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ABSTRACT 

Mona M.A. Selej 

 

THE EFFECT OF HYPOXIA ON ER-β EXPRESSION IN THE LUNG AND CULTURED 

PULMONARY ARTERY ENDOTHELIAL CELLS 

 

17-β estradiol (E2) exerts protective effects in hypoxia-induced pulmonary 

hypertension (HPH) via endothelial cell estrogen receptor (ER)-dependent mechanisms. 

However, the effects of hypoxia on ER expression in the pulmonary-right ventricle (RV) 

axis remain unknown. Based on previous data suggesting a role of ER-β in mediating 

E2 protection, we hypothesized that hypoxia selectively up-regulates ER-β in the lung 

and pulmonary endothelial cells.  

 

In our Male Sprague-Dawley rat model, chronic hypoxia exposure (10% FiO2) resulted 

in a robust HPH phenotype associated with significant increases in ER- β but not ER-α 

protein in the lung via western blotting. More importantly, this hypoxia-induced ER-β 

increase was not replicated in the RV, left ventricle (LV) or in the liver. Hence, hypoxia-

induced ER-β up-regulation appears to be lung-specific. Ex vivo, hypoxia exposure 

time-dependently up-regulated ER-β but not ER-α in cultured primary rat pulmonary 

artery endothelial cells (RPAECs) exposed to hypoxia (1% O2) for 4, 24 or 72h. 

Furthermore, the hypoxia induced ER-β protein abundance, while not accompanied by 

increases in its own transcript, was associated with ER-β nuclear translocation, 

suggesting increase in activity as well as post-transcriptional up-regulation of ER-β.  

 

Indeed, the requirement for ER-β activation was indicated in hypoxic ER-βKO mice 

where administration of E2 failed to inhibit hypoxia-induced pro-proliferative ERK1/2 

signaling. Interestingly, HIF-1α accumulation was noted in lung tissue of hypoxic ER-

βKO mice; consistent with previously reported negative feedback of ER-β on HIF-1α 

protein and transcriptional activation. In RAPECs, HIF-1 stabilization and 

overexpression did not replicate the effects of ER- β up-regulation seen in gas hypoxia; 

suggestive that HIF-1α is not sufficient for ER-β up- regulation. Similarly, HIF-1 

inhibition with chetomin did not result in ER-β down-regulation. HIF-1α knockdown in 

RPAECs in hypoxic conditions is currently being investigated. 
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Hypoxia increases ER- β, but not ER-α in the lung and lung vascular cells. Interpreted 

in context of beneficial effects of E2 on hypoxic PA and RV remodeling, our data 

suggest a protective role for ER-β in HPH. The mechanisms by which hypoxia 

increases ER-β appears to be post-transcriptional and HIF-1α independent. Elucidating 

hypoxia-related ER-β signaling pathways in PAECs may reveal novel therapeutic targets 

in HPH. 
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I. INTRODUCTION 

 

A. Hypoxic Pulmonary Hypertension: Pulmonary hypertension is a syndrome that 

embraces heterogeneous clinical entities sharing the common hemodynamic features of 

elevated pulmonary arterial and right ventricular pressures culminating in right heart 

failure. Hypoxic Pulmonary Hypertension (HPH) is a grave consequence of all entities 

that result in low alveolar oxygen tension [1, 2]. It is characterized by pulmonary 

vascular bed remodeling culminating in right ventricular (RV) failure and death [3, 4]. 

Despite its frequency compared to other types of PH [1]; no specific treatment for 

HPH exists. Moreover, current therapeutics worsen ventilation-perfusion mismatch and 

consequently, oxygenation in HPH [5-7]. 

 

B. The Estrogen Paradox in Pulmonary Hypertension: Female preponderance is a 

known epidemiological feature of Pulmonary Arterial Hypertension (PAH). Review of the 

French registry and REVEAL registry reported female to male ratios in PAH of 1.9:1 and 

4.3:1 respectively [8, 9]. REVEAL demonstrates a 4.1:1 female-to-male ratio among 

patients with Idiopathic PAH (IPAH), and a 3.8:1 ratio among those with Associated PAH 

(APAH). Consistent with observations from the NIH registry, REVEAL also shows a 

higher female preponderance at 5.4:1 ratio among blacks. This is probably the sum of 

female preponderance in the majority of subclasses of PAH. These subclasses include 

idiopathic and heritable PAH as well as PAH associated with connective tissue 

diseases, drugs and portopulmonary hypertension. Despite no clear reason for this 

disparity in female predominance among registries, some speculate that the increase in 

use of hormone replacement therapy (HRT) between NIH and REVEAL registries could 

be responsible [10]. 

 

Despite the female predominance in PAH, female gender is associated with improved 

survival, [11-13], termed Estrogen Paradox [14]. The main culprit to explain female 

prevalence in PAH naturally has been sex hormones. Negative effects of estrogen and 

potentially favorable effect of androgens on pulmonary vasculature is a rather logical 

and attractive simple explanation. Other theories include female preponderance in 

autoimmune disorders and connective tissue diseases, alloimmunization associated 

with pregnancy and childbirth as well as environmental exposures including estrogen 

containing medications and anorexigens [15]. More recently, human and animal data 
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has suggested an association between PAH and metabolic syndrome that further 

highlights sex hormones and gender differences [16]. 

 

C. Estrogen in HPH; Animal and Human Data: In HPH, 17β- Estradiol (E2) has been 

shown to be protective in both animal and human data. Female sex confers a protective 

phenotype in high altitude-related HPH [17, 18]. Moreover, estrogen surge in 

pregnancy attenuates hypoxic pulmonary vasoconstriction [19, 20]. HRT is also 

thought to be a predictor of improved RV function; both in postmenopausal women [21] 

and PAH patients with scleroderma [22, 23]. A recent study interrogated the REVEAL 

database for differences between male and female PAH patients [24], and found no 

differences in exercise capacity, or diagnostic/treatment strategies. Even though men 

had statistically significant higher mean pulmonary artery and right atrial pressure, the 

clinical significance of these subtle differences is questionable. Not surprisingly, more 

women had CTD-PAH and CHD-PAH, while more men had portopulmonary 

hypertension and HIV-associated PAH. Thyroid disease and depression were more 

common in women. Studies suggest that healthy women as well as women with 

PAH have a higher right ventricular ejection fraction than men (assessed by cardiac 

magnetic resonance imaging) [25-27] providing a potential explanation for the observed 

gender differences in outcomes. A recent study identified provided another potential 

explanation by demonstrating that women exhibit a better response to treatment with 

endothelin receptor antagonists [28]. 

 

In animal studies, exogenous and endogenous E2 attenuated isolated pulmonary artery 

(PA) ring vasoreactivity; effects increased with the phasic increase of E2 during 

menstrual cycle [29, 30]. Additionally, specific ER agonists resulted in NO-mediated 

vasorelaxation in isolated PA rings [31]. In high altitude and its simulators i.e. 

hypobaric hypoxia, female gender confers protection from HPH in rodent and swine 

models as compared to male counterparts [32-34]. Finally, ovariectomy exacerbates   

HPH, whereas E2 replacement in ovariectomized animals attenuates the disease [35, 

36]. Recently, E2 was found to effectively attenuate PH phenotype in hypoxic rat model 

of PH [37]. E2 was also found to rescue preexisting PH in a monocrotaline- induced PH 

rat model [38]. E2 appears to exert its protective effects via endothelium-centered and 

estrogen receptor (ER) dependent effects [31, 37]. 
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D. Estrogen Receptors Physiology: Estrogen receptors are proteins that belong to the 

nuclear-receptor superfamily of transcription factors [39, 40]. ERs are products of 

different genes on different chromosomes [41, 42]. These receptors share significant 

homology in their DNA and ligand- binding domains, less so in their N-terminus (ligand-

independent activation function (AF-1) region) [43]. Isoforms of each ER exist due to 

alternative splicing [44] and can exist in hetero or homodimers [45, 46]. ER genes are 

abundantly expressed in the histologically normal lung; ER-β being more abundant 

than ER-α [47-50]. These receptors are believed to have distinct tissue expression 

patterns as well as biological functions [42, 49, 50]. ER subtypes - α and β- traditionally 

exert their effects via genomic modulation [43, 51]. In the late 1970’s, Membrane-

bound Estrogen Receptors (mERs) were first described to trigger rapid generation of 

cAMP [52, 53]. Since then, it has become known that these receptors exert non-

genomic effects via second messenger signaling cascades including nitric oxide (NO), 

calcium influx, G-protein–coupled receptors (GPCRs), protein kinases including 

phosphoinositol-3 kinase (PI3K), serine-threonine kinase Akt receptor and mitogen-

activated protein kinase (MAPK) family members (ERK/ JNK /p38) as well as tyrosine 

kinases including epidermal growth factor (EGF) receptor and insulin-like growth factor 

(IGF)-1 receptor, nonreceptor tyrosine kinase Src, and protein kinases A and C [43, 54-

56]. Figure 1 represents a schematic of genomic and non-genomic ER signaling. 

 

 

Figure 1. Representative schematic of genomic and non-genomic ER signaling.  
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In the context of PH, E2 is known to be a rapid activator of endothelial nitric oxide 

synthase (eNOS) via phosphatidylinositol 3 (PI3)-Kinase- Akt pathway [57]. 

Additionally, E2 is also known to up-regulate NOS gene transcription [58]. Moreover, E2 

is thought to enhance eNOS function via the enactment of plethora of cellular effects 

including inhibition of cytokine-induced downregulation of NOS III gene expression, 

posttranslational modification of NOS III protein, increased cofactor or L-arginine 

availability, alongside modulation of NO degrading systems [59]. 

 

ERK1/2 -a member of the MAPK family- is thought to account for the antiproliferative 

effects of E2. In a HPH rat model, E2 via ER-dependent fashion was shown to 

attenuate hypoxia- induced ERK1/2 activation in the lung and RV [37]. The anti-

inflammatory effects of E2 in the lung in a rat trauma-hemorrhage model were also 

shown to be mediated via an ERK1/2 pathway [60]. At the genomic level, E2 was 

shown to attenuate hypoxia-induced endothelin-1 gene expression. This attenuation is 

thought to be due to decreased Hypoxia Inducible Factor-1 (HIF-1) activity possibly 

through competition for limiting quantities of CBP/p300 [35]. 

 

Regulation of cellular ER concentration is a key component governing cellular 

responsiveness to ER agonists, antagonists and modulators. For ER-α, the primary 

regulator of its stability is the ligand itself, E2 [61]. In the absence of E2, the half-life of 

ER is about 5 days, but only 3-4 hours in the presence of E2 [62]. In human breast 

cancer cell lines, E2 is thought to induce decline in both ER-α protein and mRNA [63]. 

In eukaryotic cells, the ubiquitin-proteasome pathway is the major mechanism for the 

targeted protein degradation of proteins with short half-lives [64, 65]. Protein 

ubiquitination involves covalent attachment of ubiquitin to lysine residues of proteins 

targeted for degradation followed by formation of polyubiquitin chains [62]. Ubiquitinated 

ERs are then recognized and degraded by the multi-subunit protease complex, the 26S 

proteasome. Interestingly, ubiquitination of the members of the nuclear hormone 

receptor superfamily is believed to modulate their transcriptional activation [66]. 

Moreover, proteasome-dependent degradation of steroid receptors requires 

transcriptional activity; suggesting that degradation and receptor transactivation are 

mutually interdependent [67]. Evidence in uterine artery endothelial cells exists to 
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support the presence of differential regulation of proteasome dependent turnover for 

ER-α and ER-β [61]. 

 

E. Crosstalk between Hypoxia Inducible Factor and Estrogen Receptor: HIF-1 is 

the master regulator of the cellular oxygen homeostasis. In the lung, the crosstalk 

between hypoxia responsive pathways and nuclear receptors including ER is not 

entirely understood. Hypoxia enhances or decreases transcriptional activation of 

nuclear receptors including ERs depending on the experimental setting [68-72]. In 

human breast cancer cells, HIF-1 induced downregulation of ER-α that is mediated via 

ubiquitin-proteasome pathway degradation [69]; an effect believed to be facilitated 

specifically via ARNT subunit (HIF-1β) [73, 74]. Moreover, in HEK293 cells, hypoxia 

activated ligand-independent transcriptional activation of ER-α, possibly takes place 

through the interaction between HIF-1α and ER-α. We theorized that hypoxia will 

selectively up-regulate ER-β in the lung and PA endothelial cells and that this up-

regulation is likely HIF-1α dependent. Review of the crosstalk between HIF-1 and ER-β 

is discussed at length in section IV. Figure 2 depicts normoxic and hypoxic HIF 

regulation.  

 

  

Figure 2. Representative schematics of HIF-1α degradation pathway in normoxia (left 
panel) and activation pathway in hypoxia (right panel).  
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II. MATERIALS AND METHODS 

 

Animal Experiments and in vivo Hypoxia 

 

Male Sprague-Dawley rats (250-275 g; Charles River) were exposed to 2 weeks of 

hypobaric hypoxia (Patm= 362 mmHg; equivalent to 10% FiO2 at sea level) as 

described previously [37]. In a second experiment, male ER-β knockout mice (on 

C57BL/6 background; 20-22 g; Jackson Laboratories) were exposed to 3 weeks of 

hypobaric hypoxia (Patm= 362 mmHg; equivalent to 10% FiO2 at sea level). Rats or 

mice were treated with E2 (75 μg/kg/d via subcutaneous pellets) for the entire duration 

of hypoxia exposure. At the end of the 2 or 3 week hypoxia exposure, animals were 

sacrificed and their lungs and RV harvested for analysis. All animals received care in 

compliance with the Guide for the Care and Use of Laboratory Animals. All animal 

experiments were approved by the Institutional Animal Care and Use Committee of the 

Indiana University School of Medicine. 

 

 Cell Culture and Reagents 

 

Primary rat PAECs were provided by Drs. Troy Stevens and Diego Alvarez (University 

of South Alabama Tissue and Cell Culture Core). Cells were derived from male 

Sprague-Dawley rats (350-400 g) and maintained up to passage 15 in Dulbecco’s 

modified Eagle high-glucose medium (Sigma-Aldrich; St. Louis, MO) supplemented with 

10% fetal bovine serum and 1% penicillin–streptomycin at 37 ○C in 5% CO2 and 

95% air. RPAEC phenotype was confirmed by cell morphology and by Western 

blotting and immunofluorescence staining for von Willebrand factor (1/400; Abcam-

6994; Cambridge, MA). Cells were used for experimentation at 70% confluence. 

Similar experiments were done with human PAECs (Lonza; Hopkinton, MA) and rat PA 

smooth muscle cells (PASMCs; from T. Stevens and D. Alvarez, USAB).  

 

In Vitro Hypoxia 

 

Hypoxia exposure (4, 24 and 72 hours) occurred in a dedicated workstation (Ruskinn, 

Inc., Pencoed, UK). Oxygen concentration in the chamber was measured in real time 

and constantly adjusted to maintain the desired concentration. Control cells of identical 
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passage a n d  confluence were grown concomitantly in a regular incubator at 21% 

O2.  

 

Chemical Hypoxia and HIF Inhibition 

 

Normoxic HIF-1α activation (“chemical hypoxia”) was induced with the prolyl 

hydroxylase inhibitor deferoxamine (DFO; 10 or 100 μM) (Sigma-Aldrich; St. Louis, 

MO). RPAECs were exposed to room air and treated with DFO for 4, 16, 24 or 48 

hours. Control cells were either untreated or treated with vehicle (H2O) . HIF-1α 

activation was inhibited with the known HIF-1α inhibitor chetomin (5, 25, 50 or 

100nM) (Sigma-Aldrich; St. Louis, MO)). RPAECs were pre-treated with chetomin for 

4 hours in 21% O2 and then transferred to 1% O2 for 24 hours. Control cells of 

identical confluence and passage were grown concomitantly at 1% O2 and were 

either untreated or treated with chetomin vehicle (dimethylsulfoxide (DMSO)) (Sigma-

Aldrich; St. Louis, MO ). 

 

Immunocytochemistry ( ICC) 

 

Cells were grown on coverslips and exposed to room air (21% O2) or hypoxia (1% 

O2) for 4, 24 or 72 hours. Cells were fixed with paraformaldehyde, blocked with goat 

serum and then stained with rabbit polyclonal IgG against ER-α and ER-β antibodies 

(1/200; Santa Cruz HC-20 and HC-150, respectively; Dallas, TX). Secondary 

flurochrome-conjugated anti-rabbit antibody from was used (1/200; Alexa Fluor 488). 

DAPI (Invitrogen; Valencia, CA) mounting media was used for nuclear staining. 

Experiments were run in duplicates. Images were taken with fluorescence microscopy. 

ER-α and ER-β expression was quantified as average megapixel intensity normalized 

for number of nuclei per HPF by Image J (NIH) in a blinded fashion.  

 

Immunohistochemistry (IHC) 

 

Lung sections (4 mm) from normoxic and hypoxic rats were stained for ER-α or 

ER-β (1/10: Dako PPG 5/1; Carpinteria, CA) and examined by light microscopy (340 

objective). The degree of ER-β expression was assessed in a blinded fashion. 
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Quantification of ER-β expression was done by Metamorph Software (Center Valley, 

PA).  

 

Western Blotting 

 

The following antibodies were used for western blotting: ER-α (1/50; Santa Cruz HC-20; 

Dallas, TX), ER-β (1/200; Santa Cruz HC-150; Dallas, TX), HIF-1α (1/500; Novus 

Biological, Littleton, CO), Phospho-ERK1/2 and total ERK1/2 (1/1000; Cell Signaling, 

Boston, MA). 50 ug of protein was used for ER-α and HIF-1α quantification, 13 ug of 

protein for ER-β and 12 ug for ERK1/2 and Phospho ERK1/2 quantification. Cells were 

harvested in either RIPA buffer (Sigma- Aldrich; St. Louis, MO) or Cell Lysis Buffer (Cell 

Signaling; Boston, MA) for ER-α/ER-β and HIF-1α analyses, respectively. Vinculin was 

used as internal control (1/2000; Calbiochem, Billerica, MA). Densitometry was 

performed via Image J (NIH).  

 

Real Time-Polymerase Chain Reaction (RT-qPCR) 

 

Total RNA was isolated from RPAECs or rat lung or RV homogenates using the 

RNeasy Plus Mini Kit (Qiagen; Valencia, CA). QuantiTect Reverse Transcription Kit 

(Qiagen; Valencia, CA) was used to make cDNA from 2 μg of total RNA. The reaction 

volume for qPCR was 25 μl [12.5 μl SYBR Green Master Mix (Qiagen; Valencia, CA), 1 

μl primer, 2 μl cDNA and 9.5 μl RNAse free water (Qiagen; Valencia, CA). PCR 

parameters are as follows: stage 1, 50°C for 2 min; stage 2, 95°C for 10 min; stage 3, 

step 1 = 95°C for 15 s for 45 cycles, step 2 = 60°C for 1 min (data collection); stage 3, 

step 1 = 95°C for 15 s, step 2 = 60°C for 15 s, step 3 = 95°C for 15 s; (dissociation 

curve) stage 4, −72°C hold. 50 ng of cDNA was used per qPCR reaction; DNA 

amplification was monitored by incorporation of SYBR green dye. Rat primers for 

ER-α (ESR1), ER-β (ESR2), HIF-1α (HIF1A) as well as GAPDH and 18SrRNA were 

purchased from (SABioscheinces; Frederick, MD). Data was analyzed using ΔCT 

method.  
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Transfection Experiments 

 

Rat PAECs were grown in full media until 70-90% confluence and transfected with 

human HIF-1α (HA-HIF1α P402A/P564A-pcDNA3) (Addgene; Cambridge, MA; 

provided by Dr. Mircea Ivan) in separate experiments. HIF-1α control plasmid (pcDNA3) 

was used at equal doses of 2.5-5.0 ng. Transfection was done in antibiotic free media 

with Lipofectamine® LTX & Plus™ Reagent in Opti-MEM (Invitrogen; Valencia, CA).  

 

Statistical Analyses 

 

Statistical analyses were performed with GraphPad Prism 6  ( La Jolla, CA). The 

differences between groups were compared using unpaired Student t-test (for 

comparison of 2 groups) or ANOVA (for comparison of > 2 groups). All cell 

experiments were done at least three times and data were expressed as mean ±SEM. 

Animal experiments were expressed as mean± SEM. Statistically significant 

difference was accepted as p < 0.05.  
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III. RESULTS 

 

A. Hypoxia increases ER-β but not ER-α in rat lung. Evidence exists to support a 

unique role of ER-β in HPH. ER-β blockade attenuates E2’s effects during hypoxia in 

vivo and in RPAECs [37]. Additionally, selective activation of ER-β attenuates hypoxic 

vasocontraction in isolated PA rings in an endothelium-dependent manner [31]. 

Moreover, selective ER-β blockade resulted in loss of E2 mediated protection in a 

monocrotaline PH model [38]. We hypothesized that hypoxia would selectively up-

regulate ER-β but not ER-α in the lung. We investigated the effect of hypoxia on 

ERs in vivo using a two-week Sprague Dawley male rats’ hypoxia model. As hypoxia 

culminates in right ventricular failure; ER expression in the RV was also studied under 

hypoxic conditions. In the rat lung, ER-β protein was increased with western blot 

(Figure 3A- B). Moreover, IHC revealed a trend towards increased ER-β staining in 

hypoxic rat lung sections (Figure 3C). This ER-β up-regulation was not associated with 

increased ER-β mRNA in the lung (Figure 3D). Interestingly, hypoxia failed to up-

regulate ER-β in hypoxic rat homogenates of RV, LV and liver (Figure 4A-D). 

Additionally, hypoxia did not increase ER-α neither in the lung nor in the RV (Figure 5A-

D). In conclusion, hypoxia- induced ER up-regulation appears to be ER-β as well as lung 

specific.  

 

 

 

Figure 3. Hypoxia increases ER-β expression in the lung. A. ER-β protein 
expression in rat lung homogenates after 2 weeks of hypoxia versus normoxia using 
western blot. B. Expression levels of lung ER-β quantified by densitometry C. 



 

11 

 

Representative IHC images of lung sections are shown; note the increase in ER-β-
positive cells (arrows) in hypoxic PAs at the level of terminal bronchioles (TB) or 
alveolar ducts (AD).  Positive staining for ER-β was mainly present in PA endothelial 
cells, while there was no significant staining of PA smooth muscle cells. D. ER-β gene 
expression in the lung measured by RT-qPCR. Size bars =50 μm. *p < 0.05. 
 
 
 

 

 

 
Figure 4. Hypoxia-induced increase in ER-β is specific to the lung. A-C. ER-β 
protein expression in rat homogenates of RV, LV and liver, respectively, after 2 
weeks of normoxia (●) versus hypoxia (■) using western blot. D. Expression levels 
of RV, LV and liver ER-β quantified by densitometry at normoxic and hypoxic 
conditions.  
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Figure 5. Hypoxia does not increase ER-α in the lung or in the right ventricle. A. 
ER-α protein expression in rat lung homogenates after 2 weeks of hypoxia versus 
normoxia using western blot. B. Expression levels of lung ER-α quantified by 
densitometry. C. ER-α protein expression in rat RV homogenates after 2 weeks of 
hypoxia versus normoxia. D. Expression levels of RV ER-α quantified by densitometry. 
 

 

B. Hypoxia increases ER-β but not ER-α in rat PAECs. Previous work from our lab 

has shown that E2 appears to exert its protective effects via endothelium-centered and 

estrogen receptor (ER) dependent effects [31, 37]. Given our in vivo data, we 

decided to further investigate the effects of hypoxia in vitro using cultured primary rats 

PAECs. Interestingly, hypoxia increased ER-β protein time-dependently at 4, 24 and 72 

hours of hypoxia as quantified by ICC (Figure 6A-B) as well as western blot (Figure 

6C-D). This increase was associated with a pattern of nuclear translocation evident on 

ICC suggestive of ER-β activation. Parallel experiments to investigate the effect of 

hypoxia on ER-α did not reveal a significant increase in ER-α protein via ICC (Figure 

7A-B) and western blot (Figure 7C-D). In conclusion, hypoxia-induced ER-β up-

regulation is replicated in vitro as hypoxia time-dependently increased ER-β but not ER-

α in hypoxic RPAECs.  
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Figure 6. Hypoxia increases ER-β expression in cultured rat pulmonary artery 
endothelial cells (RPAECs). A. Representative ICC images of RPAECs at 72 hours 
treated with hypoxia versus normoxia. ER-β is stained in green. Note that ER-β staining 
suggested increased nuclear translocation. B. ER-β expression levels were quantified by 
normalizing megapixel intensity by the number of cells (nuclei stained with DAPI) with 
Image J. ER- β expression levels expressed as 4, 24 and 72 hours hypoxia fold change 
compared to normoxia C. ER-β protein expression via western blot in RPAECs after 4, 
24 and 72 hours of hypoxia versus normoxia. D. Expression levels of ER-β quantified 
by densitometry. E. ER-β gene expression in RPAECs measured by RT-qPCR. Size bars 
= 10 μm. Data represents the mean ± SEM (n=3). *p < 0.05. 
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Figure 7. Hypoxia does not increase ER-α expression in cultured rat pulmonary 
artery endothelial cells (RPAECs). A. Representative ICC images of RPAECs at 4 
hours treated with hypoxia versus normoxia. ER-β is stained in green. B. ER- α 
expression levels were quantified by normalizing megapixel intensity by the number of 
cells (nuclei stained with DAPI) with Image J. ER-α protein expression levels 
expressed as 4, 24 and 72 hours hypoxia as fold change compared to normoxia. C. 
ER-α protein expression via western blot in RPAECs after 4, 24 and 72 hours of 
hypoxia versus normoxia. D. Expression levels of ER- α quantified by densitometry. Size 

bars = 10 μm. Data represents the mean ± SEM (n=3). 
 
 

C. Hypoxia increases ER-β in the lung and RPAECs post-transcriptionally. 

Potential hypoxia-responsive element (HRE) sequences exist in the human, rat and 

mouse ESR2 gene promoter region (Blast and Ensemble search). However, the 

functional significance of the putative HREs remains to be determined. To investigate 

whether hypoxia- mediated ER-β overexpression is due to transcriptional activation, 

ER-β mRNA RT-qPCR was performed both in the hypoxic lung and RPAECs. 

Interestingly, ER-β up-regulation was not preceded nor paralleled by a similar change in 

ER-β message in vivo (Figure 3D) nor in RPAECs at 8-16 hours (Figure 6E). These 

results are suggestive of a post-transcriptional mechanism of ER-β up-regulation.  
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D. Normoxic HIF-1α stabilization is not sufficient to increase ER-β in RPAECs. 

Hypoxia- inducible factor-1 is the master regulator of O2 homeostasis as well as the 

main transcription factor mediating molecular hypoxic responses. Despite no evidence 

to suggest hypoxia induced up-regulation of ER-β mRNA, other mechanisms of HIF-1α 

induced ER-β up-regulation could not be excluded. We hypothesized that hypoxia 

mediates ER-β overexpression via HIF-1. To test this hypothesis, chemical hypoxia 

with HIF-1 simulators like deferoxamine (DFO) was induced and its effect on ER-β 

expression studied under normoxic conditions in RPAECs. Notably, DFO and other 

chemicals that stabilize HIF-1 (like DMOG and CoCl2) lack specificity and likely 

stabilize other members of the HIF family like HIF-2 and HIF-3.  However, our data 

revealed that DFO increases HIF-1 protein (via iron chelation and inhibition of prolyl 

hydroxylases (PHD)-dependent HIF-1 degradation) in a dose-dependent fashion 

(Figure 8A-B). This HIF-1α increase was not paralleled with an increase in ER-β at 24 

hours (Figure 8C-D), concluding that normoxic HIF-1α stabilization is not sufficient for 

ER-β overexpression.  

 

 

 

Figure 8. Chemical Hypoxia with DFO does not increase ER-β expression in 
cultured rat pulmonary artery endothelial cells (RPAECs). Effect of DFO treatment 
(10 or 100 μM; 24 hours normoxia) or vehicle (H2O) on HIF-1α (A) and  ER-β  (C)  
protein expression via western blot, using vinculin as loading control. Protein expression 
was quantified with densitometry (B, D) and is expressed as fold change compared to 
control. Data represents the mean ± SEM (n=3). *p < 0.05. 
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F. Normoxic HIF-1α overexpression is not sufficient to increase ER-β in RPAECs. To 

 
solate the effect of HIF-1α   om othe  membe s of the HIF am y  HIF-1α p asm d overexpress on 

was performed. Despite successful transfection with HIF-1α n RPAECs at normox c condi ions 

(Fig.8A-B), ER-β express on eve appears unchanged (Fig.8C-D). 

 
\ 

E. HIF-1α is not necessary for hypoxia-induced ER-β overexpression in RPAECs. 

To fully understand the potential relationship between HIF-1α and hypoxia-mediated 

ER-β overexpression, HIF-1 inhibition with chetomin (CTM) was pursued. CTM is a HIF 

inhibitor that blocks the interaction of HIF-1α and HIF-2α with transcriptional co-

activators p300 and CBP. Consequently, CTM inhibits HIF-1 transcriptional activation 

(and its downstream signaling like carbonic anhydrase-9 (CA-9). Although CTM is 

known to decrease HIF-1α protein, it has been reported to have the opposite effect in 

certain cell lines [75]. HIF-1 inhibition with CTM decreased HIF-1α in a dose dependent 

fashion (Figure 9A). However, HIF-1 inhibition with CTM failed to attenuate hypoxia 

induced ER-β up-regulation in RPAECs (Figure 9B-C) suggesting that HIF-1α is not 

necessary for hypoxia-induced ER-β overexpression.  

 

 

 

 

Figure 9. HIF inhibition with chetomin does not decrease ER-β expression in 
cultured rat pulmonary artery endothelial cells (RPAECs). Effect of CTM treatment 
(5, 25, 50 and 100 nM; 4 hours pre-incubation; 24 hours hypoxia) or vehicle (DMSO) on 
HIF-1α (A) and  ER-β  (B)  protein expression via western blot, using vinculin as 
loading control. ER-β protein expression was quantified with densitometry (C) and is 
expressed as fold change compared to control. Data represents the mean ± SEM (n=3).  
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F. Normoxic HIF-1α overexpression is not sufficient to increase ER-β in RPAECs. 

To isolate the effect of HIF-1 from other members of the HIF family; HIF-1α was 

exogenously overexpressed in RPAECs. In normoxic conditions, despite an increase in 

HIF-1α in RPAECs following transfection (Figure 10A-B), ER-β expression levels were 

unchanged (Figure 10C-D) suggesting that normoxic HIF-1α overexpression is not 

sufficient to increase ER-β in RPAECs. 

 

 

 

 

 

 

Figure 10. HIF-1α overexpression does not increase ER-β expression in cultured 
rat pulmonary artery endothelial cells (RPAECs). A. ER-β protein expression in 
RPAECs treated with control conditions, control plasmid (pcDNA 3.1) and HIF-1α 
plasmid at 2.5 ng; 24 hours normoxia. B. Expression levels of ER-β quantified by 
densitometry as fold change compared to control plasmid. Data represent (n=1).  
 

 

G. ER-β mediates attenuation of pulmonary vascular remodeling and pro-

proliferative signaling. With a plethora of evidence suggesting that ER-β mediates 

protection in HPH [31, 37], loss of protective ER-β mediated effects was explored in a 3-

week model of HPH in ER-β knockout mice in the presence of E2. Lung sections from 

four groups of hypoxic animals were used; wild type (WT), WT with E2 treatment, 

ESR1 knockout (KO) mice with E2 treatment and finally ESR2 KO mice with E2 

treatment. IHC for SMA was done to evaluate small- and medium-sized pulmonary 
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arterial bed thickness as a function of hypoxia-induced vascular remodeling. 

Interestingly, ESR2KO+E2 mice displayed vascular remodeling approximating that of 

the WT mice and significantly increased compared to the two other groups (Figure 

11A-B). These findings suggest that the loss of ER-β is associated with worse vascular 

remodeling that is not rescued with E2. Additionally, proliferative signaling in lung 

homogenates from the same groups of animals was evaluated with western blot for 

total ERK1/2 and P-ERK1/2. ESR2KO+E2 mice showed a level of ERK1/2 activation 

similar to the WT mice and increased compared to the other two groups (Figure 12A-

B), despite not reaching statistical significance. This is suggestive of the role of ER-β in 

attenuating pro-proliferative signaling in the hypoxic lung 

 

 

 

 

Figure 11. ESR2KO mice display increased pulmonary vascular remodeling in the 
hypoxic lung despite E2 treatment. A. Representative IHC images of lung sections 
are shown from WT, WT+E2, ESR1 KO+E2, ESR2 KO+E2 mice exposed to 3 weeks 
of hypoxia. Note the increase in vascular wall thickening in WT and ESR2KO+E2 mice 
compared to WT+E2 and ESR1KO+E2 represented by staining for SMA in walls of 
small- and medium-sized pulmonary arteries (arrows). B. Quantification of SMA 
staining via Metamorph. Size bars = 50 μm. *p < 0.05. 
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Figure 12. ESR2 knockout mice display increased ERK1/2 activation in the 
hypoxic lung despite E2 treatment. A. P-ERK1/2 and total ERK1/2 protein expression 
in mouse lung homogenates from WT, WT+E2, ESR1 KO+E2, ESR2 KO+E2 mice 
exposed to 3 weeks of hypoxia.  B. Expression levels of lung P- ERK/ERK quantified 
by densitometry.  
 

 

H. ER-β Knockout mice exhibit higher HIF-1α levels in the lung. The cross talk 

between hypoxia-responsive pathways and ERs has been extensively studied in the 

oncology literature. A body of evidence exists to support the notion that ER-β 

mediates HIF-1 inhibition mainly via regulation of HIF-1 degradation. In the same 

model of HPH, HIF-1α was measured in lung homogenates from the four groups of 

animals. Interestingly, HIF-1α expression was increased in ESR2KO+E2 mice- distinctly 

from the rest of the groups despite not reaching statistical significance (Figure 13A-B). 

This finding is suggestive of a potential role of ER-β attenuating HIF-1α accumulation in 

hypoxia. Similar pattern was also seen with HIF-3α (Figure 14A-B). This is of interest 

since some isoforms of HIF-3α are known HIF-1α inhibitors. 
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Figure 13. ER-β knockout (KO) results in accumulation of HIF-1α expression in the 
hypoxic lung A. HIF-1α protein expression in mouse lung homogenates from WT, 
WT+E2, ESR1 KO+E2, ESR2 KO+E2 mice exposed to 3 weeks of hypoxia. B. 
Expression levels of lung HIF-1α quantified by densitometry.  
 

 

 

 

 

Figure 14. ER-β knockout (KO) results in accumulation of HIF-3α expression in 
the hypoxic lung. A. HIF-3α protein expression in mouse lung homogenates from WT, 
WT+E2, ESR1 KO+E2, ESR2 KO+E2 mice exposed to 3 weeks of hypoxia. B. 
Expression levels of lung HIF-3α quantified by densitometry.  
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IV. DISCUSSION 

 

In hypoxic and monocrotaline PH animal models, work from our lab and others has 

shown that E2 attenuates as well as rescues PH endpoints; hemodynamics, proliferation 

and remodeling [37, 38]. This effect is believed to be endothelium-dependent and 

receptor-mediated [37]. Moreover, this protection is thought to be mediated mainly by 

ER-β as ER-β blockade attenuates E2’s effects during hypoxia in vivo and in RPAECs 

[37]. Furthermore, selective estrogen receptor ER-β agonist diarylpropionitrile (DPN) is 

as effective as estrogen (E2) in rescuing severe monocrotaline induced- PH; an effect 

that is lost in the presence of an ER-β antagonist, PHTPP [38]. In isolated rat 

pulmonary artery rings, selective activation of ER-β attenuates hypoxic vasocontraction 

in an endothelium-dependent manner [31].  

 

Various mechanisms have been proposed to explain E2 mediated protection in PH. 

These effects include suppression of inflammation [38, 76, 77], proliferation [37] and 

fibrosis [78, 79]. E2 is also thought to enhance lung autophagy [37], promote 

neoangiogenesis [38] as well as directly induce vasorelaxation of the pulmonary 

vasculature [29, 30]. On the molecular level, these effects are thought to be mediated 

via attenuation of ERK1/2 activation, increasing LC3-II expression and VEGF inhibition 

[37]. Interestingly, E2 mediates its protective effects from cardiac fibrosis via ER-β [78]. 

Pedram and colleagues showed that both E2 and ER-β agonist DPN mediated 

blockage and reversal of transition of cardiac fibroblasts to myofibroblasts and 

consequent fibrosis mediated via cAMP and protein kinase A resulting in inhibition of 

JNK activation. These effects were shown to be lost with ER-β knockdown as well as in 

an ER-β knockout model [78].  

 

Cross talk between ER signaling, transcriptional activation and hypoxia-responsive 

pathways including HIF is not entirely understood. [70]. HIF-1 simulator, cobalt chloride 

(CoCl2) was shown to increase ER-β expression in MCF7 human breast cancer cell line 

but not in MDA-MB231 cells [80]. Data in HEK293 cells revealed that HIF-1α 

transcriptionally activates ER-β via protein-protein interaction [71]. However, the 

unoccupied ER-β inhibits HIF-1 transcriptional activity via downregulation of ARNT 

(HIF-1β) [72]. This finding was replicated in human prostate cancer cell lines (PC3 cells) 

[81]; where knockdown of ER-β1 in PC3 cells resulted in HIF-1α accumulation and 
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epithelial-mesenchymal transition (EMT). Moreover, proteasome inhibition resulted in 

HIF-β accumulation in control but not in ER-β1 knockdown cells [82]. Work by the same 

group revealed that ER-β regulates HIF-1α via promoting prolyl hydroxylase-2 (PHD-2) 

transcription and consequently, HIF-1α degradation maintaining epithelial differentiation 

[83].  

 

VEGF is a major modulator of hypoxia induced pulmonary vasculature remodeling [3]. 

Evidence exists to support that the non-ligand ER-β attenuates the hypoxic induction 

of HIF-1α mediated VEGF transcription [72, 81]. Lahm et al showed that E2 decreased 

VEGF secretion in hypoxic, but not normoxic rat PAECs in an ER-independent 

manner persisting despite ER blockade [37]. These reports further suggest that ligand-

dependent ER activation that results in attenuation of HIF-1 downstream signaling is 

replicated in the pulmonary endothelium. 

 

Our current data identifies ER-β as being distinctly up-regulated in the hypoxic lung and 

pulmonary vasculature. Despite no evidence to suggest hypoxia induced up-regulation 

of ER-β gene expression, other mechanisms of HIF-1α induced ER-β up-regulation 

could not be excluded. We hypothesized that this hypoxia-mediated ER-β up-regulation 

is HIF-1-dependent. Our data, however, indicates that HIF-1 in neither necessary nor 

sufficient to induced hypoxia-mediated ER-β up-regulation. Alternative mechanisms for 

ER-β over-expression during hypoxia include other transcription factors described to be 

involved in hypoxia like nuclear factor Kappa B (NF-kB), peroxisome proliferator-

activated receptors (PPARs) and early growth response (Egr-1) [84-89]. Alternatively, 

other members of HIF family like HIF-2 and HIF-3 could be involved. As opposed to the 

ubiquitous HIF-1, HIF-2 is more endothelial cell specific. HIF-1α & HIF-2α activate HRE 

gene expression, have non-redundant roles and have different transcriptional activities 

[90-93]. Therefore, HIF-2α overexpression and its effect on ER-β expression are 

currently being investigated.  

 

Functionally, our ER KO hypoxic model data highlight the significance of ER-β. These 

data reveals that in the absence of ER-β, E2 mediated attenuation of vascular 

remodeling and pro-proliferative signaling i.e. ERK1/2 activation, is lost. Moreover, 

these data identify the downregulation of HIF1-α as a mechanism of ER-β mediated 

protection in HPH. This result was demonstrated in our in vivo mouse model of hypoxic 
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PH; reflected by accumulation of HIF-1α only in ESR2 KO mice. Similar 

accumulation was seen in HIF-3α protein. It is known that hypoxia induces HIF-3 

transcription and stabilization. HIF-3α is believed to be complementary, rather than 

redundant to HIF-1α, in protection against hypoxic damage in alveolar epithelial cells 

[94]. Certain isoforms of HIF-3α like HIF-3α2 and like HIF-3α4 [95] are known to have 

HIF-1 inhibitory effects. 

 

This putative negative feedback of ER-β on HIF-1α is consistent with data from the 

oncology literature revealing that ER-β inhibits HIF-1 transcriptional activity as well as 

promotes its proteasome degradation in breast and prostate cancer cells [72, 81-83].  

Exploring the cellular mechanism of ER-β attenuation of HIF-1, in the lung and 

RAPECS, is currently being investigated. In the context of HPH, achieving mechanistic 

understanding of hypoxia induced ER-β up-regulation as well ER-β regulation of the 

major hypoxia regulator HIF-1 aims to identify potential targets for non-hormonal PH 

therapeutics. A schematic of the putative interaction between hypoxia and its molecular 

responsive pathways, HIF-1 and ER-β is illustrated in Figure 15. 

 

 

 

 

 

 

 

 

 

  

Figure 15. Schematic representation of the putative interaction between 
hypoxia, HIF-1 and ER-β.  
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V. FUTURE STUDIES 

 

We plan to perform HIF-1α knockout in hypoxic RPAECs to evaluate the 

consequences of the loss of HIF-1 on hypoxia- induced ER-β up-regulation. Additionally, 

HIF-2α overexpression is to be utilized to study the effect of selective normoxic HIF-2α 

overexpression on ER-β expression in RPAECs. Selective ER-β overexpression and 

ER-β agonism with diarylpropionitrile (DPN) are planned to be utilized to study the effect 

of non- ligand ER-β overexpression and ligand-bound ER-β activation on HIF-1α protein 

level, HIF-1α transcriptional activation as well as ERK1/2 activation and VEGF levels in 

normoxic and hypoxic RPAECs. Other future directions include investigating PHD2 as a 

potential mechanism of ER-β induced HIF-1α degradation in the presence of DPN, ER-β 

overexpressing plasmid as well as in ESR2 KO mouse model. Moreover, studying the 

effect of hypoxia on ER-β nuclear translocation as well as the selective function of 

membrane and nuclear ER-β are exciting future frontiers to explore.  
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