele frequencies in the general population (based on data from the 1,000

Genomes Project). DDIG-in, is available at http://sparks-lab.org/ddig.

9.2 Methods

We tested many features for their potential roles in INDEL discrimination. These

features are summarized in Table9.1and are described in detail below.

Nucleotide sequence-level features. We examined the following nucleotide

sequence-level features as potential discriminators between disease-causing and

neutral NFS-INDELs: the distances from the INDEL site to thenearest upstream

and downstream splice sites and the DNA conservation score derived from

phyloP(phylogenetic p-values) [246]. We examined the distances from nearest

splice sites because mutations near splice sites have the potential to give rise to

alternative splicing patterns [247].All DNA conservation scores were downloaded from

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phyloP46way/, based on multiple

alignments of 45 vertebrate genomes to the human genome. To calculate a DNA
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Table 9.1: List of all features considered.
Features Description

Nucleotide Level
Microdeletion/
microinsertion
positions (2)

Distances to nearest 5’ and 3’ splicing positions

DNA conservation
scores (3)

Maximum, minimum, average

Protein Level
Evolution feature (30) Maximum, minimum, average values (7transition

probabilities between match(M), microdeletion(D) and
microinsertion(I) (MM, MI, MD, IM, II, DM, DD), 3 effective
numbers of match/microinsertion/microdeletion )

Length (4) Protein length, Microdeletion/microinsertionlength, Distances
to terminals

δS (1) the INDEL-induced change to the HMM match score
Disorder score (3) Maximum, minimum, Average
Secondary structure
(12)

Maximum, minimum, Average probability (C, H, E), Predicted
Secondary structure (C, H, E)

Accessible surface area
(3)

Maximum, minimum, average

conservation score for a microdeletion, we considered all the deleted bases (ndel)

plus a fixed number of bases before and after the deleted bases(the half-window

size,nwindow). We obtained the average, minimum and maximum DNA conservation

scores based on phylogenetic p-values over the specified bases around the deleted bases

(i.e., ndel+2nwindow). For microinsertions, we considered the two bases flankingthe

microinsertion plus a fixed number of additional neighboring upstream and downstream

bases (i.e., 2+2nwindow). The maximum, minimum and average conservation scores for

2+2nwindow bases were also obtained. These five nucleotide sequence-level features

(2 distances+31 DNA conservation scores) were studied hereto assess their utility in

INDEL classification.

Protein sequence-level features.We obtained features at the amino-acid sequence

level using a program called HHBlits that derives multiple protein sequence alignments

based on profiles generated from hidden Markov chain models (HMM) [ 108]

(downloaded from http://toolkit.tuebingen.mpg.de/hhblits/).This program compares

two sequences at the HMM profile level and searches for homologous sequences
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from the UniProt sequence database. It is a more sensitive technique than

the sequence-to-profile homolog search tool PSI-Blast [134] commonly used in

classifications of non-synonymous SNVs (e.g. SIFT [235] ) because HHBlits employs a

position-dependent gap penalty and calculates transitionprobabilities not only between

matches of two residues (i.e. two residues from two sequences are aligned) but also

between other states (match to microdeletion, match to microinsertion, microdeletion

to match, microinsertion to match, microinsertion to microinsertion and microdeletion

to microdeletion). That is, there are a total of seven position-dependent transition

probabilities. In addition, for each position, we can obtain three effective numbers

of homologous sequences (neff) aligned to microinsertion,to microdeletion and to

amino-acid residues, irrespective of residue type. The maximum, minimum and

average of all these amino-acid residue level properties [3×(7+3)=30 features] were

obtained for a specified region. For the microdeletions, this region included deleted

residues plus several residues before and after the deletedresidues (ndel+2nwindow).

For microinsertions, this region comprised the two nearestneighboring residues

flanking the inserted residues plus a fixed number of residuesbefore and after these

two residues (2+2nwindow). In addition, we calculated a protein-level feature: the

change to the HMM-HMM alignment score by the whole protein sequence before

and after the microdeletion or microinsertion. We also examined four features of

microinsertion/microdeletion length, protein length anddistances to the protein amino

and carboxy terminal ends. A total of 35 features (30+1+4) were generated from protein

sequences.

Protein structure-level features. The first protein structure-level feature was based

on amino acid sequence-based prediction of structured and unstructured regions by

a neural-network-based disorder predictor, SPINE-D [245]. We employed SPINE-D

because it is among the most accurate methods based on benchmarks [245] according

to the 9th Meeting for Critical Assessment of Structure Prediction Techniques (CASP

9, 2010) [245, 248]. We examined the maximum, minimum and average values of

disorder probabilities over the specified region describedabove (ndel+2nwindow for
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microdeletion, 2+2nwindow for microinsertion). In addition, we obtained predicted

secondary structures, secondary structure probability, and solvent accessible surface

area for the same specified region from SPINE-X [249] . SPINE-X has achieved 82%

accuracy in secondary structure prediction [249] and 0.74 for the correlation coefficient

between predicted and measured solvent accessible surfacearea (ASA) [50] based on

large-scale benchmark tests. As with the disorder feature,we obtained the maximum,

minimum and average values of predicted secondary probabilities in three states and

predicted real-value solvent accessibility over the specified region for microdeletions

or microinsertions. We also studied the fractions of three secondary structure types

over the same specified region. A total of 18 structure-basedfeatures (31 disorder,

3 fractions of secondary structure types, 33 secondary structure probability and

31 ASA) were generated for studies. Dataset of Positive INDELs. The positive

(disease-causing) dataset was obtained from the HGMD (HGMDProfessional v.

2012.2) [229]. Initially, a total of 25,384 INDELs were identified after mapped

to CCDS (20110907 version). After excluding frameshift (FS) INDELs and those

INDELs that were located in an intron or at a stop codon, we obtained a dataset of

2,479 exonic disease-causing NFS-INDELs in 743 protein-coding genes. Of these,

1,998 and 481 were microdeletions and microinsertions, respectively. To examine the

possible effect of homologous sequences on training our bioinformatics method, we

also constructed a non-redundant dataset lacking homologous sequences that had ¿35%

sequence identity between any pair of sequences. This was accomplished by pairwise

sequence alignment and clustering by BlastClust [134] and only one representative

sequence was chosen from each cluster. A 35% protein sequence identity cutoff

was employed because this cutoff lies at the boundary that distinguishes close

homologs from remote homologs [250,251] . This removal of homologous sequences

yielded 1,762 microdeletions and 445 microinsertions from680 protein-coding

genes. We also examined the overlap between microinsertionand microdeletion

datasets. We considered that a microinsertion and a microdeletion were located at

the same site if at least one of the two nearest neighboring residues flanking the
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inserted residues in the microinsertion contributed to thedeleted residues in the

microdeletion. This definition yielded 21 of 743 proteins; they were CCDS13330.1,

CCDS8539.1, CCDS13989.1, CCDS5313.1, CCDS2145.1, CCDS30981.1,

CCDS747.1, CCDS4306.1, CCDS13858.1, CCDS5773.1, CCDS6392.1, CCDS1390.1,

CCDS11892.1, CCDS14083.1, CCDS10458.1, CCDS12198.1, CCDS2463.1,

CCDS11453.1, CCDS11127.1, CCDS1071.1, and CCDS45080.1. The minimal

overlap suggested that the microinsertion and microdeletion sets could to all intents

and purposes be treated as independent test datasets against each other.

Dataset of Putatively Neutral INDELs. The putatively neutral dataset was

retrieved from the micro-INDEL variants identified during the 1000 Genomes

Project (http://www.1000genomes.org/, 20101123 release), in which apparently healthy

individuals from five major populations were sequenced [252] . As with the HGMD

data, the INDELs were located using hg19 as the reference genome. From 9,327

exonic INDELS (excluding more than 3 million intronic INDELs), we identified

a total of 2,413 NFS-INDELs of which 1,944 were microdeletions and 469 were

microinsertions. These 2,413 NFS-INDELs were derived from1,929 protein-coding

genes after excluding FS-INDELs and those INDELs that were located in an intron or at

a stop codon. Removal of homologous sequences (based on a protein sequence identity

cut-off of 35%), yielded 1,795 microdeletions and 446 microinsertions (a total of 2241

neutral micro-INDELs) from 640 protein-coding genes. Unlike the disease-causing

NFS-INDEL dataset, there was no overlap between the positions of the microdeletions

and those of the microinsertions in this dataset. Minor allele frequencies were retrieved

for all 2,241 NFS-INDELs from the 1000 Genomes Project. Both datasets (with and

without homologous sequences) were employed to train and test our models to examine

the effect of homologous sequences. It should be noted however that we cannot wholly

exclude the possibility that a small subset of this putatively neutral dataset could still be

of functional importance (more in the Discussion section).
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9.2.1 Structural and Sequence Features

We tested many features for their potential roles in INDEL discrimination. These

features are summarized in Table9.1and are described in detail below.

Nucleotide sequence-level features. We examined the following nucleotide

sequence-level features as potential discriminators between disease-causing and

neutral NFS-INDELs: the distances from the INDEL site to thenearest upstream

and downstream splice sites and the DNA conservation score derived from

phyloP(phylogenetic p-values). We examined the distancesfrom nearest splice sites

because mutations near splice sites have the potential to give rise to alternative

splicing patterns [247] . All DNA conservation scores were downloaded from

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phyloP46way/, based on multiple

alignments of 45 vertebrate genomes to the human genome. To calculate a DNA

conservation score for a microdeletion, we considered all the deleted bases (ndel)

plus a fixed number of bases before and after the deleted bases(the half-window

size,nwindow). We obtained the average, minimum and maximum DNA conservation

scores based on phylogenetic p-values over the specified bases around the deleted bases

(i.e., ndel+2nwindow). For microinsertions, we considered the two bases flankingthe

microinsertion plus a fixed number of additional neighboring upstream and downstream

bases (i.e., 2+2nwindow). The maximum, minimum and average conservation scores for

2+2nwindow bases were also obtained. These five nucleotide sequence-level features

(2 distances+31 DNA conservation scores) were studied hereto assess their utility in

INDEL classification.

Protein sequence-level features.We obtained features at the amino-acid sequence

level using a program called HHBlits that derives multiple protein sequence alignments

based on profiles generated from hidden Markov chain models (HMM) [ 108]

(downloaded from http://toolkit.tuebingen.mpg.de/hhblits/).This program compares

two sequences at the HMM profile level and searches for homologous sequences

from the UniProt sequence database. It is a more sensitive technique than

the sequence-to-profile homolog search tool PSI-Blast [134] commonly used in
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classifications of non-synonymous SNVs (e.g. SIFT [235] ) because HHBlits employs a

position-dependent gap penalty and calculates transitionprobabilities not only between

matches of two residues (i.e. two residues from two sequences are aligned) but also

between other states (match to microdeletion, match to microinsertion, microdeletion

to match, microinsertion to match, microinsertion to microinsertion and microdeletion

to microdeletion). That is, there are a total of seven position-dependent transition

probabilities. In addition, for each position, we can obtain three effective numbers

of homologous sequences (neff) aligned to microinsertion,to microdeletion and to

amino-acid residues, irrespective of residue type. The maximum, minimum and

average of all these amino-acid residue level properties [3×(7+3)=30 features] were

obtained for a specified region. For the microdeletions, this region included deleted

residues plus several residues before and after the deletedresidues (ndel+2nwindow).

For microinsertions, this region comprised the two nearestneighboring residues

flanking the inserted residues plus a fixed number of residuesbefore and after these

two residues (2+2nwindow). In addition, we calculated a protein-level feature: the

change to the HMM-HMM alignment score by the whole protein sequence before

and after the microdeletion or microinsertion. We also examined four features of

microinsertion/microdeletion length, protein length anddistances to the protein amino

and carboxy terminal ends. A total of 35 features (30+1+4) were generated from protein

sequences.

Protein structure-level features. The first protein structure-level feature was based

on amino acid sequence-based prediction of structured and unstructured regions by

a neural-network-based disorder predictor, SPINE-D [245] . We employed SPINE-D

because it is among the most accurate methods based on benchmarks [245] according

to the 9th Meeting for Critical Assessment of Structure Prediction Techniques (CASP

9, 2010) [245, 248] . We examined the maximum, minimum and average values of

disorder probabilities over the specified region describedabove (ndel+2nwindow for

microdeletion, 2+2nwindow for microinsertion). In addition, we obtained predicted

secondary structures, secondary structure probability, and solvent accessible surface
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area for the same specified region from SPINE-X [249] . SPINE-X has achieved 82%

accuracy in secondary structure prediction [249] and 0.74 for the correlation coefficient

between predicted and measured solvent accessible surfacearea (ASA) [50] based on

large-scale benchmark tests. As with the disorder feature,we obtained the maximum,

minimum and average values of predicted secondary probabilities in three states and

predicted real-value solvent accessibility over the specified region for microdeletions

or microinsertions. We also studied the fractions of three secondary structure types

over the same specified region. A total of 18 structure-basedfeatures (31 disorder, 3

fractions of secondary structure types, 33 secondary structure probability and 31 ASA)

were generated for studies.

Parameter Optimization for SVM. We employed LIBSVM [LIBSVM: a library for

support vector machines (SVM) [http://www.csie.ntu.edu.tw/ cjlin/libsvm/] to combine

the features listed above for NFS-INDEL classification. There are two parameters for

SVM: a nonlinear kernel of radial basis function with a gammaparameter and the cost

parameter (C) that allows a soft region for misclassification. In addition, we employed

a half-window size (nwindow) to include several amino-acid residues before and after the

microdeletion/microinsertion site as defined above. For example, a half-window size of

0 would contain all residues deleted in a microdeletion and two residues flanking the

inserted residues for a microinsertion. To reduce the number of parameters, a uniform

widow size was applied to all features requiring a window size. A simple grid search

was done with a grid of 2 ranging from -5 to 15 for logC and ranging -15 to 3 for

log(gamma) and a window size ranging from 0 to 7. That is, we searched for the

parameters that yielded the highest Mathews correlation coefficient (MCC) for 10-fold

cross-validations (9 fold for training and 1 fold for testing) while employing all features.

We also examined the dependence of MCC values on C, gamma, andnwindow and found

that MCC values change little across a wide range of C, gamma andnwindow values (See

Discussion). This served to confirm the robustness of the parameters we found.

128



9.2.2 Training and Cross-validation

The training set (positive and putatively neutral datasets) was randomly divided into

10 parts, nine of which were used for training, the rest for testing. This process was

repeated 10 times (ten-fold cross-validation). We performed 10-fold cross-validation on

SVM models for microdeletions or microinsertions only, as well as for the combined

set of microdeletions and microinsertions. Microinsertion and microdeletion datasets

were also used as independent test sets against each other inorder to evaluate the overall

robustness of the classification technique employed. In other words, the methods trained

with the microinsertion set never saw the microdeletion dataset and vice versa.

9.2.3 Feature Selections

To identify the most informative subset of features, a previously described greedy

feature selection algorithm for SNV classification [253] was employed. This iterative

greedy algorithm starts with the feature shown to have the highest discriminatory power

(disease versus neutral) based on the MCC value. The second feature was then selected

on the basis that the combination of the first and the second features yielded the highest

MCC value among all combinations between the first and other features. Similarly,

the third feature was added to the first two if the addition of the third feature further

improved MCC and the improvement was the largest obtained by comparison with

the other remaining features. The iteration of adding an additional feature from the

remaining features was halted if the MCC value failed to increase. Here, the MCC

value was derived from the 10-fold cross validation.

9.3 Results

9.3.1 Single feature performance

We first examined the ability of a single feature to discriminate between disease-causing

and neutral NFS-INDELs. Table9.2 compares the top five performing features

for microdeletions and microinsertions, separately, based on a half-window size
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Table 9.2: Top five performing features for microdeletion and microinsertion
discrimination.

Features MCCa AUCb Precision Recall

Deletion
Disorder
(Min, Ave, Max)

0.558,0.557,0.551 0.824,0.825,0.818 74%,74%,73% 85%, 85%, 84%

ASAc

(Min, Ave, Max)
0.542,0.47,0.302 0.81,0.781,0.659 73%, 71%, 68% 88%, 81%, 57%

DNA conservation
(Max, Ave, Min)

0.468, 0.367, 0.144 0.781, 0.742, 0,561 68%, 72%, 66% 79%, 71%, 23%

Neffd

(Min, Ave, Max)
0.449,0.439,0.43 0.735,0.749,0.729 68%, 66%, 67% 85%,87%, 85%

Probability of sheet
(Max, Min Ave)

0.32, 0.305, 0.284 0.678,0.658, 0.632 69%, 69%,64% 60%, 53%,51%

Insertion
Disorder
(Min, Max, Ave )

0.556,0.546,0.545 0.813,0.816,0.80 78%, 80%, 79% 75%,74%, 75%

ASA
(Min, Ave, Max)

0.501,0.454, 0.317 0.80,0.78,0.670 71%, 78%,71% 85%, 65%,52%

Neff
(Min, Ave, Max)

0.467,0.455,0.438 0.751,0.747,0.742 68%, 68%, 67% 86%, 85%, 84%

DNA conservation
(Max, Ave, Min )

0.453,0.422, 0.234 0.758,0.752,0.597 72%, 74%, 76% 75%, 65%,27%

Transition
probability of
microinsertion to
match (Min)

0.372 0.708 72% 62%

Note: Max, min, and ave are arranged in the order of MCC values.aMCC: Mathews correlation
coefficient. bAUC: area under the curve.cASA, solvent accessible surface area.dNeff: the
number of effective homologous sequences aligned to residues, irrespective of residue type.
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of 2 (nwindow=2). Similar results were obtained with different window sizes

(see Discussion). The results indicated that the top two performing features for

microinsertions and microdeletions were both the same (disorder and solvent accessible

surface area). This was followed by DNA conservation or effective number of

homologous sequences aligned to residues instead of gaps. Both features represent

evolutionary conservation scores but at the nucleotide andamino-acid residue levels,

respectively. The effective number of homologous sequences aligned to amino-acid

residues can be regarded as the conservation of amino-acid sequence position (not

aligned to microdeletion or microinsertion regions). The 5th most discriminative

feature was the length of microdeletion for microdeletionsand transition probability

for microinsertions. Inspection of Table9.2 reveals that a single disorder feature alone

can achieve an MCC value of 0.56 and an AUC of 0.82. At this MCC value, it has

74% precision and 85% recall (or sensitivity). Fig.9.1 depicts the distributions

of DNA conservation score, disorder probability, and ASA for the disease-causing

and putatively neutral microdeletions (Fig.9.1A) and microinsertions (Fig.9.1B),

respectively. It is clear that the disease-causing NFS-INDELs occur more frequently

within regions characterized by a greater degree of evolutionary conservation at the

nucleotide level, lower disorder probability (structuralregions), and lower ASA (buried

core regions). The results summarized in Table9.2and Fig. 9.1support the view that

disruption of protein structure (and hence protein function) is the single most important

reason why the NFS-INDELs are deleterious from the various features examined.

Similar top-ranked features for microdeletions and microinsertions suggest that a single

predictive method may be developed for microinsertions andmicrodeletions combined.

9.3.2 SVM for Microdeletions only

To combine different features to improve INDEL discrimination, we first employed

support vector machines for the microdeletions. The microdeletion database included

1,998 disease-causing and 1,944 neutral NFS-INDELs. When all 58 features (listed

131



Table 9.3: List of selected features for different trainingsets
Deletions Insertions INDELs Non-redundant

INDELs
Disorder (min) Disorder (min) Disorder (min) Disorder (min)
DNA conservation
(max)

DNA conservation
(max)

DNA conservation
(max)

DNA conservation
(max)

Deletion length P(m-i)e (min) δSd δSd

ASAa (min) δSid Neffc (ave) Neffc (min)
P(m-d)b (ave) P(m-i)e (ave) Distance to protein

downstream
ASAa (ave)

Neffc (min) Disorder (ave) Distance to the
nearest splicing
site (upstream)

INDEL length

Distance to the
nearest splicing
site (downstream)

Helical probability
(max)

ASAa (max) ASAa (max)

ASAa (max) P(m-m)f (ave) Neffg (min) P(m-m)f (max)
δSd DNA conservation

(ave)
ASA (ave)

aASA, solvent accessible surface area.bP(m-d), match-to-deletion transition
probability. cNeff: the number of effective homologous sequences alignedto residues.
dδS, INDEL-induced change to alignment score.eP(m-i), match-to-insertion transition
probability. fP(m-m), match-to-match transition probability.gNeff-del: the number of
effective homologous sequences aligned to deletion.
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Fig. 9.1: Distributions of the average DNA conservation score from phyloP
(phylogenetic p-values) (Left), the average solvent Accessible Surface
Area (ASA, Middle), and the average disorder probability (Right) of
disease-causing (Red) and neutral (Blue) INDELs [microdeletions (top panel)
and microinsertions (bottom panel)].

in Methods) were employed, LIBSVM achieved an MCC value of 0.682, an accuracy

of 84% and an AUC of 0.90 by ten-fold cross-validation. To avoid overtraining, and

in order to remove redundant features, we utilized a greedy feature selection method

(see Methods) and selected 10 features as shown in Table9.3 . They were minimum

disorder, maximum DNA conservation, microdeletion length, minimum ASA, average

HHBlits match-to-microdeletion transition probability, the minimum effective number

of aligned sequence to amino-acids, the distance to the nearest downstream splice site,

maximum ASA, INDEL-induced change to matching score, and average ASA. The

MCC and AUC values for this reduced feature set were 0.675 and 0.90, respectively.

The precision and recall rates were 81% and 89%, respectively. The ROC curve from

the ten-fold cross-validated result of the 10-feature model was compared to the results

obtained from single features in Figure9.2 (top panel). We tested the above SVM

models on the microinsertion dataset. We were able to treat the microinsertion dataset

as a quasi-independent test set because only 21 proteins (from 743 proteins) harbored
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Fig. 9.2: The ROC curves for the
microdeletion (Top) and
microinsertion (Bottom)
sets, respectively, by ten-fold
cross-validation on the set (black),
ten-fold cross-validation on both
insertions and deletions (Red),
independent test by training
on the microinsertions (top) or
microdeletions (bottom) (Blue),
by disorder feature only (Orange)
and by DNA conservation score
only (Purple) as labeled.

microinsertions and microdeletions at the same location. The full 58-feature model

yielded an MCC value of 0.59, an accuracy of 74%, a precision of82%, a recall of

76%, and an AUC of 0.84. By comparison, the above 10-feature model yielded an

MCC value of 0.654, an accuracy of 83%, a precision of 82%, a recall of 85%, and

an AUC of 0.86. This result is indicative of the same highly discriminating power of

the microdeletion-trained model for microinsertions and highlights the importance of

feature selection to avoid overtraining.

9.3.3 SVM for Microinsertions only

In a similar vein, we applied SVM to perform ten-fold cross-validation on the

microinsertion set and employed the greedy feature selection to remove redundant

features and avoid overtraining. This yielded a total of 8 best performing features listed

in Table 9.3. Three features (the minimum disorder probability, the DNAconservation,

and INDEL-induced change to HMM match score) were the same asthose in the
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10-feature model for microdeletions. This 8-feature modelachieved an MCC of 0.71,

an accuracy of 86%, a precision of 85%, a recall of 86% and an AUC of 0.88. This

may be compared to 0.654 for MCC, 83% for accuracy, 82% for precision, 85% for

recall and 0.86 for AUC, the independent test result for the 10-feature model trained

on the microdeletion dataset. The ten-fold cross-validation is more accurate than the

independent test, in all probability due to the smaller sizeof the microinsertion dataset

(only 481 and 446 disease-causing and putatively neutral microinsertions available for

this analysis). Application of this 8-feature model to the microdeletion dataset as an

independent test set yielded an MCC of 0.64, an accuracy of 82%, a precision of

78%, a recall of 89%, and an AUC of 0.89. This result was comparable to 0.675

for MCC, 84% for accuracy, 81% for precision, 89% for recall and0.90 for AUC

based on the10-fold cross-validation with 90% microdeletions as the training set for

the 10-feature model. The ROC curve for microinsertions given by the 8-feature

model (ten-fold cross-validation) is compared to the ROC curves from single features

of disorder and DNA conservation and the independent test result from the 10-feature

model trained on microdeletions in Fig.9.2(bottom panel).

9.3.4 SVM for both Microinsertions and Microdeletions

The high discriminatory power of the microdeletion-trained model for microinsertions

(and vice versa) suggested that it should be possible to treat microinsertions and

microdeletions as a single dataset. The same feature selection procedure yielded a

total of 8 best-performing features for combined microinsertions and microdeletions

as shown in Table9.3. This set of features yielded 0.670 for MCC, 83% for accuracy

and 0.89 for AUC. When we examined microdeletions and microinsertions separately,

the results were 0.671 for the MCC, 84% for accuracy, and 0.89 for AUC in the case

of microdeletions, 0.663 for the MCC, 83% for accuracy, and 0.88 for AUC in the

case of microinsertions. The ROC curves given by the SVM model trained by both

microinsertions and microdeletions yielded similarly accurate ROC curves given by
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independent tests for microdeletions or microinsertions,as shown in Fig. 9.2. This

further confirms the robustness of the SVM model.

9.3.5 Effect of Homologous Sequences

The above results are based on datasets which had not had any homologous sequences

removed. If a method is trained on one sequence and tested on ahighly homologous

sequence, the resulting accuracy estimate of the method maybe inflated because of

the similarity of the two sequences. The presence of homologous sequences may also

bias training toward a particular type of protein. To explore such a possible effect, we

reconstructed the SVM model based on the non-redundant set of NFS-INDELs (2,207

disease-causing and 2,241 neutral) in which all protein sequences exhibited≤ 35%

sequence identity between each other (see Methods). For this non-redundant set, the

greedy-feature selection yielded 9 best-performing features as shown in Table9.3and

the final model with a ten-fold cross-validated MCC value of 0.684, accuracy of 84%

precision of 81%, recall of 89% and an AUC of 0.886. Application of this model back to

the set without removing homologous sequences yielded an MCCof 0.71, an accuracy

of 85%, precision of 81%, recall of 92% and an AUC of 0.91. Thisresult represented

a marked improvement over 0.67 for MCC, 83% for accuracy and 0.89 for AUC by

training and cross-validating the same set. This confirms the importance of removing

homologous proteins prior to training our SVM model.

9.3.6 Minor allele frequency

We obtained allele frequencies for all putatively neutral NFS-microdeletions and

microinsertions derived from the 1000 Genomes Project data. The allele frequency

in the population should in general reflect the fitness of thatallele with respect to its

intended biological function [246, 254–257] . Fig. 9.3 compares average predicted

disease probabilities with average allele frequencies grouped into 20 bins (bin size,

0.05). The predicted disease probabilities are based on the10-fold cross-validation

by the 9-feature model trained on both microinsertions and microdeletions after
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Fig. 9.3: The average predicted disease-
causing probabilities as a function
of the average allele frequency in
the neutral INDEL dataset derived
from 1000 Genomes Project data.
This was done by dividing allele
frequencies into 20 bins. The
dashed line is from a linear
regression fit. The correlation
coefficient is -0.84.

removing homologous sequences. As expected, there was a strong negative correlation

(correlation coefficient,-0.84), indicating that NFS-INDELs with higher predicted

disease-causing probabilities tend to occur with lower allele frequencies in the general

population.

9.4 Discussions

We have developed a method, termed DDIG-in, for prioritizing NFS-INDELs by

predicting the disease-causing probability for a given micro-INDEL. The method is

based on nucleotide and amino-acid sequences and predictedstructural features of

proteins. The result suggests that highly accurate and robust prediction for both

microinsertions and microdeletions can be made with only 9 features. They are

minimum disorder score, maximum DNA conservation score, the INDEL-induced

change to the HMM alignment score, minimum effective numberof aligned

sequence to amino acids, average ASA, microinsertion/microdeletion length, maximum

ASA, maximum HHBlits match-to-match transition probability, and average DNA

conservation score. Interestingly, predicted ASA and DNA conservation are employed

twice, once as the average value and a second time as the maximum value for the entire

NFS-INDEL region. The difference between these two ASA or DNA conservation

features measures the fluctuation of ASA or conservation forthe INDEL region. The

method was examined by ten-fold cross-validation as well asby an independent test.
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The consistency between 10-fold cross-validations and independent tests (84-85% for

accuracy, 0.88-0.90 for AUC) supports the robustness of the final method developed.

One point to consider is that the most discriminating feature was predicted

disordered (or structured) regions by SPINE-D. As Table9.2 shows, the disorder

feature alone can achieve an MCC value of 0.56 for both microinsertions and

microdeletions. Although predicted disorder probabilities have previously been found

to be useful in SNP discrimination [237,258] , with disease-causing missense mutations

being shown to be less likely to occur within disordered regions [259] , its importance

has never before been shown to be so prominent. This is probably due, at least in

part, to the improvement of SPINE-D over previous algorithms [245] . It may also

suggest the uniqueness of NFS-INDEL classification. This result is not unexpected

because fully disordered regions (Disorder probability 1)are structurally flexible

and hence more permissive of modification by microinsertionor microdeletion as

long as functional residues within the disordered regions remain intact. Indeed, we

found that binding sites at intrinsically disordered regions of proteins are often located

in semi-disordered regions (regions with a disorder probability of 0.5), consistent

with near equal probability of disease-causing or neutral NFS-INDELs at disorder

probability 0.5 in Fig. 9.1.

Here, we assumed from the outset that the microdeletion and microinsertion

variants identified during the course of the 1,000 Genomes Project are neutral. Although

this assumption is not unreasonable, it should be appreciated that the training set may

contain false negatives, especially for some late-onset disorders. To examine the effect

of this, we removed those neutral variants with a minor allele frequency (MAF) of

< 2% and examined the effect of the removal of those variants on the accuracy and

training of our NFS-INDEL discriminatory tool. This yielded 1,609 neutral cases plus

2,207 positive cases from the non-redundant set. The 10-fold cross-validation with

the same 9 features, but retrained without INDELs with a MAF of <2%, yielded an

MCC of 0.70, an accuracy of 85% and an AUC of 0.883. By comparison, application

of the original 9-feature model (trained with neutral INDELs with a MAF of<2%)
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to the set of neutral INDELs without a MAF of<2% yielded an MCC of 0.74, an

accuracy of 87% and an AUC of 0.92. The fact that the 9-featuremodel trained without

MAF <2% INDELs was less accurate than the 9-feature model trainedwith MAF

<2% INDELs suggests that including MAF<2% INDELs (which potentially contained

false negatives) facilitated machine learning. In other words, potential false negatives

within the small frequency putatively neutral NFS-INDELs did not adversely affect

SVM training. This is supported by strong negative correlations between the MAF and

the disease-causing probability (Fig.9.3).

To further examine the effect of potential annotation errors in our datasets,

we randomly introduced 5% or 10% errors to 9 folds by assigning neutral to

disease-causing and disease-causing to neutral INDELs andtesting the method for the

remaining 1-fold. This was repeated for 10 times. We also randomly introduced 5%

or 10% errors 10 separate times to obtain an average effect. As described above, the

10-fold cross-validation with the same 9 features (Table9.3) but retrained without

INDELs with a MAF of<2% yielded an MCC of 0.696. Adding 5% and 10% errors

to 9 training folds yielded the average MCC values for the testset of 0.684 and 0.674,

respectively. This small change in MCC values due to 5%-10% errors confirms that our

method is robust against potential assignment errors in thetraining set.

Another way to examine the robustness of a method is to test its dependence on

various parameters. Figure9.4shows the Mathews correlation coefficient as a function

of SVM gamma and cost parameters and the half-window size forthe NFS-INDEL

dataset for the case when all features were employed. It shows that MCC values change

a little for the entire range ofnwindow from 0 to 7 and for a large range of gamma and

cost parameters. Recently, Kumar et al. [260] found that most commonly used tools for

non-synonymous SNV classification yield high false positive rates for ultra conserved

sites. To examine the dependence of the accuracy of our method on conservations

of INDEL sites, we calculated conservation scores according to relative entropy (RE)

[= 100
∑20

i=1 pilog(pi/qi)] wherepi is the probability of amino acid types at a sequence

position obtained from PSI-BLAST [134], and qi is the background probability from
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Fig. 9.4: Ten-fold cross-validated Matthew
correlation coefficient for the
NFS-INDEL set as a function of
SVM gamma and cost parameters
and half window size when
trained on all features. Note that
a logarithmic scale is used for
gamma and cost parameters and
log2(gamma) and log2(cost) are
shifted to facilitate comparison.

the blosum62 matrix.We divided our dataset into three portions (high, median, low)

according to the average relative entropy of deleted residues or two residues around

the insertion position (RE≥150, 70≤RE<150, RE<70). As in Kumar et al [260]., we

also observed an elevated false positive rate at highly conserved sites (33%), relative to

poorly conserved sites (14%). Interestingly, the true positive rate at highly conserved

sites is also higher (95% at high RE sites versus 72% at low RE sites). Thus, the

overall performance of our method is not strongly dependenton conservation of INDEL

sites. The MCC values are 0.67, 0.63 and 0.58 for high, median and low RE INDELs,

respectively. The relative independence of our method on the conservation of INDEL

sites reflects the fact that sequence conservation is not thedominant feature in our

INDEL discrimination technique.

It is worthy of note that the INDEL length is one of the top features selected

by SVM. This is reasonable because longer INDELs will likelyhave greater impact

upon protein structure and function. However, it could alsobe due to bias in our

datasets because, empirically, the majority of INDELs involve short lengths of 1 or

2 residues in both our datasets, a reflection of the inherent bias of the underlying

mutational mechanism in vivo. Such an unbalanced dataset renders size-controlled

or stratified sampling impossible. Thus, to determine whether the length dependence

is a result of dataset bias or is instead of true functional origin would require further

studies employing much larger datasets for both disease-causing and neutral INDELs.
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Nevertheless, the effect of this feature on the overall accuracy is small. Removing

this feature only decreases the MCC value from 0.684 to 0.664 for our non-redundant

INDEL sets.

In addition to the features listed in Table9.1, we also performed a test for the

usefulness of biochemical properties of amino acid residues such as residue size and

hydrophobicity scale for INDEL discrimination. This is in part because such features

have been found to be effective in protein secondary structure prediction [249,261]. We

examined seven representative physical parameters including a steric parameter (graph

shape index), hydrophobicity, volume, polarizability, isoelectric point, helix probability,

and sheet probability [249,261]. None of these features were found to further improve

the MCC value for INDEL discrimination.

This work is consistent with various studies that have examined the sequence

context of microdeletions and microinsertions. These studies found that INDELs

occurred non-randomly and were highly influenced by the local DNA sequence

context [230, 262, 263]. This probably accounts for the success of our algorithm

in NFS-INDEL classification based upon local sequence and structural information.

Furthermore, microinsertions and microdeletions exhibitstrong similarities in terms of

the characteristics of their flanking DNA sequences, implying that they are generated

by very similar underlying mechanisms [230] . Again, this accords with our

ability to design a single tool capable of discriminating between microdeletions and

microinsertions of pathological importance and neutral microdeletions/microinsertions.

This study focused on NFS-INDELs only because FS-INDELs would require

a quite separate algorithm to effect their classification. Such an algorithm would

require features based on the entire region after the INDEL site, rather than simply

the local region around the INDEL site. This is because the frame-shift in FS-INDELs

results either in a completely different amino-acid sequence C-terminal to the INDEL

site or premature termination of translation. Expansion ofDDIG-in so as to include

FS-INDELs is however in progress. In the meantime, our sequence- and structure-based

tool will complement two recently developed methods [242, 243] that are based on
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information derived only from nucleotide and amino-acid sequences. In addition

to extension to cover FS-INDELs, we intend to incorporate new features other than

sequence- and structure-based features. Other such features (e.g. predicted functional

regions) may well be useful in further improving the micro-INDEL classification as was

previously achieved for SNP classification [238–240,264].
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Chapter 10 Conclusion

This dissertation reported a template-based method for prediction of protein functions.

The idea behind this work is that combining protein structure information with

binding affinity can predict protein interactions more accurately than traditional

sequence/structure homology searching methods. This was made through removing

false positives generated by homology searching through further filtering with predicted

binding affinity. This approach was applied to prediction ofRBPs, DBPs and CBPs

[32, 34, 36]. For all datasets we studied, the template-based method made significant

improvements over methods based on structure homology or sequence homology

only. Our highly accurate function prediction methods are contributed by accurate

and effective structure alignment method [42], structure prediction method [49] and

knowledge-based statistical energy function [33].

The structure alignment method used in this work is SP-align[42], where a

new SP-score was defined to measure structure similarity. SP-score was designed by

adding a new scaling parameter to remove protein size dependency . The performance

of SP-align was found better than the commonly used structure alignment method

TM-align [139] on prediction of RBPs and DBPs. TM-align evaluates structure

similarity by TM-score which was found dependent on proteinsize [49]. Two protein

structure prediction tools SPARKS-X [49] and HHpred [108] were employed for the

prediction of protein functions from sequence. The DFIRE-based, all atom energy

functions were utilized for the prediction of binding affinity. They were shown to be

more accurate than other residue-contact based energy function [32].

By integrating sequence, structure and binding affinity information, we developed

a series of template-based methods for protein function prediction . They were

employed to scan proteins from structure genomics and the human genomics.

Proteins predicted with novel functions provide resourcesfor hypothesis generation

for biologists. Moreover, uncovered novel functions of proteins in disease pathway can

help us to better understand human disease mechanisms.
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By integrating protein structure and other features, we developed the first

approach for discriminating the disease-causing non frame-shifting insertions or

deletions of nucleotides [265]. This method was trained by SVM model based

on disease-causing and neutral mutations from HGMD [229] and 1000 genomes

project, respectively. The structural features, especially disorder probability, are more

discriminative than transitional sequence-based features, such as DNA-conservation

score. The accuracy of this method was further verified by strongly negative correlation

between predicted disease probabilities and the allele frequencies observed from 1000

genomes project.

Results of this dissertation contribute to a better understanding of the roles

of protein structure and binding affinity in protein functions and disease-causing

mutations. It also suggests profitable to expand our template-based method

beyond protein-DNA, protein-RNA, and protein-carbohydrate binding. Moreover,

simultaneous prediction of protein function and binding complexes allows a deeper

understanding of binding mechanisms.
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