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Huiying Zhao
PROTEIN FUNCTION PREDICTION BY INTEGRATING SEQUENCE,
STRUCTURE AND BINDING AFFINITY INFORMATION

Proteins are nano-machines that work inside every livigaoism. Functional
disruption of one or several proteins is the cause for masgaties. However, the
functions for most proteins are yet to be annotated becawesgeénsive sequencing
techniques dramatically speed up discovery of new proeguences (265 million and
counting) and experimental examinations of every proteialliits possible functional
categories are simply impractical. Thus, it is necessargeeelop computational
function-prediction tools that complement and guide eixpental studies. In this study,
we developed a series of predictors for highly accurateigtied of proteins with
DNA-binding, RNA-binding and carbohydrate-binding capiéyi These predictors
are a template-based technique that combines sequencetrantliral information
with predicted binding affinity. Both sequence and structmeed approaches were
developed. Results indicate the importance of binding &ffpriediction for improving
sensitivity and precision of function prediction. Applica of these methods to the
human genome and structure genome targets demonstratsefitdéness in annotating
proteins of unknown functions and discovering moon-lightiproteins with DNA,
RNA, or carbohydrate binding function. In addition, we alswgestigated disruption
of protein functions by naturally occurring genetic vaoas due to insertions and
deletions (INDELS). We found that protein structures aeerost critical features in
recognising disease-causing non-frame shifting INDELke Predictors for function
predictions are available at http://sparks-lab.org/sqd the predictor for classification

of non-frame shifting INDELSs is available at http://spatib.org/ddig.

Yunlong Liu, PhD, Chair
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Chapter 1 Introduction

1.1 Proteins and their functions

1.1.1 Proteins

Proteins are large biological molecules consisting of ananids. They play a vast
array of functions within living organisms. Proteins aréfetent from each other
by their sequences and three-dimensional structural piepe A protein sequence
is a series of letters that describe the amino acid compasif protein. Currently,
there are two major direct methods, mass spectromgfand Edman degradatiog]|
for determination of protein sequences. It is also posdibletilize next generation
sequencing technique to obtain the DNA/mMRNA sequence thdéscahe protein
sequence.

Proteins perform their functions with help of their moleaustructures. Protein
structures can be divided into four levels: primary strugtusecondary structure,
tertiary structure and quaternary structure. Primarycsting refers to linear amino-acid
sequence of the polypeptide chain. The primary structurelid together by covalent
peptide bonds, which are formed during the process of probedbsynthesis or
translation. Protein secondary structure refers to reguédein backbone sub-structure.
There are three main types of secondary structures: algha beta strand, and coil
[3]. Both alpha helix and beta sheet represent conformatiaasctbnnect hydrogen
bond donors with acceptors in the peptide backbone. Ter8aucture refers to
three-dimensional (3D) structure of a single protein malec The 3D structure of
a protein is formed by protein folding process. In this pss;ea polypeptide folds
into its characteristic and functional 3D structures fromaadom coil. The folding
process is driven by non-specific hydrophobic interacteam$hydrogen bonds. During
protein folding, protein structure becomes stable whensthacture reaches global
minimum of free energy. Quaternary structure is made of ipialtsubunits of 3D

structures. Protein structures are often referred astataladomains to distinguish



from intrinsically disordered regions. A structure domaran element of the overall
structure of a protein. Protein domains can evolve, funcéiod exist independently of
the rest part of the protein. One protein may contain seenalains, and each domain

can perform multiple functions.

1.1.2 Protein function through binding

Proteins are one of the most important molecular machinakaniving organism.
Proteins contain half the dry weight of an Esherichia cdli[ed. Most of the biological
processes are related with protein activity. Protein fianstinclude enzyme catalysis,
interaction with other molecules, supporting materiais, Among these functions, the
interaction with other molecules are contributed by theitity to bind with molecule
partners. The residues in a protein that bind with other mdéeare called as binding
sites. The binding ability of a protein is mainly determingy the binding sites on
protein surfacey].

Proteins can bind to DNA and form protein-DNA complexes (DBB).
These proteins are composed of DNA-binding domains and hanéng affinity for
either single or double stranded DNA. DNA-binding protepiay essential roles in
transcription, regulation, replication, packaging repaid rearrangement. For example,
transcription factors modulate the process of transonptinucleases cleave DNA
molecules; and histones are involved in chromosome pacgamid transcription in
the cell nucleus.

RNA-binding proteins (RBP) are another class of important nst through
binding to RNA in cells and forming ribonucleoprotein conygds. RNA-binding
proteins are important in translation regulation and pi@stscriptional processing of
pre-mRNA including RNA splicing, editing and polyadenylatioThey play critical
roles in the biogenesis, stability, transport and cellldealization [7,8]. RNA-binding
proteins can specifically recognize their RNA targets by dementary shapes. Three
most widely studied RNA-binding domains include doublesstted RNA-binding
motif (dsRBM), RNA-recognition motif (RRM) and zinc fingers.



Carbohydrate-binding proteins (CBPs) are functional pretehmat recognize
cell-surface carbohydrates. CBPs are important for immus&sys. For example,
viruses can use carbohydrates to attach themselves to$hedibduring infection. On
the other hand, host CBPs can also recognize these carbag/@rad prevent virus
invasion. Therefore, CBPs have been employed as potentgltalrgets in pathogens.

Proteins can also bind to other partners. For example, bioding proteins
are important in metabolism. Their binding with iron canimhmicrobial growth.
Furthermore, proteins can bind to other proteins to regudazymatic activity, control

progression through the cell cycle and allow the assembligrgé protein complexes.

1.2 Annotation of protein functions

1.2.1 Experimental approaches for detection of protein funtons

There are many studies to detect protein-DNA interactiopegrmentally. Recent
strategies relied on sophisticated mass spectrometrynaéémies. Washburn and
Fournier published their work on identification of DBPs by Idalvn experiments
in conjunction with multi-dimensional protein identifica technology (MudPIT)
[9,10]. Other standard methods include EMSA, DNAasa | footpnigitiexonuclease Ili
footprinting, southwestern blotting and othetd][ However, experimental approaches
face many challenges. For example, both EMSA and DNase pfimting methods are
usually combined together to improve experimental acgure?. Unfortunately, many
DNA-binding proteins can only be detected by one type ofyasBaus, the detection is
not guaranteed for those proteins which can only be recedrby one assay.

Similar to identifications of DBPs, most frequently used roethfor RBPs are
protein microarray13] and mass spectrometr§4, 15]. Protein microarray and RNA
probes have been used to identify a limited number of RBPs. Aft@amative to in vitro
approaches, stable isotope labeling by amino acids ingilire and mass spectrometry
were applied to identify the interaction between proteid RNA [16]. More recently, a
fluorescence-based quantitative method has been develmpashitor mRNA-protein

interactions, and 300 new RDPs were uncovef&di



For experimentally detecting CBPs, there are three most caorlymosed

approaches: X-raylg], NMR [19,20] and fluorescence spectroscod@| studies R1].

1.2.2 Computational approaches for prediction of protein tinctions

While experimental techniques for determining protein fions are less likely to
produce false positives, they are time consuming and exmgend/lore importantly,
the number of protein sequences are exponentially inergasith the development
of next generation sequencing technology. There is a widegiap between the
number of proteins with annotated functions and the numb@ratein with known
sequences. Meanwhile, the structure genome project gedeaalarge number of
structures without known function. Therefore, it is neeggsto develop effective
computational approaches for predicting protein fundidmom their structures or
sequences.

Historically, commonly used approaches for prediction obtgin functions
are based on sequence/structure homol@p+46]. The assumption is that similar
sequence/structure encodes similar function. Howewvesragsumption is only partially
true for highly homologous proteins, while most proteingi'tidhave homologous
proteins with known functions. Thus, it is necessary to égvan alternative approach
for more sensitive protein function detection.

Currently, the most widely-used methods for prediction ait@in functions are
machine-learning based methods, which usually employesergior structure features
of proteins to train classifiers for protein function preain. For example, several
sequence-based classifiers for DBP/RBP prediction were basesugport-vector
machine (SVM) 27,28]. Common features in these predictors include amino acid
composition, solvent accessible surface, hydrophobiciyjoint triad R9], position
specific scoring matrices (PSSM), and interface propessfBi0]. There is only one
published method for prediction of CBPs from sequence. Thithateemployed
sequence patterns and frequencies of three neighboringpaawids as input features

for SVM.



Although machine learning-based methods have achievesomahle accuracies
in prediction of protein functions, they have several latiins. First, their performance
decrease significantly when they are applied to real largie statabase because the
methods are typically trained on datasets with a small, lequaber of positive and
negative cases. Furthermore, machine-learning baseddsetian only provide binary
prediction without information of 3D complex structures. etlods for predicting
binding sites are separate from those methods for predidtinctions. A more
recent approach is to utilize protein template structunechSemplate-based methods
perform structure comparison to determine target functian targets having sequence
information only, structure prediction tools were empldyeFor each structurally
similar template protein, a model complex structure candreegated by modeling the
target protein structure (template-based predicted tstreién absence of experimental
structure) and its binding partner from the template comgt®r these model complex
structures, binding affinity will be predicted, and only sedhaving high binding affinity
will be kept. Thus, a template-based method considers rgtloa structural similarity
but also the interaction strength between the target pr@ed its potential binding
partner. Moreover, the template-based method is able tligireinding residues and

complex structures in addition to binary function predioti

1.3 Prediction of protein functions by a template-based métod

The first template-based method was developed for predi@iNA-binding proteins

[31] from structure. This method was later improved by replgdime contact-based
energy function to DDNA3 32], a more accurate all-atom, DFIRBJ] -derived
energy function. This approach was extended to the prediadf RNA-binding
proteins from structure3f]. In addition, the template-based method using sequence
only has also been developed. In this method, the targettsteuwas predicted by
recognizing correct structural templates from proteinghwnown structures in PDB.

The confidence of prediction was evaluated by sequenceuctgte matching Z-score



[35,36]. Several techniques utilized by the template-based @ues are described as

following.

1.3.1 Structure comparison

Structure comparison is a useful method for detecting preteith similar functions
in the absence of sequence similarity. Different from segaecomparison, structure
comparison employs structure alignment and attempts tabkstt the homology
between two protein structures from their shapes and 3Dbcovations. This procedure
relies on protein tertiary structures. Structure alignimisruseful for prediction of
protein functions because protein structures are moreecoed than their sequences
[37], and many proteins with similar functions may convergeitailar structure during
evolution. Therefore, structure alignment has been aneasearch area for more than
30 years. Currently, there are more than 50 published cortipogh methods38, 39].

Critical difference between various structure alignmenthwods is the scoring
function that measures structural similarity. Structuireilgrity is often evaluated
by root-mean-square deviation (RMSD). The RMSD between tugmadl structures
indicates their divergence from one another. However, RMS&rongly dependent on
protein size and radius of gyration, and very sensitive toriycaligned local regions
[40]. Zhang and Skolnick developed TM-score to remove the dédgece of structure
similarity score on protein sizes, and later applied tocttiee alignment41]. The score
is based on LG-score with an empirical size-dependgiit= 1.24(L — 13)/° — 1.8].
However, this score assumes that proteins are globularlegmed in a predetermined
sizel.

To further remove the size dependence, SP-align was declopus #2]. This
method was proposed by introducing an effective alignmemgth that avoids the need

to pre-specify a length for normalization. The function &ided as

1 1
SP — score = ——Max | > (T%/d%
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, Whered;; is the distance betwee"), atoms of two aligned residue, was chosen 4.0
A somewhat in between 34 in MaxSub and 3 in LG score,« is a to-be-determined
parameter for removing the dependence on protein lengthcbnpatant of 0.2 is used
for a smooth cutoff for SP-score d}f; = 2d,, and a factor of 1/3 is used to scale the
threshold for fold discrimination to around 0.5. The newrsc{SP-score) with its
alignment method (SP-align) was tested in structure d¢leason and prediction of
nucleic-acid binding proteins with comparison to sevestablished methods: DALI,
CE, and TMalign. The comparison indicates that SP-alignistergtly improves over

other methods.

1.3.2 Structure prediction

Structure prediction attempts to predict protein struefoom a given query sequence.
The most reliable structure-prediction technique is toamawith existing known
structure templates. Such template-based modeling becamesasingly powerful
because most popular structural folds are kno#3¥4]. However, itis still challenging
to recognize structurally similar templates as revealethfthe critical assessment of
structure prediction (CASP). Past CASP experiments higtddjthe importance of post
treatment of models predicted by individual fold-recogmtmethods through the use of
consensus predictions. Recently developed new methodsimclombining fragment
and template comparisody|, utilizing non-linear scoring function from conditional
random field model and profile entropg€], employing predicted torsion angles and
combined use of profile-profile alignment and pairwise ardegimn potentials47,48].
One common issue in the above methods is that matching peddi® profiles
of query sequence with actual profiles of templates is basedimple matrices,
without accounting for the probability of errors in pre@idt1D structural properties.
SPARKS-X |9 introduced energy terms based on estimating the matchioizppility
between target and template. This method also takes adp@aotaecently improved

torsion angle predictor, SPINE-X5(] in prediction of secondary structure. The



matching score calculation of SPARKS-X was described ad Ey.

S(Z7 ]) = _2(1)70[F<;elgry (2) ’ Mtsgl(jlplate (]) + FtS:r?lplate (j> ’ Mcji%ry (Z)]

+w1 E(SS;(i)[S54(7), Css,4(7))

+ Zi:Q wkE(Afj‘Ck,q(j)) + Sshift- (1.2)

with weight parametersu(,) and a constant shift,;;. The first term in EQ.1.2) is
the profile-profile comparison between the sequence probla the query sequence,
Mg aie(7) @and Micd (i) are the sequence-derived log-odd profile of the template
sequence and that of query sequence, respectively. Thesers® profiles are
constructed by three iterations of PSIBLAST searching (Bevalitoff of 0.001) against
non-redundant (NR) sequence database, which was filteredritove low-complexity
regions, transmembrane regions, and coiled-coil segm&héssecond term in EgL(2)
measures the difference between the predicted secondagtuse and the actual
secondary structure of the template. The third term in EQ) (neasures the difference
Afj between two other predicted 1D structural properties ofjtiery sequence and the
actual properties of the template [real-value torsionesi@l/v)) and real-value solvent
accessibility].

SPARKS-X was tested on several benchmarks and compareddaoatomatic
servers. All the results indicate that SPARKS-X is one of testlsingle-method
fold-recognition servers. Given the robust performanc8PARKS-X, it was employed

as a structure prediction tool for predicting protein fuocs.

1.3.3 Energy function for calculation of Binding affinity

An energy function describes physical interactions betne@rotein and its binding
partner. A knowledge-based energy function is obtaineth fepatistical analysis of
structures. Different knowledge-based energy functiores raainly different from
their definitions of a reference state. The DFIRE energy fanctEq. 2.1) defines

the reference state based on ideal gas mixturewith o < 2 to account for the



finite-size effect 83]. Several knowledge-based energy functions were develégre
protein-DNA interactions. For example, a residue basellenergy function was
proposed to calculate the protein-DNA interacti@i][ atom-level energy functions
were developed by extending the DFIRE to protein-DNA bindafitnity calculation
[52]. The DFIRE energy function was further improved by addingolume fraction
correction B2,53]. Similarly, an energy function for protein-RNA interaati$¢34, 36]
and protein-carbohydrate interaction (In preparationjenderived. A DFIRE-based

potential satisfies the following equation:

—RT In J\kbs(im) r<r

a7 = « - No s ~7 .1 cu ’ cut)

UE]FIRE<T) = (Tcut) (A%ut) bs (L7 reut) (13)
0’ r 2 Teut,

where R is the gas constafit,= 300K, o = 1.61, Nys(4, j, r) is the number of; pairs
within the spherical shell at distance r observed in a givarctire database,,, is the
cutoff distance Ar,,; is the bin width at.,;. The value ofx(1.61) was determined by
the best fit ofr® to the actual distance-dependent number of ideal-gasmiriinite

protein-size spheres.

1.4 Overview of the dissertation

As described above, a template-based approach is a poveerduteliable approach
for prediction of protein functions. This dissertation migifocuses on development
of template-based approaches for prediction of DNA-bigdinoteins, RNA-binding
proteins, and carbohydrate-binding proteins. How to fuitifize protein structural
information is a critical point for template-based appiueg: In addition to protein
function prediction, we also predict function disruptiamedto insertions and deletions
of bases in the human genome.

This dissertation can be divided into four parts. The firstt p& prediction
of DNA-binding proteins based on structures (cha@eand sequences (chapt&x.
The second part contains four chapters that includes theéigbien of RBPs from

structure (chaptet) and sequence (chap®r, application of sequence-based prediction



method of RBPs to the human genome (chafjeand the review of current status of
RBPs prediction from low to the highest resolution (chapder The third part is the
prediction of CBPs from their structures (chapdgr The final part is the classification
of disease-related non-frame shifting insertion/detetiof bases in the human genome

(chapten).
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Chapter 2 Structure-based prediction of DNA-binding proteins by structural
alignment and a volume-fraction corrected DFIRE-based eneagy

function

Abstract

Motivation: Template-based prediction of DNA-binding proteins regsinot only
structural similarity between target and template stmagubut also prediction of
binding affinity between the target and DNA to ensure bindirigre, we propose to
predict protein-DNA binding affinity by introducing a newlume-fraction correction
to a statistical energy function based on a distance-séaliéslideal-gas reference state
(DFIRE).

Results: We showed that this energy function together with the stmatt
alignment program TM-align achieves the Matthews con@tatoefficient (MCC)
of 0.76 with an accuracy of 98%, a precision of 93%, and a Heitgiof 64%,
for predicting DNA binding proteins in a benchmark of 179 Di##ding proteins
and 3797 non-binding proteins. The MCC value is substantiaiyjher than the
best MCC value of 0.69 given by previous methods. Applicabbithis method to
2235 structural genomics targets uncovered 37 as DNA4hinpdroteins, 27(73%) of
which are putatively DNA-binding and only 1 (3%) protein vagoannotated functions
do not contain DNA-binding while the remaining proteins @dawknown function.
The method provides a highly accurate and sensititive igalenfor structure-based
prediction of DNA-binding proteins.

Availability: The method is a port of the SPOT (Structure-based function

-Prediction On-line Tools) package available at httpaf&p-lab.org/spot

2.1 Introduction

DNA-binding proteins are proteins that make specific bigdmeither single or double

stranded DNA. They play an essential role in transcriptiegutation, replication,
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packaging, repair and rearrangement. With completion ofiyngenome projects
and many more in progress, more and more proteins are digzbvath unknown
function [54]. The structures for some of those function-unknown prteire solved
because of structural genomics proje&s|| Functional annotations of these proteins
are particularly challenging because the goal of struttgeaomics is to cover the
sequence space of proteins so that homology modeling beccameliable tool for
structure prediction of any proteins and, thus, many targestructural genomics have
low sequence identity to the proteins with known functiorhefiefore it is necessary
to develop computational tools that utilize not only seqgefut also structural
information for function predictiond5, 31, 56-59].

Many methods have been developed for structure-based cpoedi of
DNA-binding proteins.  These include function predictiohraugh homology
comparison and structural comparisa?f26, 60]. Others explore sequence and
structural features of DNA-binding and non-binding progeiwith sophisticated
machine-learning methods such as neural netwslg[1-63], logistic regressiong4],
and support vector machinez? 27,63, 65, 66].

Recently, Gao and Skolnick proposed a new two-step approaahed
DBD-Hunter 1], for structure-based prediction of DNA-binding proteinsin
DBD-Hunter, the structure of a target protein is first struahly aligned to known
protein-DNA complexes and the aligned complex structunes wsed to build the
complex structures between DNA and the target protein. Tieeligted complex
structures are, then, employed for judging DNA binding orlmpstructural similarity
scores (TM-Score) and predicted protein-DNA binding affesi. TM-align b2] and
a contact-based statistical energy function are employete first and second steps
of DBD-Hunter, respectively. DBD-Hunter is found to subsialhy improve over the
methods based on sequence comparison only (PSI-BLASTYtstal alignment only
(TM-align), and a logistic regression techniq&g][

In this study, we investigate if one can further improve theduction of

DNA-binding proteins by employing a different statisticehergy function for
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predicting binding affinity. Our knowledge-based energychion is distance-dependent
and built on a distance-scaled finite ideal gas referencd RBJ state originally
developed for proteins3B, 68,69] and extended to protein-DNA interactiors2[ 53].
Here, we introduce a new volume-fraction correction for BFRE energy function
in extracting protein-DNA statistical energy function fmoprotein-DNA complex
structures. This volume fraction correction term, unlikevyiously introduced one
[53], is atom-type dependent to better account for the fact gnatein and DNA
atom types are unmixable and occupy in physically sepanratkdnes. In addition
to introduction of a new energy function, we further optisigrotein-DNA binding
affinity by performing DNA mutation. These two techniqueaddo a highly accurate

and sensitive tool for structure-based prediction of DNAdIng proteins.

2.2 Methods

2.2.1 Datasets

We employed the datasets compiled by Gao and Skoldtk [One positive and one
negative datasets for training are 179 DNA-binding pragibB179) and 3797 non
DNA-binding proteins (NB3797), respectively. These stuoes were obtained based
on 35% sequence identity cutoff, a resolution &f 3r better, a minimum length of
40 residues for proteins, 6 base pairs for DNA, and 5 resithtesacting with DNA
(within 4.5A of the DNA molecule). As in31], we use significantly larger number of
non DNA-binding proteins in order to reduce false positiaterbecause DNA-binding
proteins are only small fraction of all proteins. APO and HDtesting datasets are
made of 104 DNA-binding proteins whose structures are detexd in the absence
and presence of DNA, respectively. A maximum of 35% sequéaeatity was also
employed in selecting these 104 proteins. For APO/HOLOsddisa 93 APO-DB179
pairs and 92 HOLO-DB179 pairs have sequence identi8b%. These pairs are
excluded from target-template pairs during testing.. Adi@ahal test set of 1697
proteins (the SG1697 set) was compiled from structural gentargets with a sequence

identity cutoff at 90% by Gao and Skolnick from the Jan 2008BREBlease. We further
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updated the release on November 2009 and obtained 223%(hai®G2235 set). This
was done by queried “structural genomic” words in the PDBbahk, resulting in 2447
PDB entries. These PDB entries were divided into proteinnshand clustered by the
CD-HIT [7Q]. For the clusters that contain a protein chain in SG1679¢ckhese the
protein chain as the representation. For other clustersan@omly chose one protein
chain. There are 538 additional proteins and a total of 228t m chains.

To provide an additional test set and examine the effect afgel database of
DNA-binding proteins, we have also updated DNA-bindingtenas from DB179 to
DB250. This updated data set of DNA-binding proteins is settérom PDB released
on December 2009 based on the same criteria that producedDB¥#&r removing
the chains with high sequence identity35%) with any chain contained in DB179 and
with each other, we obtained 71 additional protein-DNA ctares. This leads to an
additional test dataset DB71 and an expanded training set D@28179+DB71).

2.2.2 Knowledge-based energy function

We employ a knowledge-based energy function to predict thditg affinity of a
protein-DNA complex. We have developed a knowledge-basenigy function for
proteins based on the distance-scaled finite ideal-gaserefe state (DFIRE) that
satisfies the following equatio38]:

o Nob.@(i7j7r)
*DFIREO') _ RT'ln (rczt)Q(Af;“)Nobs(’i,ja"‘cut)7 TS Teuts (2]_)

ul?]

07 r 2 Teut,

where R is the gas constafit,= 300K, « = 1.61, N(i, 7,7) is the number of ij pairs
within the spherical shell at distance r observed in a givarctire database,,, is the
cutoff distance Ar,,; is the bin width at.,;. The value ofx(1.61) was determined by
the best fit ofr® to the actual distance-dependent number of ideal-gasmiriinite
protein-size spheres.

Egq. 2.) for proteins was initially applied to protein-DNA intetamns
unmodified with 19 atom types for both proteins and DNA (DDNB2]. In DDNA2
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[53], a low count correction is made Ay (i, j, 7):

75 ZZ]NProtezn DNA(T,)

le
N, Z NProtezn DNA( )
1,7,T

obs(Z j,?") = Nobs(iaja )

(2.2)

In addition, we employed residue/base specific atom typesh va

Protein—DNA
iy Nij (r)

distance-dependent volume-fraction correction definefl’as) = S NATG

i,J  tJ

This volume fraction correction was made to take into actdha fact that DNA
and protein atoms with residue/base specific atom types donmmo with each
other. However, we found that DDNAZ2 is unable to go beyondterg techniques

for predicting DNA-binding proteins. To further improve INA2, we introduce

Z NProtem DNA()

) NPINED Dp . .
. — A .
atom-type dependent volume fraction$:(r) S NATG Our final equation
Joid

for the statistical energy function is

_,r] ln ob.s(lvjvr) r < Tcut7

DDNAS FE(r)FY(r) e ’
ﬂl,j (’I“) - (f,z’("cuﬂf}(rcut)) c A"‘cut obs(Z I TCUt) (23)

0, r Z T'cuts

where we have introduced a parameterPhysically,5 should be around 1/2 so that
volume fraction is counted once. We will employ it as an ajole parameter here for
the same reason that makedess than 2: proteins are finite in size. As in DDNAZ2,
we will use residue/base specific atom types (167 atom tyqeprbteins and 82 for
DNA) andr..=154, Ar=0.53. We also set the factoy arbitrarily to 0.01 to control
the magnitude of the energy score. For convenience, welabellthe volume-fraction

corrected DFIRE as DDNAS3.

2.2.3 Training of the method for predicting DNA-binding proteins

DB179 is used to generate the DDNAS statistical energy fondiq. €.3). To avoid

overfiting, we employed the leave-one-out scheme to traifNB® statistical energy
function. A target protein is chosen from DB179/NB3797. The-akgn program is
employed to make a structural alignment between this tgsgeein with a protein

in DB179 (except itself if it is in DB179). If the alignment sefTM-score) is
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greater than a threshold, the proposed complex structureeba the target protein
and DNA is obtained by replacing the template protein fragrpitotein-DNA complex
structure. The binding affinity between DNA and the targedt@n is evaluated by
the DDNA3 energy function Eq.2(3). Instead of using template DNA sequences,
we perform exhaustive mutations of DNA base pairs to searcthe highest binding
affinity. DNA bases are paired by X3DNA software packag#.[ The conformation
of mutated bases are built using default bond length, bomgdkeaend dihedral angle
parameters as defined in AMBER98 forcefiel@][ A DNA base, if does not have a
corresponding pairing base, is not mutated. If the highieslibg affinity is greater than
an optimized threshold, the target protein is consideredRSIA binding protein. The
method described above has two important differences fr@D-Bunter: the use of
our distance-dependent energy function and the searchdasttongest binding DNA

fragment.

2.2.4 Evaluation of the method for predicting DNA-binding proteins

The measures of the method performance are: Sensitivity=TENTP+FN)],
Specificity [SP=TN/(TN+FP)], Accuracy [AC=(TP+TN)/(TP+FIN+FP)], and
Precision [PR=TP/(TP+FP)]. In addition, we employed a Maith correlation
coefficient:

TP+«TN—FPxFN

MCC = (2.4)
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

Here TP, TN, FP, and FN refer to true positives, true negsitfedse positives, and false

negatives, respectively.

2.3 Results

2.3.1 Training based on DB179/NB3797 (DDNAS3)

We have optimized volume-fraction exponefif TM-score and binding affinity

thresholds to achieve the highest MCC values. Optimizat®omparformed by a
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Fig. 2.1: Sensitivity versus false positive rate, given HYNIA3 (Filled black circles)
and DDNA2 (Open red circles) reveals the importance of anmrgpate
reference state for method performance in predicting DNAdinig proteins.
The results of other methods are adapted fr@d.[ DDNA3U (open black
circles) is the sensitivity versus false positive rate giby DDNA3 based on
updated DB250 dataset. TM-Score dependent energy-sceshtiids lead to
DDNA3O (Open Diamond) and DDNA3OU (Red filled diamond), comgok
to optimized DBD-Hunter (Open green triangle).

grid-based search. The grids féerand TM-score are 0.02 and 0.01, respectively. For
the binding affinity threshold, the lowest energy of eacgradid complex under different
TM-score thresholds is calculated and these energy vaheesoasidered sequentially
as the energy threshold. We found that the highest MCC is 0r7340.4, the structural
similarity threshold of 0.60 and the energy threshold of.611The corresponding
accuracy, precision and sensitivity are 98%, 91%, and 688pgactively. The effect of a
knowledge-based energy function can be revealed by regla2DNA3 with DDNA2.
The optimized MCC value (Structural similarity thresholddd63 and energy threshold
of -4.2) is 0.61. (Note, there is ng parameter in DDNA2.) The corresponding
accuracy, precision, and sensitivity are 97%, 85%, and 58%pectively. It is clear
that the reference state of a statistical energy functiaahsignificant impact on the
performance in predicting DNA-binding proteins. The latgénprovement is 6%
improvement in precision, the fraction of correct predintiin all prediction. The
overall performance of DDNAS significantly improves oveatlof DBD-Hunter which

has a MCC of 0.64, 98% accuracy, 84% precision and 55% satsitespectively.
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Table 2.1: Optimized TM-score-dependent energy threshblased on DB179 and
NB3797 (DDNA3O)
TM-score  Energy Max
Range Threshold ATP TP AFP FP MCC

0.74-1.00 -9.87 53 53 3 3 052
0.62-0.74 -13.95 52 105 4 7 0.73
0.58-0.62 -16.50 3 108 1 8 0.74
0.55-0.58 -18.64 4 112 O 8 0.76
0.52-0.55 -29.10 2 114 O 8 0.76

Fig. 2.1 shows sensitivity as a function of false positive rate. Qaguits were
obtained by fixing structural similarity threshold and viag/the energy threshold. It
is clear that DDNAS yields a substantially higher sendigithan either DDNA2 or
DBD-Hunter for a given false positive rate.

The predicted binding complexes can be employed to examiedigbed DNA
binding residues. An amino-acid residue is considered adla-bBinding residue if
any heavy atom of that residue is less thanM.ﬁway from any heavy atom of a
DNA base. Predicted binding residues from template-basstkiimg can be compared
to actual binding residues. For the training set (179 DB aifl73NB proteins),
there are 108 predicted DB proteins with 11 false posities: these 108 predicted
complexes, specificity, accuracy, precision, sensitiaityl MCC of predicting DNA
binding residues are 94%, 89%, 74%, 68%, and 0.64, respgctivor a comparison,
DDNAZ2 has predicted 99 DB proteins and the correspondinfppeance in predicting
DNA binding residues are 93%, 88%, 75%, 67%, and 0.63, réispgc These
performances are similar to a specificity of 93%, an accuc90%, a precision
of 71% and a sensitivity of 72% achieved by DBD-hunter. Simgarformance in
predicting DNA-binding residues is due to the same strattalignment (TM-align)

method used in the first step by the three methods.

2.3.2 TM-Score dependent energy threshold (DDNA3O)

Obviously, one threshold for energy and one for structunalilarity (TM-Score)

are too simple to capture the complex relation between tstreicand binding. For
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example, one expects that the binding-energy requirententlé be stronger for less
similar structures but weaker for highly similar structueetween template and query.
This has led Gao and Skolnick to develop TM-Score dependesitgg thresholds
(9 energy thresholds for 9 TM-Score bins ranging from 0.40Li#® to maximize
MCC value in each bin), and they finally set a minimum TM-scartoff at 0.55 for
maximum MCC. Here, we slightly changed the way to calculate M@Gnbluding
those predicted positive(TP/FP) in higher TM-score regidhe results are shown in
Table2.1 By this way, the cutoff of TM-score is extended to 0.52 ratthem 0.55
as Gao’s way, and the number of TP increase 2 without inecrgdsP. We followed
their method and optimized 9 parameters for the MCC value et @M-Score bin
separately for the same dataset (DB179 and NB3797). We fufthuerd that the
top four bins in the table with negative prediction for TMese<0.55 generate the
highest MCC value of 0.76 for the entire dataset. To distisigtinis further optimized
method, we labeled it as DDNA3O. DDNA3O yields a MCC value of®with
the corresponding sensitivity of 0.64 and specificity of989 By comparison, the
corresponding optimized DBD-Hunter with the same dataseehdCC value of 0.69
with the corresponding sensitivity of 0.58 and specificitydD®®95 while the DDNA3
has a MCC value of 0.73 with sensitivity of 0.60 and specifioity).997. Thus, most
significant improvement from DDNA3 to DDNA3O is significantirease in sensitivity
(from 60% to 64%) also with reduction in rate of false pogsvfrom 11/3797 to
8/3797).

There are 114 complexes predicted as DNA-binding protelndDBNA30.
For these 114 complexes, predicted DNA-binding residuescampared with native
complexes. The specificity, accuracy, precision, seigitand MCC are 95%, 90%,
77%, 69% and 0.67, respectively. These do not change sigmiljcfrom DDNA3
because of same complex structures generated by TM-alige.slight difference is
caused by 2 reasons. First, in different potential energgtfans, different proteins are

predicted as binding; Secondly, protein may choose difteiemplates.
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Fig. 2.2: Energy  threhold  versus
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We found the energy threshold is increasing along with Thrs¢hreshold. To
show the relation between energy and TM-score, we changedéa way to optimize
the energy threshold by linear relation with TM-scéig; = ~ - T'"M score + e0, where
~ ande0 are two parameters for training to maximize MCC. The highest MC@ 76
when~ = 52.5 ande0 = —49.85 with the TM-score cutoff at 0.5, where there is
higher sensitity 67%(120/179) but also with more numberatdd positive (17). This
method is labeled as DDNA3O-L. As shown in Fi@.2 most of true positive points
by this method are far below the boundary, with a few left rdixgth false positive
points. Relatively all false positive positive points arehgaing around the boundary.
Certaily, a high-order equation can discriminate the pdistter, however, limited to
the number of samples, it's hard to overcome the over-tngiproblem. Also DDNA3
and DDNA3O gives a reasonable boundary. To limit the rateatsfef positive in the

prediction, we will still use DDNA3O for all future applicans.

2.3.3 Test by the APO104/HOLO104 datasets

The methods trained above (DDNA3 and DDNA3O) are applied redipt DNA
binding proteins of APO104/HOLO104 datasets. The numbkpmositive prediction
are 50 by DDNA3 and 53 by DDNA3O (out of 104) for the APO setsd &1 by
DDNA3 and 62 by DDNA3O (out of 104) for the HOLO sets, respeagil. That is,

using monomer structures, rather than the complex stregtleads to a reduction of
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Fig. 2.3: (a) Structural comparison between APO targetgmolmjkA (green) and
template protein lead4A(red) . The TM-score between them78 a@nd the
interaction energy between 1mjkA and template DNA is -209.Structural
comparison between HOLO target protein 1mjmA(green) amgbtate protein
(leadA). The TM-score between them is 0.76 and the interacnergy
between 1mjmA and template DNA is -20.6.

11% in sensitivity (from 59% for the HOLO to 48% for the APO)sley DDNA3 and
9% by DDNA3O (from 60% to 51%). The corresponding sensitivialues for DDNA2
are 43.3% (45/104) and 53.8% (56/104) for the APO and HOLG, sespectively.
The performance of DBD-Hunter (47% for the APO and 55% for ti@@LB sets) is
somewhat in between DDNA2 and DDNAS3. The test confirms a Baamit increase in
sensitivity by DDNA3O over by DDNAS for the APO set, in parlar.

A more detailed analysis on predictions made by DDNA3O shbasthere is an
overlap of 49 predictions between the APO and HOLO sets.Z=3&ghows one example
of the test on target proteins 1mjkA (contained in APO104) amjmA (contained in
HOLO104). 1mjkA and 1mjmA are the structure of the same nogiine repressor
protein in the absence and presence of DNA fragment, ragplct There is a small
conformational change before and after DNA binding (TM+®&cbetween the two is
0.93). This small conformational change apparently doegprahibit the successful
match to the same template protein 1ea4A with strong binaifgity.

On the other hand, there are 12 correctly predicted HOLGetargut incorrectly
predicted APO targets as shown in TaBl& The difference is caused by significant
local conformational change in binding regions (high TMyalscore but low binding
affinity). An example (1le8A in HOLO and corresponding 1f48AAPO) is shown

in Fig. 2.4a where significant change in binding regions (from red in AlB@reen
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Table 2.2: Targets predicted as DNA-binding on HOLO set lotitom APO set.
APO* HOLO® TMP¢ Seqgid HOLO HOLO APO AP HOLO
TMPe EN/ EN/ TMPY APO”
Infa.  1a02N 1hjbC 82 0.67 -25.70 -1.1 0.3 0.64
1ukIC 1am9A 1nlwB 70 082 -2499 -65 0.84 0.86
Irxr®  1by4A  1kb4A 83 090 -2957 -205 0.81 0.80
lesBA 1dfmA 2bamB 88 0.68 -30.68 14.1 0.64 0.89
1jyfA  lefaA  1rzrA 100 090 -1297 -16 0.89 0.96
1illA 1gtOD  1cktA 52 0.78 -26.68 -95 0.73 0.74
lev7A liawA 1cf7A 97 055 -2351 -20.0 0.53 0.82
1939A 1k3wA 2f5pA 90 0.82 -20.67 -184 0.48 0.55
1f43A  1lle8A  1fjlA 100 0.88 -1947 -75 0.58 0.64
lbgt  1sxpA 1ly6fA 93 0.75 -19.17 -2.0 0.78 0.98
Imi7R  1trrA  1gdtA 89 0.68 -21.58 -15.0 0.38 0.52
2audA 1tx3A  4rveB 96 0.56 -2453 -20.2 0.54 0.95
@, Targets from APO set; Targets from HOLO set. Template?. Sequence Identity
between APO and HOLO target calculated by bl2seq in blast2 PM-score between
HOLO target and template proteifi; Energy value between template-target complex;
9. TM-score between APO target and template proteinTM-score between HOLO

target and APO target. template used for HOLO is unable to be used for APO because
of >35% sequence ID.

Fig. 2.4: (a) Structural comparison between APO targetAfdi3d HOLO target 1le8A.
Red: fragment of binding domain of 1f43A. Green: fragment wofding
domain of 1le8A. Orange: template DNA of 2bamB. (b) Strudtaoanparison

between APO target 1jyfA (red) and HOLO target lefaA (gree@yange:
template DNA of 1rzrA.
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in HOLO) leads to incorrect prediction despite insignificatructural change in
nonbinding regions of the protein. In another more extreaseFig2.4b), disordered
region in APO structure (1jyfA) changes to ordered bindingndin in HOLO structure
(lefaA).

Another cause of incorrect prediction in APO and correctmtéon in HOLO
is large overall structural change. The large overall stmaécchanges lead to poor
structural alignment to templates so that their TM-scored@wer than the threshold.
For example, despite 90% sequence identity, TM-score leetvig39A in APO and
1k3w in HOLO structures is only 0.48 and leads to the poomnafignt of APO structure
to template (best is 0.48 in TM-score). We also discoveregchrtical reason for an
APO target (1rxr). We are unable to use the template employed for the comelspg
HOLO target because the sequence identity between the demghd its respective
APO target is slightly higher than 35%.

There are also 3 targets identified as DNA binding proteimsectly in the APO
set but not in the HOLO set. All 3 (1llzA, 1bf5A and lesgA) atestj outside of
arbitrary boundaries generated by optimization. This lighits the empirical nature
of the proposed approach.

One can further examine the performance of DDNA3O in predicbinding
residues. We found that the specificity, accuracy, precjssensitivity and MCC for
predicting binding residues are 94%, 90%, 69%, 64%, 0.5%®APO set and 95%,
90%, 75%, 67%, 0.63 for the HOLO set, respectively. The perémce for the HOLO
setis close to the results for training set (93%, 89%, 76%j4,661d 0.64 for specificity,
accuracy, precision, sensitivity and MCC, respectively)isTighlights the robustness

of DDNA3O.

2.3.4 Test by the DB71 dataset

The additional 71 proteins contained in the updated prad&iA complex structural
dataset (DB71) offer a challenging test set. DDNA3 (DDNA3®@gdicts 34 ( 39)
out of 71 proteins as DNA binding proteins. Thus, the sensitis 34/71(48%) by
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DDNA3 and 55% by DDNA3O. DDNA3O continues to make significemprovement
in sensitivity over DDNAS3. This 55% sensitivity is 5% lowéran the sensitivity of 60%
for the HOLO dataset but is higher that the sensitivity of Sb¥the APO dataset. This
suggests that more than 50% new complex structures arenigabte by DDNA3O
with DB179 as templates for protein-DNA complexes for all gets tested (APO,
HOLO, and DB71).

2.3.5 The effect of a larger, updated dataset of DNA-binding mteins (DDNA3U)

To examine the effect of a larger dataset of DNA-binding @ireg, we use DB250
and NB3797 as the training set. We found that for this largpdated dataset, the
highest MCC is 0.75 with the same or similar values for thremp&ters (=0.4,
TM-score threshold of 0.55 and energy threshold of -13.7DBHNA3. This result
highlights the stability of trained parameters with a 40%r&ase in DNA-binding
proteins. The corresponding accuracy, precision and tsgtysare 97%, 87%, and
67%, respectively. In particular, 45 out of 71 additionabtpins outside DB179 are
recognized as DNA binding by DB250-trained DDNA3 (DDNA3U)etsame proteins
recognized by DB179-trained DDNA3 (DDNA3) for which 71 prioie are employed
as an independent test set.

Application of this newly trained method to APO104 and HOI0O@Isets leads
to 52(50%) and 64(62%) predicted DNA binding proteins, eespely. That is, a 40%
expansion of DNA-binding proteins (from 179 to 250) leadabout 2% improvement
in sensitivity. For 52 successfully predicted APO targéite specificity, accuracy,
precision, sensitivity and MCC for predicted binding resdiare 94%, 90%, 66%,
63%, 0.58, respectively. The corresponding values for 64essfully predicted HOLO
targets are 95%, 90%, 74%, 67%, 0.63, respectively. HoweeFig.2.1 indicates,
newly trained DDNA3 (labeled as DDNA3U) yields higher sérgly only when false
positive rate>0.005. That is, at a lower false positive rate, a larger tatepilatabase

in fact decreases sensitivity and precision.
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Table 2.3: Structural Genomics targets (SG1697) predicaseDNA-binding proteins
by DBD-Hunter, DDNA3, and DDNAS3O.

Method Prediction Putative Other Function Unknown
DDNA3 32 19 3 10
DDNA3O 27 19 1 7
DBD-Hunter 37 18 3 16
Overlap* 19 15 0 4

xOverlap between DBD-Hunter and DDNA30O

Here, by applying TM-Score dependent energy thresholdshéo updated
DB250/NB3797 databases, MCC hasn’'t been changed much. Thaised by the
increase of number of false positive (from 26 to 34), altHowgth more number
of true positive (from 167 to 176). Because we are interestedredicting DNA
binding proteins with very low false positive rate@.005), we will employ the methods
(DDNA3 and DDNA3O) trained by DB179 to structural genomiagj#s.

To further examine the possibility of overfitting in DDNA3Wye perform a
ten-fold cross-validation tests on the DB250/NB3797. Thatalkthe binding and
non-binding sets are randomly divided into 10 folds. Eantetione fold is chosen as
the test set while the other 9 folds are employed for all inginthe statistics of potential
energy function, the structure templates for protein-DNAding, and re-training of the
parameters. The test is repeated for 10 times. The methéalpeance is analyzed by
1000 times of bootstrap resampling3]. We found that the average MCC value is
0.70+0.02 with the accuracy of 97%, the precision of 88% and theiseity of 58%,
respectively. Itis clear that the only significant changerfithe leave-one-out results is
the reduction of sensitivity from 65% to 58%. This is likelgused by the reduced
number of templates in the ten-fold cross-validation. bweif 249 templates are
permitted to use, the average MCC value is 8:0202. Thus, our results are reasonably

robust with different trainining.

2.3.6 Application to Structural Genomics Targets

As shown in Table.3, application of DDNA3 leads to 32 DNA-binding proteins from
SG1697. Among them, 19 out of 32 proteins (59%) are putatNé Dinding proteins,
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3 out of 32 proteins (10%) are annotated to having other fanstwhile others ( 31%)
have unknown function. DDNA3O decrease the prediction ofAlhding proteins

from 30 to 27 without change on the number of putative DNA bigdoroteins (19)

and a decreased number of proteins with other annotatedidarfcom 3 to 1. This

result further confirms the improvement of DDNA3O over DDNABy comparison,

DBD-Hunter predicts 37 DNA-binding proteins. Among the 3étgins, there are 18
(48.6%) putative DNA binding proteins, 3 (8.1%) with othertative functions, and
16 (43.2%) with unknown function. All the putative functeare according to NCBI
database.

The overlap between predicted proteins by DDNA3O and DBDikiuns
only 19 proteins, 15(79%) of which are putative DNA bindingogeins. The
large fraction of putative DNA binding proteins in overlaappredictions highlights
significant improvement in confidence of prediction when asemsus prediction is
made. Meanwhile, only 70% proteins predicted by DDNA3O tamwith those by
DBD-Hunter highlights that the energy function plays a digant role in prediction.
There are 4 putative DNA binding proteins (1ug2A, 1y9bA, »2&gand 2fblA)
predicted by DDNA3O but missed by DBD-Hunter. Similarly, theare 3 putative
DNA binding proteins (2hytA, 2iaiA and 20d5A) predicted by8D-Hunter but missed
by DDNA3O. The complete list of predicted DNA-binding priste is shown in Table
2.4. Table2.4 includes 10 additional predicted proteins from SG2235, 8vbich
are putative DNA binding proteins. That is, 80% of predicpedteins from SG2235
are putative DNA binding proteins. This result confirms thmediction quality of the

proposed DDNA3O technique.

2.4 Discussion

We have developed a highly accurate method (DDNA3O) to ptedNA binding
proteins. This is accomplished by developing a new steséisgnergy function for
predicting DNA-binding proteins. We found that introdugian atom-type dependent

volume fraction correction and DNA mutation in the DFIRE stiatal energy function
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Table 2.4: Targets are predicted as DNA-binding protein®BINA30 from SG1697
and SG2235 with function based on GO annotations.

Target Template TM-score Energy Putative Function

2keyA?  1p7dB 058  -22.19 DB
2khvA? 1p7dB 0.72 -30.06 DB
2kobA? 1p7dB 0.75 -26.52 DB
3cecA! 3croL 0.75 -21.67 DB
3edpA  1sfuA 0.74 -13.42 DB
3frwF? 1trrG 0.77 -23.04 DB
3ic7A? 1cf7A 0.61 -17.48 DB
3ikbA“ 4sknE 0.62 -16.54 DB
3iuvA< 1jt0A 0.77 -14.97 UK
3ke2Ad 1gdtA 0.58 -18.58 UK
liuyA 1f4kB 0.61 -19.25 NB
1s70A 1gdtA 0.67 -14.37 DB
1sfxA 1u8rJ 0.72 -24.89 DB
lug2A 1fjlA 0.58 -17.92 DB
1wi9A lrepC 0.62 -17.50 UK
1x58A 1wOtA 0.87 -24.86 DB
1y9bA leadA 0.67 -22.76 DB
1z7uA 1u8rJ 0.66 -14.75 DB
1zelA 1cgpA 0.56 -20.67 UK
2CQOxA lakhA 0.69 -17.87 DB
2dadA lakhA 0.74 -27.67 DB
2eloA lakhA 0.87 -18.37 DB
2eshA 1f4kB 0.67 -17.10 DB
2esnA 1u8rJ 0.62 -21.74 DB
2ethA 1u8rJ 0.71 -20.94 DB
2f2eA 1u8rJ 0.71 -14.07 DB
2fb1A 2as5F 0.62 -14.47 DB
2fyxA 2a6o0B 0.78 -18.83 DB
2g7UA 1u8rJ 0.70 -15.83 DB
2Jn6A 1gdtA 0.70 -17.11 DB
2jtvA 2ex5A 0.61 -21.07 UK
2nx4A 1jt0OA 0.76 -16.34 DB
2qVvoA 1z9cF 0.80 -10.19 UK
3b73A 1z9cF 0.68 -23.89 UK
3bddA 1u8rJ 0.76 -21.56 DB
3bhwA 1fokA 0.58 -19.04 UK
3bz6A 1u8rJ 0.73 -17.02 UK

@, Targets are annotated as protein which has putative tinmgctelated with DNA
binding in PDB.’. It is unknown whether a target has putative functions eelatith
DNA binding. . Nonbinding to DNA according to GO annotatich.Targets in
SG2235
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leads to a significant improvement in the performance in iptexdg DNA-binding
proteins (MCC= 0.76 for DB179/NB3797 by DDNA3O). This is a sigraft
improvement from MCC of 0.69 given by optimized DBD-Hunter. pApation
of DDNA3O to structural genome targets confirms the accurafcyhe proposed
method with 73% potentially correct prediction of DNA-bind proteins (annotated
as putative DNA-binding), 3% potentially false positivégnction annotated but not
DNA-binding) and the rest unknown.

For DDNAZ3, the effect of DNA mutation is small for improvingg MCC value
of the training set (from 0.72 to 0.73) but is significant forproving the sensitivity
from 46/104 (44%) to 50/104 (48%) of the APO test set. We frtfind that the
mutation leads to no significant improvement in sequencetityebetween template
DNA sequence and wild-type DNA sequence. The sequenceitidsrio wild-type
DNA sequences before and after mutation are both close tatitom value of 25%.
One possible reason is the absence of structural refinemgmtdtein during mutation.
This result also suggests that DDNAS3 is not yet specific endogidentify binding
DNA bases.

In principle, exhaustive mutations of DNA base pairs card l&a significant
increase in computing time for a long DNA segment. Howevecanse our energy
function does not consider base-base interaction by asguanrigid DNA structure
before and after binding, the computing requirement forekleaustive mutations of
DNA base pairs is only four times more than that without baséations.

One potential concern is insufficient statistics due to thalsnumber of complex
structures for deriving the DDNA3 energy function. We haddrassed this question
by employing the leave-one-out (for both DB179 and DB250 saty] ten-fold
cross-validation (for the DB250 set) techniques. The comsty between different
training and test sets provides the confidence about thgyfhgrctions obtained.

Another concern is potential overfitting due to 5 thresholrameters in
DDNA3O because of the small number of true positives for eabhScore bins

(Table 1). This concern is reduced somewhat as the energghibild mostly satisfies
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the expectation that less similar structures (low TM-Ssprequires higher energy
thresholds. Moreover, there is a consistent improvemeseisitivity from training
(DB179) to test (APO/HOLO104, DB71, and structural genommgéts). This
consisteny makes the improvement statistically significadowever, one certainly
can not completely remove the concern of overfitting. Motgligts as larger data set
becomes available are certainly needed.

One advantage of the proposed structure-based predictiethooh is the
prediction of protein-DNA complex structures. The predittcomplex structures
allow prediction of DNA binding residues. High specificitpychaccuracy $90%) are
achieved for binding residue prediction even for the APQctires (protein structures
in the absence of DNA).

The success of DDNA3O is limited by the availability of priot®NA complexes
as templates. A 40% expansion of template databases fromtal280 proteins
leads to significant improvement in sensitivity if false pioe rate>0.005 (Fig.2.1)
but also slightly decreases sensitivity if false positia¢er0.005. Thus, there is a
clear need to further improve the energy function that disicrates binding from
nonbinding proteins. The rigid-body approximation emgldyhere likely has limited
the performance of DDNA3O. Introducing flexibility to DNA drproteins to DDNA3

is in progress.
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Chapter 3 Sequence-based prediction of DNA-binding proteis by fold

recognition and calculated binding affinity

Abstract

Structure-based methods are limited because they requicige data as input. For
fully understanding the mechanism of protein-DNA intei@tt a specialized method
for prediction of DBPs from sequence is necessary. Here, ajggse to predict DBPs
from sequence level by integrating structure predictioogpem HHM with binding
affinity calucation program (DFIRE).

This method was benchmarked on a database with 179 DNA#gndi
proteins(DBP) and 3797 non-DNA-binding proteins(NDBPs)e Tihal results indicate
structure prediction program together with energy functan achieve the MCC 0.77
with an accuracy of 98%, precision 94% and sensitivity 65%hese results are
significantly higher than the best MCC value 0.68 from DBD-Huker. This method
was applicated on 20270 human genome targets, and disddl/@r& DBPs. Amonge
these proteins, 1612 (56%) are annotated as DBPs by GO. Thye developed method

is accurate and sensitive in prediciton of CBPs from sequence.

3.1 Introduction

Completion of thousands of genome projects has led to angxplmcrease in number
of proteins with unknown functions. The comprehensive Watipatabases4] contains
107 protein sequences and, yet, less than 5% of these segubage annotated
functions from Gene Ontology Annotation databagsg.[ This gap between sequences
and annotations is widening rapidly as inexpensive and reffi@ent next generation
sequencing techniqgues become available. Experimentaéiptifying function for
millions of proteins is obviously impractical. Thus, it iscessary to develop effective

bioinformatics tools for initial functional annotations.
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One important function of proteins is DNA-binding that pdagn essential role
in transcription regulation, replication, packaging,ag@nd rearrangement. Function
prediction of DNA-binding can be classified into three |evafiresolution (low, medium
and high). A low-resolution prediction is a simple two-starediction whether or not
a protein will bind to DNA. A medium resolution prediction is predict the region
in a protein that binds with DNA (DNA-binding residues or DMAnding interface
regions). A high-resolution prediction is to predict themgex structure between DNA
and a target protein of unknown function.

Most existing methods have been focused on low-resolutiworstate prediction
[22,27,28,42,56,62, 67, 76-80, 80-84] and medium-resolution prediction of binding
residues %6, 63, 77, 85-89, 89-99.The majority of these techniques are based on
machine-learning techniques ranging from neutral netgjorandom forest, decision
trees to support vector machines that are trained on therésatlerived from sequence
(sequence-based) and structure (structure-based). &wstetbased technique attempts
to infer functions from known protein structures. Both semebasedd7, 28, 78,
79,81, 82,84, 100 and structure-base®?2, 56, 62, 67, 77, 80, 83, 101]prediction of
DNA-binding proteins were developed. The same is true fqueace-based binding
residue predictiond7, 86, 88,94,96,98-100,102-104].

An alternative approach to above machine-learning teclesigis to take
advantage of known protein-DNA complex structures. This ba accomplished
by structural comparison between a DNA-binding templatd antarget protein
structure 68, 85, 92, 93.For example, we demonstrated that a size-independent,
structural alignment method SPalign makes a significantrorgment over several
other commonly used tools to locate functionally similarustures 68]. If the
structure of a target protein is unknown, homology modelih@5 106 has been
employed. Gao and Skolnick further illustrated the impacta of combining the
predicted structure (through structural alignme3i]¢r threading B5]) with binding
prediction for detecting DNA-binding proteins. One imp@ot aspect of this approach

is its ability to predict the complex structure between thgét protein and template
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DNA. This high-resolution function prediction at atomictaiés allows an improved
understanding of binding mechanism and an integration leithand medium-level
prediction of DNA-binding proteins and DNA-binding resghu

This work will focus on improving the high-resolution fummt prediction.
The DBD-Threader method developed by Gao and Sholr8&hf[rst employed the
threading technique called PROSPECTARY to predict structures based on known
DNA-binding domains. Confidently predicted complex struetuare then confirmed
for DNA-binding by utilizing a pairwise knowledge-basedntact energy functior3fl]

. The method has achieved the Mathew correlation coeffi¢MQC) of 0.68 for the
two-state prediction of DNA-binding proteins by using aatatse of 179 DNA-binding
domains (DB179) and 3797 non-DNA-binding domains (DB3797).

In this work, we approach this function prediction problerthvdifferent methods
for protein-structure prediction and binding predictiomnstead of a contact-based
energy function employed in DBD-Thread@&5[ , we will employ a statistical energy
function based on a distance-scaled ideal-gas refereatse(BtFIRE) B3lextended for
protein-DNA interactions 32, 52, 53]. This DDNA energy function is found useful
in developing a highly accurate structure-based techniglied SPOT-Struc (DNA)
that achieves the MCC value of 0.76 for the same database of ®BAd NB3797,
employed by DBD-Threader. In addition to energy functions, will examine two
fold-recognition techniques to enable a sequence-bassticion as DBD-Threader.
One is a method based on hidden Markov model (HHM) called H$1f108. The
other is our in-house built technique called SPARKS4E][ Both methods are among
the top performers in critical assessment of protein atnecprediction techniques
(CASP 9) B9 ,109. This development of SPOT-Seq for DNA-binding proteins is
inspired by the success of prediction of RNA-binding praddiy integrating SPARKS
for structure prediction and DFIRE for binding predictioB6] and its successful

application to human genome [Zhao et al. submitted].
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3.2 Methods

3.2.1 Dataset

Gao-Skolnick domain datasets (DB179 and NB3797).These two datasets were
compiled by Gao and Skolnick that contains 179 DNA-bindimgt@in domains and
3797 non-DNA binding protein domains. These two sets areldped by collecting
the proteins with a resolution of 3 or better, a minimum lé&ng@ft40 amino acid residues
per protein and at least 6 base pairs of DNA and five residuesaicting with DNA.
The redundant data among two sets are excluded by using 3fi%érsee identity cutoff.
DB179 is used as a template library.

Test set of RNA-binding proteins (RB174). RB174 is a dataset made of 174
high-resolution RNA-binding proteins (whole chains), ectied by us in developing
SPOT-Seq (RNA) based on a 25% cutoff. We will employ RB174 to exarii the
proposed method can separate DNA from RNA-binding proteins.

Independent test dataset (DB82)An independent test set was developed by including
the DNA-binding proteins released after December 2009. fra¢ein chains were
divided into SCOP domains, and the redundant data was reniyveding sequence
identity cutoff 30%. We further excluded the proteins theatdnsequence identity higher
than 30% with any proteins in DB179. Finally, we generatechdependent test dataset

with 82 protein domains and chains.

3.2.2 Function prediction protocol

The prediction protocol proposed here is the same as SPORMA) developed by
us [36] , except that 1) the template library is made of known prefeNA complex

structures and 2) HHBIits1{0g, in addition to SPARKS-X 49] is used in structure
prediction. Briefly, HHBIits or SPARKS X is firstly employed to mtch a target
sequence to the template structures in the template libddrg significant match is
found based on a Z-score, that is based on the alignment, setatve to the average

alignment score for all binding and non-binding proteinsttie dataset. The top
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matched template(s) will be used to construct model prdbdiA complex structure(s)
by copying the query sequence to the template complex ate(s) according to the
alignment result from SPARKS X/HHblits while keeping the f#date RNA intact. The
model complex structures are then employed to estimateitiuinlg affinity between
the target protein (main-chain only) and the template DNAublyzing DDNA3 [32)].
The target protein is classified as DNA-binding if the birgdffinity is higher than
a threshold. Thus, there are only two parameters to be gEanisequence-structure

alignment Z-score and the binding energy value.

3.2.3 Other Methods

PSI-BLAST was applied for prediction of DBPs by searching htmgy sequences
from NCBI non-redundant sequence library for four iteratioAgarget is classified as
DBPs, if it has at least one template with E-value lower thamptmmized threshold.
All templates with sequence identity 30% with the target sequence are excluded.
The E-value threshold is optimized by maximizing the MCC ealuPSI-BLAST
was downloaded from NCBI. HHblits is a fold-recognition teciue that extracts
homologous sequences of targets from template library déhi-Markov models
(HMM). The HHM matrices of targets and templates were bujltskarching against
the Uniprot database. Probability of match was calculated@dmparing the HHM
matrix of a target to the HHM matrix of a template. We definergeasequence as a
DBP if probability of match is higher than a threshold. Theeirold is optimized by

maximizing the MCC value.

3.3 Results

3.3.1 Low-reolution two-state prediction

Leave-one-out cross validation (Gao-Skolnick Domain-levedatasets): This work
is accomplished by removing all templates with 30% sequence identity to the
target. The results were obtained by taking one chain seguéom DB179 or
NB3797 and predicting whether it binds or does not bind to DN#Agure 3.1
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Table 3.1: Method comparison for prediction of DNA-bindimgpteins

Method SN(%) PR(%) SP(%) ACC MCC
Structure based

DBD-Hunter 61 79 92 - 0.681
DDNAS3 60 91 99 98 0.73
Sequence based

PSI-BLAST(NCBI) 49 64 87 - 0.540
PSI-BLAST(Uniprot)b 43 75 93 - 0553
PROSPECTORDb 53 74 91 - 0.609
HHblits 61 69 99 97 0.639
SPARKS X 45 95 99 97 0.647
SPARKS X+Energy 53 84 99 97 0.652
DBD-Threaderb 56 86 96 - 0.680
HHblits+Energy 65 94 99 98 0.771

and Table3.1 compared both structure and sequence-based methods vesees r
of DBD-Hunter, PSI-BLAST (NCBI), PSI-BLAST(uniprot), PROSPECRQ and
DBD-Threader were obtained from ReBY . We obtained the results of SPARKS
X, HHBIits, SPARKS X+Energy and HHBIits+Energy for the sameadats. For
sequence-based fold/homology-recognition techniqueaRES X yields the highest
MCC value (0.647), followed by HHblits (0.639), PROSPECTOR6(®), and
PSI-BLAST (0.553 or 0.540). Adding the energy function talfodcognition leads to a
small improvement over SPARKS X (MCC from .647 to 0.652) burgdamprovement
over PROSPECTOR (MCC from 0.609 to 0.681) and over HHblits (M&nf0.639
to 0.771). In particular, the best performing HHblits + Eneleads to a sensitivity of
65% and precision of 94%. Such performance is better thabeke structure-based

technique (DDNA3) with a MCC value of 0.73.
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Table 3.2: Detecting DBPs in 19 fold shared by DNA-binding (DBL and

non-binding (NB-3797) proteins

Fold Fold Name Dataset HHblits  HHblits+
(bd/nb)  (bd/nb) Energy(bd/nb)
a.38 HLH 5/1 5/0 5/0
a.74 Cyclin 4/10 1/2 1/2
c.52 Restriction endonuclease 14/4 3/0 4/0
a4 DNA/RNA-binding 3-helical bundle 50/11 23/0 25/0
a.6 Putative DNA-binding domain 2/2 2/0 2/0
c.66 S-adenosyl-L-methionine-dependent 4/19 4/15 3/0
methyltransferases
c.62 VWA 2/10 2/0 2/0
g.39 Glucocorticoid receptor 2/12 1/0 1/0
c.37  P-loop-containing- 5/87 2/5 2/0
nucleoside-triphosphate hydrolases
d.151 DNasel 2/2 2/2 1/2
a.60 SAM domain 711 4/0 5/0
d.95 Homing endonuclease 6/1 2/0 3/0
c.55 Ribonuclease H motif 8/35 2/0 1/0
b.82  Double-stranded beta-helix 1/37 0/0 1/0
c.53 Resolvase 1/5 1/0 1/0
h.1 Parallel coiled-coil 5/43 2/0 2/0
d.129 TBP-like 3/13 0/0 1/0
d.218 Nucleotidyltransferase 1/8 1/0 1/0
Total 122/301 57/24 61/4

Separating DNA-binding from non-DNA-binding in the same SCOP fold. One

crucial test for predicting DNA-binding function is the &tyi of a method to classify

DBPs from non-DBPs within the same structural fold. We analy¥® SCOP folds

shared by DNA-binding (DB179) and non-DNA-binding protefN&83797). As shown

in Table 3.2, after incorporating the DDNA energy function for DBP prdatia, the

number of true positives increases from 57 to 61 and falsiiyesdecreases from 24

to 4. Thus, removal of false positives is the key factor fegéaimprovement by the

energy function.

Separating RNA-binding proteins from DNA-binding proteins:

As the

RNA-protein interaction shares features with DNA-bindimgtgins (both are positively

charged, for examples), it is important to examine if thegpsed method can separate

DBPs from RBPs. We tested the HHblits+energy method with thestiolds optimized

by DB179+NB3797 datasets on the RBP dataset (RB174). It predictsetBis as
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DBPs. Two of the five (1zbiB and 1hysA) are highly homologowexj(sence identity
¢, 70%) to the templates (1zbIlB and 1rOaA, respectively). ¥seeted, 1zbiB and
1rOaA are two proteins related with both RNA- and DNA-bindiiogpctions. 1zbiB
is a protein with 12-Mer RnaDNA hybrid and 1rOaA involves thedtion related with
RNA-dependent DNA polymerase. Two of the three remainindgmms (2gk9A and
looaA) are known DNA-binding. 2gk9A is Human RNase H catalglbmain that
complexed with both RNA and DNAI1[L(Q and 1o0aA contains Rel homology domain
(RHD) and DNA binding site 111]. The only remaining protein (PDB ID 2jluA) is
dengue virus 4Ns3 helicase in complex with ssSRNAZ . This helicase was found to
function on both RNA and DNA template&13. Thus, there is zero false positive in

DNA-binding prediction.

3.3.2 Medium Resolution Prediction of DNA-binding residues

The complex structures predicted from our method allow usfes amino-acid residues
involved in DNA-binding. We define an amino-acid residue &@N\#A-binding residue
if any heavy atoms of the residue are less than 4.5 away frgnhaavy atoms of a
DNA base. The accuracy of binding-residue prediction isy@rad on 116 true positive
proteins from DB179. The final average values of MCC, precisi@mhaccuracy of the
prediction are 0.55, 66%, and accuracy 89%, respectivaty. B.2(a) displays MCC
values of DNA-binding residues for predicted DBPs along witkir corresponding
probability of match for predicted structures. Here, thebability of match was
clustered into 29 bins and the MCC value is represented by @dian value in each
bin. It is clear that the high the probability of match candélae high MCC value, and
the correlation coefficient is 0.40.

We employed SPARKS-X to predict binding residues of the 11§ets. The
SPARKS-X was used by matching sequences of the targets to dbeesponding
templates searched by HHblits. The final prediction acliev®CC 0.54, a precision
63%, and an accuracy 88%. The relationship between the MCZ-andre is described

by Fig. 3.2 (b). Fig. 3.2includes 116 pointes that were generated by the MCC value
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Fig. 3.2: The MCC values for predicting DNA-binding residassfunction of HHblits
matching probability, Z-s core from SPARKSX and SP-scorerisgothe
similarity between predicted structures and native sirues. (a) Average
MCC and matching probability in 29 bins, and the correlatioefticient is
0.40. (b ) MCC and Z-score of 116 targets, the correlationfmoefit is 0.50.
(c) MCC and SP-score of 116 targets, the correlation coefiti¢se0.38.

on Y axis and Z-score on X axis. The correlation coefficiertMeen these two values
is 0. 50. The high correlation between the predictions orbthding residues and on
structure indicates that SPARKS-X is more reliable in preaiicof binding residues.

3.3.3 High Resolution Prediction of DNA-binding Complex Stuctures

The quality of predicted DNA-binding complex structuresxamined by the structural

alignment SPalign42] that makes a size-independent comparison between native

structures and predicted structures. For 116 correctidigied targets, the average
SPscore is 0.65 (two structures are considered as in the f&dthé SPscore¢ 0.5
[42]).The structure similarity can also be evaluated by thetioa of aligned residues
with a root mean-squared distance (RMSD) between two cordstinectures less than
4. We found that the medium value is 67%.

As an example, Fig8.3compared the predicted binding sites with native binding
sites, and the predicted structures with the native strastu For the target (1yfjD,
DAM ), the predicted (light grey) and actual DNA (orange )dtion in a similar to
the real position, the predicted binding sites (cyan) is a&lsse to the native binding
region(yellow) . The MCC value for the predicted binding dess is 0.60. The

sequence identity between the target and the template &2gthm) is 24%.
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Fig. 3.3: Comparison of predicted (red)
and native structures (green)
of target 1yfiD (DAM).
Native structure and DNA
are represented by green and
orange, respectively. The
predicted structure and DNA
are denot ed by color red and
grey. The predicted binding
sites and native binding sites
are in cyan and yellow colors,
respectively.

3.3.4 Independent test

We further tested the performance of SPOT-seq (DNA) by detgthe DNA-binding

proteins from DB82. Among them, 42 (51%) proteins are colyeptedicted as
DNA-binding proteins by using the thresholds, matchingbaitality 84% and energy
-8.6. We further inferred the binding residues from the mted complex structures,
and compared them with native ones. For 42 correctly predibBPs, the MCC 0.64

can be achieved.

3.3.5 Experimental Validation on human TFs

To demonstrate the SPOT-seq DNA is a reliable tool for discgerotein-DNA
interaction, we tested it on the proteins that were expertaily confirmed as DBPs
in the study of protein-DNA profilesll4]. In this study, the researchers characterized
the sequence-specificity of 201 TFs, and 136 of them have mdifg sites listed in
TRANSFAC but confirmed as DBPs by CHIP experiments in this stédypong 201
proteins, we predicted 117 (58%) as DBPs, and 69 (51%) of threrfram 136 novel
DBPs. From 117 predicted DBPs, 76 are predicted as DBPs by terapléth NCBI

annoated transcription factor function.
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Table 3.3: Number of annotated and predicted DBPs in humaongen

Function #of annotated #of predicted Recovery rate
DNA binding 1508 915 61%
TF 1153 684 59%
Others 222 13 6%
Total 2883 1612 56%

3.3.6 Application to human genome

Our approach was applied on detecting DBPs from human genoife human
genome with 20270 proteins was downloaded in 2010 from WhipAWe applied
Gene Ontology (GO) as a tool to annotate the proteins from &flugenome. The
DNA-related GO annotation can be divided into 8 proteinvaiitis, DNA-binding,
transcription factor, . Here, the annotation DNA-bindingans the annotation 2883
out of 20270 proteins are annotated as DNA-binding by Genrtel@ygy (GO) database
with keywords, DNA binding, transcription factor and otb@NA replication, DNA
repair , DNA recombination , DNA helicase activity and keyd® related with
DNA-binding in biological process). The numbers of progein each category of
key words are listed in Tabld.3. The newly developed method predicted 1975 out
of 20270 proteins as DBPs by using two thresholds [energy6 aBd align score:
84.0] as cutoff. 1612 predicted DBPs are also annotated as DBR30. That is,
our method recovered 56% (1612/2883) annotated DBPs. Thaimeth predicted
DBPs include 104 unknown function proteins (not annotate®By and 259 proteins
annotated with other functions. The prediction recoves cdttargets with keywords of
DNA-binding/transcription factor is close to the recoveaye 65% in training dataset.
However, the proteins with other functions related with DNixding are lower. That
is because we define the protein with other DNA-binding fiomst by using the GO
annotation not only related molecular function but alsdwhiblogical process and cell
activity in order to all possible DBPs in human genome. Thbs, firoteins in this
category could be not directly related with DNA-binding étions.

For 1612 predicted and annotated targets, 371 of them haverimentally

obtained structures according to Uniprot annotation. Agntimem, 28 targets are
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Table 3.4: Structure similarity between predicted andveattructures of novel DBPs

Target Template Seq Identity(%)a Native structure SPescor
P38919 2p6rA 16.5 2j0gA 0.797
Q96LI5 1ldewB 15.5 3ngnA 0.781
095718 1kb4A 8.2 1llolA 0.780
Q13206 1z63A 154 2pI3A 0.737
Q9HO0S4 1z63A 21.2 3berA 0.729
P32019 1dewB 10.8 3n9vA 0.716
Q9Y2R4 1z63A 17.2 3dkpA 0.714
Q13838 1z63A 17.7 1t5iA 0.710
Q86TM3  1z63A 16.3 3iuyA 0.705
Q9NVP1 2p6rA 17.0 3ly5A 0.703
Q14240 1z63A 19.2 3borA 0.693
075909 1c9bE 10.3 2i53A 0.683
QINRR6 ldewB 14.6 2XSWA 0.677
P60842 1z63A 20.5 299nA 0.675
Q9UJIV9 2p6rA 19.2 2p6nA 0.671
Q9UHLO  1z63A 21.9 2rb4A 0.664
P53370 1rrgA 20.1 3h95A 0.646
P26196 2p6rA 16.1 2waxA 0.641
Q9UMR2  2p6rA 17.9 3ewsA 0.621
Q86W50 2ibsA 17.3 2h00A 0.613

obtained their predicted structures by choosing the mgsifggant template as the one
having the same PDB ID as the native structures. For the resddargets, 131 (35%)
targets have the predicted structures with the SP-sd@én[gher than 0.6 comparing
to the native structures. The average SP-score is 0.52. réhidt is expected since
the annotated DBPs with experimental structures have bigoehto find their protein
folds from template library. We also examined 366 novel aieced DBPs, and found
74 of them with experimental structures. 20 out of 74 (27%) with the predicted
structures having SP-score higher than 0.6 comparing bortave structures and they
are shown in Tabl8.4. The DNA-binding function of targets has high probabiliytte
further validated experimentally since structural simijacan be used as a criterion to
distinguish DBPs32].

We further analyzed the results of predicted DBPs from humamoge by
employing DAVID database as another protein function aatnat tool. We found
that 49 (13%) out of 363 predicted but not annotated targetaanotated as DBPs by
DAVID database. The remained 363 novel targets are inputtiedKEGG database
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to find their involved pathways. Among them, 72 targets héesrtrelated disease
pathways, and 1 target, DDX58 (095786), is involved in CylicsDNA-sensing
pathways and annotated as related with Nucleotide-bindimgtion by Uniprot
database. The remained 66 targets are related with 233sdsea9 out of 71 targets

are involved in the disease of congenital disorders of DN#anesystems.
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Chapter 4 Template-based Prediction of RNA-binding Domaiis and

RNA-binding Sites and Application to Structural Genomics Targets

Abstract

Identifying RNA-binding proteins and RNA-binding sites is anportant first step
toward mechanistic understanding of many key cellular @sses. RNA-binding
proteins and RNA-binding sites are often predicted separaty employing
machine-learning methods with sequence and/or strutiased features to separate
RNA-binding from nonbinding proteins or amino-acid resislueHere, we propose
an approach that simultaneously identifies RNA-bindingginst and binding regions
based on structural alignment to known protein-RNA comptexcsures followed by
binding assessment with a distance-dependent knowleasgdienergy function. We
showed the importance of using a Z-score to measure rekttivetural similarity and
dividing structures into domains to improve the sensitivt detecting RNA-binding
proteins. This method achieves an accuracy of 98% and aspyecof 87% for
predicting RNA binding proteins and an accuracy of 93% andexipion of 76%
for predicting RNA binding amino-acid residues for a largenddemark of 212
RNA binding and 6761 non-RNA binding domains (leave-one-goss validation).
Additional tests revealed that the method only makes orge{pbsitive prediction
out of 213 DNA-binding proteins and correctly identified soto one third of 75
unbound (APO) RNA-binding domains with an accuracy of 93% argtecision of
64% for predicted binding residues. Application of this huet to 2076 structural
genomics targets predicted 15 targets as RNA-binding pretei3 (87%) of which
are putatively RNA-binding with the remaining two having wokvn function. The
method is implemented as a part of the SPOT (Structure-bfasedion-Prediction

On-line Tools) package available at http://sparks-lajspot
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4.1 Introduction

RNA-binding proteins (RBPs) make specific binding with RNAs alay @n important
role in translation regulation and post-transcriptionabgessing of pre-mRNA
including RNA splicing, editing, and polyadenylatio][ Interactions between
proteins and RNA influence the structure of RNA and play anaaiitrole in their
biogenesis, stability, function, transport and cellulagdlization. RNA and proteins
are stably bound together as Ribonucleoprotein (RNP) corapléxoughout journey
from synthesis to degradation in a temporal and spatial eraf8]. Proteomic
studies in human further showed that RBPs are associated &lithycle checkpoint
defects, genomic instability and cancdrlf. Thus, a comprehensive, mechanistic
understanding of a wide variety of cellular processes reguihe identification of
RNA-binding proteins and RNA-binding sites.

Identifying RNA-binding proteins and binding residues iseof treated as two
separate problems. Several classifiers dedicated forghiregiRBPs are developed by
employed support-vector machines (SVN2/£29,116. In some studiesd7, 116,
homologous sequences were not excluded from training d¢inges Performance
for most methods was not measured by standard measure ofemereoperating
characteristic (ROC) curve or the Matthews Correlation Caefiic(MCC). The only
reported MCC value for RBP classification is 0.53 for a sequérased SVM classifier
(5-fold cross validation on 134 RNA binding and 134 nonbigdproteins) 80] and
0.72 for a structure-based SVM classifier for a dataset of 78 RiNding proteins and
246 non-nucleic-acid binding proteins (leave-one-out) sl 7. The latter, however,
is unable to distinguish RNA binding proteins from DNA bindiproteins.

Separately, RNA-binding residues are predicted by empipgequence-based
[30, 118124 and structure-basedl117, 125-129 information. Sequence-based
predictors have employed a number of machine-learningatisstal techniques such
as neural-networkl[18, SVM [30,121-124], and a naive Bayes classifiet]9 120.

Structure-based predictions, on the other hands, religghtaines built on electrostatics,
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evolution and geometric informatio 17,125, accessible surface and contact network
topology based on SVM and naive Bayes classifig2§] linear-regression analysis of
structural neighboring information combined with sequepoofiles L27], secondary
structure, solvent accessibility, sidechain environmieé¢raction propensity and other
features with a random forest methd®f, and a simple propensity-based technique
[129. The best reported MCC values are between 0.47-BB11P7, 128 for both
sequence and structure-based techniques.

One issue facing binding-site prediction is that it will @it RNA binding sites
even for the proteins that do not bind RNA. In this work, we widict RBP and RNA
binding site within a single method. This method is based @acantly developed
approach31,32] that was successfully employed for identifying DNA-bindiproteins
and binding sites. In this approach, protein structuresimwin protein-DNA complex
structures are employed as templates and structurallyedigo the target protein
structure. If structural similarity between the targetisture and a template is observed,
the predicted protein-DNA binding complex structure isfaomed by the prediction of
protein-DNA binding affinity.

Here, we will extend this structure-based approach by deusy a
distance-dependent knowledge-based energy function riieip-RNA interactions.
Only a few knowledge-based energy function for protein-RN#eiactions have been
developed so farlf30, 131]. Here, we will build the statistical energy function based
on a distance-scaled, finite, ideal gas reference (DFIREg,Stdtially developed for
proteins B3,68,69 and subsequently extended to protein-DNA interacti@2s52,53].
This new energy function, together with a measure of redasitructural similarity
by Z-score makes an accurate domain-based prediction of BihNding proteins and
binding residues. The Mathews correlation coefficientsRNA binding domains and
RNA-binding residues are 0.56 and 0.71, respectively, farge benchmark of 212
RNA-binding and 6761 non-RNA-binding domains. The accurddtii®@new technique

is further validated on 213 DNA-binding domains (negatjvasd 75 unbound APO
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structures (positives) and applied to uncover RNA-bindimgtgins from structural

genomics targets.

4.2 Methods

4.2.1 Datasets

RB250: Template library of RNA-binding domains. A template library was built by
querying the PDB (July 2009 release) to retrieve all prefA complex structures
determined by X-ray (resolution better than&)0The resulting 419 complex structures
were split into chains and the chains are further divided mhbmains by using an
automatic domain parser program called DDOMAIN3E (with the parameter set
that mimics SCOP annotatioi33). These domains were further clustered with a
sequence-identity cutoff of 95% with BLASTClust34. One representative was
randomly selected from each cluster. There is a total of 2pdesentative domain
structures with at least 40 amino acides long and at leasdi@ues contacting with 5
or more RNA bases. A protein residue and a RNA base are condidemntact if
the shortest distance between any pair of heavy atoms frem ik within 4.9 These
representative structures (RB250) form the template lifi@rgredicting RNA-binding
proteins and binding sites.

RB212: Non-redundant RNA-binding domains. We further obtain a non-redundant
RNA-binding domains by using BLASTClusi 34 at a 25% sequence identity cutoff.
There is a total of 212 domains (the RB212 set).

NB6761: Non-RNA-binding data set.A non-redundant set of 8770 protein structures
was obtained by using PISCE335 with a 30% global sequence identity cutoff, a
resolution better than® and a chain length cutoff of 40 amino-acid residues. We
removed those chains whose function is associated with RiN&itig and whose
PDB records contain the key words "RIBOSOMAL”, "UNKNOWN FUNCTND
and "RNA” by searching in the title. The remaining 6699 chawere divided into
domains with DDOMAIN [L3Z and clustered with a sequence identity cutoff 25% by

BLASTClust [134. One representative was randomly selected from eachecluBhe
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final dataset contains 6761 protein domains that do not lgnBNA (NB6761). We
emphasize that DNA-binding proteins are not excluded frioidataset.
APO75/HOLO75 dataset. To examine the effect of binding induced conformational
changes on the accuracy of predicting RNA-binding proteiresestablished a dataset
with both bound (HOLO) and unbound (APO) structures. Wetathwith the set
of bound structures (RB250) and performed BLASIB4 search for the sequences
homologous to the sequences in RB250. We selected those hyooslsequences
whose protein structures do not contain RNA. These unboun@® Afuctures are
partitioned into domains by using the DDOMAIN progradBp. An all-against-all
sequence alignment between the APO domain set and the HOb@idaset from
RB250 was performed by employing the ALIGNO program from th&FA2 package
[136. The alignment yielded 869 pairs with sequence identitgvab45% that are
further culled by excluding redundant sequences with atigeoutoff of 30% and
removing the structure with lower resolution. The final sentains 75 APO domains
whose sequence identity ranges from 45% to 100% to theiesponding HOLO
domains. The majority (56 out of 75 pairs) are more than 858tieece identity. The
APO and their corresponding HOLO domain sets are labeledP8378 and HOLO75,
respectively.

DB213: DNA-binding protein database. To examine the ability to distinguish
RNA-binding and DNA-binding proteins, we also obtained a DNhiAding protein
dataset composed by 179 DNA-binding structu@g.[These DNA-binding structures
were divided into domains by DDOMAIN and clustered by BLASTSI{134] sets.
The clustered 232 domains were further reduced with a segudantity cutoff of 25%
to produce the final dataset of 213 DNA-binding domains (DB213

SG2076: Structural Genomics targets. A set of 2076 domains is obtained
from previously collected 2235 structural genomics taad82] by domain parsing
(DDOMAIN) and clustering (BLASTClust) with a sequence idgntutoff of 35%.

RNA binding domain supperfamily(RBD). RBD(RNA binding domain) or RRM(the

RNA-recognition motif) is the most abundant RNA-binding deman eukaryotes
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[137. For this domain,the mode of protein and RNA interaction asilMe. This
domain can modulate its fold to recognize many RNAs and prst& achive multiple
biological function L38. The dataset RRM was built to test the performance of
our method on annotation of RNA-binding proteins of RRM suppeify. The
dataset is obtained from SCOP supperfamly database. RRM $amigris devided
into 5 families:Canonical RRM, Non-canonical RRM, Splicing adU2AF subunits,
Smg-4/UPF3 and GUCT, which respectively contain 171 PDB, 4 PDBDB and

1 PDB. These PDBs are split into chains and then divided into @98ains. 280
domains blongs to canonical RRM family, 9 domains are inclued hon-canonical
family, and others are contained into splicing factor U2ABunits, smg-4/UPF3 and

GUCT families, respectively.

4.2.2 Knowledge-based energy function

We employed exactly the same volume-fraction correctedREFEnergy function
that generated DDNA33P] to produce an DRNA energy function for protein-RNA

interactionUEﬁNA.

o Nobs(i,j,"”)
N e onr "< Teut,

7
_ le (i im
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. v . NS (3,9,7)
where the volume-fraction factof!(r) = = S VTG

number of pairs of atoms and j within the spherical shell at distaneeobserved

. Nops(1,7,7) Is the

in a given structure database,,; is the interaction cutoff distanceé\r.,; is the bin
width atr.,,, the value ofa (1.61) was determined by the best fit,of to the actual
distance-dependent number of ideal-gas points in finiteepresize spheres, the value
of 5 (0.4) was optimized for protein-DNA interaction37. We employ residue/base
specific atom types with a total 253 atom types (167 for prodeid 86 for RNA). We

cutoff interactions at 15 (7eue) With a bin width of O.Ef\(Ar) as for the protein-DNA
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interaction B2]. We also set the factoy arbitrarily to 0.01 to control the magnitude of
the energy score. The RB250 set was used to train the stdtestiesgy function (i.e.
to calculateN,,s(7, j,7)). To avoid overfitting, we employed the leave-one-out salem
to training multiple statistical energy functions for @ifent targets. For each target,
we exclude all template proteins whose sequence identttyettarget protein is higher

than 30%.

4.2.3 Prediction protocol

The protocol for predicting RNA-binding proteins and binglisites is as follows.
First, the target structure is scanned against those téespleith sequence identity
lower than 30% in the template library (RB250) by using the dtmal alignment
program TM-align 139. If the structural similarity score is higher than a threlsh
the protein-RNA complex structure is predicted by replading template structure
with the aligned target structure. Two structural similascores are employed: one
is based on the raw TM-Score and the other one is based onrg{&=e results). If
the lowest binding energy between the target protein anglEmRNA is lower than a
threshold and the structure similarity is higher than ashodd, the target is predicted
as a RNA-binding protein and its RNA binding site can be predi¢tom the predicted
protein-RNA complex structure. If no matching template isrfd to satisfy these two

thresholds, this target is predicted as a non-RNA bindingegmo

4.2.4 Performance Evaluation

The performance of the proposed method is measured byisgp$i6 N = T'P/(T P+
FN)], specificity [SP = TN/(T'N + FP)], accuracy AC = (TP +TN)/(TP +
FN +TN + FP)], and precision PR = TP/(T P + F P)]. In addition, we calculate

a Matthews correlation coefficient given by

VOO — TPx«TN—FPxFN (4.2)
/(TP + FN)(T'P + FP)(TN + FP)(TN + FN)
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Fig. 4.1: Distribution of the top TM-score-ranked temptate RB212/NB6761

Here TP, TN, FP and F'N refer to true positives, true negatives, false positives
and false negatives, respectively. This performance meaisuapplied to both

binding-protein prediction and binding-residue predioti

4.3 Results

4.3.1 Using structural similarity measured by TM-Score for discrimination

We first examine the ability of the structural similarity nseeed by TM-Score from
TM-align [139 for discriminating RNA-binding proteins from non-bindirgyoteins.
TM-Score is 1 for 100% structural similarity and around Ogivieen two random
protein structures. Fig4.1 shows the fraction of the target domains (binding or
nonbinding proteins) as a function of the highest TM-Scaenf its alignment to
the templates in the RB250 set, generated by the leave-onseti@me. 48%
binding targets (from RB212) but only 14% nonbinding targétsni NB6761) have
a TM-Score of more than 0.5 with at least one binding templgtden the threshold
of TM-Score is 0.58, 40% binding targets but only 3% nonhagdiargets have a hit
to a binding template. Increasing the TM-Score threshotthé&r reduces the fraction
of non-RNA-binding domains relative to that of RNA-bindingrdains. However, the

highest MCC value is only 0.29 at the TM-score threshold o20Thus, the structural
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similarity based on TM-Score alone has a weak ability torihsioate RNA-binding

proteins from non-binding proteins.

4.3.2 Using relative structural similarity measured by Z-Sore for discrimination

The structural similarity measured by TM-score between pratein domains with
significantly different sizes is normalized by the average.sThis structural similarity
will be small if the smaller target has a nearly perfect matcbnly a small portion of
the larger template (the binding region). To help remediaitesituation, we introduce
a relative structural similarity based on Z-score. For &gitarget whose TM-Score is

greater than 0.4 with a binding template, the Z-score ofttriget is defined as follows:

TM-Scorer — >, TM-Scorey; /n
Vo

Z-score=

(4.3)

where TM-Scorgr is the structural similarity score between the targeand a
RNA-binding templatel’, TM-Scorer; is the structural similarity score between the
templatel” and a reference structuien is the number of reference structures, and
o are the standard deviation of TM-Scere Here, we use the mixed binding and
nonbinding proteins (RB212 and NB6761) as the reference ategtind choose only
top TM-Score ranked structures & 6300) and exclude the structure pairs TM-Score
higher than 0.7 to avoid noises from irrelevant or high haygols structures.
TM-Scorer; ando for each binding template can be pre-calculated and stored.

Fig. 4.2 displays the fraction of target structures as a functionhef highest
Z-score from its structural alignment to binding templaté2% binding targets (from
RB212) but only 2.5% nonbinding targets (from NB6761) have aaresof more than 1
with at least one binding template. When the Z-score threlsk@, 20% binding targets
but only 0.01% (11) nonbinding targets have a hit to a bindémgplate. Increasing the
Z-score threshold further reduces the fraction of non-RN#dimg domains relative to
that of RNA-binding domains. The highest MCC value is 0.48 atdkscore threshold
of 1.4. Thus, the relative structural similarity based oscore alone is a substantially

better than TM-Score to discriminate RNA-binding proterws non-binding proteins.
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Fig. 4.2: Distribution of the top Z-score-ranked templadtasRB212/NB6761

4.3.3 Combined with the DRNA binding energy score for discrinination

To further improve the discriminative power, we calculdie DRNA binding energy
[Eq. (1)] based on the predicted complex structure gengr&tem structural
alignment of the target with the binding template. Using lg@ve-one-out scheme
on RB212/NB6761, we have optimized TM-Score and binding ajfitiitesholds to
achieve the highest MCC value by a simple grid-based seatahgiid for TM-score is
0.01. For the binding affinity threshold, we obtained thedstvenergy in all predicted
complex structures under different TM-score thresholdafgiven target. These energy
values are considered sequentially as the energy threshodchighest MCC is 0.49 for
the TM-score threshold of 0.60 and the energy threshold1®.3. The corresponding
accuracy, precision, and sensitivity are 98%, 77%, and 38%pectively.

Similarly, we can combine Z-score with the DRNA energy scord¥NA-binding
discrimination. With a grid of 0.1 for the Z-score thresholde found that the
highest MCC is 0.57 with the Z-score threshold of 1.2 and therggnthreshold of
—9.9. The corresponding accuracy, precision, and sergitare 98%, 91%, 36%,
respectively. It is clear that combining Z-score and bigdaffinity score substantially
improves precision (10%) and sensitivity (5%) without ahjiaug the accuracy (98%)

over combining TM-score and binding affinity.
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4.3.4 Methods Comparison

To further benchmark the performance of our approach, th€ RQGrves given by
various methods are shown in Fi§.2 PSI-BLAST [134 was performed with 4
iterations of searching against NCBI non-redundant protequence library. A target
is identified as a RNA-binding protein by PSI-BLAST if it has aast one template
from RB250 with an E-value higher than a specific thresholdI(ehkog all templates
with 30% or higher sequence identity to the targets). ThadésgMCC of PSIBLAST
is 0.41 with accuracy 97%, precision 54% and sensitivity 33Phis MCC value is
higher than the method based on TM-align but lower than thhodebased on Z-score
alone (0.48). The combination of Z-score with energy is tlosineffective in detecting
RNA-binding proteins. The combined technique can achieeaaanable sensitivity at

a very low false positive rate.

4.3.5 Teston APO75/HOLO75 datasets

The trained method (combined Z-score and binding affingyjurther benchmarked
on APO75/HOLQO75 datasets. For a given target, any templakese@quence identity
>30% was excluded from the template library. The number oftipegredictions are
31 for the APO set, and 32 for the HOLO set, respectively. €msnbers correspond
to a sensitivity of 41% for APO75 and 42% for HOLO75, companeth the value of
37% (78/212) observed in RB212. That is, using monomeric umbatructures leads

to 1% reduction of sensitivity.
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Table 4.1: Targets are predicted as RNA-binding on HOLO sehbuon APO set.
HOLO* /APQ®  TMyua® SeqlD! TMP® TMy/ Zyt? En” TMar® Zar? Ea*
2atwA2 /1hh2P3 0.95 47.9 2asbA3 0.66 1.4 -17.4 0.57 0.987-14.
1uvlA /1hi8B 098 96.2 2r7xA 043 12 -279 042 1.1 -259
2j03S /1ovyA 056 543 1lj2Mm 060 1.2 -59.3 046 1.1 -37.3

@, Targets from HOLO set, Targets from APO set, TM-Score between HOLO and
APO targets?. Sequence Identity between APO and HOLO target calculatéiPseq

in blast2.2;¢. Template for HOLO target. TM-score between template and HOLO
target;?. Z-score between HOLO target and templdteBinding energy of template
RNA-HOLO target complexi. TM-score of APO target and template; Z-score of
APO target and templaté&; Binding energy of template RNA-APO target complex;

A more detailed analysis on predicted results shows thaeé tisean overlap of
28 predicted positive results between the APO and HOLO seétsese predictions
agree because RNA binding only leads to minor conformatiomahges in these cases.
There are 3 correctly predicted HOLO targets but incorygutédicted APO targets as
shown in Tablet.1Three APO targets (some even with only small structurahgba
due to binding) have strong protein-RNA binding (lower thiae ¢nergy threshold) but
with borderline Z-score values (0.98.1 versus 1.2, the Z-score threshold). The result
suggests the need to further improve structural similangasure. Furthermore, there
are 2 correctly predicted APO targets but missed by HOLCetargrediction.One target
2bggB2 has Z-score 2.4 much higher than threshold 1.2 butanitbrderline energy
(-9.8 vs. -9.9, the energy threshold). Another HOLO target6h is missed which is
caused by technical reason because the sequence idertiityelnethe target and the

template is higher than 30%.

4.3.6 Binding sites prediction

The predicted binding complexes can be employed to infeRINA binding residues.
We define an amino-acid residue as a RNA-binding residue ifreayy atom of that
residue is less than 4135away from any heavy atom of a RNA base. Predicted binding
residues from template-based modeling can be comparedual dgnding residues.
For 77 predicted RNA-binding proteins from RB212, we achievB% in sensitivity,
96% in specificity, 93% in accuracy, 76% in precision, and2dat the MCC value.
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For predicted HOLO targets, we achieved 56% in sensiti@6#o in specificity, 92%
in accuracy, 65% in precision, and 0.56 for the MCC value. Fedigted APO targets,
we achieved 55% in sensitivity, 97% in specificity, 92% inwecy, 64% in precision,

and 0.56 for the MCC value.

4.3.7 Discriminate against DNA-binding proteins

We further examine the ability of our method to separate DdiAding from
RNA-binding proteins because they share common structealifes 117. We apply
our approach to the set of 213 DNA-binding domains. Only fdsfuA,1h38D2, 1zblB
and 1p7hN) out 213 targets are recognized as RNA-bindingim®t Two of these three
targets (1h38D2 and 1zbIB) are annotated as DNA/RNA bindioteprs 140 141]

4.3.8 Application to RRM superfamily

Appliation of this method was preformed on prediction of RNifsding proteins from
RRM superfamily. The trained thresholds (Z-score 1.2 andggned.9) was used.
250 (250/290) canonical family are predicted as RNA-bindingll of these 250
domains are RNA-binding domains.4 out of 9 non-canonicallfaare RNA-binding

domains,which are not recognized by our method. Other 5 d@mrae leucine-rich
repeat domains(LRR), which is required in cis to the RNP dom&n<TE RNA

binding [142 143. The remained domains that blong to Splicing factor U2ABsuits,

Smg-4/UPF3 and GUCT are predicted correctly.

4.3.9 Application to structural genomics targets

This method was applied to 2076 structural genomics don@insknown function.
Based on the same thresholds (Z-score of 1.2 and energy dthatYielded the highest
MCC on the leave-one-out benchmark test of RB212/NB6761, weigiradotal of
25 targets as RNA-binding proteins (Talle?). Among them, 22 out of 25 (88%)

targets are putative RNA-binding proteins according to NCBiadations. One target
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Table 4.2: Structural Genomics targets (SG2076) predicaseRNA-binding proteins
Target Template TM-score Z-score Energy Putative Function

IvhyAl  2rfkA2 0.56 15  -140 RB
1nnhA  lasyA2  0.78 28  -135 RB
1nzjA  1lgaxAl  0.49 1.2 -16.8 RB
20ceA5  2ix1A4  0.65 1.4  -12.2 UK
2f96A 2alrB 0.57 1.4  -135 RB
2cphA  1fxIA2 0.70 1.3 -17.9 RB
3cymAl  2alrB 0.56 1.3 -11.9 RB
1tuaAl  1lecbA 0.68 1.4  -115 RB
2q07A2  1r3eA2 0.67 21  -10.9 RB
1yvcA  2bh2A1  0.72 1.8  -135 RB
1t5yA2  1r3eA2 0.77 28  -15.3 RB
3go5A2  2ix1A4  0.68 15  -13.7 RB
2k52A  2ix1A4 0.63 1.3 -12.4 RB
1zkpA  2fk6A 0.78 23  -15.9 RB
1X40A  2f8KA 0.62 1.3 -10.8 uB
20gkD 1jj2D 0.62 1.8  -255 RB
2cpfA  1fxIA2 0.74 15  -12.0 RB
lyezA  2bh2A1  0.69 1.6  -14.9 RB
2e5hA  1fxIA2 0.74 15  -13.3 RB
3frnA3 1jj2J 0.51 1.2 -20.4 UK
2jz2A 1jj2P 0.59 1.3 -335 UK
3ir9A 1rlgB 0.56 1.2 -115 UK
3hp7Al  1h3eA2  0.63 1.4  -125 RB
1wieA  1fxIA2 0.70 1.3 -17.6 RB
1wdtAd  1figl 0.55 1.4 -29.7 RB

@, Targets are annotated as having putative functions cetatBNA binding in the
NCBI database’. Function unknown¢. Non-RNA binding

56



1x40A has phosphorylation site and may have the putativetiitmrelated with protein

binding. The function of the remaining two proteins is unkno

4.4 Discussion

In this study, we developed a new approach to predict RNAibmgroteins and
binding sites simultaneously. This approach is based dasinsuccessful approach
employed for predicting protein-DNA binding proteins wistructural alignment to
known complex structures followed by evaluation of bindegnity [31, 32]. The
main distinction in this paper is the employment of Z-scasther than TM-Score
to measure structural similarity and development of astaéil energy function for
protein-RNA interaction based on a volume-fraction-caeddFIRE reference state
[32]. The proposed technique is able to identify RNA-bindingteios with low
sequence homologyB0% sequence identity) but have high structural similainty
binding regions to known RNA-binding proteins. More impaittg, the majority of
HOLO structures (28 in 32) detected for RNA-binding contsde be classified as
RNA-binding when APO structures are employed. The reductibsensitivity in
detecting binding proteins from 75 HOLO to APO structure2% (from 41% and
43%). Furthermore, its successful application to stratgenomics targets (23 out of
25 predictions are annotated as putative RNA-binding pnejeionfirms the usefulness
of the proposed method. This method is applicated to reeegRNA-binding proteins
from RRM supperfamily. The result indicates that this methas the strong ability to
detect the proteins with canonical binding domains but iakven the recognition the
proteins with non-canonical binding domains. Since thithoe is template-dependent,
the fold of non-canonical domains is novel and fails to fireltdmplate with the similar
fold. The structural comparison results show that the Thks@nd Z-score of these
domains are ranged from 0.40.59 and 0.120.87, respectively.

The employment of Z-score, rather than TM-Score, to meastmectural
similarity is because the TM-score for aligning two protsiructures with significantly

different sizes strongly depends on how the TM-score is atimed. Z-score provides a
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simple way of removing size dependence through a normalizat standard deviation
of TM-scores against reference structures of mixing RNAdlnig and nonbinding
proteins. Z-score alone yields a respectable MCC value & antl its combination
with the DRNA energy function leads to the MCC value of 0.57. Bynparison,
TM-score alone only achieves a MCC value of 0.29. We have chaseut 9/10
top-ranked TM-scores ( 6300 values) and removed the TMesclarger than 0.7 to
calculate average and standard deviation of TM-score favengemplate. This was
an optimized value in order to reduce noises from irrelevamndom reference and high
homologous structures. The MCC value reduces somewhat ®i0dl structures
(RB212+NB6761) are employed as reference structures in adiloglZ-score.

Another change in RNA-binding protein prediction from DNAsing protein
prediction is the use of binding domains as templates. Weaddhbat if whole chains
are employed as templates and targets (i.e. the datasets gioRBitl NB5667), the
highest MCC values are 0.39 for the combined use of TM-ScodelCHRNA energy
score and 0.47 for the combined use of Z-Score and DRNA eneay s The latter
has an accuracy of 98%, a precision of 87%, and, a sensit¥i6%. Compared to
the domain-based prediction, the employment of domairdslem9% improvement in
sensitivity without changing accuracy and precision. Tesult is consistent the fact
that other methods such as phylogenic analysis and protetdeling work best for
single domainsi44.

It is difficult to make an exact comparison with existing miaehlearning based
techniques because we have used a significantly large detalbanon RNA-binding
proteins for training and leave-one-out cross validatiofhis mimics the realistic
situation that RNA-binding proteins are only a small fraotwf all proteins. Existing
machine learning techniques are typically trained on equasimilar number of
RNA-binding and non-binding proteins. It is possible thaist methods would have
substantially higher false positive rates when they wergliegh to a significantly
larger set of non-binding proteins most of which are unsegmmiachine learning

techniques. Nevertheless, we have achieved a comparablevslGE of 0.57 with the
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largest nonredundant set of RNA-binding proteins and nahbgproteins (including
RNA-binding ones), compared to 0.53 for a sequence-basadifoda (5-fold cross
validation on 134 RNA-binding and 134 non-RNA binding progif30] and 0.72
for structure-based classifier for a database of 76 RNA bggiroteins and 246
non-nucleic acid binding proteins, leave-one-out test}hei latter is unable to separate
RNA from DNA binding proteins117].

One advantage of the proposed structure-based methodukan®ous prediction
of protein-RNA complex structures. The predicted complexcttres allow prediction
of RNA binding residues. High specificity and accurae90%) are achieved for
binding residue prediction even for the APO structures. R@C values for binding
site prediction range from 0.71 for leave-one-out crossdatibn, 0.56 for HOLO
targets and APO targets. These results can be compared tesheeported MCC
values between 0.47-0.51 for sequence and structure-b@sdohg site prediction
[30,127,128,.

One potential concern is insufficient statistics due to thalsnumber of complex
structures for deriving the DRNA energy function. Howeversraaller dataset of
179 protein-DNA complexes was employed for obtaining theNAB energy function
for protein-DNA interaction and its robustness is found vaaious tests32]. Here,
we have addressed this question by employing the leavesonéor RB212 sets)
technique. The consistency between the leave-one-out &@/AOLO test sets
provides the confidence about the energy functions obtained

One possible way to improve our prediction is to introducesaargy threshold
that is dependent on structural similarity threshold beeaane expects that the
binding-energy requirement should be stronger for lesdlairstructures but weaker
for highly similar structures between template and quemeviBusly, we found that
introducing a TM-Score dependent energy threshold makgsfisant and consistent
improvement in predicting DNA-binding protein3d]. Here, we found that introducing
TM-Score dependent energy threshold does lead to an ircoddise MCC value from

0.49 to 0.52. However, an Z-Score dependent energy thidétedls to no significant
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change (0.5690 versus 0.5694). Thus, we employed two imdiepe (Z-score and
energy) thresholds only in this work.

The success of our proposed technique is limited by the avéily of
protein-RNA complexes as templates. It cannot predict RN#dibig proteins with
novel structures or binding modes that are not includedariemplate library. We have
used DB250 based on 90% sequence-identity cutoff as teniiegey for the purpose
of maximizing available templates. The low sensitivity {32%) in various tests is
likely in part due to lack of structurally matching tempkat®©n the other hand, binding
induced conformational changes suggest that the rigig-lapgroximation employed
here likely has limited the performance of DRNA to discrinigahe binding from
nonbinding proteins. How to improve our method by incorpiagaprotein flexibility is
a challenging problem to be addressed.

Compared to our corresponding method for DNA binding pratethe present
work indicates that RNA-binding proteins are more difficatgredict. In particular,
sensitivity is more than 50% for predicting DNA-binding pgms, compared to about
35% for RNA-binding proteins. This is likely due to highly fible and diverse RNA
structures 145 compared to DNA structures. More diverse RNA structure$ ivdd
to more diverse protein structures to bind them. The latiéirbe more difficult to
detect by structural alignment to a limited number of ergtRNA-binding template
structures that is similar to the number of available tetepéructures for protein-DNA

interactions.
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Chapter 5 Highly accurate and high-resolution function prediction of RNA

binding proteins by fold recognition and binding affinity pr ediction

Abstract

A full understanding of the mechanism of post-transcripdiaregulation requires more
than simple two-state prediction (binding or not binding) RNA binding proteins.
here we report a sequence-based technique dedicated flictprg complex structures
of protein and RNA by combining fold recognition with bindiradfinity prediction.
The method not only provides a highly accurate complex sireqrediction (77% of
residues are within 4 RMSD from native in average for the irtelent test set) but
also achieves the best performing two-state binding orbinding prediction with an
accuracy of 98%, precision of 84% and Mathews correlati@ifment (Mcc) of 0.62.
Moreover, it predicts binding residues with an accuracy4%o8precision of 66% and
Mcc value of 0.51. in addition, it has a success rate of 77%edlipting RNA binding
types (MRNA, tRNA or rRNA). We further demonstrate that it makese than 10%
improvement either in precision or sensitivity than PSi-BB7A Remmert2012 and our
previously developed structure-based technique. Thisioge¢xpects to be useful for
highly accurate genome-scale, high-resolution prediaiioRNA-binding proteins and

their complex structures

5.1 Introduction

Significant new interest in RNA-binding proteins (RBPs) areultesl from the
discovery and characterization of microRNAs in post-traipsional regulation and
the implication of RBPs in many human diseases including HIW& cancer, and
neurodegenerative disorderslf. RBPs are encoded in large number (thousands)
because their diversity appears to increase during ewoluti post-transcriptional
machinery and the increase in number of introns. Despiteheir timportance,

many of these RBPs are yet to be uncovered and/or characterZethputational
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prediction methods are therefore essential as initialsstepfunction annotation and
characterization.

Function prediction for RBPs can be roughly classified intor feavels of
resolutions with different levels of details (low, mediumgh, and the highest). The
first low level of prediction is a simple two-state classifioca of binding or non-binding
to RNA. The next medium level is the location of RNA binding cess of RBPs.
A high resolution prediction is to predict the RNA type thaé tRBP would bind.
This prediction would provide further deeper understagdinthe RBP function. The
highest resolution will involve the prediction of the adtbanding RNA sequence and
its binding complex structure with the predicted RBP.

Most computational methods developed so far attempted tecdethe
sequence homologous and/or evolutionary relationshiwdsat un-characterized and
characterized proteind46,147. The principle of these methods is that homologous
sequences have the same biological function. However,thess half of identified
proteins are anotated even with help of sequence homolbg§.[ Morover, many
proteins have hidden function of RNA binding4, 15]. Thus, it is necessary to develop
sequence-based techniques that can detect function siynitathe absence of high
sequence homology to known RBPs.

Several sequence-based classifiers for RBP prediction a&d basupport-vector
machines (SVM) and limited to the low resolution predictairbinding or non-binding
proteins R7-30, 116 149. Early studies 27, 116 did not exclude homologous
sequences from training or testing. Moreover, all theshrtiegies were trained and
tested in a balanced set with equal number of positive (RBPhagdtive (Non-RBP)
data setsg8-30,149. The reported Mathews correlation coefficient value for RBP
classification is 0.53 for a sequence-based SVM classifiéol@bcross validation on
134 RNA binding and 134 non-binding protein§0[ and 0.72 for a structure-based
SVM classifier for a dataset of 76 RNA binding proteins and 246-nucleic-acid

binding proteins (leave-one-out tesf)1[7/]. The performance of these techniques for
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such a balance set likely becomes worse when applied to avogll situation where
RBP is about 15% of all proteins.

Other methods make medium resolution prediction of RNA lnigdesidues (or
binding sites) directly based on either sequence-b&3@@4, 102 118-120,122-124
or structure-basedL[L7,125-129 information. The best reported values for Mathews
correlation coefficient are between 0.47-0.80,[127,128. One issue associated with
these techniques is that they will predict RNA binding sitesnefor the proteins that
do not bind RNA.

This work is inspired by our structure-based prediction bfCand RNA binding
proteins [SPOT-Struc (DNA)32], SPOT-Struc (RNA) 34]]. We found that structural
alignment to known protein-RNA complexes coupled with bingdassessment with a
statistical energy function based on distance-scalecfidéal gas reference (DFIRE)
state yields a highly accurate (98%) prediction of RBPs withasonable sensitivity of
36% and Mathews correlation coefficient (MCC) of 0.57 for addbgnchmark of 212
RNA binding and 6761 non-RNA binding domains (leave-one-oos€ validation). Its
applications on additional APO and HOLO benchmarks anditral genomics targets
yielded consistent accuracy and/or sensitivity.

This structure-based technique, however, has a limitedicapipn because the
structures for the majority of proteins are unknown. Thecssgs of this structure-based
technique motivates us to develop a sequence-based taehbygcoupling structure
prediction with binding prediction, an approach provencessful for protein-DNA
binding prediction 85]. Here we perform structure prediction by using the latest
version of our fold recognition technique called SPARK¥][that are among the best
performing single automatic servers in several criticabasment of structure prediction
(CASP) meetings (CASP 6, CASP 7 and CASH9]). While many template-based
structure prediction methods exist, the coupling betwedsh fecognition and binding
affinity prediction provides the first dedicated high-regioin function prediction for

RBPs.
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The new technique, called SPOT-Seq, is initially trainedd aralidated
(leave-one-out) on a dataset of 174 RNA-binding proteinrchand 5778 non-binding
protein chains, so that it can compare to other methods. SF¥QTachieves the
highest MCC value of 0.61, when compared to Altschul1997, dbkamonly used
sequence-to-profile homology search techniql@4 (MCC=0.48), Remmert2012,
a profile-profile fold-recognition technique based on thedden Markov model
[108 (MCC=0.50), SPARKS X fold recognition methodtq] (MCC=0.57), and
the structure-based prediction technique (SPOT-Struc, MIC853. More than 10%
improvement in either sensitivity or precision or both abserved. Further expansion
of test and training sets (431 RBPs) and template libray (116dirfg domains and
chains) confirms the MCC of 0.61, accuracy of 98%, precisionddb, and sensitivity

of 50%.

5.2 Methods

5.2.1 Function Prediction Protocol

The method proposed here is similar to the structure-basahique called SPOT-Struc
(RNA) developed by us34] excepted that the structure is predicted by fold recogniti
technique called SPARKS X4f)]. The flow diagram is shown in Figh.1

First, we perform fold recognition between the target seqaeand templates
in the template library of RBPs by SPARKS XM9]. Our template library is built
on a collection of RNA binding and non-binding proteins (sedol). SPARKS
X [49] attempts to match the squence profile of the target sequéyeeerated
from Altschul1997 134 and predicted one-dimensional structural profiles (sdaon
structure, solvent accessibile surface area and backloosiert angles from SPINE
X [50Q]) to the corresponding profiles of the template structurehia library. The

sequence-structure matching score is measured by Z-Stemew

Si - Smean

o

Z-score= (5.1)
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Fig. 5.1: The flow diagram of the sequence-based functiodigtien of RBP.
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Wheres; is the alignment raw score between target and templatelS,,,.., ando are
the average raw score and the standard deviation for alllédesp Typically, a Z-score
of higher than 6.0 is considered as a significant template hit

If the Z-score for any of RBP templates is higher than a threkhol be
determined, a complex structure of the target protein amiplate RNA is built
by replacing template protein sequence with target proseiquence based on the
sequence-to-structure alignment from SPARKS X. For thidystthe gap region is not
modeled for simplicity.

Using the complex structure of model target structure amgbtate RNA structure
we can estimate the binding affinition according to a sia@iktenergy function
based on the distance-scaled finite ideal-gas referente[38 that was extended to
protein-RNA interaction (DRNA)34]. In this work, we made no changes to the DRNA
energy function. However, the binding affinity is evaluatéith mainchain atoms and
Cs atoms only to avoid the need to build sidechains in thisahiievelopment of the
technique. If the binding affinity is higher than a to-beeatatined threshold, the target
protein is predicted as RNA binding and its complex structnoelel serves as the basis
for the high-resolution prediction of RNA binding functioRor convenience, we shall

label our method as SPOT-Seq.

5.2.2 Template Library

For comparison, we initially employ both binding and nonéing chains are from
the structure-based method SPOT-Struc. (RN34].[ These 225 high-resolution
RNA-binding protein chains are protein-RNA complex struetur(the July 2009
release). They are divided into domains according to SCOBtations 33 or by
automatic technique called DDOMAINLBZ if SCOP annotations are not available.
A domain is RNA-binding if it has at least 5 amino acid residudmse heavy atoms
are within 4.8 from any heavy atoms of nucleotide functional groups. Reldmay
in resulting domains is removed by using BLASTClust with 95%usnce identity

cutoff [134]. This leads to 255 domains as binding templates. To inersassitity,
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both original chains and domains are included in our tereplidrary and lead to
a final template library of 355 RNA-binding protein structutemplates (RB-T355).
Non-binding templates are from the nonbinding protein-domsets of 6761 domains
obtained previously based on 25% sequence identity clBdff We only include the
original chains into the template library with a 25% sequeidentity cutoff. The final

number of templates after a 25% sequence identity cutoff6&FNB-C5765).

5.2.3 Cross Validation Datasets

RB-C174 and NB-C5765: We built a leave-one-out cross-validation data set of
RNA-binding sequences by removing redundant sequencess#aqiences contained
in RB-T355 with BLASTClust 34 at a sequence identity 25% cutoff. A total of 174
sequences (RB-C174) remained. Only full chains (not domaRB){174 for positive

and NB-C5765 for negative sets) are employed for cross vaditat

5.2.4 Expanded Template Library and Independent Test Set

The above template library was based on high-resoultioayXstructure (ﬁ or less)
on July 2009. To examine the effect for an expanded tempilatary and provide
an independent test set, we downloaded all pdb structuesctintains RNA on
April 1, 2011. After removing the structures contained ie template library, we
obtained 1027 complex structures that are separated iaioshnd domains according
to SCOP or DDMAIN classifications. After removing domains twiess than 60
residues or having less than 5 binding residues and redtiddarains with more than
95% sequence identity by BLASTClust, we obtained 612 domairaldition to 255
domains previously obtained. Both domains and their reg@echains are included in
our new expanded library with a total of 1164 templates idicig RB-T355. We shall
label this library as RB-T1164.

There are a total of 566 chains contained in the new tempiatary. These
sequences are clustered with BLASTClust at a sequence gehf6% cutoff among

themselves and the squences contained in RB-C174. This leaas itudependent
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test dataset of 257 chains (RB-IC257). However, this indepanest set cannot be
considered as representative because it contains botlahdlow resolution structures.
Thus, we randomly divide RB-C174 and RB-IC257 into two equal sefd 6fand 215
chains, respectively (RB-C216 and RB-C215). One will be used faf fraining and

one for final testing.

5.2.5 Performance Evaluation

The performance of the method is evaluated by sensitiity [= TP/(TP + FN)],
specificity [SP = T'N/(T'N + FP)], accuracy AfC' = (TP +TN)/(TP + FN +
TN + FP)], precision PR = TP/(TP + FP)], and Matthews correlation coefficient
(MCC)

Ve — TP+ TN — FP« FN 5.2)
/(TP + FN)(T'P + FP)(TN + FP)(TN + FN)

Here, TP, TN, FP, F'N refer to true positives, true negtives, false positivesfaisk

negtives, respectively. A MCC value provides an overall sssent of the method
performance with 1 for perfect agreement. One should natestnsitive can also be
called as coverage of true positive prediction while piieaiss fraction of corrected

predictions in all positive predictions.

5.2.6 Other Methods and Threshold Optimizations

PSI-BLAST is employed for searching homologous sequences#nching against the
NCBI non-redundant sequence library for four iterations. ta@aget has at least one
template from RB-T355 with an E-value lower than a to-be-aeieed threshold, the
target is considered as a RNA-binding protein. Any templatsng>30% sequence
identity with the target sequence is removed. The threseagdtimized by maximizing

the MCC value.

68



SPARKS X is a method without the steps for building the comgkexcture and
prediction of binding affinity in Fig5.1 Z-Score threshold, optimized by maximizing
the MCC value, is 7.

To assess the ability to detect RNA-binding proteins of SPARK $elative to
other fold-recognition methods, we employed Remmert2012nasxample because it
is one of the best fold-recognition techniques in CA3Pg. Remmert2012 version
1.5.1 was downloaded from http://toolkit.tuebingen.ndegRemmert2012/. PSSM
generated from Altschul1997 were used to search NR databagenerate multiple
sequence alignment and profiles. Default parameters,regpéind scripts were used to
generate HMM profiles for both targets and template protéesalso tested the option
-mact’ and results are essentially the same. Probablity wed as a significant score
in the prediction.

Two thresholds of Z-score and binding affinity for SPOT-Segq. ( SPARKS
X+DRNA) are optimized by a grid-based search for the higheGQWalue. The grid
is 0.1 for Z-score. The binding affinity threshold is obtalri®y considering the lowest
energy value at different Z-scores of a given target. Foptlediction of RNA-binding
proteins, the Z-score threshold is 6.6 and the energy tbleésk —0.28. For the
expanded template library (RB-T1164), the Z-score thresiwld0 and the energy
threshold is—0.57, respectively. This was optimized based on the datd$B-C174
and NB-C5778. A larger template library leads to stricter @ars@nd energy thresholds
to prevent false positives, as expected. The same threshmddapplied to independent

test set of RB-1C257.

5.3 Results

5.3.1 Low Resolution Two-State Prediction

Leave-one-out cross validation Fig. 9.2 compares the performance of PSI-BLAST
[134], fold recognition method Remmert201208, SPARKS X |9], structure-based
method SPOT-Struc (RNABH] and SPOT-Seq. from this work by the leave-one-out

cross validation. The results are also quantitatively saned in Table5.1 based on
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o P ——— ' Fig. 5.2: True positive rate versus false
positive rate as given by
Altschul1997 (Green, dashed
line), SPOT-Struc (Magenta),
Remmert2012 (Blue, dashed
line), SPARKS X (Blue, Solid
line), and SPOT-Seq. (Red,
dashed line for the RB-T355
template library and solid line
for the RB-T1164 template
library) for the low-resolution
two-state prediction (binding vs.

0.5

e
S

True Positive Rate
o
w

o
»

0.1

YT no binding).

False Positive Hate.

0 0.005

Table 5.1: Methods comparison for predicting of RNA-bindprgteins

Method Sensitivity Accuracy Precision MCC
PSI-BLAST* 33% 98% 70% 0.48
Remmert2012 44% 97% 60% 0.50
SPARKS X 45% 98% 75% 0.57
SPOT-Struc (RNA) 35% 98% 94% 0.56
SPOT-Seq (this work) 45% 98% 85% 0.61

@ Sequence-based methddstructure-based method.

thresholds optimized for the highest Mathews correlatiogfficient. These results
are obtained by taking one chain sequence from either RB-C1' NBe€5765 and
predicting whether it binds or does not bind to RNA. This laugdalanced dataset
with 3% binding sequences is employed to mimic real sitmatbere binding proteins
are a minor portion of all proteins. Tabel indicates that SPARKS X improves 12%
over PSI-BLAST in sensitity and 5% in precision with similavél of accuracy. On
the other hand, SPARKS X improves over Remmert2012 mostly ecigion (15%)
at similar level of sensitivity and accuracy. without siggant changes in accuracy
and precision over Remmert201P0. The structure-based technique (SPOT-Struc),
although has a much higher precision than the fold-recmgniechnique (SPARKS X)
(94% versus 75%), but with a significantly lower sensiti(i85% versus 45%). This
reflects the results obtained by optimizing MCC values. bhtition of binding affinity
prediction further improves the precision from 75% in SPARK® 85% in SPOT-Seq

without much change in sensitity or accuracy.
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Table 5.2: Examination of 44 SCOP folds shared by both RNAibm¢RB-C174) and
nonbinding (NB-C5765) proteins.

SCOP Dataset SPARKS X SPOT-Seq
Fold ID (RB/NB) (RB/NB)  (RB/NB)

d.58 14/70 4/1 11/1
b.40 11/39 2/0 1/0
c.26 9/18 8/0 7/0
a4 9/96 1/2 2/4
b.34 8/21 2/0 2/0
g.41 6/5 1/0 1/0
d.104 6/1 3/0 6/0
c.55 6/62 3/3 4/0
e8 5/3 2/0 2/0
d.79 5/10 1/0 2/0
d.50 4/3 2/0 3/0
b.121 4/26 0/0 0/0
d.52 3/5 0/0 0/0
d.41 3/5 2/0 3/0
d.14 3/10 0/0 0/0
b.43 3/10 2/0 2/0
a2 3/13 1/0 1/0
0.39 2/10 0/0 0/0
d.67 211 0/0 0/0
d.218 217 0/0 0/0
c51 2/6 0/0 0/0
b.122 2/3 2/0 2/0
alil8 2/40 0/0 0/0
d.157 1/8 0/0 0/0
dl 1/2 0/1 0/0
c.97 1/6 0/2 0/0
c.9 1/1 0/0 0/0
c.66 1/27 1/1 1/1
c.62 1/5 0/0 0/0
c.52 1/17 0/0 0/0
c.37 1/70 0/1 0/2
c.23 1/41 0/0 0/0
cl 1/136 0/0 0/0
b.82 1/28 0/0 0/0
b.46 1/1 0/0 0/0
b.44 1/1 0/0 0/0
b.38 1/4 0/0 0/0
b.2 1/23 0/1 0/0
a7 1/20 0/0 0/0
a30 1/3 0/0 0/0
al60 1/1 0/0 0/0
al56 1/2 0/0 0/0
alda 1/1 0/0 0/0
al37 1/7 0/0 0/0
Total 134/861 37/12 50/8
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Discriminating binding from non-binding within the same fold. According to the
Structural Classification of Proteins (SCORBf, there are 44 folds shared by both
RNA-binding and non-RNA-binding proteins in RB-C174 and NB-C5785.shown
in Table5.2, the majority (849/861) non-RNA binding proteins are filttlyy SPARKS

X while SPOT-Seq further reduces the number of false pestivom 12 to 8 and leads
to a very low false positive rate of 0.9%. At the meantime, $8@q increases the
true positive rate to 37% (50/134) from 28% (37/134) giverBBARKS X. The result
confirms that both fold recognition technique and energgudation contributes to the
power of distiguishing the RNA-binding proteins from nomdting one even within the

same fold.

5.3.2 Medium Resolution Binding-Residue Prediction

Predicted binding complexes between a target and a temigldéeallow us to infer
RNA binding residues for the target. We define an amino-acilve as RNA-binding
if any heavy atoms of the residue are less than54.5way from any heavy atoms of a
RNA base. For a few proteins, we found that it is necessaryrforpe crystal symmetry
operation to yield correct information on binding residu@& examine the accuracy of
binding-residue prediction by focusing on true positivedgiction of 78 proteins from
the leave-one-out test on RB-C174/NB-C5765. Compared to natibrig residues,
we achieved 53% in sensitivity, 85% in accuracy, and 63%aegeigion. The MCC value
is 0.47. This value is significantly lower than 0.72, the MC@eayiven by SPOT-Struc.
This suggests that structural alignment allows a betteeatien of RNA binding
regions than model complex structures, predicted by SPARK&IX to inaccuracy
of models predicted. In other words, SPARKS X improves ove©EBtruc in
sensitity of detecting RNA-binding proteins (low resolutiprediction) while reducing
the accuracy of predicting binding regions (medium resotuprediction). Fig.5.3
displays 78 MCC values (open circles) for the predicted bigdesidues as a function

of Z-score. Clearly, there is a trend that higher Z-scoregh(bhonfidence in the accuracy
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. 1 Fig. 5.3: Medium resolution prediction
| of RNA-binding sites. MCC
values for predicted RNA-binding
residues are shown as a function
] of fold recognition Z-scores.
Results of RB-C174 tested on
. small and expanded template
libraries of RB-T355 (open
circles) and RB-T1164 (closed
circles) are shown. The line from
linear regression is employed to
. illustrate the trend.
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for the model structure) leads to higher MCC values. Howeherg exist a few proteins
with poorly predicted binding regions when Z-scer&5

Fig. 5.4 shows two examples: one with a reasonable prediction ofirgnd
residues but the other with a poor prediction. For the humaasBrH1 (target
2gk9A,Fig. 5.4A), predicted (orange) and actural (magenta) RNA structaretocated
in similar locations, the predicted binding region (in Blug)also close to the native
binding region (in Red). The MCC value for the predicted bigdiasidues is 0.65
with a sensitivity of 97% and an accuracy of 93%. However,ptegicted and actual
RNA structures for the target A. fulgidus Piwi protein (PDBARytuB, Fig. 5.4B) are
different. The native structure binds with double helix RN#Aldhe binding residues are
represented as red, but the predicted structure based tampéate (3f73A) binds with
a single strand RNA that only partly overlaps with native RNAustitre. This leads
to wrongly predicted binding residues (in blue). This i®likcaused by the fact that

predicted protein structure (green) for 1ytuB is only a péthe actual native structure.

5.3.3 High resolution prediction of binding RNA types.

The next resolution level of function prediction is to predihe types of RNA that
binds to the target protein. We manually classified the tygdd2NA included in our
template library, according to the annotation of DAVILDB[] . In the template library

(RBT-355), 272 are annotated into 5 types of RNA-binding preteiThere are 189
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Fig. 5.4: Comparison between the predicted

(green) and actual (yellow)
complex structure for the target
2gk9A with RNA structures

colored in cyan for predicted and
orange for native RNA structure
and binding regions colored in
Red for native structure and Blue
for predicted structure. (A) Target
2gk9A predicted with template
1zbiB (sequence identity between
them is 13%). (B) target lytuB

predicted with template 3f73A3

(sequence identity between them
is 2.0%.)

Table 5.3: Mis-predicted binding types for tRNA, mRNA and rRk&ding proteins.

Native  Pred. | Native Pred.| Native Pred.
tRNA Type | mMRNA Type | rRNA Type
152U rRNA | 1yz9A - 1mzpA -
1mzpA - 2gxbB - 1yz9A -
1ytyA mMRNA | 20zbA tRNA| 2bh2A tRNA
2i82A  rRNA | 2rfkA tRNA

3bt7A  rRNA

binding with tRNA, 148 binding with rRNA, 47 binding with mRNA 52binding with

synthetic RNA and 7 binding with SRP RNA. Because some RNAs have than one

function, the total number of invovled protein is less tha@mmumber of RNAs grouped

according to function.

The ability of our method to predict the type of binding RNA isaenined by

analyzing 78 true positives (RNA-binding domains). Thesé&RRA\-binding domains

contain 48 tRNA-binding proteins, 34 rRNA-binding proteird) mRNA-binding

protiens, 3 synthetic RNA-binding protein, 3 SRP RNA-bindingtpins. If we use

the template RNA in the predicted complex structure to ptddie binding RNA type

for the target protein, we achieve success rates of 90% &% 8 tRNA, 91% (31/34)

for rRNA and 70% (7/10) for mRNA. Tableb.3 listed all mis-predicted RNA types.

They are betweeen tRNA, rRNA and mRNA.
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5.3.4 The highest resolution: Protein-RNA Complex Structue

To examine the quality of predicted structures, we used Tddr&from TM-Align [139

to compare the native and predicted structures which is pdofect agreement and
about 0.2 between two random structures. For 78 correalyigied targets, the average
TM-Score is 0.73. One can also measure the structure sityilay the fraction of
residues in model structure has an root-mean-squred des{@&@MSD) of A or less.
We found that the medium value is 72%. We found that one stredor the target
2j035 (50S ribosomal protein L31) was predicted poorly (Bebre<0.4 and only
22%residues has RMSE 4,&). This large error in predicted structure is caused by
the non-globular shape of the native strucure (a small S8uesrotein with a radius
of gyrate 23.4\). We further found that the structural accuracy of bindiegions are
higher than that of whole proteins. For example, the bindaggons of 15 targets have
more than 95% residues with RMSBA. By comparison, only 8 targets satisfies the
same criterion for the whole protein.

As an illustrative example, Figs.4A showed the predicted and actual complex
structures with RNA for target 2gk9A (human Rnase H1). The tatedzbiB (Bacillus
halodurans RNase H catalytic domain) was located with a Zesob 18.0 and the
binding energy of-1.62. In this example, 50% aligned residues of native airect
and predicted structure has RMSD4A, much lower than the medium value of 72%.
This is largely due to a helix near binding region in the tesgl but only a coil in
the native structure. Yet, the binding region is reasonabbturately modeled based on
the proximity of blue and red colors (a MCC value of 0.65, a &ty of 97% and
an accuracy of 93%). This remote homologous template idifctehdespite of a low
sequence identity of 13.3%. In this example, the conforomadif RNA is also modeled
correctly. For Fig.5.4B, the only part of the targed. fulgidusPiwi protein (PDB ID#
1ytuB) is predicted. This part was predicted with a TM-Scdr@.@5. The sequence
identity between the target and template (3f73A3) is 2.0%.
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5.3.5 Discrimination against DNA binding proteins

We tested the ability of SPOT-Seq for separating RNA and DN#&linig proteins by
applying the method to the dataset of 250 non-redundant DNeirig proteins (DBPS)
collected by us previously3pP] We employed the thresholds for Z-score and binding
affinity obtained by optimizing the MCC value for RB-C174/NB-C5785nly 5 out

of 250 DBPs are predicted as RBPs. Among these 5 predicted RBRP$)dwee high
sequence identityX77%) with the templates and known for binding with both RNA and
DNA. The remaining target 1sfuA (the viral Zalpha domdib]]) is a remote homolog
of the template 2gxbB with a sequence idenitity of 27.1%.uAsivas also predicted
as RNA-binding proteins in previous structure-based st@dj; [This poxvirus protein

is E3L protein that has a Z-alpha motif similar with ADAR1 (dberstranded RNA
adenosine deaminase) which is known to bind with Z-RNBZ 153. Thus, there is

no false positive from DNA-binding proteins.

5.3.6 Effect of the Expanded Template Library

Table 5.4 examines the effect of the expanded template library atcait fevels of
prediction resolutions. It is clear that expanding tengl#irary from 355 to 1164
protein domains and chains improves sensitivity from 46%6&6 at the expense of
reducing precision from 85% to 81%. The effect on the ROC ewan be found in
Fig. 9.2 SPOT-Seq with RB-T355 has a higher sensitivity (or true p@srate) only
at a very low false positive rate0.2%) while SPOT-Seq with RB-T1164 has a higher
sensitity at low to moderate false positive rates. The dvst@C value increases from
0.61 to 0.66 due to the expanded library.

For binding residue prediction, expanding templates im@tmth precision (from
63% to 69%) and sensitivity (from 53% to 60%) with change touaacy. This leads
to an improved MCC value from 0.47 to 0.53. Flg3compared the MCC values as a
function of Z-Score given by different template librariéspanding templates reduce

the number of poorly predicted binding regions (MEQ€2) from 10 to 7.

76



Table 5.4: SPOT-Seq performance for an expanded tempbaseyiand an independent

test
Resolution T355 T1164
Level Cl74 Ci174 C257 (C216 C21%
Two-staté
MCC 0.61 0.67 0.60 0.62 0.62

Accuracy 98% 98% 97% 98% 98%

Precision 86% 81% 82% 84% 84%

Sensitivity 45% 56% 45% 48% 47%
Binding Residué

MCC 0.47 0.53 0.48 0.50 0.51
Accuracy 85% 85% 83% 84% 84%
Precision 63% 69% 63% 66% 66%
Sensitivity 53% 60% 58% 59% 60%
RNA-type
tRNA 90% 67% 67% 62% 69%
(43/48) (46/69) (24/36) (33/53) (33/48)
MRNA 70% 82% 62% 73% 56%
(7/20)  (9/11) (24/39) (16/22) (15/27)
rRNA 91% 92% 91% 91% 96%

(31/34) (48/52) (61/67) (52/57) (54/56)
Complex Structure

TM-Score 0.73 0.69 0.66 0.66 0.66

RMSD(<4) 72% 78% 76% 76% 7%

# (Whole) 19% 16% 17% 15% 17%

#(Binding) 10% 33% 25% 29% 25%
“ The template sets of 355 and 1164 RBPs, respectitdlige target sets of C174 for
training and cross validation, C257 for independent testAGIw C257 are further
randomly separated into C216 for training and cross vabdedind C215 for
independent test.Performance on low-resolution two-state prediction based
Mathews correlation coefficient and othet$2erformance on medium-resolution
prediction of RNA binding residues based on Mathews colimiatoefficient and
others.© Success rate of the high resolution prediction of bound RNve$y(tRNA,
MRNA and rRNA): the fraction of correctly predicted RNA binditygpes in actual
number of proteins in that typé.The highest resolution of complex structure
prediction based on the average strutcural similarityes¢dM-Score), medium value
for the percentage of aligned residues in the model streetith RMSD < 4Afrom
the native structure, percentage of targets with 95% predliesidues within RMSD
<5 Afrom the native residues for the whole protein and bindiegjons only.
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The effect of the enlarged template library on predictioRdIA types is mixed.
There is a reduction of success rate from 90% (43/48) to 6784693 for tRNA,
improved success rate from 70% (7/10) to 82% (9/11) and urgdthsuccess rate [91%
(31/34) versus 92% (48/52)]. This large fluctuation suggtsit the dataset may be too
small to assess the accuracy of RNA type prediction.

We further examined the prediciton ability on the highessotetion of
protein-RNA complexes. We found that the average TM-scoredsiced from 0.73
to 0.69 while the medium value for the fraction of residueseaases from 72% to 78%.
This somewhat conflict result reveals the difficulty to cetesntly assess the quality of

predicted structures.

5.3.7 Independent Test on RB-IC257

Table 5.4 also displays the results of independent test on RB-IC257 basetihe
thresholds generated by the cross validation set of RB-C174B8B5 with the
template library of RB-T1164. Overall speaking, there is a e@hat reduction of
performance in the two-state prediction (the MCC value redutom 0.65 to 0.59).
The most reduction is in the sensitivity from 56% to 45%. Teiduction of sensitivity
is somewhat expected because the RB-IC257 set contains lovutresoX-ray
structures and NMR structures. The performance of bindésglue prediction for the
independent test set is also reduced in accuracy (2%),smwac6%) and sensitivity
(2%). The accuracy of predicted complex structures alsaedses somewhat
(TM-Score from 0.69 to 0.66 and the fraction of residues WRMSD<4A from 78%
to 76%. We hypothesis that the poorer performance for RB-1C2&y Ipe because it
was complited by including low resolution X-ray structur&d/ structures, and NMR
structures and recently solved structures.

To verify this hypothesis, we randomly divided to RB-IC257 and ®BF4 into
two independent sets of RB-C216 and RB-C215. We first employed RB-T2164
to train the thresholds and found that these thresholdslargical to those trained by

RB-C174/T1164. Then, we tested these thresholds to RB-C215. Shksrare shown
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in Table5.4. Indeed, we found that the result on RB-C216 and RB-C215 are easlgenti

the same with MCC values for the two-state prediction at Or&@lla62, respectively.

5.4 Discussions

In this paper, we describe the first technique that providediption of RNA binding
proteins at all four levels of resolution. At the low resabut level of two-state
prediction, its MCC value based on a large dataset of 216 mgnghroteins (or
independent 215 binding proteins) and 5765 nonbindingeprstis 0.62 (0.62). This
value is higher than 0.53, the best reported, sequencet&é®l classifier method
(5-fold cross validation on 134 RNA binding and 134 non-birgdproteins only) 30].
Its MCC values for the medium resolution prediction of RNAding residues [0.50
(0.51)] for RB-C216 (RB-C215) sets are for comparable to 0.47 gisethe same
SVM classifier B0]. More importantly, the high-resolution prediction of ding RNA
types and binding complex structures are highly reliablae Success rates are 62%
(69%) for tRNA, 91% (96%) for rRNA and 73% (56%) for mRNA for thensa
two sets, respectively. The average TM-score for predistactures are 0.66 (0.66).
One important feature of SPOT-seq is its ability to separdtéd from DNA binding
proteins. It yields zero false positions when applied to RBIA binding proteins.

We would like to emphasize that we have purposely testedrantetl SPOT-seq
in entire chains of proteins, rather than protein domaitss 16 to mimic the real-world
situation that in most cases, protein domain boundariesiskaown. SPOT-seq will
allow direct identification of RNA-binding domains from therget chain as it searches
for the best matching domain and/or chain from the templibsedry.

SPOT-seq has one obvious limitation. It relies on the aloditg of protein-RNA
complexes as templates. It will not be able to predict RNAdbig proteins whose
structures do not have a template in the template library leennits template in the
library is difficult to recognize. We have used the RB-T355 jbthat includes both
domains and chains with 95% sequence-identity cutoff ferghrpose of maximizing

available templates. The low sensitivity (46%) is in pareda lack of structurally
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matching templates. Although expanding the number of tateplfrom T355 to T1164
improves sensitivity, it reduces precision at the same tieause a low resolution
RBP structure will more likely make a false match to a non-bigdstructure. More
importantly, tripling the number of templates from 355 td641does not expand the
structural space as much. For example, In the RB-IC257 sete tuer 141 false
negatives that have 52 targets with TM-sco¥8.5 to the structures in T355. The
number of structurally similar templates only increase2Byto 76 targets when the
number of templates expands to 1164. It is clear that sigmifig more high-quality
complex structures of protein-RNA are needed with the carnegthod in order to
further advance the sensitivity and precision at the same. ti

The final precision of 81% based on optimized MCC values idylikeupbound
when applying to a genome because our test and validatiorosé&dins significantly
less binding proteins (216/5765 or 3.7%) than in a typicalagee (15%). In fact, for
the entire set of nonredudant set of (216+215) RBPs or 7.5%minding ones, the
precision is 91% with the same number of false positive jmete Thus, we expect
that application of our method for genome-wide predictiath iead to highly accurate
useful results.

Finally, one important advantage of this SPOT techniquesisgasonable speed.
For example, it only takes 1107 CPU hours (46 days) on a singleepsor PC to
scan about 7380 genes in yeast genomes. We will report tleesis in a separate
paper. A freely available, easy to use webservers is availab academic users at

http://sparks-lab.org.
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Chapter 6  Charting the unexplored RNA-binding protein atlas of the human

genome by combining structure and binding predictions

Abstract

Detecting protein-RNA interactions is challenging both exmentally and
computationally because RNAs are large in number, diverseeiftular location
and function, and flexible in structure. As a result, many RbAding proteins (RBPS)
remain to be identified. Here, we applied the RBP-predictiothote SPOT-Seq to the
human genome. In addition to cover 42.6% of 1,217 known RBPstated in the
Gene Ontology (GO) database, SPOT-Seq detects 2,418 novsl B8R of which are
poorly annotated in the GO database. The majority (98%) eféimaining predicted
novel RBPs shared specific GO molecular function terms withwknBBPs such as
DNA binding and zinc ion binding. The results of SPOT-Seq evardependently
tested by a recent proteomic experimental discovery of 8BINA binding proteins
(mRBPs). We achieved the coverage (or sensitivity) of 43.6%thfonan mRBPs,
similar to 42.6% for all RBPs. In particular, 291 predicted @loproteins (in 2418)
were validated by this mRBP set and the majority (70%) wereipiedl as mRNA
binding. In a more stringent set of 315 previously unknown RBFR&60 mRBPs that
excluded homology-inferred RBPs and any proteins annotatddarkeyword RNA
(not just RNA binding), 19% proteins are predicted novel RBP&is Tonfirms the
ability of SPOT-seq to go beyond homology-based bioinfdicsatools and uncover
truly novel RBPs. Further analysis indicates that prediatesiel RBPs play important
phenotypic roles in disease pathways and their mutationscease diseases. The
dataset of 2418 predicted novel RBPs along with their predictenfidence levels
and protein-RNA complex structures is available at httpafks-lab.org for further

experimental validation and hypothesis generation.
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6.1 Background

A comprehensive understanding of cellular processes megjuidentification of
RNA-binding proteins (RBP) as well as their ligands. Identifima of RBPs
is of significant interest because numerous studies haversltioat they are key
factors associated with cellular processes such as cd# checkpoints and genomic
stability and mutations in RBPs are linked to human diseasekjding cancer]15

Recent global analysis indicates that transcripts are nbt karge in number,
but also diverse in localization and function in cel54-156 . This implies
that underlying post-transcriptional networks are likddyger and more complex
than either transcriptional networks or protein-protemeraction networks 157].
However, experimental determination of RNA-binding by gvprotein is inefficient
and impractical, as well as technically challenging andeasive. Attempts at
high-throughput biochemical approaches for identifying RBRogress slowly and are
fraught with inaccuracyl57159. Thus, computational method27%-30, 34, 36, 116,
148 149 have become a critical component for function annotatiod analysis of
RBPs.

Recently, we have developed a template-based techniquedcSIPOT-Seq
(RNA) that makes sequence-based prediction of RB¥& [ In this method, a
guery sequence is first threaded onto the template strgctirproteins by the fold
recognition technique called SPARKS M9. The template library contains 1,164
known protein-RNA complex structures on both domain andgonathain levels (95%
sequence identity or less). If one of the templates has a gwtdh (according to
Z-score) to the query, the structure for the query is predi@nd a model complex
structure between the predicted structure and the RNA franteimplate is built. The
model complex structure is then employed to predict affifotyprotein-RNA-binding
using a knowledge-based energy functi@d][. If the binding affinity is higher than
a threshold, an RBP is predicted. The method achieves a meaidi 84% and
sensitivity of 47% for a test set of 215 RBPs and 5,765 nonbggiroteins. The
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precision and sensitivity of SPOT-Seq are more than 10%ehigifan those given by the
sequence-to-profile homology search technique PSI-BLASSH[ More importantly,
unlike some computational methods, SPOT-Seq (RNA) camdisish DNA-binding
from RNA binding (zero false positives when applied to 250 DbiAding proteins).
Here, we made a large-scale prediction of RBPs in human genimg u
SPOT-Seq and discovered 2,418 novel RBPs in addition to re&dgeknown RBPs.
Among these predicted novel RBPs, 1848 proteins possess Gftaéions other than
RNA-binding, more than 90% of which are associated with knd®MA-binding
proteins. We further showed that some of these predicte@lmRBPs involve in
various disease pathways and associated with diseasexg&MPs. More importantly,
a large subset of predicted novel RBPs (291 proteins, 12%afegmed by a recently
published proteomic study limited to mRNA binding proteinsRBPs) L7]. Similar
sensitivity (42.6% for annotated RBPs in human genome and&308 all mRBPs
from the proteomic study) confirms that SPOT-Seq can makeistemt and accurate

detection of RBPs.

6.2 Materials and Methods

Fold-recognition and binding-affinity based prediction by SPOT-Seq SPOT-Seq
[36] is a method that combines fold recognition and binding &@ffiprediction for RBP
prediction. Each target sequence is aligned to the stestur a template library of
1,164 non-redundant protein-RNA complex structures (botinalns and chains with
95% sequence identity cutoff) by employing the fold rectigni method SPARKS
X [49]. If the Z-score of the fold recognition is greater than 8.@4model complex
structure between the target protein and template RNA ig byiteplacing template
protein sequence with target protein sequence based onetijieersce-to-structure
alignment generated from SPARKS X. The model complex stradtuthen employed
to estimate binding affinity according to a statistical gyefunction based on the
distance-scaled finite ideal-gas reference st38gthat was extended to protein-RNA

interaction (DRNA) B4]. If the predicted threshold is lower than -0.57, the target
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protein is predicted as RNA-binding and its complex struetapndel serves as the basis
for the high-resolution prediction of RNA-binding functiodhe energy and Z-score
thresholds were obtained by optimizing the Mathews caticiacoefficient (MCC)
based on the leave-homolog-out cross validation with aséataf 216 RBPs and 5765

nonRNA-binding proteins.

6.3 Results

6.3.1 Application of SPOT-Seq to human genome

The human genome dataset from the Uniprot database co@@@80 unique proteins
[74] . The annotations of these genes are obtained from the Gébalse 160. We
broadly define a protein as a RNA-binding protein (RBP) if its @tation contains
any of the keywords (RNA binding, ribosomal, ribonucleaserilbonucleoprotein).
For the protein with keywords RNA polymerase, we limited tospg&cific GO terms
as RNA-binding proteins (see Tabk1). This definition leads to 1,217 (6%) proteins
annotated as RNA-binding while 15,595 proteins are anntaiid other functions and
3,458 are not annotated (unknown function). Table 1 lissilmber of proteins found
according to the keywords used. Although this definition ofARNNding proteins is
subjected to annotation errors/omissions and choicesyofdels, it provides a useful
reference for analyzing our predicted RBPs.

Application of SPOT-Seq to human genome identified 2,937tepme as
RNA-binding after removing those proteins whose predictedctures have overlap
with predicted trans-membrane regions by THUMBURBT]. This filter is necessary
because our method based on protein-RNA complex structwesot predict the
structures of trans-membrane proteins. Among 2,937 petliRBPs, 519 proteins
were annotated as RNA-binding and belong to one of the keywtasses shown
in Table 6.1 In addition 1,848 proteins were annotated with functiotisep than
RNA-binding and 570 proteins lack annotations. Fi®.1l shows a pie diagram
for comparing fractions occupied by predicted RBPs in anedt&®BPs, unknown

proteins and proteins with other functions. The result aévsensitivity (or coverage)
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Table 6.1: The number of annotated RBPs according to keyweoaiapared to the
number of proteins predicted as RBPs by SPOT-seq

Keywords # of annoated #of predicted #Converage(%)
RNA binding 722 402 56
ribosomal 68 37 54
ribonucleoprotein 240 52 22
ribonuclease 67 12 18
RNA polymerase 120 16 13
Total 1,217 519 43

GO IDs related with  RNA polymerase: GO:0000428: DNA-direlct&NA
polymerase complex; GO:0003899: DNA - directed RNA polymseractivity;
GO:0003968:RNA -directed RNA polymerase activity; GO:008&B®NA
-directed RNA polymerase Il; GO:0005666: DNA -directed RNAlypoerase
lll; GO:0005736:DNA -directed RNA polymerase | complex; ®006368:RNA
elongation from RNA polymerase Il promoter; GO:0006369: mieation of
RNA polymerase Il transcription; GO: 0016591:DNA -directBdNA polymerase
II; 0030880 RNA polymerase complex;GO:0031379:RNA -dirdcteRNA
polymerase complex;G0O:0031380:nuclear RNA -directed RNAlymerase
complex;GO:0034062:RNA polymerase activity;GO:0042@ERNA transcription
from RNA polymerase Il promoter;GO:0042795:snRNA trandaip from RNA
polymerase Il promoter;G0O:0042796:snRNA transcriptianfrRNA polymerase Ili
promoter; GO:0042797:tRNA transcription from RNA polymexéi$ promoter

of 42.6% (519/1,217). This sensitivity is consistent with%d sensitivity from our
benchmark study36] despite that the latter was based on proteins with expetatig
solved protein-RNA complex structures only. We noted that gbnsitivity strongly
depends on specific categories of RBPs. The sensitivity is itiigebt at 56% for
the proteins annotated with the keyword of RNA binding anddsivat 13% with
the keyword of RNA polymerase. Tablé.Zists top 10 templates employed for all
predicted RBPs for human genome. The 60S ribosomal proteirRE®3 (chain C
in pdb structure 3058), is responsible for predicting 118itgins with 61 annotated
as RNA binding. Four other 60S ribosomal proteins are alstiéntop 10 list. The
surprising popular employment of RPL3 leads us to examinetceracy associated
with prediction based on 3058. SPOT-seq was tested by 215 BiM#ing proteins and
5,765 non-RNA-binding proteins3f] . Among these proteins, 11 binding proteins
and 15 non-binding targets employed protein chains coatiin structure 3058 as
templates. Six are true positives and O are false positaesdon the default thresholds.

The Mathews correlation coefficient (MCC) for the use of 3058iich as templates
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Table 6.2: Top 10 templates employed for all predicted huREBRs.

PDB Gene Protein #Proteins  #Nonredudant
ID Name Name (#A nnotated)

3058C RPL 3 60S ribosomal protein L3 1181(61) 835
1hvuA gag-pol Gag-Pol polyprotein 223(12) 177
3058E RPL5 60S ribosomal protein L5 180(10) 150
3ciyB TIr3 Toll-like receptor 3 149(2) 54
3058F RPLG6A 60S ribosomal protein L6A 123(6) 114
3ivkB 112(0) 17
3a6pA X PO5 Exportin-5 98(5) 91
3058b RPL32 60S ribosomal protein L32 90(5) 82
3058T RPL21A 60S ribosomal protein L21A 95(8) 60
1cvjA PABPC1  Polyadenylate-binding protein 1 58(50) 41

is 0.64, similar to the overall MCC value of 0.62 when all teatps are employed.
Thus, the performance for prediction based on 3058 chaoisistent with the overall

performance.

6.3.2 Molecular functions related to 1848 moonlighting RNAbinding proteins

There are 1,848 predicted novel RBPs were annotated with ifunsciother than
RNA-binding. These proteins perform a moonlighting role of/Rbinding. We assess
our predicted moonlighting RBPs by their shared moleculactions with known
RBPs. In Table 6.3 we tabulate number of proteins and GO terms in molecular
function that are unique or shared between predicted anotated RBPs. More than

90% of predicted novel proteins [91%, 226/(226+21) for eimd with root annotations
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Table 6.3: GO terms in molecular function that are uniquennagated or predicted
RBPs and/or shared between them.

# of Protein8 #of GO IDS
Root Leaf Root Leaf
Type® Total None Unigue Shared Unigque Shared Unique Shared Unique dShare
A 1217 118 92 477 47 483 95 189 192 96

A-ANP 698 102 56 221 29 290 84 178 143 83

ANP 519 16 36 256 18 193 11 11 39 13

P-ANP 2418 907 21 226 26 1238 148 189 250 96
“AAP (annotated but not predicted RBPs) JRA (annotated and predicted RBPs), andPA
(predicted but not annotated as RBPsJhe total number of proteins, the number of proteins
without GO IDs, with unique GO IDs, and shared GO IDs between predaidénnotated
proteins at root and leaf leveléThe number of GO IDs that are unique or shared between
predicted and annotated proteins at root and leaf levels.

only or 98%, 1,238/(1,238+26) for proteins with leaf antiotas] shared GO IDs with
annotated RBPs. In other words, almost all functions of thesdigted moonlighting
RBPs are associated with known RBPs. We note that the entire hgemames have
1,411 leaf GO IDs and annotated RBPs have 288 leaf GO IDs. TH2@9s of all leaf

GO IDs associated with RBPs indicate the extensive assatiafiRkBPs with other
biological functions.

To illustrate shared functions between predicted and atedRBPs, we showed
four clusters of predicted and annotated RBPs with four GO IDBig. 6.2 Each
GO ID not only contains many predicted and annotated RBPs asahee time but
also connects with each other through proteins having plelGO IDs. Top 10
GO IDs (excluding RNA-binding functions) enriched with mdighting RBPs are
listed in Table 6.4 Many of these 10 GO IDs are associated with transcription
regulatory activity, suggesting DNA-binding activity. deed, we found that 350 out
of 1,217 annotated RBPs (29%) are also annotated as DNA bipdatgins according
to GO annotations. Similarly, 22% (114/519) of predicted amnotated RBPs and
39% (728/1848) of predicted novel moonlighting RBPs are DNAdbig proteins.
Thus, a significant fraction of proteins can interact withdBnd RNA at the same
time. The full list of predicted RBPs with annotated DNA bingliis available on

http://sparks-lab.org
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Table 6.4: Top 10 GO IDs enriched with annotated and predi®8Ps, ranked
according to the number of annotated RBPs

GO-Id Function Proteins A AP P-AJP (A/All) (A+P-A
UP/AIIN
G0:0008270 zinc ion binding 2307 148 84 604 6% 28%
G0:0030528 transcription regulatord508 138 98 434 24% 35%
activity
G0:0001883 purine nucleosidel599 132 66 136 8% 13%
binding
G0:0005524 ATP binding 1475 129 65 133 8% 13%
GO0:0016563 Transcription activator146 44 35 105 30% 79%
activity

G0:0003702 RNA polymerase Il 245 37 28 67 15% 31%
transcription factor
activity

G0:0000287 magnesium ion binding 454 34 24 32 7% 9%

GO0:0003743 translation initiation 58 29 16 5 50% 31%
factor activity

G0:0016564 Transcription repressor31l7 27 19 81 9% 28%
activity

G0:0005525 GTP binding 372 19 14 7 5% 3%

Fig. 6.2: The connection between proteins
with four GO terms (GO:0030528,
G0:0008270, GO0:0001883 and
G0:0000287) that are shared by
annotated, not predicted (Grey);
predicted and annotated (Blue),
and predicted, novel (Red) RBPs.
Each node represents a protein.
One protein can connect to one or
more GO terms in yellow
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6.3.3 Validation of predicted novel RBPs by proteomic studig of human HelLa

cells.

Sharing GO IDs between annotated and predicted RBPs suppodbluot validate
predicted novel RBPs. Direct validation of our predicted RBABasle possible by an
recent proteomic experiment that obtained all mMRNA-bindingteins of HeLa cells
[17] . In this study, mRNA-binding proteins (mRBPS) in living HelLealls were frozen
by covalent UV crosslinking, captured by oligo(dT) magaéiiads after cell lysis, and
identified by high resolution nano-LC-MS/MS. They found 86BBPs in which 375
are predicted RBPs. That is, the sensitivity for this datesdi3i6% close to 42.6%
sensitivity for all GO annotated RBPs. Similar sensitivitgpige significantly different
datasets confirms the overall accuracy of SPOT-Seq.

860 mRBPs discovered experimentally contain many novel RBPsngUke
same definition for RBPs as above, we obtained 746 proteinsvas RBPs in which
291 are predicted as RBPs. Thus, SPOT-Seq can detect novel RB#% isensitivity,
close to the sensitivity for all RBPs (42.6%). In these 291 joted and validated
MRNA-binding proteins, the most frequently used templatderiy to chains in PDB
ID 3058 (87 times). This validates the use of 3058 as a temjbaitpredicting RBPs.
Moreover, the majority of 291 predicted novel proteins (7@83/291) employed a
template protein with mRNA binding function, indicating higccuracy in predicted
binding RNA-type based on template RNA.

Castello et al. also defined a more stringent subset of prslyiaunknown
RBPs by excluding proteins that are previously experimentallidated, inferable by
homology, and/or with a GO annotation containing RNA (not REIA binding). This
stringent set of previously unknown RBPs contains 315 pretét of which (19%)
are predicted novel RBPs by SPOT-Seq. This large overlap denawes the ability
of SPOT-Seq to go beyond homology-based inference of RNAubinproteins and

uncover truly novel RBPs.
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Table 6.5: Number of proteins and RBPs involved in 11 diffemnotypes

Disease All  Annotated WP P-AJP Pathways
Cancer 372 10 0 41 14
Immune System 1579 53 8 115 30
Nervous System 3740 233 75 253 30
Cardiovascular 2668 157 71 166 44
Endocrine/M etabolic 1603 19 2 106 24
Digestive 2128 41 5 154 27
Urinary/reproductive 1497 14 5 109 20
Musculoskeletal/skin 3152 88 13 225 61
Respiratory 428 0 0 17 4
Congenital/metabolism 3299 103 17 192 101
Congenital/other 3543 198 86 245 83
Total 4602 337 151 284 176

6.3.4 Disease pathways associated with predicted RBPs

Validation of predicted novel RBPs provides incentive forlgnag their relevance

to disease using known disease pathways of Kyoto Encyclapetd Genes and
Genomes (KEGG) databasé6p. The KEGG database classified diseases into
11 types (Cancer, immune system diseases, nervous systeasels cardiovascular
diseases, digestive diseases, urinary and reproductheasks, musculoskeletal and
skin diseases, respiratory diseases, congenital disafl@netabolism, and other
congenital disorders). These diseases correspond to Ifiéages and 4602 proteins.
Among these proteins, 337 are annotated RBPs. 151 (44.8%})aaettdRBPs are
predicted by SPOT-seq. This is consistent with the overlkgivity of 42.6%. In
addition to recover known RBPs, SPOT-Seq also predicted 284l i®BPs. The
overall fraction of RBPs (both predicted and annotated) inpedteins involved in
disease pathways is about 13%, slightly lower than 18% tgorateins in the human
genome. Table6.5lists 11 diseases and the number of their related annotated RBP
and predicted RBPs. These newly predicted RBPs in disease patlana expected

to be useful for understanding disease mechanisms andagegenew hypotheses for
experimental testing. As an example, the Aminoacyl-tRNAshidhesis pathway is
shown in Fig. 6.3 to illustrate the extent of predicted and annotated RBPs we¢bl

In this pathway, one node may contain more than one proteid,the number of
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Fig. 6.3: Aminoacyl-tRNA

biosynthesis

pathway. Red, black and blue

colors label nodes containing

predicted novel RBPs, predicted

and annotated RBPs and annotated
RBPs, respectively. Each node
contains more than one protein.

Table 6.6: Predicted novel RBPs in MutDB and their interactiaith annotated RBPs

Predicted RBPs Annotated RBPs Refs.

FANCA (015360) BRCA1(P38398) 1p4(Ganesan et al. 2002)

COL7A1(Q02388) HSPA8(P11142) 165-167]

KLF11(014901) ATXN1(P54253) 168

NKX2-1(P43699) CALR(P27797) 169

COL17A1(Q9UMDY9) ACTNA4(043707) 170 (Jonson et al. 2007)

MSX1(P28360) TBP(P20226), [177(Mittal and Hernandez
TAF1(P21675) 1997)

VCL(P18206) RAVER1(Q8IY67) 172

GATA1(P15976) SPI1(P17947) 173

MEN1(000255) POLR2B(P30876) 174

nodes is greater than number of proteins because each nodeprasent more than
one gene product (proteins). For example, the node labedefllal.17 is related
with two proteins, EARS and EPRS. There are 11 annotated RBPk@avan this
pathway, and 7 of them were predicted as RBPs by SPOT-seq. itmoad@&POT-Seq
discovered 18 novel RBPs. One protein is BLM (P54132) that isvkrio interact with
a RNA-binding protein FEN1(P39748)163. Moreover, most of the predicted novel
RBPs (13/18=72%) employed templates that bind with tRNA. adtng with known
RBPs and predicted binding with tRNA provide additional suppéor our predicted

novel RBPs.

6.3.5 Disease-causing SNPs associated with predicted RBPs.

We searched the annotated and predicted RBPs for singleatidelgoolymorphism
(SNP) and their associated phenotypes in the MutRBS We found that 27
annotated/predicted RBPs and 135 predicted, novel RBPs are @athbase. Among

them, 6 annotated/predicted and 42 predicted, novel RBPs3Nis in predicted RNA
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Table 6.7: Predicted and annotated SNPs in RNA-binding regio

Genename (Uniprof) Protein name TPE  Zscore Energy SNP regién Phenotype
COL17A1 (QOUMD9)**  Collagen- alpha-1(XVII)- chain 3058C 199 -4.40 265-265 Epidermolysis- bullosa, junctional, nonrlite type
COL3A1(P02461)* Collagen- alpha-1(1l1)- chain 3058C 18.64 .58 924-1188 Ehlers- Danlos- syndrome, type- Ill
COL9A2(Q14055)* Collagen- alpha-2(IX)- chain 3058C 1856 5.3 326-326 Epiphyseal- dysplasia, multiple, 2
COL1A2(P08123)* Collagen- alpha-2(1)- chain 3058C 18.17 -9.19877-1148  Ehlers- Danlos- syndrome
COL10A1(Q03692)* Collagen- alpha-1(X)- chain 3058C 17.95 53.6 617-618 Metaphyseal- chondrodysplasia, Schmid- type
RPL5(P46777) 60S- ribosomal- protein- L5 3058E 17.95 -2.78 -1  diamond- Blackfan- anemia- 6
COL2A1(P02458)* Collagen- alpha-1(ll)- chain 3058C 17.94 98.1 992-1197  Achondrogenesis, type- Il- or- hypochondrogisne
COL4A5(P29400)* Collagen- alpha- 5(1V)- chain 3058C 17.06 56.3 289-609 Alport- syndrome
COL1A1(P02452)* Collagen- alpha-1(l)- chain 3058C 17.03  -6.16 947-195 Caffey- disease, Ehlers- Danlos- syndrome,
MAPT(P10636)* Microtubule- associated- protein-tau 3658 15.99  -1.96 620-654 Dementia, frontotemporal, with- or- hwiitt-
parkinsonism
EDA(Q92838)* Ectodysplasin- A 3058C 14.41 -3.06 61-302 Chaiarie- Tooth- disease, type-1D
COL6A2(P12110)* Collagen- alpha-2(VI)- chain 3058C 14.08 455 498-498 Bethlem- myopathy
MECP2(P51608) Methyl- CpG- binding- protein-2 3058C 14.05 13.5 167-305 Angelman- syndrome
GATAL(P15976)** Erythroid- transcription - factor 3058C 323 -1.33 216-218 X- linked, without- thrombocytopenia
EGR2(P11161)* Early- growth- response- protein-2 3058C @2.7-2.01 355-383 Charcot- Marie- Tooth- disease, type-1D
KLF11(014901)** Krueppel- like- factor-11 3058C 12.04 -1.73 347-347 Maturity- onset- diabetes- of- the- young, type- VI
COL11A2(P13942)* Collagen- alpha-2(XI)- chain 3058C 11.80 .288 808-808 Deafness, autosomal- dominant-13
COLQ(Q9Y215)* Acetylcholinesterase- collagenic- tail3058C  11.66  -3.26 342-342 Endplate- acetylcholinesterasisiehcy
peptide
WAS(P42768)* Wiskott- Aldrich- syndrome- protein ~ 3058C .60  -3.33 131-134 Neutropenia, severe- congenital, X- linked
Thrombocytopenia
COL7A1(Q02388)** Collagen- alpha-1(VIl)- chain 3058C 11.43 7.77 2348-2713  EBDr- inversa
FUS(P35637) RNA- binding- protein- FUS 3058C 11.30 -9.59 228-5 Amyotrophic- lateral- sclerosis- 6, autosomal-
recessive, dementia
FOXL2(P58012)* Forkhead- box- protein- L2 3058C 11.22 -4.89 05-258 Blepharophimosis, epicanthus- inversus, and-tosi
type-1
GLI2(P10070)* Zinc- finger- protein- GLI2 3058C 10.87 -3.65 29332 Holoprosencephaly- 9
NKX2-1(P43699)** Homeobox- protein- Nkx-2.1 3058C 10.68 M.6 213-213 Chorea, hypothyroidism
ALX3(095076)* Homeobox- protein- aristaless- like-3 3658 10.45  -3.44 203-203 Frontonasal- dysplasia-1
COL4A3(Q01955)* Collagen- alpha-3(IV)- chain 3058C 10.13 46.6 1015-1015 Alport- syndrome, autosomal- recessive
CFP(P27918)* Properdin 3058C 10.00 -1.84 343-343 Cystic- fibros
VSX1(QINZR4)* Visual- system- homeobox-1 3058C 9.83 -1.77 -289 Corneal- dystrophy, hereditary- polymorphous-
posterior
TGIF1(Q15583)* Homeobox- protein- TGIF1L 3058C 9.72 -2.54 -280 Holoprosencephaly-4
NKX2-5(P52952)* Homeobox- protein- Nkx-2.5 3058C 9.66 -3.13 -328B Atrial- septal- defect- with- atrioventricular-
conduction- defects
ZFP57(Q9NUB3)* Zinc- finger- protein- 57- homolog 3058C 9.62-1.56 166-166 Diabetes- mellitus, transient- neonatal, 1
COL4A4(P53420)* Collagen- alpha-4(1V)- chain 3058C  9.46 -9.291201-1201  Alport- syndrome, autosomal- recessive
MED25(Q71SY5)* Mediator- of- RNA- polymerase- II-3058C  9.41  -5.56 335-335 Charcot- Marie- Tooth- disease, 2F-
transcription- subunit-25
MSX1(P28360)** Homeobox- protein- MSX-1 3058C 8.82 -3.26 o6 Orofacial- cleft- 5
WT1(P19544) Wilms- tumor- protein 3058C  8.79 -4.74 181-394  yBebrash- syndrome
VSX2(P58304)* Visual- system- homeobox-2 3058C 8.65 -2.60 0-2p7 Microphthalmia- with- coloboma-3
ZIC3(060481)* Zinc- finger- protein- ZIC-3 3058C 8.65 -2.88 383% Heterotaxy, X- linked- visceral
TBX19(060806)* T- box- transcription- factor- TBX19  3058C 8.6 -4.00 128-128 Adrenocorticotropic- hormone- deficiency
LAMB3(Q13751)* Laminin- subunit- beta-3 3058C 8.41 -2.97 189 Epidermolysis- bullosa, junctional, Herlitz- type
HOXD10(P28358)* Homeobox- protein- Hox- D10 3058E  8.13 -1.45 319-319 Charcot- Marie- Tooth- disease, foot- deformity- of
VCL(P18206)** Vinculin 3a6pA 10.11  -0.95 975-975 Cardiomydpatdilated, 1W
FANCA(015360)** Fanconi- anemia- group- A- protein 3a6pA 4.2 -0.99 858-858 Fanconi- anemia, complementation- group- A
NIPBL(Q6KC79)* Nipped- B- like- protein 3a6pA 829 -0.72 243034
RPS19(P39019) 40S- ribosomal- protein- S19 2xzmT 21.74 -2.52 5-120 Diamond- Blackfan- anemia-1
IGHMBP2(P38935) DNA- binding- protein- SMUBP-2 2xzoA 19.44 74 565-581 Neuronopathy, distal- hereditary- motor, tyfle-
TRMU(O75648) Mitochondrial- tRNA-  specific-2- 2detA  27.11  -1.18 272-272 Liver- failure, acute- infantile
thiouridylase-1
TUFM(P49411)* Elongation- factor- Tu, -10b2A  25.27 -1.94 336-336
mitochondrial
MENZ1(O00255)** Menin 1i94L  8.47 -2.18 545-560 Multiple- erdine- neoplasia-1

@ Template PDB IDP Predicted SNP regiorf. P Predicted RBPs. T annotated RBPs

binding regions (Table.7). In 6 annotated/predicted RBR$),in 170 SNPs (47%) are
in the predicted RNA-binding regions. In 42 predicted novel RB#14 in 1608 SNPs
(52%) are in the predicted RNA-binding regions. Among 42 joted novel RBPs,
nine proteins interact with 10 annotated RBPs according toamuptotein reference
database (HPRD)1[r6. These 9 proteins and their interacting partners alondy wit
original citations are listed in Tab&6.

Table 6.7 also lists the overlap between predicted RNA-binding ressdwith
SNPs. For example, 40S ribosomal protein S19 is implicateBiamondBlackfan
anemia (DBA). Its known RNA-binding regionlf7, 178 agree with predicted
RNA-binding amino-acid residues with a sensitivity of 42.18619). The predicted
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Fig. 6.4: Predicted complex structure for
novel RBP: vinculin, related
to cardiomyopathy dilated 1W.
Locations of known SNP are
shown as spheres.

RNA-binding residues in positions 15 {¥F), 47(P—L), 56 (R—Q), 55(T—M),
59(S—F), 62(R~»Q, R—W), 101(R—H), and 120(G~»R) are associated with known
SNPs in the MutDB databas&15. As a second example of a known RBP, Wilms
tumor protein (P19544) contains 3 disease-causing mata{©330Y, R394P, R394W)

in zinc finger domain 179-181]. These two mutated residues are predicted as
RNA-binding residues by our method. This protein has threfding complex
structures available within residue ranges of 318-428 (RDB2PRT, #2JP9 and #
2JPA). Fig.8.3shows another example where the SNP is localized in the RNAkHtg

region in the predicted complex structure between tRNA andulin.

6.4 Discussions

In this study, a new method for RBP prediction based on known RBipExX structures
was applied to human genome. The method uncovered 2,418 dhat were not
previously annotated as RBPs in the GO database. About hdlésétpredicted novel
RBPs were annotated as ORFs that lack GO annotations of maiégntdions (908),
or have only GO root ID (247), suggesting that they were postddied proteins. Some
of these predicted novel RBPs (284) directly involve in disgaasthways (Table5.5),
indicating their potential phenotypic roles. More impaoittg, 12% of these predicted
novel proteins (291) are validated by a recent proteomieexgent that mapped all

MRNA-binding proteins in living HeLa celld[/]. The consistent sensitivity (42.6% for
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annotated RBPs in human genome and 43.6% for mRBPs in HeLa Cetfiderates
the robustness of SPOTseq in making highly accurate prediof RBPs.

Among all RBPs predicted, 80.5% are proteins with unknown tions or
annotated with functions other than RNA-binding. This suggéat many more RBPs
exist than those that are currently annotated. If we combneglicted RBPs with
annotated RBPs and assume that majority of predicted andaadd®BPs are true,
these RBPs would consist of 18% [=(1,848+570+1,217)/20,a7all genes. Because
the sensitivity of our technique is at about 43%, the actuahlmer of RBPs is likely
greater than 18% even if we take into account of errors in oediption. The huge
number of RBPs highlights the scope and significance of thejpor&®NA interaction
network.

Most of the RBPs predicted here have functions other than RMAubg. This
so-call moonlighting capability of RBPs is consistent wittpesimental screens of
yeast and human proteins. It was found that novel RBPs unabwerscreens often
have enzymatic activitieslft, 15] as well as RNA-binding kinases and RNA-binding
architectures17] . Thus, moonlighting aspect of RBPs is likely more common than
previously appreciated. In particular, 39% of predictedonighting proteins are
related to DNA-binding. This is not caused by inability of @Rseq to distinguish
RNA- from DNA-binding. In fact, the application of SPOT-segj250 DNA-binding
proteins did not yield any false positive prediction of RBB6|[. Thus, many proteins
can interact with RNA and DNA at the same time.

A surprising result from our template-based technique & thany predicted
RBPs employed the templates from 60 S ribosomal proteins (HDBd58). This
is true for both predicted novel and annotated RBPs. We aredsorifabout these
predictions because our benchmark test indicates the awcof prediction based on
3058 is the same as that based on other templates. Moreowsvnkand novel RBPs
predicted from 3058 have interspersed confidence levelsagrsin Table 6.2 More
importantly, 87 novel RBPs based on 3058 templates are vatideg mRNA-binding
proteins [L7] .
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One caveat of the SPOT-seq method is its reliance on knowteiprBNA
complex structures as templates for predicting complexcsires. This limitation
contributed to the respectable but low sensitivity (43%)tloé prediction. This
sensitivity was also resulted from our emphasis on highigiat (fraction of correct
predictions in all predictions). As more protein-RNA comypdétructures are solved, our
method will improve in recovering known RBPs and uncoveringahones. Increasing
the sensitivity of SPOT-seq by combing it with other seqeerand structure-based
approachesZ7-30, 34, 36, 116, 148 149 is working in progress. Nevertheless, the
ability to double the number of annotated RBPs with such seitgisuggests that many

more interesting novel RBPs remain to be uncovered.
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Chapter 7  Prediction of RNA binding proteins comes of age fron low resolution

to high resolution

Abstract

Evidence is accumulating that the protein-RNA interacti@work is substantially
larger than protein-protein and protein-DNA interacticetworks combined. Recent
experimental studies begin to uncover more and more unatiomal or moonlighting
RNA-binding proteins (RBPs). At the same time, more and mordeprdRNA
complex structures are deposited into protein databankes&hesources provide
ample statistics for developing computational techniglexticated to RBP prediction.
This review compares traditional machine-learning baggataaches with emerging
template-based methods at several levels of resolutionredigtion ranging from
two-state binding/non-binding prediction, binding resdprediction, to protein-RNA
complex structure prediction. The analysis indicates angimg future for highly

accurate RBP prediction with a reasonable sensitivity ustegnplate-based approach.

7.1 Introduction

RNA directly involves a wide variety of functions ranging mnoprotein synthesis,
post-transcriptional modification, to post-transcripib regulation. Unlike DNA,
located mostly in the cell nucleus, RNA is transcribed in ausland transported to
cytoplasm as non-coding RNA or for translation. Diverse lizeéions and different
functionality of RNA transcripts]54-156 along with only 3% human genome coded
for proteins 182 suggest that the network of protein-RNA interactions igljkmuch
larger and more complex than those of protein-DNA and pnepeotein interactions
combined 157 . These RNA-binding proteins (RBPs) are challenging to locate
experimentally although some progress in high-througbmdhemical approaches are

made 157159183 and hundreds of novel unconventional or moonlighting RBReha
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been discoveredlfd, 15,17] . This, however, scratched only the surface of RBPs and
their associated post-transcriptional network.

A complete understanding of the protein-RNA interactionwssn a specific
protein and a RNA requires to determine their complex strectDespite of difficulty
in solving protein-RNA complex structure$§4-186, the number of non-redundant
complex structures deposited in protein databank has beadrgpled from 45 per
year at 2001 to 180 at 2011 (at 90% sequence identity cutdfshown in Fig.7.1
By comparison, the number of deposited structures is lessttijgled from 2831 at
2001 and 8091 at 2011 (http://www.rcsb.org/pdb/stas$ticThe growing number of
protein-RNA complex structures provides an increasinglgdadataset for analyzing
the principles of protein-RNA recognitiorl87,187-191]. However, not all members
in the same structural folds have RNA-binding activitiesr Example, the Structural
Classification Of Proteins (SCOP)33 has 44 folds shared by both RNA and non-RNA
binding proteins 36].

The challenge and expense of experimental determinati®®Béfs necessitates
the development of accurate and efficient computationdinigces. In this review
article, we will classify different computational methodscording to the resolution
of prediction from low, medium, high to the highest. A lowscdution prediction
is a simple two-state prediction of whether a protein is RNAdimg or non-RNA
binding. A medium-resolution prediction locates the amawid region of a RBP
that binds to RNA (RNA binding site/motif prediction). A higlasolution prediction
indicates the types of RNA binding to a RBP. The highest resmiuprediction
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will predict the three-dimensional structure of protein/&Rbbmplexes with predicted
RNA binding sequence. The highest resolution prediction sianultaneously make
all lower resolution predictions including the RNA type, RNMading site, and the
two-state RBP/non-RBP classification, but not vice versa. Masipitational methods
developed so far focused on low to medium resolution prexhdi92 193.

Here, we will provide a brief review based on the resolutiesnweell as the

information (i.e. sequence versus structure-based) greglm prediction.

7.2 Function Prediction in different resolutions

7.2.1 Low Resolution Function Prediction: Two-State RBP Preittion.

Structure-based Inference of RBPs. Negatively charged RNAemamtially binds
to positively charged proteins. Electrostatic interacsi@re obviously an important
feature for detecting RBPs. Shazman and Mandel-Gutfrelihd pmployed Support
Vector Machines (SVM) to combine electrostatic patchesyest accessibility, cleft
sizes and other global protein features for RBP predictionis fethod trained on
76 RNA binding proteins and 246 non-nucleic acid binding @ret and achieved
a Matthews correlation coefficient (MCC) of 0.72 based on tlavdeone-out test.
However, it is unable to distinguish RBPs from DNA-binding teins. Ahmad and
Sarai [L94employed neural networks that are based on charge, dipofeent, three
eigenvalues of quadrupole moments generated from thewsteudt was trained on 160
RBPs and 2441 non-RBPs and achieved 0.79 for an area under the R@Cbased
on the leave-one-out test. Tablé.1 provides a list of features for the two methods
described above. More recently, we have developed an atiegrapproach based on a
template library of known protein-RNA complex structur84,42]. In this method, a
target structure is aligned to the templates in the templary and a RBP is predicted
if the structural similarity between the target and a tengpla higher than a certain
threshold. Several structural alignment programs weriedesAmong them, SPalign
[42] was found to give the highest MCC value of 0.37 based on a €iatd®12 RNA
binding domains and 6761 non-RNA binding domains with 250 RhiAding domains
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as templates. When the query structure is compared to temgtactures, the templates
with sequence identity ¢30% to the query sequence are ectlmdorder to test the
ability of the method to detect remote homologs. SPOT-stRNA) [34] improves
over the method based on a structural similarity score oplyding a relative structural
similarity between RBPs and non-RBPs and by predicting the iinaifinity between
the query protein and the template RNA with a knowledge-basedgy function based
on distance-scaled finite ideal gas reference state (DFIB®)I{ achieves a MCC
value of 0.57 for the same dataset above. SPOT-struc (RNAhkaability to separate
RNA- from DNA-binding proteins because it yields zero falesifives after excluding
proteins known to bind both DNA and RNA when applied to a ddtas&31 DNA
binding domains.

Sequence-based inference of RBPs.The main limitation of a structure-based
technique is that the structures for most proteins are nokiyewn. One common
technique is homology-based prediction assuming thaem®wvith similar sequences
are likely to perform the same function. Enzymd$9T, 198,for examples, tend to
have a conserved function, if they share more than 40% to 58§aemce identity.
However, such prediction will produce false negatives lilyifa to detect functionally
identical remote homologsl99 and false positives by ignoring possible functional
divergence for highly homologous sequencE®7]. Thus, there is a need to go beyond
simple homology-based search. Several SVM-based t@#s30, 84, 116, 195were
developed. Different methods mainly differ in features &wed. Commonly used
features are the composition of amino-acid residues, Ipyaroicity, amino acid
composition, charge, hydrophobicity and accessible sadaea. Early studie27,116

did not remove homologous sequences in training and testinge to limitation of
SVMs, most methods were trained with nearly equal number of&Rddfl non-RBPs
[28-30,84,195. In a real-world situation, RBPs are only a fraction of all {gias.
The reported MCC values are 0.53 for a dataset of 134 RBPs andoiRRBPs B0,
0.51 for a dataset of 69 RBPs and 100 non-RBPs by RNA@B4Jd (.65 for a dataset
of 687 RBPs and 687 non-RBP&95. Recently, we developed a template-based
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Table 7.1: Structure and sequence-based features for RBietmed

Method[Ref.] Technique

Features

Structure-based
[117] SVM

(194 NN

SPalign g2 Template-

Electrostatic surface patches, molecular weight,
solvent accessibility, dipole, quadrupole, patch
size, size of the largest clefts, number of atoms
in positive and negative patches, patch surface
overlap

Charge dipole moment, quadrupole moment
and functional property of protein chain
Structural alignment

based
SPOT-Struc34] Template- Structural alignment plus binding affinity
based estimation
Sequence-based
[28] SVM Hydrophobicity, secondary structures, solvent
accessibility, van der Waals volume, polarity,
polarizability and amino acid composition
[195 \oting Hydrophobicity, predicted secondary structure,

RNApred B4] SVM

[29] SVM
[27] SVM
[196] SVM

SVMProt[116 SVM

SPOT-Seq36] Template-
based

predicted solvent accessibility, normalized Van
Der Waals volume, polarity, and polarizability
Residue composition, predicted RNA binding
residues, PSSM

Clustered amino acids according to dipoles and
volumes of side chains.

Pseudo-amino acid composition, charge,
hydrophobicity, accessible surface area

Amino acid composition, periodicities

Amino acid composition, charge, polarity, and
hydrophobicity

Sequence-to-structure match and binding
affinity estimation
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approach called SPOT-se@q which is similar to SPOT-struc3f]except that the
qguery structure is predicted by a fold-recognition techeigalled SPARKS-X49].
More specifically, SPARKS-X attempts to match the query seged¢o the templates
of known protein-RNA complex structures. If a match is foubdged on a Z-score),

a binding affinity is predicted based on a knowledge-basedygrfunction. The query
sequence is an RBP if the binding affinity is higher than an apgdthreshold. This
coupled structure and binding prediction leads to a MCC vafi®62 for independent
test on 215 RBPs and 5765 non-RBPs with a template library of 1164-Rihding
domains and RNA-binding chains. This MCC value is even highant0.56 given
by SPOT-struc for the same dataset despite of using predsttectures in SPOT-seq,
rather than actual structures in SPOT-struc, suggestisgilple cancellation of errors
of structure and binding prediction.

Method comparison There is a lack of comparison between different methods
for RBP prediction. Most methods described above do not have-ssevers or
their web-servers are no longer functional. We only found tavailable servers
(RNApred B4], http://www.imtech.res.in/raghava/rnapred/ and SVdtgi16). Both

of them are sequence-based methods. They are compared Teseg@long with our
structure-based techniques SPOT-struc and SPalign wittaset of 257 RBPs and
5765 non-RBPs in Table7.2 This dataset is an independent test set for SPOT-seq
at 25% sequence identity. RNApred predicted 203 out of 257 RBiEs2415 out

of 5765 non-RBPs as RBPs. RNApred achieved a MCC value of 0.15 tiggnsf
79%, and precision of 8%. SVMprot yields the MCC of 0.19, s@ngi of 50% and
precision of 13%. By comparison, SPOT-seq has a MCC value &, Génsitivity

of 44%, precision of 84% for the same dataset. Thus SPOTsesignificantly
more powerful in separating RNA from non-RNA binding proteirisis even more
powerful than structure-based techniques that achieved MeD@&s of 0.46 (SPalign)
and 0.50 (SPOT-struc). Fig.2displays the Receiver Operating Characteristic (ROC)
curves for these sequence and structure-based method<ldar that SPOT-Seq, the

template-based technique, is substantially more acctinate other sequence-based,
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Table 7.2: Comparison of methods for low-resolution, twatesKRBP prediction
257 RBPs + 5765 non-RBPs 245 DBPs
Method MCC Sen. Pre. TP FN TN FP FP
Structure-based
SPalign* 42 046 33% 67% 85 172 5723 42 6
SPOT-Str*B6] 0.50 32% 84% 83 174 5749 16 3
Sequence-based
RNApred B4] 015 79% 8% 203 54 3350 2415 168
SVMprot [116 0.19 50% 13% 129 128 4898 86ff 55
SPOT-seq34] 0.60 44% 84% 114 143 5743 22 0

T /—":,_;f—”_ﬁ'—' Fig. 7.2: The ROC curves for several
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machine-learning techniques (RNApred and SVMprot) or stmecbased techniques
(SPalign and SPOT-struc). For structure-based techni§ialign, although is less
accurate than SPOT-Struc at low false positive rates, hgisehisensitivity at high
false positive rates. This suggests that replacing TMadigiployed in SPOT-Struc
by SPalign for pairwise structure alignment will likely tber increase the power of
SPOT-Struc.

Discriminating RBPs from DNA-binding proteins. DNA-binding proteins are
important control for examining the accuracy of RBP predittiecause DNA-binding
interfaces are also positively charged as RNA-binding fatess. Most methods are
either unable to separate RNA from DNA binding proteins ortested in this aspect.
Table 7.2confirms high false positives given by RNApred ( 69%) and SVidt|i22%)
when tested on 245 DNA-binding proteins, compared to zalsefpositives given by
SPOT-seq. These 245 DNA-binding proteins are a subset of DB®%ch are modified
by excluding 5 RNA-binding proteinS4).
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7.2.2 Medium Resolution Function Prediction: Binding Resides Prediction

Locating functional residues is an important first step faderstanding the mechanism
of function. Thus, there are a significant number of studigsrédicting RNA-binding
residues. Most studies are machine-learning techniqaésett from sequences or
structures of known RBPs.

Structure-based prediction. How to capture key structural features is the challenging
question for accurate prediction of RNA-binding residuesnfra given structure.
Table 7.3ists structural features employed by several structased techniques
[125 126, 200-203.The methods range from docking, random forest classiieuyal
network, SVM, nave Bayes classifier to linear regression. fidtable features are
sequence conservation, secondary structures, types oiaacid residues, solvent
accessible surface area and interface propensity. Thergoane overlaps between the
features employed for RBP prediction and binding residueigtied, except that one
focuses on the whole protein level and the other is on thelwuedevel. We developed
a template-based approach called SPOT-struc (RISA]) that predicts binding sites
based on structural alignment to known protein-RNA comptaxcsures and prediction
of protein-RNA binding affinity. SPOT-struc (RNA) is based anaignment program
called TM-align L139.Another method SPalign was developed to further imprinee t
accuracy of alignment and identification of binding regip4d.

Sequence-based predictiofror sequence-based prediction, the prominent feature is
sequence similarity and evolution informatioB0]. Additional features as shown in
Table 7.3 include properties of amino acid residues, predicted sgmgnstructures
and solvent accessibility. Most methods are based on SVMsd&Heatures are
typical features utilized in secondary structure predictand ASA prediction as well
(e.0. BQ] ). All above methods are machine-learning based tools. ‘Aeldped
a template-based technique called SPOT-84j that infers RNA-binding residues
according to predicted RNA-protein complexes between théahstructure of the

target protein and the structure of template RNA.
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Table 7.3: Structure and sequence-based features for RiNAAIG residue prediciton

Methods Technique Features
[200 NN Secondary structure, amino acid type
KYG [20]1] Scoring Residue doublet interface propensity, multiple
sequence profiles
[125 Scoring Surface binding pocket, electropositive atoms,
spatially evolution principle
[126 SVM/Naive residue contacts map, PSI-BLAST profile,
Bayes Graph theory properties
Struct-NB 02 surface roughness, interface residue propensity
CX'score
[127 Linear Reg. PSSM, secondary structure and solvent
accessibility
OPRA [13]] Docking pairwise  residue-ribonucleotide interface
propensities
[128 Random forest interaction propensities, physicochemical
classifier characteristics, hydrophobicity, rASA,

secondary structure, conservation score
side-chain environment

SPalign 9] Template-based Structural alignment

SPOT-Struc34] Template-based Structural alignment plus binding affinit
estimation

BindN [94] SVM Side chain pKa value, hydrophobicity index,
molecular mass

RNABIndR [120 SVM smoothed PSSM

BindN+ [95] SVM side chain pKa value, hydrophobicity index,
molecular mass, PSSM

NAPS [96] bootstrap PSSM

aggregation and
cost  sensitivity

learning
PBRpred 204 SVM PSSM, predicted secondary structure and
solvent accessibility
PiRaNhA 05 SVM PSSM, residue interface propensity, predicted
residue accessibility value
PRBR 206 Random forest secondary structure, evolution information

conservation information of physicochemical
properties of amino acids, polarity-charge,
hydrophobicity

SPOT-Seq36] Template-based Sequence-to-structure match and binding
affinity estimation
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Method Comparison. One conclusion is that structure-based techniques do wet ha
any advantage over sequence-based techniques. The semuridson is that all
methods have MCC below 0.6. However, different datasets makgparisons between
different methods impossible. To compare different meshage built a dataset of
106 RNA-binding domains (RB106) that were released in 2011 81@.2RB106 is a
non-redundant dataset with pairwise sequence identitgridan 35%. However, only
67 domains in 106 domains were predicted as RBPs by SPOT-saqdeeof lack of
templates or low binding affinity. Thus, we also showed rssidr the RB67 set. In
addition, we further remove the domains that have more th&a dequence identity
with RNA-binding domains released before 2011. This leads $mall dataset of 20
RBPs (RB20). We employed 45% sequence identity cutoff here beaalower cutoff
will lead to fewer new RNA-binding complex structures.

Table 8.1 lists the performance of various structure and sequenseeba
techniques for the three datasets (RB106, RB67 and RB20). In wtedoased
techniques, SPalign has a consistent top performance athoeg structure-based
techniques (SPalign, SPOT-struc and KYG). In both SPaligd &POT-struc,
all templates more than 35% sequence identity to the targetremoved. In
sequence-based methods, BINDN+ has the best performanbe IMEC value for
RB106 (MCC=0.59), followed by PBRpred (MCC=0.57). For RB20, PBRpredsgive
the highest MCC value (0.39), followed by BINDN+ (0.38) and RBA&R (0.37).
SPOT-seq, on the other hand, yields the highest MCC valuadsetproteins predicted
as RBPs (0.63 for RB67). SPOT-seq achieved an MCC value of 0.33 foD RB2
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Table 7.4: The performances of structure and sequencetimasthods for predicting
RNA-binding residues for three domain datsets(RB106, TP67, RB20

Method Sensitivity(%)  Precision(%) MCC MCC
RB106(TP67) RB106(TP67) PB106(TP67) RB20
KYG [20]] 62(61) 61(65) 0.43(0.44) 0.26
SPalign g9 57(64) 61(67) 0.39(0.50) 0.43
SPOT-Struc 34 55(61) 60(69) 0.36(0.49) 0.36
BindN [94] 57(56) 59(64) 0.39(0.40) 0.16
RNABIndR [120 69(77) 67(65) 0.52(0.53) 0.37
BindN+ [95] 70 T74(77) 0.59(0.62) 0.38
NAPS [96] 42(45) 55(56) 0.28(0.28) 0.18
PBRpred 204 74(78) 69(70) 0.57(0.59) 0.39
PRBR 0g 55(56) 69(72) 0.46(0.47) 0.22
SPOT-Seq36] 81(68) 50(82) 0.39(0.63) 0.33

using the templates that have no sequence identity higlaer 456% to target (45%

is employed here to be consistent with the cutoff for bugddthis small novel RBP
structure database). It is clear that sequence-basediqeelsnare as accurate as or
more accurate than template-based techniques in preglRNA binding residues. All
methods, however, have dramatic reduction of accuracyyiiesece identities to known
RBPs are lower than 45%. The performance of various methodsascampared by

the ROC curves in Fig.7.3 Regardless of datasets, two best performing methods are

RBPpred and BindN+.

7.2.3 High-Resolution Function Prediction: Binding RNA Type Prediction

Predicting the type of RNA binding with a given RBP provides a endetailed
information on the function of RNA-binding proteins. Yue dt 28] developed a
sequence-based predictor for separating rRNA-binding fRINA-binding proteins.
They found that rRNA-binding proteins can be more accuragaigdicted than
RNA-binding proteins. Shazman and Mandel-Gutfreuhti/] employed a multi-class
SVM to classify rRNA, tRNA, and mRNA-binding proteins based dac&ostatic
properties derived from protein structures. It has the ésfjhsuccess rate for
tRNA-binding proteins (13/13) but a lower success rate for ARB2/46) and mRNA

(17/23) binding proteins. This method, however, cannoasge RNA from DNA
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binding proteins. We developed the sequence-based teshi8®OT-seq that can
predict the RNA types by assuming that the query protein adatching template
RBP bind to the same type of RNA3§]. SPOT-seq achieved success rate of
69% (33/48) for tRNA, 56% (15/27) for rRNA and 96% (54/56) for mRNbr an
independent test set of 215 RNA-binding proteins, compawedl®o, 73% and 91%
for the training set of 216 RBPs. It should be noted, howevat, ttre RNA structural
motif, rather than the RNA functional type, is the key for the RiBRction as many

proteins can bind with different types of RNAs.

7.2.4 Highest Resolution Function Prediction: Protein-RM Complex Structure

Prediction

To understand the mechanism of protein-RNA binding, atoresolution of
protein-RNA complex structures is required. One method &djot protein-RNA
complex structures is protein-RNA docking that relies onvingrotein and RNA
structures. Such docking techniques for protein-RNA irdoas can be modified
from many docking software tools for protein-protein andtpm-ligand docking after
equipping with a scoring/energy function for protein-RNAeraction. For example,
Zheng et al utilized the RosettaDockingQ[/] program to generate protein-RNA
complex decoys and evaluate the ability of a knowledgeasergy function based
on a conditional-probability function to discriminate ¢@wy decoys 130.Perez-Cano
et al. employed the FTDOCK2Dg program plus propensity-based statistical
potentials 131 . Tuszynska and Bujnicki employed the GRAMM(Q9docking
program and two separate statistical potentials (QUASI-RE&ed a quasi-chemical
reference state and DARS-RNA based on the reference statedoays) for scoring
[210.Setny and Zacharias employed the protein-docking progk&TRACT [211] and

a knowledge-based energy function employing a quasi-aterapproximation12,.
These studies demonstrated the usefulness of knowledgpeHtEmergy functions for
decoy discrimination and selection of near-native docklaegoys. We also developed

a DFIRE-based statistical potential that increases trugiymsates and decreases false
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Fig. 7.4: Comparison  between the
predicted (red) and actual
(green) structure and
predicted (yellow) and actual
(blue) binding residues. The
RNA structure of actual is
cyan and that of the predicted
is orange. The target is
1m8yB and the template is
3k50A.

positive rates in predicting RNA-binding proteirgy. Protein-RNA docking, however,
is more challenging than protein-protein docking becaus@ Riuctures are more
flexible than protein structures. This is demonstrated liicat assessment of predicted
interaction (CAPRI, 2009). CAPRI, which typically assessedgmprotein docking
models, included a protein-RNA complex structure in a recembd R13.All docking
predictions failed for this protein-RNA complex target besa of inaccurate model
RNA structure.

Another approach to predict protein-RNA complex structusetd use known
protein-RNA complex structures as templates. SPOT-36jcgnd SPOT-struc34] are
sequence and structure-based techniques for predictmgipRNA binding complex
structures based on template-based structure predictiogrgmm SPARKS X and
structural alignment program TM-aligdi 39, respectively. Both methods can provide
quite accurate prediction of binding residues and compteictures if a significantly
matching template is found. For example, SPOT-seq candaoatching templates
with strong predicted binding affinity for 114 out of 257 RBPgy&ts. One example
is shown in Fig. 8.3 In this figure the target protein is 1m8yB (human Puf pratein
Pumiliol), the SPOT-seq selected template is 3k5gA (Caahaolitis elegans fem-3
binding factor 2). The sequence identity between these notems is 24.9%. The
advantage of SPOT-seq or SPOT-struc is their computatedfieiency that allows large

genome-scale prediction.
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7.3 Summary and Outlook

Constantly increasing number of protein-RNA complex strregumakes it possible for
the development of various techniques for predicting RNAding proteins at different
levels of functional details. Sequence-based techniqeesgumachine-learning
methods are ineffective in separating RNA-binding from ®i¥A binding proteins,
DNA-binding proteins, in particular. Our result shows thaemplate-based technique
is the only viable approach for RNA-binding discriminatiorOn the other hand,
for a known RNA-binding protein, the best machine-learniaghhiques are often
more accurate in locating RNA-binding residues than a teteglased approach.
This is true particularly for those proteins that are notdmeed as RBPs by the
template-based approach. Only a few techniques have beefoded to predict the
types of RNA interacting with a RBP. A template-based approacmtake a reasonable
prediction based on the type of RNA in the matching templatéRdimplex structure.
Similarly, a template-based approach is the only reliabt# available for predicting
protein-RNA complex structure. As more and more protein-RN#plex structures
deposited into protein databank, one can expect that a &eiphsed approach will
be increasingly useful. An application of such an approachuman genome has
yielded more than 2000 novel RBPs and a recovery of 42.1% in krR®Ps and
a recovery of 41.5% newly discovered 860 mRNA-binding pra€il7] [Zhao et
al. submitted]. The consistency of the recovery (or sertji in two separate
datasets highlights the robustness of template-based toolpredicting truly novel
RNA-binding proteins. Further, the machine-learning based template-based
approaches are likely complementary each other. Combirieget two approaches

will likely further improve the accuracy of RNA-binding fution prediction.
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Chapter 8 Structure-based prediction of carbohydrate-birding proteins,
binding residues and complex structures by a template-baske

approach

8.1 Introduction

Carbohydrates perform essential roles in cell processesvinglorganisms by
interacting with proteins through both non-covalent (cémrate-protein binding) and
covalent (glycosylation) interactions. Glycosylationmbteins and lipids coats the
surfaces of all living cells and tissues with carbohydratd$e spatial patterns of
such carbohydrate coating change during cell developraardiumor progression and
metastasisq14,215. Thus, recognition of cell-surface carbohydrates, onthefkey
functions of carbohydrate-binding proteins (CBPs), is stthgé intensive studies for
biomarker discovery and inhibitor desig@ill4,216. Abundant carbohydrates in human
cell surfaces are also exploited by carbohydrate-bindnogens in pathogens for cell
invasion and detection avoidance. As a result, CBPs in patisdggve been employed
as potential drug target217. Thus, it is critically important to locate all CBPs and
elucidate their binding mechanisms.

Experimentally, glycan arrays have been developed for-thighughput searching
of novel CBPs and investigation of their binding specificiB1$-220. However, it
is challenging to construct a sizeable, diverse glycanyapecause of difficulty in
synthesis and isolation of carbohydrates. Here, we focusnoalternative approach:
prediction of CBPs and their binding residues by computatitathniques.

Currently, predicting CBPs and their binding residues arddreas two separate
problems p21-225. Someya et al321] predicted carbohydrate-binding proteins by
combining protein sequences information with supporteeotachines (SVM). This
approach employed triple sequence patterns and frequeesfoggouped amino acids as
features and has achieved 0.67 for Mathews correlatioriiciesit (leave-one-out cross

validation) based on a dataset of 345 CBPs and non-CBPs. Thisdsthimited to
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CBP prediction. Most of the methods developed for predictiawpahydrate-binding

residues, on the other hand, assume that their structueeknawn. For example,

Shionyu-Mitsuyama et al. predicted binding residues bidimg empirical interactions

rules R22. Tsai et al. utilized 3D probability density map224]. Others employed

machine-learning techniques based on binding propensitly smlvent accessibility

[226 or selected geometric and chemical featur287]. These methods, however,
cannot distinguish CBPs from non-CBPs.

Here, we will introduce a single template-based method f@distion of
CBPs and carbohydrate-binding residues. This work is indpbg our highly
effective template-based technique named SPOT-Structfectsre-based prediction
of DNA-/RNA- binding proteins and their binding sites3g, 34). In this
approach, the target structure is first structurally aligt® the proteins with known
protein-RNA/DNA complex structures. Significantly alignetiuctures are then
employed for building model complex structures betweegeistructure and template
RNA/DNA and for predicting binding affinities.

In this work, we will extend SPOT-Struc to CBPs. Such an extens possible
because of the existence of a reasonable size of complextises of protein and
carbohydrates in protein databankl18 despite their low ibgéaffinity and highly
flexible structures of carbohydrates. This complex stmgctiataset allows us to develop
the first distance-dependent knowledge-based energyidarfor protein-carbohydrate
interaction that is essential for the accuracy of SPOTeStsuCBPs. A distance-scaled,
finite, ideal gas reference (DFIRE) state will be used as fatgms B3] and
protein-DNA/RNA interactions 32, 34]. This knowledge-based energy function is
then combined with a recently developed structure aligimezthod SPalign42] for
predicting CBPs and binding residues. This method is testetizZ@non-redundant
RBPs and 2880 non-RBPs and achieved the Mathews correlatioficeoet of 0.61
and 0.58 for prediction of CBPs and carbohydrate-bindingdrte=s, respectively.

The sensitivity and precision of CBP prediction are 45% and 8B%pectively. A
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similar-level sensitivity is achieved for APO and HOLO sitwres. Application of this

method to structural genomics targets revealed several GBPS.

8.2 Methods and Materials

8.2.1 Datasets

Template library of carbohydrate-binding proteins (T562). A template library was
built based on the PROCARB database that contains 604 progeloohydrate complex
structures22§. We then selected only those proteins with more than 5 vesithinding
with carbohydrates. Here, a residue is defined as a carbateydmnding residue if
it has one or more heavy atoms that are within 6.5 distanca ftay heavy atoms
of carbohydrates. We further divided selected proteine ohdmains according to
DDomain classifications. Both domains and their correspandhains are included
in the final template library that has 562 CBPs. We have inclumtgtd domains and
chains in the template library so as to improve the possgibif locating a suitable
template.

Positive Binding-domain Dataset (BD122) We built a positive database of
carbohydrate-binding domains for training and cross dilah by firstly excluding the
chains in T562. We further remove the redundant proteinsgdayguBLASTClust24
with a sequence identity cutoff of 30%. The final dataset@mst122 CBPs.

Negative (non-binding) dataset (NB3442)We built the negative dataset by querying
the PDB database and removing all PDB files containing caudraltes. The protein
chains are splitted into domains by DDomain. All redundamindins are removed
by BLASTClust [L34 with a sequence identity cutoff of 30%. One representative
protein was randomly selected from each cluster. The firtabg@contains 3442 protein
domains.

APO45/HOLO45 dataset To examine the effect of binding-induced change of protein
conformations on accuracy and sensitivity of CBP detecti@hwit a dataset with both
bound (HOLO) and unbound (APO) structures of CBPs. We loc&ieAPO structures

by selecting homologous sequences of proteins in BD122. ADAchains are

112



divided into domains or by DDomain. Only HOLO and APO domainth sequence
identity¢, 50% were selected. Here, the pair-wised sequeeroéity was calculated by
ALIGNO program from FASTA2 packagelBg. We found 45 APO-HOLO domain
pairs. The majority of the pairs (31 out of 45) have sequedeantity more than 80%.
Structural genomics targets (SG2076) Our method is applied to 2076 structural
genomics targets that was obtained by us from previous studgtructure-based
prediction of DNA-binding proteinsl6. This dataset wasanié¢d by querying
structural genomics targets in the protein databank. Alicstires were divided into
domains by the automatic domain parser DDOMAIN25. Redunglarms removed by

using BLASTClust 134 with a sequence identity cutoff of 30%.

8.2.2 DFIRE-based energy function for protein-carbohydrae interactions

We employed the same equation as the DFIRE-based interactioprotein-RNA

interactions 4] as below

Nobs (ivjvT)

—nn e » TS Teuts
_DRNA q J rXAr Nlc (Z ] Tea t)
U’i,j (T) = f;)(”'cut)f;("'cut) TgutATcut obs\ "W cut (8.1)
07 r Z Teut,
. ,NPI.Otein_RNA(Z‘,jJ‘) o .
where the volume-fraction factof!(r) = 2, Z":b_sNAbn(ijr) » Nows(i, j,7) is the
J obs 2J

number of pairs of atomsand j within the spherical shell at distanegut observed

in a given structure databage;.,; is the bin width at-.ut, the value ofa (1.61) was
determined by the best fit of* to the actual distance-dependent number of ideal-gas
points in finite protein-size spheres19 ands set to 0.33. We divided the atom types
into 174, which includes 167 protein and 7 carbohydrate djq®s.

8.2.3 Prediction protocol

The protocol for CBP prediction is as follows. First, the targgucture is aligned

against those templates with sequence identity j 30% frenettmplate library T562 by
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structure alignment tool SPaligag]. SP-score is employed to measure the structural
similarity between template and query structures. If tmecstire similarity is higher
than a threshold, the model for the complex structure betleequery protein and the
template carbohydrate is constructed by replacing the l&mprotein structure with
the query structure in the template complex structure. Thdahcomplex structure
will be utilized to calculate the binding affinity by the DFIREhergy function. The
binding affinity is obtained by simplifying the predictedopein model with carbomy
and carborp. If the binding affinity is lower than a threshold, the quesyredicted as
CBPs. If binding affinity does not pass the threshold (or stmadtsimilarity SP-Score
is lower than a threshold), the query is predicted as nobetsdrate binding proteins.
These two thresholds are optimized by maximizing the Mattheorrelation coefficient

(MCC) (see below).

8.3 Results

8.3.1 SPalign for CBP prediction

We first examine the ability of using SP-score from SPalign @BP prediction.
SP-score is a structural-alignment score that is indeperafehe sizes of proteins in
comparison. SP-score ranges from 0 to 2. A higher SP-scdieaites higher structural
similarity. A SP-score at about 0.5 indicates the same straikcfolds likely shared by
the two structures in comparison 21. Fg1 compares the distributions of SP-scores
obtained by comparing template structures to the strustiwrd®D122 (filled bars) to
those in NB2897 (open bars). The comparison is made afterviampany templates
with sequence identify more than 30% to the positive querncsire. The result shows
that only 6% non-binding targets from NB3442 have a SP-scbmnaare than 0.6
with a template structure. By comparison, 25% of bindingdtsgan find a template
with SP-score ¢0.6. It is clear that a structure-alignmeognam alone can provide a
reasonable prediction of CBPs. We found that SP-align careeetihe highest MCC
0.56 with sensitivity of 42% and precision of 78% for the Sf8re threshold of 0.784.
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Fig. 8.1: Distributions of top SP-score

_ | ranked templates by comparing
proteins in the positive BD122
(filled bars) and negative NB2987
(open bars) datasets to the
template structures (T562) after
excluding templates with more
than 30% sequence identity to the
guery sequence from BD122.
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Table 8.1: Performance of PSI-BLAST, SPalign, and SPOT-$wucDB122 and
NB2987 based on leave-homolog-out cross validation

Method Precision Sensitivity MCC
PSI-BLAST 90% 30% 0.51
SP-align 80% 42% 0.57
SP-align+Energy (SPOT-Struc) 88% 45% 0.62

8.3.2 Combining SP-align with DFIRE-based energy function

To further improve the prediction ability of SP-align, wenabined SP-align with
binding affinity based on the extended DFIRE energy functid@BP [Equation(1)].
Two thresholds, SP-score and binding affinity, were optadizby using the
leave-one-out scheme on BD122/NB3442. The grid for SP-seddelil. For a given
SP-score, we locate the binding affinity that yields the aggiMCC value. The final
MCC value is 0.61 with 0.72 and -0.30 as the thresholds for @Pesand energy
thresholds, respectively. The corresponding sensitanty precision are 45% and 84%,
respectively. This result indicates that combining SBraland binding affinity can
significantly improve over SP-align (9% for the MCC value, 786sensitivity, and 6%
for precision) as shown in Tab&1
For a baseline comparison, we also predict CBPs by using PSIBRASa

commonly used tool for sequence-to-profile homolog seavd made four iterations
of search by PSIBLAST utilizing the NCBI non-redundant protsgguence library.

It predicts a target as CBP if the most significant template fidd6 has an E-value
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— Fig. 8.2: Sensitivity versus false positive
1 rate, given by PSI-BLAST,
| SPalign and SPOT-Struc (SPalign
+ Energy).
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smaller than a threshold. As with SPalign-based technjdbhegemplates are removed
if their sequence identities with a target are higher tha.30he highest MCC value of
PSIBLAST is 0.51 with precision of 92%, sensitivity of 30%. sisown in Table8.1,
the MCC value is 10% lower than SP-align and 20% lower than I§fa-aombining
with energy. The combination of SP-align with energy is thestreffective method in
detecting CBPs. The Receiver operating characteristic (RO@gsdor PSI-BLAST,
SPalign and SPalign+ Energy (SPOT-Struc) are shown ing8).

8.3.3 The effect of bound/unbound structures on CBP predictio (APO/HOLO

dataset)

We examine the effect of bound/unbound structures on CBP gifredlibased on the
leave-homolog-out cross validation. For a target proteéiits SP-score and binding
energy value satisfies the above-optimized thresholddl] ivevpredicted as a CBP. The
numbers of positive predictions for HOLO and APO sets arerl X9, respectively,
and the corresponding sensitivities are 42% (19/45) and @®¥45), respectively.

Not all correctly predicted targets in the APO set overlafnhwhose in the HOLO
set. For 13 overlapped targets, the conformational chamogeta binding is small
(SPscore ¢0.74). Six correctly predicted targets in HOL®Onaissed in APO. Two
of the six targets are not predicted as CBPs because theibleuitamplates were
excluded due to template-target sequence identities aatagrthan 30%. The remained

four targets have significant structural changes (SP-sg@£ from the corresponding
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Fig. 8.3: Comparison of predicted and
native binding residues for target
2j1uA. The red and green colors
represent predicted and native
structures, respectively. The
magnate and cyan denote the
template and native carbohydrate
structures, respectively. The
predicted and native binding
residues are colored in yellow and
blue, respectively.

HOLO structures. Interestingly, 3 APO targets are corygutédicted as CBPs but not
the corresponding HOLO targets. These 3 APO targets hangisant changes in their
structures from their HOLO structures (SPscores j0.36¢s&harge structural changes
made them close to some of the templates that do not matcle td@LO structures.
These results suggest that using APO structures does ddbledarge reduction of the

sensitivity of our method.

8.3.4 Binding sites prediction

Predicted structures from SPOT-Struc can be employed thqbreinding residues. A
residue is defined as binding site if any heavy atom for thsitlte is 6.5 away from
any heavy atom of carbohydrate. All other residues are diéseron-binding residues,
regardless if they are on the surface or in the protein corbe fredicted binding
sites are evaluated against actual binding sites by usenyItbC value, sensitivity and
precision. For 54 correctly predicted CBPs from DB122, an ay&=MCC value of 0.58
with standard deviation 0.29 was achieved with a sengitofitc6% and a precision of
62%.
As an example, Figur8.3 compares predicted CBP binding sites with native

binding sites for target 2j1uA. This is a Fucolectin-rethfgotein in Streptococcus
pneumoniae serotype 4. For this target, the predictioneseldi an MCC of 0.90

although the sequence identity between this target andiaen®j7mA is only 17.3%.
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Table 8.2: Structural genome targets predicted as CBPs
Target Template SP-score Energy Function
1t9fA 1v6VvA2 0.788 -2.2 cBP
2jz4A1  1vbpA 0.744 -1.8 CBP
1vdwA  2qvrA 0.883 -1.7 CBP
1y89B 2rilA 0.952 -1.7 CBP
3hnmA 2j1tA 0.758 -5.7 CBP
ImtpA  8apiA 1.207 -2.0 NB
3e5zA  1mslAl 0.734 -2.4 CBP
3ejnA 3ck7B 0.822 -3.2 NB
1nylA lwlal 1.368 -3.0 CBP
3eypA2  2j1uA 0.828 -2.2 CBP
3ebvA 2dt1A 0.842 -5.2 CBP
3cbwA 2CipA 0.900 -9.1 CBP
loqlA 2d60X 0.726 2.1 UK
3gglA 2bzdA3 0.942 -1.7 CBP
3ibsA 2vdkB 0.788 -0.5 NB
IxpwA  2v72A 0.881 0.9 CBP
1plmA  2vhlA 0.759 -0.3 NB
1ni9A 2r8tA 1.219 1.0 CBP
1ujtA 2q7nA5 0.724 -1.9 CBP
1zoxA  1mfbH1 0.818 -1.3 NB
2p40A 1mslAl  0.733 -1.0 CBP

@ Having putative function related to carbohydrate-bindihgunction unknown¢
Annotated with other functions.

8.3.5 Application to structural genomics targets

This method was further applied to 2076 structural genord@®ains. The trained
thresholds (0.72 for SP-score and -0.30 for the bindinggnevere employed. Twenty
one targets from 2076 domains were predicted as CBPs. Among the out of 21
(71%) are annotated as putative CBPs by NCBI annotations [The NGEByBiems
database]. One target is with unknown functions (1oqlAk fégmained five targets
(ImtpA, 3ejnA, 3ibsA, 1p1lmA and 1zoxA ) are annotated witheotfunctions .
Among these proteins, 2 proteins have the molecular funatsdated with binding
with others as recorded by Uniprot database. Protein 1mi@iA 1933) is a protein
binding with peptide and annotated as serine-type endmjaset inhibitor . Protein
1p1mA (MTA/SAH deaminase ) is annotated as metal-bindiraggon. Table8.2 lists
21 predicted CBPs.
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Chapter 9 Discriminating  between  disease-causing and neuat
non-frameshifting micro-INDELs by SVM and integration of

sequence- and structure-based features

Abstract

Micro-INDELs (insertions or deletions oK 20 bp) constitute the second most
frequent class of human gene mutation after single nudeotariants. Despite the
relative abundance of non-frameshifting (NFS) INDELSs,ithdamaging effect on
protein structure and function has gone largely unstudi& have developed such
a technique (DDIG-in; Detecting DIsease-causing Geneti@ations due to INDELS)
by comparing the properties of disease-causing NFS-INDEb® the Human Gene
Mutation Database with putatively neutral NFS-INDELs frahe 1,000 Genomes
Project. The final SVM model yielded a Mathews correlatioeficient of 0.68 for

INDEL discrimination and is robust against annotation esro

9.1 Introduction

The largest class of human gene mutation is the single niiddeeariant (SNV)
which comprises 67% of known pathological mutatio@29 .This is followed by
microinsertions and microdeletions (micro-INDELs<0f20 bp) which comprise 22%
of known pathological mutation®28Q . In addition, with the broad implementation
of next generation sequencing (NGS) technology in gendtidiess, several million
polymorphic micro-INDELs have been identified and analyirethe human genome
[231-234].Many more genetic variants, including micro-INDELSs, axgrently being
discovered at an unprecedented rate. Obviously, it is iotjpa to examine the
impact of each variant on biological function individuallidence, there is a critical
need for effective bioinformatics tools that are capablalistinguishing potentially

disease-causing variants from those that are functionallyral.
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Most available tools for prioritizing genetic variants amewever limited to
non-synonymous SNVs. Examples are SIFZ33 , POLYPHEN [23¢ , and
MutPred R37 (for recent reviews, see2B8-241]). These tools are not applicable
to INDELs because INDELs change the number of nucleotideth& gene and
hence are expected to have a much greater impact on moleicudation than
single nucleotide substitutions. There are two main tygeBN®EL within exons:
frameshifting (FS) and non-frameshifting (NFS). NFS-INDREnNsert/delete multiples
of three nucleotides leading to the addition or removal @fcdic amino-acid residues
at the INDEL site. FS-INDELs, on the other hand, insert/gelke discrete number
of nucleotides that are indivisible by three and therefdterahe entire reading
frame resulting in either a completely different aminodaseéquence C-terminal to the
INDEL site, or premature termination of translation. Twoibformatics methods were
recently designed to discriminate between functional amatfunctional FS-INDELSs
[242 243 and nonsense mutations (premature stop codd@®.[ However, to our
knowledge, there is no technique available that is capdid@alyzing NFS-INDELSs.
Methods for interrogating FS-INDELs would not be applialib NFS-INDELSs
because FS-INDELs modify the entire amino-acid sequenai@ital to the INDEL
site (unless a second INDEL were to exist), whereas NFS-INDEmply alter
the amino-acid sequence at the INDEL site. Such a techniqueNFS-INDEL
prioritization is urgently required because NFS-INDELsstitute a significant fraction
of all exonic INDELSs (theoretically, it is about one thirdn practice, we found that
only 26% of 9,327 exonic micro-INDELs are NFS INDELs in th®@Q Genomes
Project dataZ44].

In this paper, we have developed a method that we have terni¥&G-in
(Detecting Dlsease-causing Genetic variants due to nmseoiions/microdeletions)
to prioritize NFS-INDELs by comparing disease-causing BB from the Human
Gene Mutation Database (HGMD229 with putatively neutral NFS-INDELs from
the 1,000 Genomes Projec244] , respectively. We developed and examined a

total of 58 sequence- and structure-based features of INBiEEls and found that
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the feature based on predicted unstructured regions byddis@redictor SPINE-D
[245 was the most discriminating one. This feature can, on it:,0achieve a
value of 0.56 for the Mathews Correlation Coefficient (MCC), arR(for the Area
Under the Receiver-Operating Characteristic (ROC) Curve (AUAg. developed
two separate Support Vector Machines (SVM) methods for NiSedeletions and
NFS-microinsertions that were 10-fold cross-validated amdependently tested on
microinsertions and microdeletions, respectively. A famlevel of accuracy between
independent testing and ten-fold cross-validation ineanot only the robustness of
our training procedure but also a similar deleterious immdd\NFS microdeletions
and microinsertions. Of the 58 features tested, nine featwvere selected by
maximizing the discriminatory roles for detecting diseaaasing NFS microinsertions
and microdeletions in a non-redundant dataset of microEN& Our DDIG-in method
received further confirmation from the observation that NNBEL variants with
higher predicted disease-causing probabilities wereacharized by lower average
minor allele frequencies in the general population (baseddata from the 1,000

Genomes Project). DDIG-in, is available at http://spdedserg/ddig.

9.2 Methods

We tested many features for their potential roles in INDEkcdmination. These
features are summarized in Taldld and are described in detail below.

Nucleotide sequence-level features. We examined the following nucleotide
sequence-level features as potential discriminators dmwdisease-causing and
neutral NFS-INDELs: the distances from the INDEL site to tiearest upstream
and downstream splice sites and the DNA conservation sceamved from
phyloP(phylogenetic p-values246. We examined the distances from nearest
splice sites because mutations near splice sites have tieatiad to give rise to
alternative splicing pattern247).All DNA conservation scores were downloaded from
http://hgdownload.cse.ucsc.edu/goldenPath/hg199ptA8way/, based on multiple

alignments of 45 vertebrate genomes to the human genome. altolate a DNA
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Table 9.1: List of all features considered.

Features Description
Nucleotide Level
Microdeletion/ Distances to nearest 5’ and 3’ splicing positions

microinsertion

positions (2)

DNA conservation Maximum, minimum, average

scores (3)

Protein Level

Evolution feature (30) Maximum, minimum, average values (Vansition
probabilities between match(M), microdeletion(D) and
microinsertion(l) (MM, MI, MD, IM, I, DM, DD), 3 effective
numbers of match/microinsertion/microdeletion )

Length (4) Protein length, Microdeletion/microinsertiength, Distances
to terminals

0S (1) the INDEL-induced change to the HMM match score

Disorder score (3) Maximum, minimum, Average

Secondary  structureMaximum, minimum, Average probability (C, H, E), Predicted

(12) Secondary structure (C, H, E)

Accessible surface areavlaximum, minimum, average

3)

conservation score for a microdeletion, we considered el deleted basesu{,;)
plus a fixed number of bases before and after the deleted lfdmealf-window
size, nuindow). We obtained the average, minimum and maximum DNA conserva
scores based on phylogenetic p-values over the specified basund the deleted bases
(i.e., nge+t2nuindow). FOr microinsertions, we considered the two bases flanthieg
microinsertion plus a fixed number of additional neighbgmupstream and downstream
bases (i.e., 2+2,;.400). The maximum, minimum and average conservation scores for
2+2n,in400 DAses were also obtained. These five nucleotide sequeratddatures

(2 distances+31 DNA conservation scores) were studied tbesssess their utility in
INDEL classification.

Protein sequence-level features.We obtained features at the amino-acid sequence
level using a program called HHBIits that derives multipletpin sequence alignments
based on profiles generated from hidden Markov chain moddléM) [108§
(downloaded from http://toolkit.tuebingen.mpg.de/hts)). This program compares

two sequences at the HMM profile level and searches for hayoole sequences
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from the UniProt sequence database. It is a more sensitigbnitue than
the sequence-to-profile homolog search tool PSI-BIA&4[ commonly used in
classifications of non-synonymous SNVs (e.g. SIE3q ) because HHBIits employs a
position-dependent gap penalty and calculates trangtioibabilities not only between
matches of two residues (i.e. two residues from two seqeace aligned) but also
between other states (match to microdeletion, match toamisertion, microdeletion
to match, microinsertion to match, microinsertion to miosertion and microdeletion
to microdeletion). That is, there are a total of seven pmsitiependent transition
probabilities. In addition, for each position, we can obtthree effective numbers
of homologous sequences (neff) aligned to microinserttonmicrodeletion and to
amino-acid residues, irrespective of residue type. Theimmax, minimum and
average of all these amino-acid residue level propertieg{33)=30 features] were
obtained for a specified region. For the microdeletionss tegion included deleted
residues plus several residues before and after the dalesetles 1.+2nwindow)-
For microinsertions, this region comprised the two nearesghboring residues
flanking the inserted residues plus a fixed number of resibeésre and after these
two residues (2+2.:.400)- IN addition, we calculated a protein-level feature: the
change to the HMM-HMM alignment score by the whole proteigusce before
and after the microdeletion or microinsertion. We also exawh four features of
microinsertion/microdeletion length, protein length atistances to the protein amino
and carboxy terminal ends. A total of 35 features (30+1+4pwenerated from protein
sequences.

Protein structure-level features. The first protein structure-level feature was based
on amino acid sequence-based prediction of structured asttugtured regions by
a neural-network-based disorder predictor, SPINE2BY. We employed SPINE-D
because it is among the most accurate methods based on esrksH245 according

to the 9th Meeting for Critical Assessment of Structure Ritoin Techniques (CASP
9, 2010) p45 248. We examined the maximum, minimum and average values of

disorder probabilities over the specified region describbdve {ge+2nwindow fOr
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microdeletion, 2+2,,,40, fOr microinsertion). In addition, we obtained predicted
secondary structures, secondary structure probabilitgl, solvent accessible surface
area for the same specified region from SPINE249 . SPINE-X has achieved 82%
accuracy in secondary structure predictigdq and 0.74 for the correlation coefficient
between predicted and measured solvent accessible sare@¢ASA) b0] based on
large-scale benchmark tests. As with the disorder feaweegbtained the maximum,
minimum and average values of predicted secondary protediin three states and
predicted real-value solvent accessibility over the dptiregion for microdeletions
or microinsertions. We also studied the fractions of threeosdary structure types
over the same specified region. A total of 18 structure-bdsatlires (31 disorder,
3 fractions of secondary structure types, 33 secondaryctstel probability and
31 ASA) were generated for studies. Dataset of Positive INDE The positive
(disease-causing) dataset was obtained from the HGMD (HGRAGfessional v.
2012.2) p29. Initially, a total of 25,384 INDELs were identified after apped
to CCDS (20110907 version). After excluding frameshift (FSPDELs and those
INDELSs that were located in an intron or at a stop codon, weiiokbd a dataset of
2,479 exonic disease-causing NFS-INDELs in 743 protetirgp genes. Of these,
1,998 and 481 were microdeletions and microinsertionpeds/ely. To examine the
possible effect of homologous sequences on training ounfoionatics method, we
also constructed a non-redundant dataset lacking homa$ogguences that had ¢35%
sequence identity between any pair of sequences. This wasatished by pairwise
sequence alignment and clustering by BlastClag4] and only one representative
sequence was chosen from each cluster. A 35% protein segueéeaitity cutoff
was employed because this cutoff lies at the boundary thstinduishes close
homologs from remote homolog240 251] . This removal of homologous sequences
yielded 1,762 microdeletions and 445 microinsertions fré80 protein-coding
genes. We also examined the overlap between microinseatmh microdeletion
datasets. We considered that a microinsertion and a mietiole were located at

the same site if at least one of the two nearest neighborisglues flanking the
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inserted residues in the microinsertion contributed to de¢eted residues in the
microdeletion. This definition yielded 21 of 743 proteinkey were CCDS13330.1,
CCDS8539.1, CCDS13989.1, CCDS5313.1, CCDS2145.1, CCDS30981.1,
CCDS747.1,CCDS4306.1, CCDS13858.1, CCDS5773.1, CCDS6392.1, CCD$1390
CCDS11892.1, CCDS14083.1, CCDS10458.1, (CCDS12198.1, CCDS2463.1,
CCDS11453.1, CCDS11127.1, CCDS1071.1, and CCDS45080.1. The rhinima
overlap suggested that the microinsertion and microdeletets could to all intents
and purposes be treated as independent test datasetd agamsther.

Dataset of Putatively Neutral INDELs. The putatively neutral dataset was
retrieved from the micro-INDEL variants identified duringpet 1000 Genomes
Project (http://www.1000genomes.org/, 20101123 relgasehich apparently healthy
individuals from five major populations were sequenc2s? . As with the HGMD

data, the INDELs were located using hgl9 as the referencengen From 9,327
exonic INDELS (excluding more than 3 million intronic INDE), we identified

a total of 2,413 NFS-INDELs of which 1,944 were microdelaioand 469 were
microinsertions. These 2,413 NFS-INDELs were derived frb829 protein-coding
genes after excluding FS-INDELs and those INDELSs that weratkd in an intron or at

a stop codon. Removal of homologous sequences (based oremm®guence identity
cut-off of 35%), yielded 1,795 microdeletions and 446 miicsertions (a total of 2241
neutral micro-INDELS) from 640 protein-coding genes. Walithe disease-causing
NFS-INDEL dataset, there was no overlap between the pasitidthe microdeletions
and those of the microinsertions in this dataset. Minolefi@quencies were retrieved

for all 2,241 NFS-INDELs from the 1000 Genomes Project. Battadets (with and
without homologous sequences) were employed to train @hote models to examine

the effect of homologous sequences. It should be noted hewtleat we cannot wholly
exclude the possibility that a small subset of this putétimeutral dataset could still be

of functional importance (more in the Discussion section).
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9.2.1 Structural and Sequence Features

We tested many features for their potential roles in INDEkcdmination. These
features are summarized in Ta®léand are described in detail below.

Nucleotide sequence-level features. We examined the following nucleotide
sequence-level features as potential discriminators dmwdisease-causing and
neutral NFS-INDELs: the distances from the INDEL site to tiearest upstream
and downstream splice sites and the DNA conservation scemved from
phyloP(phylogenetic p-values). We examined the distafrogs nearest splice sites
because mutations near splice sites have the potentialvio rgge to alternative
splicing patterns 2471 . All DNA conservation scores were downloaded from
http://hgdownload.cse.ucsc.edu/goldenPath/hg199pt8way/, based on multiple
alignments of 45 vertebrate genomes to the human genome. altalate a DNA
conservation score for a microdeletion, we consideredhal deleted bases:4.;)
plus a fixed number of bases before and after the deleted lfdmefalf-window
size, nyindow). We obtained the average, minimum and maximum DNA conserva
scores based on phylogenetic p-values over the specified basund the deleted bases
(i.e., nge+t2nuindow). FOr microinsertions, we considered the two bases flanthieg
microinsertion plus a fixed number of additional neighbgmupstream and downstream
bases (i.e., 2+2,;.400). The maximum, minimum and average conservation scores for
2+2n.,,in400n Dases were also obtained. These five nucleotide sequeratddatures
(2 distances+31 DNA conservation scores) were studiedtbesssess their utility in
INDEL classification.

Protein sequence-level features.We obtained features at the amino-acid sequence
level using a program called HHBIits that derives multipletpin sequence alignments
based on profiles generated from hidden Markov chain moddldM) [108§
(downloaded from http://toolkit.tuebingen.mpg.de/hts)). This program compares
two sequences at the HMM profile level and searches for hagoole sequences
from the UniProt sequence database. It is a more sensitigknigue than

the sequence-to-profile homolog search tool PSI-BIA&4[ commonly used in
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classifications of non-synonymous SNVs (e.g. SIE3q ) because HHBIits employs a
position-dependent gap penalty and calculates trangtioibabilities not only between
matches of two residues (i.e. two residues from two sequeae aligned) but also
between other states (match to microdeletion, match toamisertion, microdeletion
to match, microinsertion to match, microinsertion to minsertion and microdeletion
to microdeletion). That is, there are a total of seven pmsiiependent transition
probabilities. In addition, for each position, we can obtthree effective numbers
of homologous sequences (neff) aligned to microinserttonmicrodeletion and to
amino-acid residues, irrespective of residue type. Theimmax, minimum and
average of all these amino-acid residue level propertieg{833)=30 features] were
obtained for a specified region. For the microdeletionss tegion included deleted
residues plus several residues before and after the dalesatlies §u.;+2n,indow)-
For microinsertions, this region comprised the two nearesghboring residues
flanking the inserted residues plus a fixed number of resibeésre and after these
two residues (2+2.:.400)- IN addition, we calculated a protein-level feature: the
change to the HMM-HMM alignment score by the whole proteigqusce before
and after the microdeletion or microinsertion. We also exaah four features of
microinsertion/microdeletion length, protein length ahstances to the protein amino
and carboxy terminal ends. A total of 35 features (30+1+4pwenerated from protein
sequences.

Protein structure-level features. The first protein structure-level feature was based
on amino acid sequence-based prediction of structured asttugtured regions by
a neural-network-based disorder predictor, SPINE2BY . We employed SPINE-D
because it is among the most accurate methods based on sksH245 according

to the 9th Meeting for Critical Assessment of Structure Rrigal Techniques (CASP
9, 2010) p45 248 . We examined the maximum, minimum and average values of
disorder probabilities over the specified region describbdve {ge+2n.window fOr
microdeletion, 2+2,,,4.,, fOr microinsertion). In addition, we obtained predicted

secondary structures, secondary structure probabilitg, solvent accessible surface
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area for the same specified region from SPINE24Y . SPINE-X has achieved 82%
accuracy in secondary structure predictiagd9 and 0.74 for the correlation coefficient
between predicted and measured solvent accessible sareadéASA) b0 based on
large-scale benchmark tests. As with the disorder featweepbtained the maximum,
minimum and average values of predicted secondary protiediin three states and
predicted real-value solvent accessibility over the dp=ztiregion for microdeletions
or microinsertions. We also studied the fractions of threeoadary structure types
over the same specified region. A total of 18 structure-bésatires (31 disorder, 3
fractions of secondary structure types, 33 secondarytsteiprobability and 31 ASA)
were generated for studies.

Parameter Optimization for SVM. We employed LIBSVM [LIBSVM: a library for
support vector machines (SVM) [http://www.csie.ntu.éaicjlin/libsvm/] to combine
the features listed above for NFS-INDEL classification. rEhare two parameters for
SVM: a nonlinear kernel of radial basis function with a gampasameter and the cost
parameter (C) that allows a soft region for misclassificatioraddition, we employed
a half-window size®.,;.40w) 10 iINclude several amino-acid residues before and afeer th
microdeletion/microinsertion site as defined above. Fang)e, a half-window size of
0 would contain all residues deleted in a microdeletion awal residues flanking the
inserted residues for a microinsertion. To reduce the nummbgarameters, a uniform
widow size was applied to all features requiring a windovesia simple grid search
was done with a grid of 2 ranging from -5 to 15 for logC and raggil5 to 3 for
log(gamma) and a window size ranging from O to 7. That is, wardded for the
parameters that yielded the highest Mathews correlatiefficeent (MCC) for 10-fold
cross-validations (9 fold for training and 1 fold for tegf)rwhile employing all features.
We also examined the dependence of MCC values on C, gamma,,gng, and found
that MCC values change little across a wide range of C, gammaang,, values (See

Discussion). This served to confirm the robustness of thenpaters we found.
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9.2.2 Training and Cross-validation

The training set (positive and putatively neutral datgsetss randomly divided into

10 parts, nine of which were used for training, the rest fatitg. This process was
repeated 10 times (ten-fold cross-validation). We pergarh0-fold cross-validation on
SVM models for microdeletions or microinsertions only, asllvas for the combined

set of microdeletions and microinsertions. Microinsertaod microdeletion datasets
were also used as independent test sets against each athdeiino evaluate the overall
robustness of the classification technique employed. leratlords, the methods trained

with the microinsertion set never saw the microdeletiorasket and vice versa.

9.2.3 Feature Selections

To identify the most informative subset of features, a mesly described greedy
feature selection algorithm for SNV classificatidtbf was employed. This iterative
greedy algorithm starts with the feature shown to have ttledst discriminatory power
(disease versus neutral) based on the MCC value. The secamdgevas then selected
on the basis that the combination of the first and the secatdries yielded the highest
MCC value among all combinations between the first and otheufes. Similarly,

the third feature was added to the first two if the additionhaf third feature further
improved MCC and the improvement was the largest obtainedobyparison with

the other remaining features. The iteration of adding antiadél feature from the

remaining features was halted if the MCC value failed to iase2 Here, the MCC

value was derived from the 10-fold cross validation.

9.3 Results

9.3.1 Single feature performance

We first examined the ability of a single feature to discriat@between disease-causing
and neutral NFS-INDELs. Tabl®.2 compares the top five performing features

for microdeletions and microinsertions, separately, dase a half-window size
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Table 9.2: Top five performing features for microdeletiond amicroinsertion

discrimination.

Features Mce AUCP? Precision Recall
Deletion

Disorder 0.558,0.557,0.551 0.824,0.825,0.818 74%,74%,73% 85%, 85%, 84%
(Min, Ave, Max)

ASA° 0.542,0.47,0.302 0.81,0.781,0.659 73%, 71%, 68% 88%, 81%, 57%

(Min, Ave, Max)
DNA conservation 0.468, 0.367, 0.144 0.781, 0.742, 0,561 68%, 72%, 66%
(Max, Ave, Min)
Neff 0.449,0.439,0.43 0.735,0.749,0.729 68%, 66%, 67%
(Min, Ave, Max)
Probability of sheet 0.32, 0.305, 0.284 0.678,0.658, 0.632 69%, 69%,64%
(Max, Min Ave)

79%, 71%, 23%
85%,87%, 85%

60%, 53%,51%

Insertion

Disorder 0.556,0.546,0.545 0.813,0.816,0.80 78%, 80%, 79% 75%,74%, 75%
(Min, Max, Ave )

ASA 0.501,0.454,0.317 0.80,0.78,0.670 71%, 78%,71% 85%, 65%,52%
(Min, Ave, Max)

Neff 0.467,0.455,0.438 0.751,0.747,0.742 68%, 68%, 67%

(Min, Ave, Max)

DNA conservation 0.453,0.422,0.234 0.758,0.752,0.597 72%, 74%, 76%
(Max, Ave, Min)

Transition 0.372 0.708 72%
probability of

microinsertion  to

match (Min)

86%, 85%, 84%
75%, 65%,27%

62%

Note: Max, min, and ave are arranged in the order of MCC valftd€C: Mathews correlation
coefficient. YAUC: area under the curve’ASA, solvent accessible surface aredleff: the
number of effective homologous sequences aligned to residues gictaspof residue type.
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of 2 (Nwindow=2). Similar results were obtained with different windowzes
(see Discussion). The results indicated that the top twdopamng features for
microinsertions and microdeletions were both the samei(diés and solvent accessible
surface area). This was followed by DNA conservation or atife number of
homologous sequences aligned to residues instead of gapb. f&xtures represent
evolutionary conservation scores but at the nucleotideaaniho-acid residue levels,
respectively. The effective humber of homologous sequeatigned to amino-acid
residues can be regarded as the conservation of amino-egiceisce position (not
aligned to microdeletion or microinsertion regions). Th# Bnost discriminative
feature was the length of microdeletion for microdeletiamsl transition probability
for microinsertions. Inspection of Tab®2 reveals that a single disorder feature alone
can achieve an MCC value of 0.56 and an AUC of 0.82. At this MCQeyjait has
74% precision and 85% recall (or sensitivity). Fig9.1 depicts the distributions
of DNA conservation score, disorder probability, and ASA tbe disease-causing
and putatively neutral microdeletions (Fig9.1A) and microinsertions (Fi§.1B),
respectively. It is clear that the disease-causing NFSHNoccur more frequently
within regions characterized by a greater degree of ewnlatly conservation at the
nucleotide level, lower disorder probability (structuradions), and lower ASA (buried
core regions). The results summarized in Téhand Fig. 9.1 support the view that
disruption of protein structure (and hence protein fungtie the single most important
reason why the NFS-INDELs are deleterious from the variaatures examined.
Similar top-ranked features for microdeletions and mitsertions suggest that a single

predictive method may be developed for microinsertionsrammtlodeletions combined.

9.3.2 SVM for Microdeletions only

To combine different features to improve INDEL discrimiat we first employed
support vector machines for the microdeletions. The mielettbn database included

1,998 disease-causing and 1,944 neutral NFS-INDELs. WHesBdeatures (listed
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Table 9.3: List of selected features for different traingegs

Deletions Insertions INDELSs Non-redundant
INDELs

Disorder (min) Disorder (min) Disorder (min) Disorder (in

DNA conservation DNA conservation DNA conservation DNA conservation

(max) (max) (max) (max)

Deletion length P(m-i)e (min) 53! 68!

ASA® (min) dSid Neff¢ (ave) Neff (min)

P(m-dY (ave) P(m-ij (ave) Distance to protein ASA® (ave)
downstream

Neffc (min) Disorder (ave) Distance to thdNDEL length

nearest  splicing

site (upstream)
Distance to the Helical probability ASA® (max) ASA" (max)
nearest  splicing (max)
site (downstream)

ASA® (max) P(m-mjJ (ave) Neff (min) P(m-my (max)

6 DNA conservation
(ave)

ASA (ave)

2ASA, solvent accessible surface area(m-d), match-to-deletion transition
probability. “Neff: the number of effective homologous sequences aligoeesidues.
45S, INDEL-induced change to alignment scai@(m-i), match-to-insertion transition
probability. /P(m-m), match-to-match transition probabilitieff-del: the number of
effective homologous sequences aligned to deletion.
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Fig. 9.1: Distributions of the average DNA conservation recdrom phyloP
(phylogenetic p-values) (Left), the average solvent Asitds Surface
Area (ASA, Middle), and the average disorder probability gtR) of
disease-causing (Red) and neutral (Blue) INDELs [microdeist(top panel)
and microinsertions (bottom panel)].

in Methods) were employed, LIBSVM achieved an MCC value of 8,68 accuracy
of 84% and an AUC of 0.90 by ten-fold cross-validation. Toidwavertraining, and
in order to remove redundant features, we utilized a greediufe selection method
(see Methods) and selected 10 features as shown in TaBle They were minimum
disorder, maximum DNA conservation, microdeletion lengtimimum ASA, average
HHBIits match-to-microdeletion transition probabilithet minimum effective number
of aligned sequence to amino-acids, the distance to thestedownstream splice site,
maximum ASA, INDEL-induced change to matching score, anefagye ASA. The
MCC and AUC values for this reduced feature set were 0.675 &8 Gespectively.
The precision and recall rates were 81% and 89%, respectiVeke ROC curve from
the ten-fold cross-validated result of the 10-feature rha@es compared to the results
obtained from single features in Figuge2 (top panel). We tested the above SVM
models on the microinsertion dataset. We were able to tneaticroinsertion dataset

as a quasi-independent test set because only 21 proteans (#3 proteins) harbored
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microinsertions and microdeletions at the same locatiohe flill 58-feature model
yielded an MCC value of 0.59, an accuracy of 74%, a precisiod28b, a recall of
76%, and an AUC of 0.84. By comparison, the above 10-featurdeingielded an
MCC value of 0.654, an accuracy of 83%, a precision of 82%, allret 85%, and
an AUC of 0.86. This result is indicative of the same highlgadiminating power of
the microdeletion-trained model for microinsertions amghhghts the importance of

feature selection to avoid overtraining.

9.3.3 SVM for Microinsertions only

In a similar vein, we applied SVM to perform ten-fold crosaiglation on the
microinsertion set and employed the greedy feature seledt remove redundant
features and avoid overtraining. This yielded a total of & lperforming features listed
in Table 9.3 Three features (the minimum disorder probability, the Dédhservation,

and INDEL-induced change to HMM match score) were the samth@se in the
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10-feature model for microdeletions. This 8-feature maalieved an MCC of 0.71,
an accuracy of 86%, a precision of 85%, a recall of 86% and a@ AU0.88. This
may be compared to 0.654 for MCC, 83% for accuracy, 82% for pi@ti 85% for
recall and 0.86 for AUC, the independent test result for thdéeBdure model trained
on the microdeletion dataset. The ten-fold cross-valihais more accurate than the
independent test, in all probability due to the smaller sizéhe microinsertion dataset
(only 481 and 446 disease-causing and putatively neutiedomisertions available for
this analysis). Application of this 8-feature model to themdeletion dataset as an
independent test set yielded an MCC of 0.64, an accuracy of, &Wrecision of
78%, a recall of 89%, and an AUC of 0.89. This result was comigarto 0.675
for MCC, 84% for accuracy, 81% for precision, 89% for recall @hé0 for AUC
based on thel0-fold cross-validation with 90% microdeletias the training set for
the 10-feature model. The ROC curve for microinsertionegiby the 8-feature
model (ten-fold cross-validation) is compared to the RO&/es from single features
of disorder and DNA conservation and the independent tesitrfom the 10-feature

model trained on microdeletions in Fi@.2 (bottom panel).

9.3.4 SVM for both Microinsertions and Microdeletions

The high discriminatory power of the microdeletion-traimaodel for microinsertions
(and vice versa) suggested that it should be possible td¢ tnéaoinsertions and
microdeletions as a single dataset. The same feature iselgnbcedure yielded a
total of 8 best-performing features for combined microitisas and microdeletions
as shown in Tabled.3 This set of features yielded 0.670 for MCC, 83% for accuracy
and 0.89 for AUC. When we examined microdeletions and micestiens separately,
the results were 0.671 for the MCC, 84% for accuracy, and 0.BAWL in the case
of microdeletions, 0.663 for the MCC, 83% for accuracy, andd@ AUC in the

case of microinsertions. The ROC curves given by the SVM rtrdaed by both

microinsertions and microdeletions yielded similarly @siede ROC curves given by
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independent tests for microdeletions or microinserti@ssshown in Fig. 9.2 This

further confirms the robustness of the SVM model.

9.3.5 Effect of Homologous Sequences

The above results are based on datasets which had not hadmmodgous sequences
removed. If a method is trained on one sequence and testedighlg homologous
sequence, the resulting accuracy estimate of the methodbeayflated because of
the similarity of the two sequences. The presence of honoolegequences may also
bias training toward a particular type of protein. To explsuch a possible effect, we
reconstructed the SVM model based on the non-redundant B#t® INDELSs (2,207
disease-causing and 2,241 neutral) in which all proteiueseces exhibited 35%
sequence identity between each other (see Methods). Fondm-redundant set, the
greedy-feature selection yielded 9 best-performing fegtas shown in Tabl®.3and
the final model with a ten-fold cross-validated MCC value &8, accuracy of 84%
precision of 81%, recall of 89% and an AUC of 0.886. Applioatof this model back to
the set without removing homologous sequences yielded an MO 1, an accuracy
of 85%, precision of 81%, recall of 92% and an AUC of 0.91. Treisult represented
a marked improvement over 0.67 for MCC, 83% for accuracy anél thnB AUC by
training and cross-validating the same set. This confirragrtiportance of removing

homologous proteins prior to training our SVM model.

9.3.6 Minor allele frequency

We obtained allele frequencies for all putatively neutrdfSNmicrodeletions and
microinsertions derived from the 1000 Genomes Project. datee allele frequency
in the population should in general reflect the fitness of #tiate with respect to its
intended biological function246 254-257] . Fig. 9.3 compares average predicted
disease probabilities with average allele frequenciesiggd into 20 bins (bin size,
0.05). The predicted disease probabilities are based oiQHeld cross-validation

by the 9-feature model trained on both microinsertions andradeletions after
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Fig. 9.3: The average predicted disease-
causing probabilities as a function
0l i of the average allele frequency in
. the neutral INDEL dataset derived
from 1000 Genomes Project data.
This was done by dividing allele
0.05 - - frequencies into 20 bins. The
- dashed line is from a linear
e regression fit. The correlation
coefficient is -0.84.
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removing homologous sequences. As expected, there wasng stegative correlation
(correlation coefficient,-0.84), indicating that NFS-IHDs with higher predicted
disease-causing probabilities tend to occur with lowerlalfrequencies in the general

population.

9.4 Discussions

We have developed a method, termed DDIG-in, for prioriiziNFS-INDELs by
predicting the disease-causing probability for a givenrosfiNDEL. The method is
based on nucleotide and amino-acid sequences and predictedural features of
proteins. The result suggests that highly accurate andstomediction for both
microinsertions and microdeletions can be made with onlye&ures. They are
minimum disorder score, maximum DNA conservation score, fiDEL-induced
change to the HMM alignment score, minimum effective numioér aligned
sequence to amino acids, average ASA, microinsertionddéetion length, maximum
ASA, maximum HHBIits match-to-match transition probaliliand average DNA
conservation score. Interestingly, predicted ASA and DNAservation are employed
twice, once as the average value and a second time as the omaxiatue for the entire
NFS-INDEL region. The difference between these two ASA orADdbnservation
features measures the fluctuation of ASA or conservatioth®iNDEL region. The

method was examined by ten-fold cross-validation as webyaan independent test.
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The consistency between 10-fold cross-validations andgaddent tests (84-85% for
accuracy, 0.88-0.90 for AUC) supports the robustness of tiaé rinethod developed.

One point to consider is that the most discriminating featwas predicted
disordered (or structured) regions by SPINE-D. As Tal9e shows, the disorder
feature alone can achieve an MCC value of 0.56 for both misestions and
microdeletions. Although predicted disorder probal@sthave previously been found
to be useful in SNP discriminatio287,258 , with disease-causing missense mutations
being shown to be less likely to occur within disorderedsagiR59 , its importance
has never before been shown to be so prominent. This is psodalk, at least in
part, to the improvement of SPINE-D over previous algorghi245 . It may also
suggest the uniqueness of NFS-INDEL classification. Thsslltds not unexpected
because fully disordered regions (Disorder probability at¢ structurally flexible
and hence more permissive of modification by microinserttormicrodeletion as
long as functional residues within the disordered regi@mmain intact. Indeed, we
found that binding sites at intrinsically disordered regof proteins are often located
in semi-disordered regions (regions with a disorder prditalof 0.5), consistent
with near equal probability of disease-causing or neutrBSNNDELs at disorder
probability 0.5in Fig.9.1

Here, we assumed from the outset that the microdeletion antbimsertion
variants identified during the course of the 1,000 Genomejg&trare neutral. Although
this assumption is not unreasonable, it should be appeecthat the training set may
contain false negatives, especially for some late-onserders. To examine the effect
of this, we removed those neutral variants with a minor alleequency (MAF) of
< 2% and examined the effect of the removal of those variants eratituracy and
training of our NFS-INDEL discriminatory tool. This yieldel,609 neutral cases plus
2,207 positive cases from the non-redundant set. The eiass-validation with
the same 9 features, but retrained without INDELs with a MARK@%, yielded an
MCC of 0.70, an accuracy of 85% and an AUC of 0.883. By compayiapplication

of the original 9-feature model (trained with neutral INDEWith a MAF of <2%)

138



to the set of neutral INDELs without a MAF 6£2% yielded an MCC of 0.74, an
accuracy of 87% and an AUC of 0.92. The fact that the 9-feathwodel trained without
MAF <2% INDELs was less accurate than the 9-feature model travigd MAF
<2% INDELSs suggests that including MAE2% INDELSs (which potentially contained
false negatives) facilitated machine learning. In otherdsppotential false negatives
within the small frequency putatively neutral NFS-INDELsI chot adversely affect
SVM training. This is supported by strong negative correteg between the MAF and
the disease-causing probability (Fi§.3).

To further examine the effect of potential annotation exror our datasets,
we randomly introduced 5% or 10% errors to 9 folds by assmgmnieutral to
disease-causing and disease-causing to neutral INDELteatidg the method for the
remaining 1-fold. This was repeated for 10 times. We alsaoarly introduced 5%
or 10% errors 10 separate times to obtain an average effectleécribed above, the
10-fold cross-validation with the same 9 features (Talfl) but retrained without
INDELs with a MAF of <2% yielded an MCC of 0.696. Adding 5% and 10% errors
to 9 training folds yielded the average MCC values for the sesbf 0.684 and 0.674,
respectively. This small change in MCC values due to 5%-10%®confirms that our
method is robust against potential assignment errors itraiv@ng set.

Another way to examine the robustness of a method is to gedependence on
various parameters. Figui®4shows the Mathews correlation coefficient as a function
of SVM gamma and cost parameters and the half-window sizéhf®NFS-INDEL
dataset for the case when all features were employed. ltstitawMCC values change
a little for the entire range ot ;.40 from 0 to 7 and for a large range of gamma and
cost parameters. Recently, Kumar et 26| found that most commonly used tools for
non-synonymous SNV classification yield high false positiates for ultra conserved
sites. To examine the dependence of the accuracy of our chethaonservations
of INDEL sites, we calculated conservation scores accgrtbrrelative entropy (RE)
[= 100 X2, pilog(ps/q:)] wherep; is the probability of amino acid types at a sequence

position obtained from PSI-BLASTIB4], andg; is the background probability from
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the blosum62 matrix.We divided our dataset into three posti(high, median, low)
according to the average relative entropy of deleted resiau two residues around
the insertion position (RE150, 70<RE<150, RE<70). As in Kumar et al26Q., we
also observed an elevated false positive rate at highlyerued sites (33%), relative to
poorly conserved sites (14%). Interestingly, the true tp@siate at highly conserved
sites is also higher (95% at high RE sites versus 72% at low RiS)sitThus, the
overall performance of our method is not strongly dependemionservation of INDEL
sites. The MCC values are 0.67, 0.63 and 0.58 for high, medidroav RE INDELS,
respectively. The relative independence of our method erctimservation of INDEL
sites reflects the fact that sequence conservation is naldhenant feature in our
INDEL discrimination technique.

It is worthy of note that the INDEL length is one of the top fe&s selected
by SVM. This is reasonable because longer INDELs will likegve greater impact
upon protein structure and function. However, it could dsodue to bias in our
datasets because, empirically, the majority of INDELs imeshort lengths of 1 or
2 residues in both our datasets, a reflection of the inhermast & the underlying
mutational mechanism in vivo. Such an unbalanced datasetere size-controlled
or stratified sampling impossible. Thus, to determine wiethe length dependence
is a result of dataset bias or is instead of true functiongjimmwould require further

studies employing much larger datasets for both diseassrgpand neutral INDELS.
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Nevertheless, the effect of this feature on the overall @myuis small. Removing
this feature only decreases the MCC value from 0.684 to 0.664ur non-redundant
INDEL sets.

In addition to the features listed in Tabl®.1, we also performed a test for the
usefulness of biochemical properties of amino acid resdueh as residue size and
hydrophobicity scale for INDEL discrimination. This is irag because such features
have been found to be effective in protein secondary stregxediction 49 261]. We
examined seven representative physical parameters ingladsteric parameter (graph
shape index), hydrophobicity, volume, polarizabilitpegectric point, helix probability,
and sheet probability?49 261]. None of these features were found to further improve
the MCC value for INDEL discrimination.

This work is consistent with various studies that have erauhithe sequence
context of microdeletions and microinsertions. These istudound that INDELS
occurred non-randomly and were highly influenced by the [ld2HA sequence
context P30, 262 263. This probably accounts for the success of our algorithm
in NFS-INDEL classification based upon local sequence andtstral information.
Furthermore, microinsertions and microdeletions extstsiing similarities in terms of
the characteristics of their flanking DNA sequences, immgythat they are generated
by very similar underlying mechanism®3(d . Again, this accords with our
ability to design a single tool capable of discriminatingviieen microdeletions and
microinsertions of pathological importance and neutrarodeletions/microinsertions.

This study focused on NFS-INDELs only because FS-INDELs ld/aaquire
a quite separate algorithm to effect their classificationuctSan algorithm would
require features based on the entire region after the INDE., sather than simply
the local region around the INDEL site. This is because tAmé-shift in FS-INDELSs
results either in a completely different amino-acid segee@-terminal to the INDEL
site or premature termination of translation. ExpansiodBiG-in so as to include
FS-INDELSs is however in progress. In the meantime, our secgreand structure-based

tool will complement two recently developed metho@42, 243 that are based on
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information derived only from nucleotide and amino-acidjences. In addition
to extension to cover FS-INDELS, we intend to incorporate features other than
sequence- and structure-based features. Other sucheedtug. predicted functional
regions) may well be useful in further improving the michBEIEL classification as was

previously achieved for SNP classificatid&B8B-240 264].
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Chapter 10 Conclusion

This dissertation reported a template-based method faligiren of protein functions.
The idea behind this work is that combining protein struetimformation with
binding affinity can predict protein interactions more aetely than traditional
sequence/structure homology searching methods. This veae tirough removing
false positives generated by homology searching througheufiltering with predicted
binding affinity. This approach was applied to predictionRBPs, DBPs and CBPs
[32,34,36]. For all datasets we studied, the template-based methal@ significant
improvements over methods based on structure homology quesee homology
only. Our highly accurate function prediction methods apatdbuted by accurate
and effective structure alignment methatf], structure prediction methodt9] and
knowledge-based statistical energy functiBg]|

The structure alignment method used in this work is SP-ali#fl), where a
new SP-score was defined to measure structure similarityscB8f was designed by
adding a new scaling parameter to remove protein size depeyd The performance
of SP-align was found better than the commonly used strecalignment method
TM-align [139 on prediction of RBPs and DBPs. TM-align evaluates structure
similarity by TM-score which was found dependent on prosae 49]. Two protein
structure prediction tools SPARKS-X9] and HHpred 108 were employed for the
prediction of protein functions from sequence. The DFIREdoh all atom energy
functions were utilized for the prediction of binding aftyni They were shown to be
more accurate than other residue-contact based energyoiufig2].

By integrating sequence, structure and binding affinityrimfation, we developed
a series of template-based methods for protein functiomigien . They were
employed to scan proteins from structure genomics and thmahugenomics.
Proteins predicted with novel functions provide resourmeshypothesis generation
for biologists. Moreover, uncovered novel functions oftpios in disease pathway can

help us to better understand human disease mechanisms.
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By integrating protein structure and other features, we ldges the first
approach for discriminating the disease-causing non frsinifing insertions or
deletions of nucleotides2py. This method was trained by SVM model based
on disease-causing and neutral mutations from HGNR9Y[ and 1000 genomes
project, respectively. The structural features, esplgaibéorder probability, are more
discriminative than transitional sequence-based festsach as DNA-conservation
score. The accuracy of this method was further verified lmnglly negative correlation
between predicted disease probabilities and the alletpiénecies observed from 1000
genomes project.

Results of this dissertation contribute to a better undedstg of the roles
of protein structure and binding affinity in protein funci® and disease-causing
mutations. It also suggests profitable to expand our teeyilased method
beyond protein-DNA, protein-RNA, and protein-carbohydr&inding. Moreover,
simultaneous prediction of protein function and bindingnptexes allows a deeper

understanding of binding mechanisms.
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