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ABSTRACT 

Gupta, Manav. M.S., Purdue University, August 2013. Differentiation and Characterization of 
Cell types Associated with Retinal Degenerative Diseases Using Human Induced Pluripotent 
Stem Cells. Major Professor: Jason S. Meyer 

 
 
 

Human induced pluripotent stem (iPS) cells have the unique ability to differentiate into 200 or so 

somatic cell types that make up the adult human being. The use of human iPS cells to study 

development and disease is a highly exciting and interdependent field that holds great promise in 

understanding and elucidating mechanisms behind cellular differentiation with future applications 

in drug screening and cell replacement studies for complex and currently incurable cellular 

degenerative disorders. The recent advent of iPS cell technology allows for the generation of 

patient-specific cell lines that enable us to model the progression of a disease phenotype in a 

human in vitro model. Differentiation of iPS cells toward the affected cell type provides an 

unlimited source of diseased cells for examination, and to further study the developmental 

progression of the disease in vitro, also called the “disease-in-a-dish” model.  

 

In this study, efforts were undertaken to recapitulate the differentiation of distinct retinal cell 

affected in two highly prevalent retinal diseases, Usher syndrome and glaucoma. Using a line of 

Type III Usher Syndrome patient derived iPS cells efforts were undertaken to develop such an 

approach as an effective in vitro model for studies of Usher Syndrome, the most commonly 

inherited disorder affecting both vision and hearing. Using existing lines of iPS cells, studies 



 
 

 

	
  

xiii 

were also aimed at differentiation and characterization of the more complex retinal cell types, 

retinal ganglion cells (RGCs) and astrocytes, the cell types affected in glaucoma, a severe 

neurodegenerative disease of the retina leading to eventual irreversible blindness.  

 

Using a previously described protocol, the iPS cells were directed to differentiate toward a retinal 

fate through a step-wise process that proceeds through all of the major stages of neuroretinal 

development. The differentiation process was monitored for a period of 70 days for the 

differentiation of retinal cell types and 150 days for astrocyte development. The different stages 

of differentiation and the individually derived somatic cell types were characterized by the 

expression of developmentally associated transcription factors specific to each cell type. Further 

approaches were undertaken to characterize the morphological differences between RGCs and 

other neuroretinal cell types derived in the process.  

 

The results of this study successfully demonstrated that Usher syndrome patient derived iPS cells 

differentiated to the affected photoreceptors of Usher syndrome along with other mature retinal 

cell types, chronologically analogous to the development of the cell types in a mature human 

retina. This study also established a robust method for the in vitro derivation of RGCs and 

astrocytes from human iPS cells and provided novel methodologies and evidence to characterize 

these individual somatic cell types.  

 

Overall, this study provides a unique insight into the application of human pluripotent stem cell 

biology by establishing a novel platform for future studies of in vitro disease modeling of the 

retinal degenerative diseases: Usher syndrome and glaucoma. In downstream applications of this 

study, the disease relevant cell types derived from human iPS cells can be used as tools to further 

study disease progression, drug screening and cell replacement strategies.   
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CHAPTER 1 – INTRODUCTION 
 
 
 

1.1 Nervous System and Development 

The specialization of the more than 200 cell types that constitute the adult human body starts 

during gastrulation, an early embryonic developmental process when the embryo differentiates 

into the 3 germ layers – ectoderm, mesoderm, and endoderm – 14 to 16 days post-fertilization 

(http://stemcells.nih.gov/info/scireport/pages/appendixa.aspx). The nervous system, consisting of 

the brain, retina, spinal cord, and the collection of nerves and glia that together control all sensory 

and motor responses of the human body, is derived from the ectoderm within the first 3 weeks 

post-fertilization. The development of the nervous system starts when inductive signals from the 

mesoderm that induces the overlying layer of ectoderm to thicken and flatten out to form the first 

stage in nervous system development, the neural plate [1]. The neural plate can be considered to 

be a row of multipotent neural stem cells that eventually gives rise to all the parts of the central 

nervous system [2]. The ends of the neural plate gradually folds on itself creating the neural 

groove. This neural groove deepens further as the folds eventually close together to form the 

neural tube, the precursor structure now primed for the regional specification of the nervous 

system [1]. The anterior parts of the developing neural tube give rise to primary brain vesicles, 

the prosencephelon, mesencephelon, and the rhombencephelon. The remaining posterior regions 

give rise to the spinal cord. Molecular signals are responsible for further patterning the neural 

tube along the anterior-posterior and dorsal-ventral axes. The primary brain vesicles are further 

divided into secondary brain vesicles that give rise to different parts of the brain and the inferior 

regions continue to specialize into different regions of the spinal cord. Around 30-35 days of 
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development in humans, the prosencephelon divides into telencephalon and the diencephalon. 

The telencephalon forms the anterior most forebrain regions of the nervous system, the cerebral 

cortex, white matter, and the basal ganglia. The diencephalon, which is directly inferior to the 

developing cerebral cortex, differentiates into distinct regions forming the retina, thalamus, and 

the hypothalamus. The mesencephelon divides into the midbrain forming the tectum, the region 

critical in processing visual and auditory responses, and tegmentum, the region that controls 

motor and other reflexive pathways. The rhombencephelon is further divided into metencephelon 

and myelencephelon. The metencephelon forms the motor center of the brain, the cerebellum, and 

the pons. The myelencephelon forms the medulla oblongata, the respiratory control center of the 

nervous system and control center for other involuntary functions like heart beat rate, blood 

pressure, and other autonomic functions. The spinal cord formation is continuous with the 

medulla oblongata. All regions of the nervous system are essentially composed of several types of 

neurons that crosslink and influence each other via synaptic contact to establish an extremely 

intricate system of neural circuitry that along with glial cells govern the functioning of the entire 

nervous system. 

 

1.2 Development of the Eye and Retina 

The retina develops as a bipartite primordium from a single central field of the developing 

anterior neural tube [3] (Figure 1). During the first few weeks of human nervous system 

development, the diencephalon gives rise to a paired set of optic grooves that eventually 

evaginates to form the optic vesicles from a central eye field. The optic vesicles undergo further 

specification and coordination with the head ectoderm to differentiate into bi-layered optic cups 

where the inner layer eventually develops into the neural retina and the outer layer, the supportive 

RPE [4]. The third part of retinal development involves the specification of the optic stalk that 
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matures to form the optic nerve [5]. The part of the head ectoderm in close association with the 

developing optic cup is eventually induced to form the lens [6].  

 

Several defining studies in identifying the ontogeny of the retina and its cell types has provided a 

range of molecular markers to identify individual neuroretinal cell populations and their 

functionalities with precision, making retina a highly accessible and amicable model for the study 

of  nervous system development [7].  

 

The differentiation of specific retinal cell types from the optic cup-stage progenitors is based on 

the activity of lineage restricted progenitors and whose fate can be divided chronologically into 

early and late retinogenesis [8, 9]. The earliest cell types derived in the retina are the retinal 

ganglion cells (RGCs), cone photoreceptors, horizontal cells, and most amacrine cells. Rod 

photoreceptors, bipolar interneurons and Müller	
   glia are derived in the latter half of retinal 

development [10, 11]. The early stage of eye field specification has been extensively 

characterized for the expression of stage specific transcription factors and proteins. Early optic-

vesicle structures are characterized by the expression of the eye field transcription factors 

(EFTFs): PAX6, RAX, SIX3, SIX6, LHX2, and TBX3 distinguishing them from other lineages of 

neural commitment [12, 13]. Cell populations co-expressing PAX6 and RAX have been identified 

as definitive retinal progenitor cells in early eye and later retinal specifications [14]. Genetic 

studies corroborate the importance of EFTFs in human eye development by showing how 

mutations in PAX6, SIX3, SIX6 can result in malformations affecting the eyes [6]. Early and late 

stage retinal histogenesis has been similarly studied for the expression of developmentally 

associated factors that play a pivotal role in the understanding of the highly conserved series of 

events that forms the retina and its cell types. More specifically, the role of multiple basic helix-
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loop-helix (bHLH) type transcription factors in combination with other homeobox and forkhead 

genes is crucial for the subsequent lamination of the retinal structure [15] (Figure 2). 

 

The differentiation of retinal neurons begins around 31-35 days of human embryonic 

development [16]. The competence of retinal progenitors to specify a distinct neuroretinal cell 

type is based on the availability of both intrinsic and extrinsic cues. Dividing and proliferating 

multipotent retinal progenitor cells are identified by the expression of the homeobox transcription 

factor, CHX10 [17]. RGCs are determined by the expression of ATH5, a bHLH transcription 

factor transiently expressed in the retinal progenitors cells, essential for the specification of RGCs 

[18-20]. A set of 3 POU domain transcription factors, BRN3A, BRN3B, BRN3C, is expressed in a 

restricted fashion in the RGCs in the retina, as a downstream target for ATH5 [21]. The origin of 

bipolar interneurons is regulated by the bHLH factors MASH1 and MATH3 in coordination with 

the homeobox gene CHX10 [22]. Other interneurons including the amacrine cells and horizontal 

cells are closely associated in development with several overlapping regulatory factors. The 

neural bHLH transcription factors MATH3 and NEUROD are required for the retinal progenitors 

to differentiate to amacrine cells [22] whereas the forkhead factors, FOXN4 and PTF1A are 

critical for both amacrine and horizontal cells. Misexpression of these factors leads to greatly 

reduced amacrine cell numbers and a complete loss of horizontal cells [23, 24]. The expression of 

PROX1 is essential for horizontal cell genesis [25]. The photoreceptors are divided into the early 

derived cone and the latter derived rod photoreceptors. The homeobox genes of OTX2 and CRX 

establish the cues for photoreceptors specification [26, 27]. NRL, a basic leucine zipper 

transcription factor is selectively expressed in the rod photoreceptors through the regulation of 

NR2E3 (TLL), activating rod-specific genes [28, 29].  
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1.3 The Retina and its Cell Types 

The retina forms the photosensitive tissue that lines the posterior surface of our eyes. The 

vertebrate retina harbors a repertoire of major cell types that are developmentally produced 

through the step-wise differentiation of multipotent retinal progenitor cells, derived in early 

vertebrate development from the neuroectoderm [13]. The specification of retinal cell types 

during development proceeds through a series of conserved events, in a highly regulated temporal 

and sequential manner [30]. The mature retina is a tightly layered structure consisting of different 

sets of neural, non-neural and glial cell types (Figure 3). The six sets of neurons that make up the 

neuronal tissue of the retina are part of an intricate retinal circuitry that is interconnected via 

synapses and responsible for the transduction of light to electrical signals required for our 

important sense of sight. The rod and cone photoreceptors form the outermost nerve layer of the 

retina and are the first ones to initiate the electrical cascade of visual function. The electric 

potential changes are relayed to inner layers of the retina, from the photoreceptors to the RGCs 

via synaptic contact with bipolar interneurons. In addition, the retina also has other types of 

interneurons, the amacrine cells and horizontal cells, which regulate the electrical input onto the 

retinal ganglion cells [31]. The ganglion cells convey the final electrical output to different brain 

nuclei via their axons which together form the optic nerve and leave the back of the eye in a 

region called the optic disc. The other cell types that make up the retina include the retinal 

pigment epithelium (RPE), a layer of pigmented epithelial cells on the outermost arc of the retina, 

responsible for the turnover of photoreceptor outer segments, and which also acts as the immune 

center of the eye [32]. The glial cell types found in the retina include the Müller cells that form 

the predominant glial cell type in the retina and aids in visual transduction and provides glial 

support to the retinal neurons [33]. The second kind of glial cells found in the retina are the 

astrocytes which are comparatively less in number and found mainly in the nerve fiber layer and 

the optic nerve head (ONH) of the retina in most mammalian species [34]. They form the major 
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glial cell type that support the non-myelinated optic nerve and are also known to secrete 

extracellular matrix molecules below the ONH where the optic nerve emanates out from the 

sclera at the mesh like structure called the laminar cibrosa [35]. The close coordination of all 

neural and non-neural cell types in the retina is essential for maintaining healthy visual function. 

Any abnormalities in its regular activity can lead to the degeneration of one or more of its specific 

cell types, leading to partial to complete loss of sight. 

 

1.4 Retinal Degenerative Diseases 

 

1.4.1 Background Information 

According to World Health Organization (WHO) the total estimated number of visually impaired 

people as of 2012 stands at an astonishing 285 million (http://www.who.int/topics/blindness/en/). 

An overwhelming 165 million people worldwide are known to be afflicted with retinal diseases 

that cannot be prevented by corrective measures and/ or is currently completely incurable.  

 

As described before, the retina is a thin layer of light-sensitive neural tissue at the back of the eye, 

made of rods and cones and other neurons that function together as part of a neural circuitry for 

relaying and processing visual information. Cell death of any of its several neuroretinal cell types 

can lead to retinal degeneration affecting visual output at different levels. Retinal degeneration 

can manifest itself due to genetic and age-related problems, affecting both the young and old from 

different races, ethnicities, and countries [36]. The limited ability for intrinsic regeneration in the 

mammalian retina makes it highly susceptible to irreversible damage or injury [37]. The degree 

and type of visual deterioration can vary from partial to complete loss of sight depending on type 

and stage of disease. Although different retinal neuron populations are affected in several retinal 

diseases, the loss of photoreceptors is often the initial and primary reason for the loss of other cell 
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types [37]. Glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP) 

are among the leading causes of blindness due to cellular degeneration of specific neuroretinal 

cell types in the retina. The onset of retinal degeneration and loss of sight due to these diseases 

however can progress rapidly or perpetuate slowly in middle to late adulthood [38]. The causes 

for visual impairment can encompass abnormalities in different parts of the eye including the 

lens, choroid, ocular muscles, and vitreous body, however the therapeutic interventions currently 

available for cell based degeneration diseases in the retina are still quite limited compared to 

diagnostic advancements of the field [39]. Most of the diseases of the retina caused by the death 

of one or more of its neurons are currently incurable. Efforts to transplant healthy retinal cell 

types to replace their degenerated counterparts are considered to be the most primary approach 

for the prospective treatment of these diseases. 

 
 

1.4.2 Retinal Diseases – Examples 
 

The retina can be subject to several complex neuropathies affecting one or more of its cell types. 

Age-related diseases such as glaucoma are characterized by the progressive loss of RGCs, and 

AMD, by the gradual loss of photoreceptors, interneurons, and essential supporting cells, the 

RPE. Leading inheritable or genetic retinal disorders include RP, Stargardt’s disease, Best 

disease, Leber’s Congenital Amaurosis. These diseases progress with the early loss of 

photoreceptors with the subsequent loss of RGCs [40]. 

 

Glaucoma, the second largest cause of blindness in the world according to the website of WHO 

(http://www.who.int/bulletin/volumes/82/11/feature1104/en/) is an optic neuropathy, affecting 

visual function and ONH morphology due to the loss of RGC cell bodies and axons in the inner 

retina, nerve fiber layer and ONH respectively [41, 42]. In addition, the lamina cibrosa, openings 

where ganglion cell axons exit the eye, deteriorates progressively. Glaucoma is closely associated 
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with the rise in fluid pressure of the aqueous humor. The increase in intraocular pressure is 

theorized to cause RGC cell death by blocking anterograde and retrograde axonal transport at the 

laminar cibrosa [43, 44]. Glaucoma is divided into 2 main categories: “open angle” and “closed-

angle” type glaucomas [45]. Open-angle glaucoma, the milder of the two sub-types is 

characterized by the slow progression of visual loss starting from the periphery and is diagnosed 

by an increased ratio of the optic cup area to disk. Close-angle glaucoma has a more acute onset 

with higher intraocular pressures due to closure of the angle between the iris and the trabecular 

meshwork which obstructs the flow of the aqueous humor. Close-angle glaucoma can be 

diagnosed by physical symptoms including dilated pupils, clouded cornea, and red eye. While 

there is no current cure for this disease, its progression can be slowed down if detected early. 

However, studies aimed at preventing the loss of RGCs and ONH architecture are more 

pragmatic in terms of providing a definitive solution to this devastating disease.  

 

Age-related macular degeneration (AMD) is an age-related retinal degenerative disease caused by 

the loss of photoreceptors located at the macula region of the retina that affects both central and 

color vision. This painless form of retinopathy has distinct types of pathophysiology. The “dry” 

form of AMD results in the loss photoreceptors in the outermost layer of the retina. It is 

characterized by increased amount of yellow colored extracellular deposits called drusen, 

between the RPE and the choroid. The “wet” form is an exudative form of AMD caused by the 

neovascularization in the sub-retinal space with related macular degeneration. AMD is generally 

seen in elderly people; however, a childhood onset of a type of macular degeneration is known to 

exist in Stargardt’s disease. There are no current cures for AMD, but there are highly promising 

ongoing clinical trials using embryonic stem cell derived RPE cells for sub-retinal transplantation 

into human patients afflicted with the disease [46, 47]. 
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Retinitis pigmentosa (RP) is the leading cause of genetically associated diseases involving retinal 

degeneration in juvenile and early adulthood. RP is a generic name given to all retinal dystrophies 

that progress primarily by affecting the rod photoreceptors first, causing night blindness or 

nyctalopia, and leading eventually to the loss of peripheral and central vision. A total of 45 

causative genes and several mutations have been identified with different forms of RP [48, 49]. 

Physical manifestation of RP includes the deposition of bony-spicule shaped pigmented 

aggregates in the RPE, easily identifiable through the fundus examination of a diseased eye, from 

which the disease gets its name. A fundus examination can also reveal other signs of RP 

including thinning of blood vessels and the pale and waxy appearance of the optic nerve [48]. The 

inheritance pattern of RP shows heterogeneity as also seen with the genes involved in the disease. 

Mutations in RP related genes can be passed on as autosomal dominant, X-linked, and autosomal 

recessive.  An example of an autosomal recessive mutation, and most critical the current study is 

the Usher Syndrome. 

 

Usher Syndrome is the most frequent form of syndromic RP where affected patients suffer from 

visual and auditory abnormalities with some balance defects. The visual loss due to RP 

accompanies mild to severe deafness caused by degenerating neurons in the cochlea part of the 

inner ear. Mutations identified in atleast 10 genes are responsible for Usher syndrome [50, 51]. 

The severity of the progression of the symptoms in Usher syndrome divides it into 3 subtypes 

[52]. In type I, the disease is characterized by congenital deafness and vestibular dysfunction 

accompanied by the loss of night vision before the age of 10. In type II, the patient suffers from 

moderate to severe hearing loss at birth with reduced night vision starting in late childhood and 

no balance issues. Type III is characterized by the onset of sensory problems only in the late teens 

with normal to near-normal vestibular functions. As is the case with other retinal degenerative 

diseases, RP and its related disorders are currently incurable, and strategies including cell 
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replacement, gene therapy, and supplements with neurotrophic factors are promising avenues to 

study the pathophysiology of the disease, and perhaps offer new therapeutic avenues for the 

treatment or cure of the disease.  

 

1.5 Human Pluripotent Stem Cells 

 

1.5.1 Embryonic Stem Cells 

Vertebrate embryogenesis is characterized by the differentiation of the totipotent zygote to all 3 

germ layers including the yolk sac, the amnion, and placenta. The differentiation of all somatic 

and germ cells begins in late stages of the blastocyst when a subset of cells in the inner cell mass 

(ICM) of the blastocyst acquires pluripotent properties before gastrulation. This population of 

around 100 cells derived from the blastocyst stage of the embryo is the embryonic stem (ES) 

cells. The 2 basic properties that distinguish ES cells from any other cell type is its ability to 

differentiate into all adult cell types of the body in addition to the unlimited potential of self-

renewal in culture [53].  

 

ES cells were first derived from mice by the explantation and culture of the ICM of pre-

implantation embryos in seminal works by Evans and Kaufman at Cambridge, and Gail Martin at 

University of California San Francisco [54, 55]. Mouse ES cells injected into the blastocyst of 

mouse embryos were competent of full development, producing chimeric mice where ES cells 

contributed to cell types of all three germ layers as well as the germ line. Further molecular 

characterization of mouse ES cells revealed interesting features when compared to its in vivo 

counterparts. The ICM cells were not self-renewing and globally hypopmethylated compared to 

the unlimited proliferation potential and hypermethylated genomes of ES cells cultured in vitro 

[56, 57].  
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It was not until 17 years after the discovery of mouse ES cells, in 1998, that the first human ES 

cell lines were successfully derived by Thomson and colleagues at the University of Wisconsin 

[58]. Human ES cells were derived from blastocysts of human embryos created by in vitro 

fertilization (IVF) techniques for clinical purposes. Human ES cells were characterized by a 

higher nucleus to cytoplasm ratio, normal karyotype, high telomerase activity, and pre-inactivated 

states of X chromosomes [58, 59]. Human ES cells were also extensively characterized for their 

molecular identifiers and properties. They expressed the pluripotency-associated genes, OCT4, 

SOX2, and NANOG, all of which are highly expressed during embryonic development.  The 

ability of human ES cells to differentiate into cell types of all 3 germ layers was demonstrated by 

the formation of teratomas when injected subcutaneously into immunocompromised mice [58, 60, 

61].  

 

The isolation of mouse and human ES cells ushered in a new era in the field of mammalian 

developmental biology. The endless potential of these cells were realized in theory and then in 

practice for studying basic human development and in the etiology and treatment of diseases. 

Phenomenal concepts of disease modeling and personalized medicine emerged. Strategies for 

directed differentiation of ES cells to individual types of all germ layers including neurons, 

cardiomyocytes, hepatocytes, blood cells, airway epithelial cells, were shown and replicated by 

groups all over the world [62-66]. The use of host or patient derived ES cells by nuclear transfer 

to prevent immune rejection in autologous transplantation and promote repair was shown to be 

successful in a proof-of-principle study in ES-derived dopaminergic neurons in parkinsonian 

mice [67]. The different sources of pluripotent stem cells are summarized in (Figure 4). 
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1.5.2 Induced Pluripotent Stem Cells 

In 2006, an alternative to ES cells was discovered when Yamanaka and colleagues at Kyoto 

University published their landmark study in which the simultaneous introduction of 4 

developmentally associated genes, OCT4, SOX2, KLF-4, C-MYC, into adult mouse fibroblasts 

was able to revert these terminally differentiated cells to a more primitive, unspecified, and 

embryonic-like state [68]. The following year, the labs of both Yamanaka and Thomson 

successfully reprogrammed adult human skin cells to produce the first lines of ES-cell like, 

human induced pluripotent stem (iPS) cells [69, 70]. Human iPS cells were shown to be similar to 

ES cells in several defining attributes including morphology, self-renewing capacity, gene 

expression profile, and most importantly, its differentiation potential and ability to contribute to 

cells of all germ layers. Further molecular characterization of iPS cells reveals that for some 

selective clones they are completely indistinguishable from ES cells in terms of histone tail 

modifications, inactivation states of X chromosomes, and DNA methylation profiles [71].  

 

The emergence of iPS cell colonies in culture is defined by their distinct phase bright and almost 

3-dimensional morphology like appearance characterized by well-defined edges. To tell apart 

colonies that are partially or completely reprogrammed, scientists use the aid of molecular and 

epigenetic identification tools. Completely reprogrammed human iPS cells express endogenously 

activated proteins such as SSEA-4, and surface antigens TRA-1-60 and TRA-1-81 besides the 

expression of the regular cocktail of genes that were used to dedifferentiate the adult cells in the 

first place, OCT4, SOX2, NANOG, LIN28, KLF-4, C-MYC, along with their promoter de-

methylation [72]. Some of the epigenetic hallmarks of iPS cells include the upregulation of de 

novo DNA methyltransferases DNMT3a and DNMT3b, and the role of DNMT1 knockdown to 

convert the intermediately reprogrammed iPS cells into those that are fully pluripotent [73, 74]. 

Tests involving the formation of “all iPSC mice” are the gold standard for mouse iPS cells where 
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one can study the development of a normal mouse only by the iPS cells injected into tetraploid 

embryos, a process known as tetraploid complementation [75-78]. Due to obvious ethical issues 

related to generating human chimeras, the most stringent way to evaluate the developmental 

potential of human iPS cells is its ability to form teratomas upon subcutaneous injection into 

immunodeficient mice [79, 80].  

 

The reproducible nature of iPS technology is evident by the large number of research papers that 

established mouse and human iPS cell lines after the first reports of its derivation was reported 

[80-83]. Alternate animal sources of iPS derivation have also been successful from rats [84, 85], 

rhesus monkeys [86], porcine [87], canines [88], indicating the evolutionary conservation of the 

transcriptional network governing pluripotency in different species and allowing for different 

animal models to be used for disease modeling. Scientists have also generated iPS cells starting 

with different somatic cell populations including blood cells [89], hepatocytes [90], neural cells 

[91], and keratinocytes [92], establishing the overall general applicability of the technology and 

providing alternate cell sources for reprogramming. 

 

The overlapping clinical applications of iPS cells and ES cells are more profound for the former 

due to more immunocompatible cell derivatives for transplantation. The use of iPS cells finds 

limitless potential in normal and diseased forms of human development. The ability to be able to 

generate iPS cells from cells of patients provides a unique way to study disease progression 

compared to isogenic controls and initiate drug screening strategies on affected cell types that can 

be derived from the patient specific iPS cell lines. The use of disease specific iPS cell lines 

provides for means to recapitulate disease phenotype in vitro. One important criterion that 

currently prevents the iPS cells from being autonomously used in clinical trials and making the 

transition from bench to bedside is its association with potential virus like expression and random 
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integration of some of the genes that were initially used to reprogram the adult cells. Since 2006, 

however, several modifications to the protocol of reprogramming has seen the overhaul of the 

initially used retroviral/lentiviral approaches for the more clinically relevant transgene free 

protocols of introduction of the pluripotency associated factors using systems including Sendai 

virus [93], adenovirus [94], plasmids [95], mRNAs [96], proteins [97], and small molecules [98, 

99]. Further sophisticated molecular methodologies to generate transgene free iPS cells include 

the doxycycline drug-inducible and floxed excisable lentiviruses [100, 101]. 

 

The overall impact of the discovery of ES and iPS cells has been potentially revolutionary. 

Although the use of ES and iPS cell technology has great implications in tackling several 

developmental concepts, a great amount of work is still needed to minimize any artifacts 

generated through irregular culturing techniques, non-uniform genetic backgrounds, partial 

reprogramming, and reprogramming factor combinations for these cells to be regularly realized in 

cell transplantation and curative approaches.  

 

1.6 Induced Pluripotent Stem Cells: Disease Modeling 
 
 
 

1.6.1 Disease Modeling in Theory 
 

The successful generation of human iPS cells opened up new avenues of previously unanticipated 

possibilities to study complex degenerative disease in vitro. The role of iPS cells in modeling of 

degenerative disorders will be critical in the near future to gain further insight into identifying 

mechanisms and biological targets associated with disease cause and progression. The concept of 

disease modeling or “disease-in-a-dish” is a promising approach to screen patient derived cell 

types for any genetic or physiological abnormalities and identify novel therapeutic candidates 

which could help combat cellular stresses and disease symptoms (Figure 5). The process works 
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through the derivation of iPS cells from patient specific primary cells followed by the 

differentiation of these cells which bears the genetic memory of the affected individual to the 

disease relevant cell type. The establishment of a cost effective protocol to derive the diseased 

cell type provides an unlimited source of patient tissue that can be used to recapitulate in vivo 

human development and disease phenotypes. The use of patient cells as starting material holds 

tremendous potential for assessing disease progression when compared to cell lines derived from 

isogenic controls of the non-symptomatic individual. The end product of such studies, the in vitro 

derived affected somatic cell types, can be used for a wide range of medical applications 

including transplantation, drug targeting, molecular profiling, and personalized medicine. In 

theory, iPS cells can be differentiated to virtually any tissue type of the body, representing a new 

source of autologous tissue for cell therapy [102].  

 

1.6.2 Disease Modeling in Practice 

A significant amount of work has already been accomplished in the study of degenerative 

disorders of all 3 germ layers including Parkinson’s, Alzheimer’s, Amyotrophic Lateral Sclerosis 

(ALS) or Lou Gehrig’s disease, Retinitis Pigmentosa, Long QT Syndrome, and Type 1 Diabetes. 

Several labs have successfully been able to derive iPS cells from patient specific samples of these 

diseases and provide criterion for differentiation to the affected cell type followed by the 

assessment of in vitro recapitulation of the expected disease phenotype. In the first demonstration 

of this ability of iPS cells, Park and colleagues at Harvard were successful in deriving iPS cells 

with their associated phenotype from different disease patients, including Huntington with its 

characteristic tri-nucleotide CAG repeats in the HUNTINGTIN gene, Down syndrome with the 

triplication of chromosome 21 (trisomy 21) seen in the karyotype analysis, Type 1 Diabetes, and 

Parkinson’s [80]. Work done by labs in individual disease models have shown that not only can 

they reprogram adult cells to the embryonic-like iPS cells but also under specific culture 
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conditions, coax them to differentiate into the cell type associated with the disease including 

motor neurons in Spinal Muscular Atrophy (SMA) and ALS models, beta cells in a diabetes 

model, hematopoietic cell in Fanconi Anemia, and dopamine neurons in Parkinson’s models [80, 

103-106].   

 

In the retina as well, important contributions have been made by different labs in the field of in 

vitro disease modeling and transplantation. Although a lot of the work has been concentrated 

around the use of human ES cells as starting sources, recent studies have picked up the use of iPS 

technology to mimic in vivo retinogenesis in disease patient samples. Gamm and colleagues at 

University of Wisconsin, Madison have generated iPS cells from patients with gyrate atrophy, an 

inherited disorder causing blindness, and used pharmacological (elevated B6 levels) and genetic 

strategies to correct for the genetic mutation in vitro [107]. The ability to model retinal 

degeneration was shown by Takahashi and colleagues at the RIKEN Center for Developmental 

Biology, when they generated iPS cells from 5 patients harboring RP specific mutations in the 

following genes: RP1, RP9, PRPH2, or RHO. The study was successful in recapitulating the 

disease phenotype by measuring the progressive loss of rhodopsin protein over time and 

identified markers for cellular stresses as a consequence of the genetic mutations. The same group 

followed this study with the derivation of RP patient specific iPS cells using a non-integrating 

Sendai-virus vector system to deliver the pluripotency factors for reprogramming a year later 

[108]. In a more recent study, Gamm and colleagues have been successful in modeling the 

maculopathy of BEST disease, an inherited disorder caused by a mutation in the BESTROPHIN1 

gene in the RPE, comparing the properties of iPS-RPE cells derived from the affected patient and 

the unaffected sibling as control [109]. The work demonstrated within this thesis is the first study 

to look at human iPS cells derived from fibroblasts of a Type III Usher Syndrome patient and 
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follow its progression towards a neuroretinal specification, more importantly, toward the affected 

cell type in this disease, photoreceptors.  

 

The use of iPS cells in disease modeling promises for a highly customized approach to studying 

and potentially the development of treatments for several degenerative diseases. However, despite 

the exponential growth of the field en bloc, there is still a constant need for robust protocols to 

achieve and replicate lineage specific differentiation of clinical grade human iPS cells, 

recapitulate disease phenotype, provide functional integration of in vitro derived cells on 

transplantation, and minimize any possible immunogenic reactions in the process. 

 

1.7 Thesis Objectives 

Building on previous studies in the field and utilizing concepts of human iPS cells and directed 

differentiation, this work aims to provide further insight into the specification of distinct retinal 

cell types affected in two major retinal degenerative diseases, Usher syndrome and glaucoma. As 

described earlier, Usher syndrome is a genetically inherited autosomal recessive disease that is 

characterized by the progressive visual loss of first rod photoreceptors and later cones later in 

addition to auditory and vestibular dysfunction. Using iPS cells derived from a patient with Type 

III Usher Syndrome, experiments were designed to assess the developmental potential of this cell 

line towards the recapitulation of a neural and subsequently a retinal phenotype in an in vitro 

system. One of the foremost aims of this study was to establish the chronological order of retinal 

cell fate specification analogous to an in vivo system with a special emphasis on the feasibility of 

this patient specific cell line to derive the affected cell types associated with RP in Usher 

Syndrome, the photoreceptors. The ability of this human iPS cell line to be able to differentiate 

into photoreceptors and all other retinal cell types served a dual purpose. Firstly, it provides a 

robust model to study retinal degeneration events in Usher Syndrome by utilizing the iPS-derived 
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photoreceptors for further downstream applications like studying disease progression, gene 

correction, and potential drug targeting studies. Secondly, being able to derive all other retinal 

neurons and glial cell types that are not associated with Usher Syndrome, the use of this cell line 

and another iPS cell line that was used in the work helps to devise protocols for the derivation, 

characterization, and enhancement of other retinal cell types such as RGCs and astrocytes, 

associated with retinal degeneration in glaucoma, a severe neurodegenerative disease of the retina 

that affects vision. Despite their roles as functionally important cell types in the retina, the 

derivation of RGCs using iPS cells has been very sparsely studied in the field owing to several 

reasons including its unknown in vitro ontogenesis and difficulty of recapitulating the extensive 

in vivo morphologies associated with the cell type in vitro. In the second half of this study, efforts 

were made to establish a timeline for the differentiation of RGCs using human iPS cells and 

provide extensive methods to characterize these projection neurons further. This work also looked 

at the derivation of retinal astrocytes, an important glial cell population at the ONH. Since 

glaucoma is characterized by the remodeling of the ONH, its pathophysiology involves a direct or 

indirect role of these astrocytes in optic nerve degeneration. An important aspect for patient 

specific in vitro modeling of this disease in the future would require the ability of the human iPS 

cells to provide a good robust and plentiful supply of astrocytes along with RGCs. Based on such 

requirements, efforts were made to establish methods to analyze the derivation and 

characterization of iPS-derived astrocytes and in so doing, provide a robust differentiation 

protocol that could be used to derive the two affected somatic cell types in glaucoma.  
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CHAPTER 2 – MATERIALS AND METHODS 
 
 
 

2.1 Cell Culture 

 

2.1.1 Human iPS Cell Lines 

The hiPS cell lines Usher 006.1.5 (Usher iPSC) or T-lymphocyte derived iPS cells (TIPS-5) were 

utilized for all studies. The cell lines were obtained from the lab of Dr. David Gamm at the 

Waisman Center at the University of Wisconsin, Madison. The Usher iPSC line was derived from 

the genetic reprogramming of skin fibroblasts obtained via a skin biopsy from a patient afflicted 

with Type III Usher Syndrome. The TIPS-5 line was established from T-lymphocytes derived 

from a peripheral blood draw from a healthy individual. The derivation of both iPSC lines from 

different somatic cells was based on methods previously established in the field [68, 69, 110].  

 

2.1.2 Media and Media Recipes 

2.1.2.1 Human iPS Cell Medium 

a) mTeSRTM1 Basal Medium (STEMCELLTM Technologies, Catalog #05850) 

b) mTeSRTM1 5X Supplement (STEMCELLTM Technologies, Catalog #05850) 

The final mTeSRTM1 medium was prepared under sterile conditions inside the laminar flow hood. 

The mTeSRTM

supplement was aseptically added to 400mL of mTeSRTM1basal medium and mixing well, 

making a total volume of 500mL mTeSRTM1 medium. Complete mTeSRTM1 medium stored at 

for up to 2 weeks. 



20 
 

	
  

	
  

2.1.2.2 Neural Induction Medium (NIM) 

For a final volume of 500 mL: 

a) DMEM/F12 (+HEPES) (GIBCOTM, Ref. #11330-032) …………………..................... 489.5mL 

b) N2 Supplement (GIBCOTM, Ref. #17502-048) ……………………………………………. 5mL 

c) MEM-NEAA (GIBCOTM, Ref. #1114-050) ……………………………………………….. 5mL 

d) Heparin …………………………………………………………………………….…….. 0.5mL 

The final volume of NIM was prepared under sterile conditions inside the laminar flow hood. The 

N2 supplement was thawed in a 37

components were added to a 500mL, 0.2µm bottle top filter (Thermo Scientific, Catalog 

#0974107) attached atop a 500mL tissue culture bottle, and the medium was filter-sterilized 

before final usage. NIM was stored  for up to 2 weeks. 

 

2.1.2.3 Retinal Differentiation Medium (RDM) 

For a final volume of 500 mL: 

a) DMEM/F12 (+HEPES) (GIBCOTM, Ref. #11330-032) …………………........................ 240mL 

b) DMEM (1X) (GIBCOTM, Ref. #12430-054) …………………………………….……… 240mL 

c) B27 Supplement (GIBCOTM, Ref. #17502-048) …………………………………............. 10mL 

d) MEM-NEAA (GIBCOTM, Ref. #1114-050) …………………………………….….…....… 5mL 

e) Penicillin/ Streptomycin/ Ampicillin (PSA) ……………..................................................... 5mL 

The final volume of RDM was prepared under sterile conditions inside the laminar flow hood. 

The B27 supplement and PSA were thawed in a 37  before the formulation of the 

medium. The components were added to a 500mL, 0.2µm bottle top filter attached atop a 500mL 

tissue culture bottle, and the medium was filter-sterilized before final usage. RDM was stored at 

for up to 4 weeks. 
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2.1.2.4 Dispase  

The use of the enzyme Dispase (GIBCOTM, Ref. #17105-041) is recommended for passaging of 

human iPS cells. A final working concentration of 2mg/mL of dispase was prepared under sterile 

conditions inside the laminar flow chamber. 100mg of dispase was weighed and carefully added 

to a 50mL conical tube containing 50mL of DMEM/F12. The conical tube was mixed several 

times by inverting to make sure there were no floating clumps of dispase powder in the solution. 

The solution was warmed for 20 minutes in a 3

sufficiently warm, the solution was filter sterilized using a 50mL, 0.22µm Sterifilp® filter 

(MilliporeTM for up to 2 weeks.  

 

2.1.2.5 Matrigel  

Matrigel (BD Biosciences) was used as the basement membrane matrix compound to coat 6-well 

plates for the growth of human iPS cells on them. Matrigel received from the vendor was thawed 

on ice, aliquoted, and frozen down at -

according to vendor specifications and 1mL of cold matrigel was used to coat 1 well of a 6-well 

plate. A 50mL solution of diluted matrigel for up to 2 weeks. 

 

2.1.2.6 Laminin 

For differentiation of human iPS cells as adherent cultures, 6-well plates were coated with 

laminin (Stemgent™, Catalog #08-0002), part of the extracellular matrix (ECM) family of 

glycoproteins. Laminin received from the vendor was stored in - 1mL vial of 

ates, laminin was diluted with DMEM (1X) in a 

ratio of 1:50 to achieve a final concentration of 20µg/mL. Diluted laminin was added to the center 

of the well and carefully spread using the back end of a P1000 micropipette tip. The laminin was 

uniformly spread covering majority of the well area except the edges. 
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2.1.3 Thawing of Cryopreserved Human iPS Cells 

Media and supplements required: 

1) Complete mTesrTM1  

2) DMEM/F12 

3) Matrigel 

Human iPS cells were thawed and plated onto a 6-well plate (Thermo Scientific, Nunclon treated) 

that was coated with matrigel and incubated for an hour at room temperature before subsequent 

thawing of cells. The general criterion for number of vials of cells plated/ well of a 6 well plate 

was based on the equivalency of number of cryovials used to freeze down cells from a single well 

of a 6-well plate, i.e. 1 vial of cryopreserved cells made from 1 well of a 6-well plate was used to 

thaw in 1 well of a 6-well plate. Before the start of the protocol and removal of the vial of cells 

from liquid N2 and the 6-well plate was 

prepared with matrigel. A 15ml conical tube was filled with 10mL of warm DMEM/F12. At this 

stage, the vial of human iPS cells was removed from the liquid N2 

waterbath by shaking vigorously for 3-4 minutes. The contents of the cryovials were transferred 

into the conical tube containing the DMEM/F12 and the tube was centrifuged at 800rpm for 3 

minutes. After the centrifugation was complete, the medium from the conical tube was aspirated 

leaving the iPS cell pellet intact. Next, the liquid matrigel was aspirated from the coated tissue 

culture plate. 2mL of mTeSRTM1medium was slowly added to the coated well from the sides 

using a serological pipette. The iPS cell pellet was then resuspended in 0.5mL of mTesrTM1 

medium to dislodge the pellet and break down any bigger aggregates of cells and then transferred 

to the coated well of the 6-well plate containing 2mL of mTesrTM1. The medium containing the 

cell aggregates was poured slowly in the middle of the well with the tip of the serological pipette 

perpendicular to the well. The 6-

2, and  
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humidity. Daily media changes with mTesrTM1 were performed henceforth until the 

undifferentiated colonies of human iPS cells were ready to be passaged.  

 

2.1.4 Maintenance and Passaging of Human iPS Cells 

Media and supplements required: 

1) Complete mTeSR™1 

2) DMEM/F12  

3) Dispase 

4) Matrigel  

Human iPS cells were maintained and expanded in an undifferentiated state using methods 

previously described for human pluripotent stem cells [30, 107]. iPS cells were grown on matrigel 

in mTeSR™1 for the maintenance of an undifferentiated state. The cells were passaged every 4-5 

days when the colonies approached 70- . They were enzymatically lifted using 

dispase (2mg/mL) after the differentiation colonies were first manually removed. The appearance 

of spontaneous differentiation in iPS colonies was identified by the loss of its prominent phase 

bright borders and emergence of non-uniformly shaped cell types. All culture media was well 

warmed and the required number of 6-well plates coated with matrigel and incubated at room 

temperature for 1 hour before the process. 1 well of a 6-well plated of iPS cells was expanded to 1 

whole 6-well plate. Before each round of passaging, the differentiation areas were marked under 

the microscope and the colonies scraped out using a tip of the P1000 micropipette. The medium 

on the cells containing the free floating differentiated aggregates was aspirated out and 1mL of 

dispase was added to the well. The cells were incubated in dispase for 15-20 minutes at room 

temperature to allow for sufficient curling of the edges of the iPS colonies. At the end of this 

incubation, the dispase was aspirated and the cells were washed twice with 1mL of DMEM/F12 

to remove any residual dispase on the cells. Using a 10mL serological pipette, the enzymatically 

loosened iPS colonies were easily dislodged by 2-3 rigorous draws with the pipette and 

transferred to a 15mL conical tube and allowed to settle. The matrigel on the plate was aspirated 
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and 2mL of mTeSR™1 medium added to the each well from the sides. The DMEM/F12 in the 

conical was aspirated leaving the iPS cells at the bottom. The iPS cells were then resuspended in 

3mL of mTeSR™1 and a few draw and release motions were performed to break down any large 

aggregates of cells. To each well of a 6-well plate, 0.5mL of iPS cells in mTeSR™1 was added to 

the center of the well with the tip of the serological pipette perpendicular to the well. Care was 

taken to keep the iPS colonies at appropriate sizes as bigger colonies are more prone to 

differentiation and smaller colonies or single iPS cells would have less chances of survival. The 

6- shaken to ensure the uniform distribution of 

the cells in the well to prevent overcrowding of proliferating colonies later on. The cells were 

2, and 

humidity. The different stages in the passaging of human iPS cells are represented in (Figure 6). 

 

2.1.5 Differentiation of Human iPS Cells 

2.1.5.1 Neural Induction 

Media and supplements required: 

1) Complete mTeSR™1 

2) NIM 

3) Laminin coated plates 

4) RDM 

Neural differentiation and induction of human iPS cells toward an anterior neural fate was 

performed using methods previously described [30, 107]. A population of the enzymatically lifted 

iPS cell aggregates were grown in suspension in mTeSR™1 medium as embryoid bodies starting 

at day 0 and cultured in 3:1, 1:1, 1:3 mTeSR™1:NIM  medium in the next 3 days and switched 

completely to the chemically defined NIM medium at day 4. After 6-7 days of growth and 

differentiation in suspension, the embryoid bodies were induced to attach to laminin coated 6-

well plates to allow for the formation of neural cells. The neural cells were grown as adherent 

cultures for the next 10 days of differentiation. Within a few days of plating on laminin, the 
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appearance of columnar, neural tube-like cells could be observed. At day 16 of differentiation, the 

human iPS cell derived neural rosettes were mechanically lifted using a P1000 micropipette and 

grown as suspended spheres in non-adherent culture dishes in RDM. In the next 2 days, a subset 

of these spheres acquired a prominent golden ring-like structure around its borders indicative of 

the optic vesicle like appearance as in development in vivo [107]. These optic vesicle-like 

neurospheres were manually separated from other non-optic vesicle-like spheres and both 

populations of spheres grown in suspension in different dishes. The timeline for the neural 

induction of human iPS cells is explained in (Figure 7). 

 

2.1.5.2 Retinal Differentiation of Human iPS Cells 

Media and supplements required: 

1) RDM 

2) FGF, EGF, Heparin 

3) Laminin coated coverslips 

The differentiation of the human iPS cell derived optic vesicle-like or retinal neurospheres was 

carried out in RDM after they were manually separated from the non-optic vesicle-like or non-

retinal neurospheres. The differentiation of RPE was continued as adherent cultures after day 16 

until 40-50 days of differentiation in RDM. Medium changes with fresh RDM was done every 2 

days depending on the amount of cells and proliferation per well of the plate. The emergence of a 

hexagonal morphology coupled with emergence of pigmentation was used to identify RPE. The 

pigmented areas were manually microdissected using a P200 micropipette and further grown as 

adherent RPE cultures on laminin coated coverslips. The medium was supplemented with the 

mitogens fibroblast growth factor 2 (FGF2) (20ng/ml) and epidermal growth factor (EGF) 

(20ng/ml), along with 2µg/mL of heparin to allow for the proliferation of pigmented RPE cells 

for 2 weeks. Differentiation of other cell types within the retina was carried out by the culture of 

the retinal neurospheres in suspension in RDM. For RGCs and photoreceptors, the differentiation 
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was carried out until different timepoints within a range of 70 days of differentiation. The 

suspended retinal neurospheres were fed with a strict regimen of medium changes every alternate 

day with RDM and conditioned RDM from the cells in a 1:1 ratio.  The conditioned medium from 

the spheres was collected in 1.5mL eppendorf tubes and centrifuged at 2000rpm for 3 minutes 

before being combined with fresh RDM to be added to the cells to get rid of any cellular debris or 

single cells in the medium. Overgrown spheres were kept an appropriate size by regular and light 

trituration once a week.  

 

2.1.5.3 Differentiation and Passaging of Astrocytes from Human iPS Cells 

Media and supplements required: 

1) RDM 

2) EFH (20ng/mL) 

3) Laminin coated plates  

The population of human iPS cell derived non-retinal neurospheres was differentiated in RDM 

for specification towards an astrocyte cell fate. The differentiation protocol used was modified 

from methods previously described to derive astrocytes from human pluripotent stem cell sources 

[111, 112]. The non-retinal neurospheres were grown in suspension as astroshperes until 85 days 

of differentiation, supplemented with EGF/FGF/Heparin (EFH) (20ng/mL) from day 20. Medium 

changes were performed every alternate day with RDM and conditioned medium from the cells, 

in a 1:1 ratio, and EFH (20ng/ml) was added. The conditioned medium from the spheres was 

collected in 1.5mL eppendorf tubes and centrifuged at 2000rpm for 3 minutes before being 

combined with fresh RDM and EFH to be added to the cells to get rid of any cellular debris or 

single cells in the medium. At day 85, the spheres were plated down onto laminin-coated wells of 

6-well dishes and allowed to proliferate in the same media conditions. Upon confluence, the 

mixed population of post-mitotic neurons and non-post-mitotic astroglia was enriched for 

astrocytes by enzymatic passaging using accutase (2mg/mL). All media was well warmed before 
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the process and the required number of wells of a 6-well plate was coated with laminin for 4 

hours before use. Following the aspiration of media from the cells, a single wash was performed 

with RDM. 1mL of accutase was added to the cells and incubated at room temperature for 3-5 

minutes. After 5 minutes, the accutase was inactivated by equal volume of fetal bovine serum 

(FBS) and the enzymatically loose cells were dislodged with a P1000 micropipette with a couple 

of regular draws and collected in a 15 mL conical tube. The cell solution was passed through a 

70µm cell strainer (BD Falcon™, Ref. #325350) to achieve a single cell suspension. Next, the 

cell suspension was centrifuged at 2000rpm for 3 minutes. The supernatant was aspirated leaving 

the cell pellet intact. The laminin was aspirated from the 6-well plate and 1mL of RDM was 

added to the well from the side. The pellet of cells was resuspended in 1ml of RDM and added to 

the laminin-coated well. 2µl of EFH was added the well. The 6-well plate was transferred to a 

shaken to ensure the uniform distribution of the cells in the well to prevent 

overcrowding of proliferating cells. The cells were cultured at normal physiological conditions 

2 humidity. The cells were passaged every 7-

10 days.  

 

For experiments measuring the doubling time and proliferation rates of astrocytes, the cells were 

counted using a hemacytometer (Fisher Scientific, Catalog #0267110) and plated at a density of 

100,000cells/well and passaged every 7 days for 4 passages starting at day 95-100 of 

differentiation.  

 

2.1.6 Freezing Human iPS Cells 

Media and supplements required: 

1) Complete mTeSR™1 

2) FBS 

3) Dimethyl Sulphoxide (DMSO)
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The cryopreservation of iPS cells was performed using methods similar to the passaging of iPS 

cells as described above. Fresh freezing medium was prepared and well warmed before the 

process. As a general rule, cells from 1 well of a 6-well plate were frozen in 1 cryovial 

(Wheaton™, Ref. #985916). The medium used to freeze down human iPS cells consisted 

 -

100). Before the process, the differentiated colonies were marked and scraped out as described 

earlier. The cells were treated as a regular passage of iPS cells until the step of collection of the 

dislodged iPS cell aggregates in a 15mL conical tube. At this point, the cell suspension was 

centrifuged at 800rpm for 1 minute. The supernatant was discarded and the iPS cell pellet was 

resuspended in freezing medium. The cell suspension was added to a 2mL cryovial and placed in 

-0001) to achieve for controlled 

cooling rates of approximately - container was placed at -

overnight. The cryovials were transferred to liquid N2 storage, the next day. 

 

2.2 Immunocytochemistry (ICC) 

Sterile coverslips were placed into sterile 4-well or 24-well plates. The coverslips were 

aseptically coated with 0.1mg/mL of Poly-D-Ornithine followed by 3 washes with sterile water 

and kept under sterile conditions at room temperatures for overnight. Poly-D-Ornithine coated 

plates were ready to use for ICC experiments the next day. ICC analysis was carried out by 

methods described previously [30]. For ICC procedures, the polyornithine-coated coverslips were 

further coated with laminin and incubated for 4 hours before use.  After the incubation period, 

neurospheres were plated onto polyornithine- and laminin-coated coverslips overnight to allow 

for attachment. The next day, 

Microscopy Sciences, Catalog #15714S) or continued in culture for a few days in the required 

growth medium. For fixation purposes, ICC plates were brought into the fume hood and 
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paraformaldehyde was aspirated and the coverslips were washed 3 times in 1X phosphate buffer 

-100 (Fisher Scientific, Ref. 

#BP151-100). This was followed by a single wash with 1X PBS and a 1 

donkey serum. Next, cells were immunostained using primary antibodies listed in (Table 1), in 

-  Coverslips treated with primary antibodies were left in 

overnight oved and the 

coverslips were washed 3 times with 1X PBS followed by another round of incubation with 

donkey serum for 10 minutes. The cells were labeled and visualized with either Alexafluor 350, 

488, 584 or Cy3-conjugated secondary antibodies, and nuclei were counterstained with 4',6-

diamidino-2-

Triton X-

antibodies for an hour at room temperature followed by 3 washes with 1X PBS. Finally, the 

coverslips were mounted using Aqua Poly Mount (Polysciences, Inc™, Catalog #18606) on glass 

slides. After allowing time for mounting, images were obtained on a Leica 5500 upright 

epifluorescence microscope. 
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2.3 Microscopy 

 

2.3.1 Brightfield Microscopy 

Images for iPS cells in its undifferentiated state and stepwise differentiation into anterior neural 

and retinal lineages were obtained using a Nikon Eclipse TS100 Brightfield Microscope. Late 

stages of differentiation into retinal cell types were easily analyzed for RPE with its characteristic 

hexagonal morphology and brownish yellow pigmentation with a visible apical-basal transport of 

proteins in the brightfield. Images for neuroretinal proliferation for other mature retinal cell types 

were obtained but identification of individual retinal cell types in brightfield was not possible due 

to lack of scientific literature for the same. Similarly, astrocytes obtained in culture at different 

timepoints of differentiation were identified with their characteristic stellate shaped cell bodies 

and extensive outward processes. The progression of differentiation of astrocytes was observed 

until 150 days of differentiation in culture. All brightfield images for the different experiments 

were taken at both 4X and 20X. 

 

2.3.2 Fluorescence Microscopy 

The analysis of characteristic protein expression at different developmental stages from 

pluripotency to the derivation of mature retinal cell types was performed by ICC with subsequent 

analysis using a Leica 5500 upright epifluorescence microscope. Three different channels 

identifying the labeled proteins were used to combine co-expression analysis for different ICC 

experiments. Further image processing and enhancement was performed using the 3-dimensional 

deconvolution tool on the computer. The deconvolution tool was used to bring into focus images 

whose 3-dimensional and complex arrangement of cells resulted in the population of cells to emit 

light rendering the image as a whole, out of focus. As a part of the 3-dimensional convolution 

tool, images were taken at different focal planes (also called as z-stacking) and corrected for 
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blurriness and out of focus arrangements of cells. A final image with the best possible contrast 

and resolution was obtained from the set of z-stacks used to deconstruct the image initially. All 

images for the different experiments were taken at 3 magnifications, 10X, 20X, and 40X. 

 

2.4 Polymerase Chain Reaction (PCR) 

 

2.4.1 Reverse Transcription-PCR (RT-PCR) 

Total RNA was isolated from cells at different stages of differentiation using the RNeasy® Mini 

Kit (Qiagen, Catalog #746106) or the Arcturus® PicoPure® RNA isolation kit (Applied 

Biosystems, Catalog #12204-01). The RNA was treated with DNase I to remove any genomic 

DNA contamination. 1-2µg of RNA was reverse transcribed to cDNA using the iScript cDNA 

synthesis kit (Bio-Rad, Catalog #170-8891). The final cDNA volume was diluted in ratios of 1:10 

in RNA quality water and could be stored for long term use at -

by PCR using the GoTaq PCR master mix (Promega) and primers for specific experiments, listed 

in (Table 2). The cycler conditions used for RT-

the same program for 20 cycles. All experiments were run for the same number of cycles unless 

patterns. 

 

 

 

 



32 
 

	
  

	
  

2.4.2 Quantitative RT-PCR (qRT-PCR) 

For quantitative RT-PCR, RNA was isolated and cDNA synthesized as described in the previous 

section. cDNA was amplified using the SYBR green master mix (Applied Biosystems, Lot 

#4309155) and analyzed by the 7300 RT detection software (Applied Biosystems). The primers 

used are listed in (Table 3). A final reaction volume of 20µl was used for all experiments. The 

seconds, and extension 

ß-Actin 

internal control were used for all experiments. All qPCR reactions were run at 40 cycles. The 

change in gene expression levels was measured using the 2-ΔΔCt method, where Ct was the 

crossing threshold fluorescence value. ΔCt was measured as the Ct value of the target gene minus 

the Ct value for ß-Actin. ΔΔCt was equal to the ΔCt value of sample minus the ΔCt value of 

control.  
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2.5 Statistical Analysis 

For quantification of ICC data, cells immunolabeled with a particular marker were counted and 

compared to total number of cells in the view field as identified by the DNA stain DAPI. At least 

2 representative fields from 2 coverslips were photographed in each of 3 separate experiments 

and individual cell counts were made using the ImageJ software (National Institutes of Health). 

The measurements of cell sizes and neurite lengths of retinal cells were done using quantification 

tools in the Leica 5500 upright epifluorescence microscope. Cell body areas were demarcated and 

measured in square microns and the lengths of RGC and photoreceptor neurites were measured in 

micron meters. All statistical analysis was conducted using the GraphPad PRISM version 6.0 

(GraphPad Software Inc.). The statistical significance of differences was determined using the 

unpaired t-

experiments were conducted in triplicate unless otherwise stated. All values were expressed as 

means ± standard error. 
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CHAPTER 3 – ESTABLISHMENT OF AN IN VITRO SYSTEM OF USHER 
 

SYNDROME USING HUMAN IPS CELLS 
 
 
 

3.1 Introduction 
 

Usher syndrome is the most commonly inherited disorder affecting both vision and hearing, with 

or without vestibular dysfunction. It is an autosomal recessive disease which means it can affect 

males and females with equal frequency. A person has to inherit the altered copy of the affected 

gene from both parents to be diagnosed with this disease. A person inheriting only one copy of 

the mutated gene is an unaffected carrier for future generations. Usher syndrome patients suffer 

from sensorineural hearing impairment and retinal degeneration resulting in gradual to eventual 

loss of vision. Its symptoms include congenital, bilateral deafness and loss of vision due to 

retinitis pigmentosa (RP). The loss of visual function in Usher syndrome starts with the loss of 

night vision, progressing to the loss of photoreceptors from the periphery to the macula resulting 

in tunnel vision, and finally to complete blindness [113]. Hearing loss in Usher syndrome is due 

to degenerating nerve cells in the cochlea, the sound-transmitting structure of the inner ear. Usher 

syndrome can be clinically divided into 3 subtypes, Usher syndrome type I, II, and III, depending 

on the onset, severity, and progression of its symptoms. Usher syndrome patients also experience 

balance issues from birth in the type I form of the disease whereas the vestibular function is 

normal or near normal in types II and III. Besides the clinical differences, Usher syndrome is also 

characterized by its genetic heterogeneity. A total of 12 genetic loci and 10 genes have been 

identified to be associated with this disease [50, 51, 114]. Usher syndrome type I is divided 

further into the 6 subtypes: 1B, 1C, 1D, 1F, 1G, 1H depending 
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on mutations in the following genes, MY07A, USH1C, CDH23, PCDH15, SANS, and USH1H 

respectively [114, 115]. Usher syndrome type II is divided into at least 3 subtypes: 2A, 2C, 2D, 

affected by mutations in the genes, USH2A, VLGR1A, WHRN respectively, and type III has been 

associated with mutations in one gene CLRN1 [115, 116]. Usher Syndrome is currently incurable, 

and the development of future therapeutic approaches requires further insight into disease 

mechanisms and progression. Current treatment strategies involve the use of educational and 

vocational programs to manage symptoms following early identification of the disease. Ongoing 

research in this disease involves the identification of more causative genes and its different 

variations. Identification of all genes is crucial to improved genetic counseling and quick 

diagnosis of the disease. Application of gene correction and pharmacological intervention 

strategies are also being used to slow the progression of the symptoms associated with the 

disease.  

 

This study aims to provide a novel platform to further understand the genetic complications 

associated with Usher syndrome. More specifically, this study addresses the pathophysiology of 

visual degeneration in Usher syndrome patients associated with RP. RP as stated is characterized 

by the degeneration of photoreceptors, from the periphery to the macula, progressing from night-

blindness in Usher patients to complete loss of vision. Taking advantage of the “disease-in-a-

dish” concept, this study aims to characterize and establish the potential of an Usher syndrome 

patient specific iPS cell line to differentiate in vitro towards a retinal lineage progressing through 

all the major stages of normal retinal development. The use of iPS cell technology to model the 

degenerative progression of Usher syndrome provides a robust approach that employs the use of a 

more practical human model to study the different aspects of the disease. The eventual goal of 

this study is to provide a time feasible and a cost effective way to derive patient-specific affected 
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retinal cell types, the diseased photoreceptors, in large numbers, which could then be used for 

further downstream experiments to further disease development and treatment.  

 

3.2 Results 

 
 

3.2.1 Establishment of Pluripotency of Usher Syndrome iPS Cells 
 

To establish the pluripotent and unspecialized nature of the type III Usher syndrome patient 

specific iPS cell line, following numerous passages in vitro, the Usher syndrome iPS cells were 

analyzed for all pluripotency associated characteristics as examined by ICC and RT-PCR 

analysis. ICC analysis revealed that Usher syndrome iPS cells maintained expression of 

pluripotency associated proteins, OCT4, SOX2, and NANOG (Figure 8: A,C,E). These 3 factors 

including, along with LIN28, were initially used to reprogram the skin cells of a type III Usher 

syndrome patient using lentivirus. ICC experiments also confirmed the expression of the 

endogenously activated pluripotency-related cell genes/ surface antigens such as TRA-1-60, 

TRA-1-81, and SSEA-4 (Figure 8: B,D,F). The onset of expression of these endogenous 

pluripotency genes besides the ones used for reprogramming was evidence for the completely 

reprogrammed nature of the Usher iPS cell line. In brightfield microscopy, the Usher syndrome 

iPS colonies exhibited typical pluripotent morphologies including cells that were tightly packed 

together with well-defined and phase bright edges (Figure 9). Larger colonies appeared to be 

somewhat 3-dimensional when viewed under the microscope and differences between an 

undifferentiated and differentiated colony were clearly visible during spontaneous differentiation 

events with the differentiated iPS cells easily identifiable by their non-uniform shape and lack of 

well-defined edges. Furthermore, RT-PCR results confirmed the expression of pluripotency-

related genes, OCT4, NANOG, and SOX2 and further established the undifferentiated nature of 

the cell line by confirming the lack of expression of markers associated with the 3 germ layers of 
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development, including, ALPHA-FETOPROTEIN for endoderm, BRACHYURY for mesoderm, 

and PAX6 for ectoderm (Figure 10). 

 

3.2.2 Anterior Neural and Eye Field Specification from Usher Syndrome iPS Cells 
 

The first stage in the stepwise differentiation of the Usher syndrome iPS cell line to a retinal 

lineage was the derivation of an anterior neuroepithelial cell fate which gives rise to the optic 

vesicles in vivo. As described in the methods section, iPS cells were grown as free floating 

embryoid bodies and transitioned into a chemically defined medium, NIM, for neural induction. 

The free floating embryoid bodies were plated onto laminin coated coverslips after 6-7 days of 

differentiation and allowed to proliferate as neural rosettes until 10 days in culture before being 

of pluripotency associated factors OCT4 and NANOG followed by the increase of transcriptional 

expression of factors associated with general neural induction and anterior neural development, 

including PAX6, SOX1, OTX2, and LHX2 (Figure 11). Furthermore, the appearance of the 

expression of neurodevelopmental transcription factors was associated with the formation of 

neural rosette like structures, reminiscent of neural tube formations in vivo (Figure 11). The 

proliferation of early neural cells as rosettes were was further confirmed as seen under brightfield 

microscopy (Figure 12). To further confirm the anterior nature of neural progenitor cells derived 

from the Usher syndrome iPS cell line, RNA samples were taken after 10 days of differentiation 

to be analyzed by RT-PCR analysis. RT-PCR results confirmed the accumulation of transcripts 

encoding numerous early neurodevelopmental transcription factors, PAX6, SOX1, OTX2, and 

LHX2. Also, by day 10, RT-PCR revealed expression of early eye development marked by the 

accumulation of transcripts encoding eye field transcription factors (EFTFs), RAX, SIX3, SIX6, 

and NR2E1 (TLL) (Figure 13). The committed nature of differentiation of the Usher syndrome 

iPS cell line was indicated by the expected decrease in the level of the pluripotency factors OCT4 
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and NANOG. RT-PCR of the early neural factor PAX6 revealed a doublet, indicating the presence 

of the alternately spliced isoforms of the PAX6 gene, the +5a and -5a isoforms. 

 

3.2.3 Derivation of Retinal Progenitor Cells from Usher Syndrome iPS Cells 
 

After establishing a primitive neural fate of the human iPS cell line, this study looked to 

characterize the Usher syndrome iPS line at later stages of differentiation. The free floating 

embryoid bodies were grown as adherent cultures in NIM until day 16 of differentiation. At this 

stage, the rosette containing colonies were mechanically lifted into RDM for the formation of 

neurospheres in suspension. Following 2 days of further induction, the suspended aggregates of 

cells formed two distinct sets of neurospheres when viewed in brightfield microscopy. A subset 

of spheres composed of an outer layer of phase bright cells, indicative of an optic vesicle like 

morphology whereas the other group contained spheres with a near uniform distribution of cells 

in each aggregate and with a more spherical looking morphology, at times with rosette 

internalization [107] (Figure 14). Cell aggregates possessing characteristics of both kinds of 

spheres were excluded from further differentiation analysis. The optic vesicle-like spheres were 

manually picked out and allowed to further differentiate in suspension in RDM. Following 20 

total days of differentiation, these manually picked retinal neurospheres were analyzed for their 

RNA and protein expression patterns. ICC revealed that a subset of cells exhibited numerous 

characteristics of retinal development, including the presence of key transcription factors 

including the definitive retinal progenitor marker CHX10, and other early retina associated 

transcription factors SIX6, LHX2 and PAX6 (Figure 15). RT-PCR analysis further confirmed the 

presence of the retinal progenitor transcriptional markers including the critical retinal progenitor 

gene RAX, and other genes, CHX10, LHX2, OTX2, and PAX6 (Figure 16). The development of 

retinal progenitor cells after 20 days of iPS cell differentiation was analogous to the origin of 

optic vesicles in normal human development. 
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3.2.4 Mature Neural Specification from Usher Syndrome iPS Cells 

 
After 30 days of differentiation, the development of more mature neuronal characteristics was 

assessed in culture. Neural, non-retinal cells mechanically lifted at day 16 were grown as spheres 

in suspension in RDM until day 28 before being plated onto laminin coated polyornithine 

subset of cells co-expressed both the master neuroectoderm nuclear marker PAX6 and the 

cytoskeletal marker for newly committed neurons, ß-III TUBULIN (Figure 17: A). Emergences 

of tubulin expression after 30 days of differentiation were good indication of regular maturation 

of neuronal cell types from the iPS cells. Further evidence of neural characteristics was observed 

by the co-expression of another set of early and mature neuronal specific factors, OTX2 and the 

microtubule associated protein MAP2 respectively. MAP2 proteins are associated with the mature 

neuronal cytoskeleton in the dendrites and the cell body. ICC analysis confirmed the expression 

of OTX2 and MAP2 in a subset of neural progenitor cells indicating a mixed population of 

progenitor and mature neurons (Figure 17: B). The evidence of neural morphologies in brightfield 

microscopy revealed the formation of rosettes in the neurospheres after almost 30 days of 

differentiation. These spheres once plated and given time to proliferate produced neuronal 

colonies with individually identifiable cells with its characteristic axon like processes (Figure 18). 
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3.2.5 Differentiation of Mature Retinal Cell Types 

 

3.2.5.1 Retinal Pigment Epithelium (RPE) 

The ability of the Usher iPS cell line to differentiate into mature retinal cell types was established 

at later time points in the retinal differentiation protocol. Consistent with vertebrate retinogenesis, 

the RPE was the first retinal cell type to be observed in culture. Early anterior neural rosettes after 

16 days of differentiation were grown in RDM as adherent cultures until day 40-50 when the first 

definitive characteristics of RPE like cells were observed. Colonies of cells organized themselves 

in distinct patches of hexagonal shaped epithelial-like cells with a characteristic pigmentation 

pattern that was easily identifiable in brightfield microscopy. The levels of pigmentation 

increased over a period of next 10 days of differentiation and were maintained at even higher 

levels at later time points in culture (Figure 19: A,B). For protein analysis of these RPE-like cells, 

the pigmented areas were carefully microdissected and allowed to proliferate on laminin coated 

coverslips in the presence of RDM and mitogens, EGF and FGF, along with heparin. Following a 

week of treatment with mitogens, the cells were then grown as typical monolayers in the absence 

of the growth factors for an additional 1 week. After 60 days of differentiation, the cells were 

revealed co-expression of the RPE associated gene OTX2 along with the RPE-associated tight 

junction protein ZO-1 (Figure 20: A-C). The cells also contained more mature RPE-related apical 

proteins such as EZRIN and basolateral proteins such as BESTROPHIN (Figure 20: D-F). ICC 

analysis further revealed a clear cobblestone RPE-like morphology for these cells derived from 

human iPS cells. To identify the level of transcriptional expression of RPE-related genes, the 

microdissected pigmented RPE-like cells were analyzed by RT-PCR. RT-PCR experiments 

further confirmed the transcriptional expression of RPE associated genes including the RPE 

progenitor marker MITF, and mature markers including RPE secreted factors like PEDF, 
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important visual cycle proteins, RPE65, CRALBP, and transcript levels of other RPE genes 

confirmed by ICC, OTX2, ZO-1, EZRIN, and BESTROPHIN (Figure 21). 

  

3.2.5.2 Neural Retina 

The derivation of RPE was followed by the specification of the neural retina from the iPS cells at 

even later time points of differentiation. The study aimed to establish the potential of the Usher 

syndrome patient-specific iPS cell line to differentiate into mature retinal cell types including the 

most important for this study, photoreceptors. Usher syndrome iPS cell derived retinal progenitor 

cells were grown as retinal neurospheres for a period of 70 days in RDM growth medium. The 

neurospheres were kept at an appropriate size by regular and light trituration of overgrown 

spheres and cultured in fresh RDM every alternate day. After 70 days of differentiation, the 

retinal neurospheres were treated accordingly for analysis of their gene and protein expression 

characteristics. RT-PCR analysis revealed presence of CHX10 and CRX transcripts, further 

highlighting the progenitor stage of these retinal cell types (Figure 22). RGCs and cone 

photoreceptors are among the very first neuroretinal cell types to be derived in retinal 

development [15]. The emergence of RGCs was studied using ICC analysis after 70 days of 

differentiation. ICC results revealed a population of cells positive for the RGC specific 

transcription factor in the retina BRN3 that identifies all 3 isoforms of the gene, BRN3A, 

BRN3B, and BRN3C. Directed differentiation of RGCs was confirmed by translational co-

expression of BRN3 and another RGC-specific protein in the retina, ISLET1 (Figure 23). 

Populations expressing BRN3 and ISLET1 alone might be indicative of possibly different types 

and early stage RGCs found in the retina. Immunostaining also revealed a subset of cells 

expressing the cone and rod photoreceptor-specific precursor transcription factor CRX indicative 

of the acquisition of a mature retinal phenotype. Among the total population of cells, a group of 

CRX positive cells also expressed the mature phototransduction protein for cone and rod 
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photoreceptors specification, RECOVERIN indicating the stepwise conversion from an immature 

to mature photoreceptor cell fate (Figure 24).  Population of cells expressing CRX and 

RECOVERIN are further evidence of the different stages of development and maturation of the 

photoreceptors from the human iPS cells. 

 

3.3 Discussion and Future Studies 

One of the major limitations when it comes to studying disease progression in a patient is the 

limited accessibility to patient tissue material among other technical and ethical problems. The 

advent of iPS cell technology circumvents such problems by establishing patient cells in a 

laboratory dish which harbor the genetic mutations that caused or facilitated disease onset and 

development [80]. The use of patient specific iPS cells provides an unlimited supply of diseased 

cells to address issues like genetic contributions to the disease and provides means for gene 

correction and pharmacological strategies to potentially cure it. 

 

This study aims to achieve similar goals for the most commonly inherited deaf-blindness 

disorder, Usher Syndrome. The study provides the first evidence of neural and retinal 

differentiation of iPS cells derived from an Usher syndrome patient. The differentiation of mature 

retinal cell types was chronologically analogous to normal development in the human retina. The 

results demonstrate the proof-of-principle study that affected cell types can be generated from 

Usher syndrome patient specific iPS cells. This study provides a novel platform for future in vitro 

disease modeling of this disorder, which could lead to further insights into its neurogenetic 

abnormalities. Current studies in Usher syndrome are trying to identify all genetic contributors 

and variations that lead to combined symptoms of hearing and vision loss. An in vitro system like 

the one described in this study provides a feasible time frame in which we can derive the affected 

photoreceptors bearing the DNA signature of the disease. Qualitative analysis of iPS 
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differentiation to mature retinal cell types indicates a robust potential of the Usher iPS cell line to 

yield a neural retina phenotype in good quantity.  

 

In this study, the pluripotency of the Usher iPS cells is established using molecular and 

morphological characteristics as described in previous studies [70, 82]. The maintenance of 

pluripotency is indicated by the endogenous onset of expression of surface molecules including 

TRA-1-61, TRA-1-81, and SSEA-4. The genetically reprogrammed ES cell like and unbiased 

nature of the Usher iPS cell line is important for the recapitulation of time wise directed 

differentiation in vitro. The study establishes a step wise differentiation of the Usher syndrome 

iPS cell line from onset of early anterior neural characteristics to the future retinal specification at 

optic vesicle stage after 18 days of differentiation [107]. The maturation of neural and retinal 

phenotype progresses in accordance with the in vivo vertebrate development. Emergence of 

mature retinal cell types was identified by expressions of characteristic transcription factors and 

proteins associated with each somatic cell type. An efficient output of the disease cell type was 

achieved within an attainable and time period of 70 days.  

 

Overall, this study established a novel platform to further delve into the origins of the disease and 

for future studies of in vitro disease modeling, as these cells can be utilized as a tool for the study 

of disease progression, with applications for future cell replacement and drug screening studies. 

Establishment of a source of photoreceptors from disease patients provides the potential for gene 

correction and cellular therapy in personalized medicine strategies. Efforts to use iPS cell derived 

diseased cells for gene replacement and drug screening strategies have already been initiated in 

other neurodegenerative disorders including Amyotrophic Lateral Sclerosis (ALS) and cardiac 

disorders like the Long QT Syndrome [117, 118]. The use of such a system is highly beneficial to 
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understand the neurogenetic complexities of the Usher syndrome and subsequently devise 

experiments to produce treatments for this currently incurable disorder. 

 

In future studies, it will be warranted to quantify the yield of retinal progenitors and mature 

retinal cells from this cell line and compare the numbers to the cells derived from iPS cells taken 

from an isogenic carrier control and/ or a completely healthy individual. The derivation of retinal 

characteristics among these cell lines would provide for an interesting criterion to assess the 

significance of the diseased state. This study defines the onset of differentiation of photoreceptors 

but mimicking the disease phenotype and identifying old and new mutations associated with the 

disease are future directions this study envisages. Prolonged differentiation of the photoreceptors 

would be an ideal place to start for a comparative analysis in disease development and 

progression as indicated by Takahashi and colleagues in modeling the retinal disease of RP [49]. 

The short terms goals of this study is to provide a novel in vitro system to model the visual loss 

progression in Usher syndrome whereas long term applications include utilizing the diseased cell 

types for gene correction, cell replacement, and drug screening experiments to provide an overall 

data set of consensus information and potential treatment alternatives in personalized medicine 

for this disease.  
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CHAPTER 4 – DIFFERENTIATION AND CHARACTERIZATION OF AFFECTED CELL 

TYPES IN GLAUCOMA USING HUMAN IPS CELLS 

 

4.1 Introduction 

Glaucoma is the leading cause of age-related optic neuropathy in humans. It is characterized by 

the abnormal rise in intraocular pressure leading to the loss of RGC cell bodies and degeneration 

of its axons leading to complete remodeling of the ONH, especially at the level of the laminar 

cibrosa through which the optic nerve leaves the eye. As stated earlier, glaucoma is clinically 

divided into 2 main subtypes. The milder “open-angle glaucoma” is characterized by an increased 

ratio of optic cup to disk with a slow progressive loss of vision. The second subtype is the 

“closed-angle glaucoma”, which has a more acute onset with higher intraocular pressures with 

diagnosable physical symptoms including dilated pupils, a clouded cornea, and red eye. However, 

a crucial element in the pathophysiology of all forms of glaucoma is the loss of RGCs, the output 

projection neurons of the retina that make connections with different regions of the brain for 

processing of visual information. Another cell type recently associated with glaucoma is the 

retinal astrocytes, the dominant glial support of the otherwise non-myelinated RGC axons. 

Retinal astrocytes are not present at the somas of ganglion cells, and even in areas of retina in 

which they are numerous, they are sharply confined to the layer of ganglion cell axons. 

Astrocytes at the ONH are responsible for providing cellular support to RGCs and synthesizing 

extracellular molecules. It is suggested that retinal astrocytes with its vasculature are migratory 

and enter the developing retina from the brain at the optic nerve head (ONH) [119]. They have 

been associated with glaucomatous neurodegeneration, although the direct or indirect role for 
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these cells in disease is still under investigation. A majority of ongoing studies in the field of 

glaucoma research have strived to identify better ways to diagnose and subsequently characterize 

and manage the disease. There is a marked lack of studies aimed at another aspect of disease 

intervention, cell therapy. It is very well known that the reason underlying visual loss in 

glaucoma is the degeneration of RGCs and roles of astrocytes in ONH remodeling. Since not all 

cases of glaucoma are related to established genetic causes of this disease, more work needs to be 

done to identify ways to recapitulate disease progression and establish ways to derive its affected 

cell types in the laboratory.  

 

This study is aimed at achieving the directed differentiation and characterization of the somatic 

cell types associated with glaucoma using human induced pluripotent stem cells. Directed 

differentiation of several somatic cell types from human iPS cells have been successfully 

achieved with great implications for disease modeling and cell replacement strategies. RGCs have 

proven to be a complex cell type to be derived in the laboratory dish owing to different reasons 

including lack of reliable markers and complex morphologies. In humans, RGCs can be divided 

into several types depending on their molecular and morphological characteristics including the 

human specific Midget RGCs (P cells), Parasol RGCs (M cells), Bistratified RGCs (K cells),  and 

photosensitive RGCs [120, 121]. Astrocytes in general have been difficult to derive from human 

pluripotent cells. This study aims to provide ways to derive and characterize these cell types using 

human iPS cells in an achievable and pragmatic time frame. Cell therapy may be a potential way 

to restore vision in glaucoma and one of the first steps of attaining that goal would be to devise in 

vitro protocols to produce, characterize, and enhance the yield of the clinically relevant cell types 

associated with this disease. With no current cure for this disease, its progression can be slowed 

down if detected early. However, studies aimed at preventing the loss of RGCs and ONH 
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architecture are more clinically relevant in terms of providing a definitive solution to this 

devastating disease that affects millions all around the world.  

 

4.2 Results 

 

4.2.1 Differentiation of RGC Neurons from Human iPS Cells 

Using lines of human iPS cells including the Usher iPS cell line and the TIPS-5 iPS cell line, and 

building upon the preliminary data for the differentiation of RGCs from human iPS cells, this 

study further characterized both molecularly and physically, the yield and specification of RGCs 

attained after as early as 40 days of differentiation, an expected timepoint for in vitro RGCs 

specification from human iPS cells, according to recent literature and the timeline of 

retinogenesis [122]. The optic vesicle-like neurospheres manually separated after 18 days of 

differentiation and grown as retinal progenitor cells in suspension until day 40, with a specific 

regimen of medium changes every alternate day with 1:1 RDM: Conditioned RDM and a regular 

light trituration of overgrown spheres to keep at an appropriate size. At day 39, the spheres were 

plated onto laminin coated polyornithine coverslips for ICC analysis. BRN3 was used as the 

“master transcription factors” for identification of RGCs given its highly specific expression in 

the retina in early and mature RGCs. After 40 days of differentiation, ICC analysis revealed a 

subset of BRN3 positive cells that co-expressed the pro-neural cytoskeletal marker, ß-III 

TUBULIN, identifying the dendrites, cell body, and axons of BRN3 positive cells (Figure 25: A). 

The neuronal nature of the RGCs was further characterized by ICC analysis of the RGC specific 

BRN3 transcription factors and the neuronal axon marker, TAU. After 40 days of differentiation a 

subset of neurospheres co-expressed the BRN3 and TAU proteins providing for the efficient 

identification of RGC neurons (Figure 25: B). Analysis at higher magnifications revealed an 

elongated axonal morphology for the RGCs as would be expected since these cell types 
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eventually form the optic nerve making its way to the different areas of the brain. This qualitative 

identification of RGC neurons formed the basis for further morphological quantification of RGC 

axons in future experiments. 

 

4.2.2 Further Characterization of RGCs 

In an effort to further characterize the sub-population of retinal progenitor cell-derived RGCs, 

ICC analysis was used to identify expression patterns of other RGC specific transcription factors. 

The RGCs derived in culture were further specified by utilizing the expression and co-expression 

of markers associated with early and late ontogeny of RGCs in vivo. Retinal progenitor spheres 

were plated onto laminin coated polyornithine coverslips after 39 days in culture and fixed the 

maldehyde for ICC analysis. After 40 days of differentiation, a 

subset of retinal progenitor cells were double positive for the RGCs specific proteins BRN3 and 

ISLET1 (Figure 26: A). Although ISLET1 has been recently shown to also be expressed in some 

progenitor cells in the retina, the co-expression with BRN3 proteins is a definitive indication of 

the successful derivation of RGCs in culture. The study also looked at the expression of PAX6, a 

marker for neural/retinal progenitor cells, and is restricted in the retina to mature ganglion cells 

and interneurons such as amacrine cells. ICC analysis revealed that almost all BRN3 expressing 

cells co-expressed PAX6 with populations of cells that expressed either only BRN3 or PAX6, 

indicative of the retinal progenitor nature of cells including the onset of RGCs markers, given that 

it is the first neuroretinal cell type to be derived in development (Figure 26: B).   

 

4.2.3 Molecular and Morphological Quantification of RGCs 

After establishing a qualitative setup to identify the derivation of RGCs from human iPS cells, 

this study looked to quantify the yield of RGCs and take advantage of some morphological 

differences between RGCs and other neuroretinal cell types to further characterize this cell type. 
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It has been known that RGCs exist in different morphological forms in the human retina. These 

can be divided on the basis of dendritic forms, extent of cell body and dendritic sizes, and 

stratification levels of RGCs in the IPL [123]. Pioneering work by Cajal described in his 1892 

book, The Structure of the Retina, described the Golgi staining of these ganglion cells as a way to 

identify the different subtypes. Since then around 18 different types of RGCs have been identified 

in the human retina with the parasol, midget, and bistratified RGCs being specific only in the 

primate retina. Other types have also been seen to be present in other vertebrates like the cat. 

Another physical feature that distinguishes RGCs from other retinal cell types is its ability to 

project to long distances in areas of the brain on account of its larger diameter and longer axons 

[123]. Axonal lengths associated with RGCs are quite significantly longer compared to other 

interneurons and photoreceptor segments.    

 

4.2.3.1 Quantification of Yield of RGCs 

Firstly, the study quantified the yield of RGCs among a mixed population of neuroretinal cell 

types by counting individual cells in the co-expression pattern of RGC specific proteins from 

experiments described previously. Retinal progenitor cells were analyzed by ICC after 40 days of 

differentiation. As stated, at least 2 representative fields from different coverslips in a set of 3 

replicable experiments was photographed and counted. The publicly available image processing 

software, Image J, developed at the National Institutes of Health was used for image analysis and 

quantifying cell counts. Cell counts were taken for the subset of progenitor cells positive for 

BRN3 and ISLET1 co-expression and the yield of RGCs calculated (Figure 27). Individual 

expressions of BRN3 and ISLET1 were counted in addition to the cells expressing both. This data 

was quantified over a value of all nuclear labeled DAPI positive cells in the area. Approximately 

for the expression of BRN3, specific to the 

ISLET1, a broad 
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transcription factor expressed by the RGCs and retinal progenitors. However, a more definitive 

statistic for the number of RGCs d

that expressed both BRN3 and ISLET1. This quantification of co-expression provides further 

evidence for the efficient derivation of RGCs from human iPS cells. A similar count for BRN3 

positive cells was also observed for ICC experiments with BRN3 and PAX6. 

 

4.2.3.2 Quantification of Cell Sizes of RGCs 

Taking advantage of the larger cell bodies of RGCs compared to other retinal neurons, this study 

measured the area of RGCs and compared it to other retinal neurons derived in the process. To 

measure difference in cell body sizes the study again used the master transcription factor BRN3 

as a basis for identifying the population of RGCs. BRN3 was used in combination with the neural 

cytoskeletal marker ß-III TUBULIN to highlight the cell bodies, axons and dendrites of the 

BRN3 positive and BRN3 negative cells in a population of retinal progenitor cells. ICC analysis 

revealed 2 populations of retinal progenitor cells, one proportion of the cells that were double 

positive for BRN3 and ß-III TUBULIN indicative of RGC neurons and another proportion that 

was negative for BRN3 but positive for ß-III TUBULIN indicative of non-RGC retinal neurons 

(Figure 28: A, B). The DAPI dye was used for identification of nuclei. Using the quantification 

tools on the Leica 5500 upright epifluorescence microscope, the areas occupied by the cell bodies 

were measured for 4 different sets of experiments and the values quantified using the unpaired 

student’s t-test (Figure 28). An average of at least 15 BRN3 positive and 20 BRN3 negative cells 

were measured for each experiment The comparatively analysis revealed a statistically significant 

(p < 0.005) difference between the two population where the RGCs had a mean cell body size of 

102.18 square microns (S.E. of 9.35) where was the non-RGC population had a very consistent 

mean cell size value of 67.17 square microns (S.E. of 0.88).  
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4.2.3.3 Comparison of RGCs and Photoreceptor Neurite Lengths 

To identify differences in neurite lengths between RGCs and other retinal cell types such as 

photoreceptors, this study established an important criterion for the classification of RGC by 

measuring the lengths of axons of the derived RGCs vs neurite lengths of photoreceptors 

differentiated from the same human iPS cell line. RGCs were triple-labeled for BRN3, MAP2, 

and axon-specific protein TAU (Figure 29: A). Photoreceptors were derived in culture after 70 

days of differentiation and their neurites were identified by the expression of the photoreceptor-

specific, calcium binding protein, RECOVERIN (Figure 29: B). The lengths were measured in 

microns and the data quantified using the unpaired student’s t-test, for 3 different sets of 

experiments (Figure 29). An average of 15 RGCs axons and 30 photoreceptor segments were 

measured for each experiment. The difference in lengths were highly significant (p < 0.001) with 

the RGC axons measuring at a mean length of 95.31 microns (S.E. of 6.28) and the photoreceptor 

neurite lengths at 29.18 microns (S.E. of 3.67).  

 

4.2.4 RT-PCR and qPCR Analysis of RGCs  

The expression of RGC-related genes was further determined by PCR analysis and quantification. 

Transcription factors associated with in vivo RGC development including the basic helix-loop-

helix ATOH7 (MATH5) is known to be highly specific for the early derivation of RGCs and 

known to regulate critical downstream targets of RGC differentiation, including BRN3B [18, 20]. 

THY1.2 is a cell surface glycoprotein that is used to identify RGC populations in later retinal 

histogenesis [124]. These two genes are highly specific to RGCs in the retina. RT-PCR analysis 

of cDNA synthesized from RNA isolated after 40 days of differentiation of human iPS cells 

revealed increased levels of RGC transcripts, BRN3, ATOH7, THY1.2, and PAX6 (Figure 30). 

PAX6 identified a broad stage of retinal progenitors including a possible restriction to RGC cell 

fate as was confirmed in ICC analysis. Further, the expression levels of BRN3 and PAX6 were 
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quantified over a time course from day 0 to day 40 of differentiation to identify the gradual 

increase in RGC specification from human iPS cells (Figure 30).  

 

4.2.5 Differentiation of Astrocytes from Human iPS Cells 

Using our line of human iPS cells, this study next looked to derive a second important cell type 

associated in the ONH changes during glaucoma, retinal astrocytes. The differentiation of 

astrocytes from iPS cells was monitored over prolonged periods of time in culture and novel 

methods were established to enrich for the glial cell types. The first evidence of astrocytes in 

culture was observed after 60 days of differentiation. Non-retinal neurospheres at day 18 were 

separated manually and cultured separately in suspension with doses of RDM and 20ng/mL of 

EFG/FGF/Heparin (EFH) every alternate day until day 60 when they were subsequently plated 

down onto laminin-coated polyornithine coverslips for analysis by immunostaining. A subset of 

cells dramatically expressed the cytoskeletal intermediate filament protein, glial fibrillary acidic 

protein (GFAP) highly present in astrocytes confirming the appropriate differentiation to an 

astrocytic fate. After 60 days of differentiation, a significantly high number of cells were 

observed expressing GFAP and higher magnification analysis revealed the characteristic stellate 

type morphology of astrocytes with outward extending processes (Figure 31). In efforts to further 

characterize the differentiation and retinal specification of astrocytes, this study analyzed the 

development of astrocytes at later time points of differentiation. Brightfield microscopy revealed 

the progressive and stepwise increase in number and maturation of a subset of these astrocytes 

(Figure 32: A-C). Starting with a population of astrospheres around day 70, subsequent plating 

and growth of these spheres after 10 days revealed mixed populations of cells comprising of 

astrocytes and neuronal cells. In vitro passaging using accutase helped enrich for the mitotically 

active astrocytes within the mixed population of neuronal cells. After a couple of passages, there 

was a significant increase in the number of astrocyte-like cells compared to neurons. Cells with 
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anatomical features similar to both protoplasmic and fibrous astrocytes, with long, unbranched 

and short, branched processes were observed at later timepoints of differentiation. 

 

4.2.6 Anterior Specification of Astrocytes 

To determine the anterior nature of the astrocytes derived in culture, the study used 

immunostaining strategies to identify the presence of markers associated with anterior neural 

development and the absence of those associated with a more posterior nervous system 

phenotype. OTX2, a marker used to identify derivatives of the anterior neuroepithelium was used 

to characterize the anterior nature of the astrocytes. HOXB4, a transcription factor associated 

with posterior/ spinal cord development served as a measure for lack of posterior nervous system 

origin of the glial cells being derived in the study. The presence of astrocytes was confirmed by 

the translational expression of GFAP (Figure 33: A). ICC analysis revealed that after 125 days of 

differentiation, a high subset of astrocytes expressed the OTX2 protein but were almost 

completely negative for HOXB4, indicating the anterior nature of the astrocytes derived in culture 

(Figure 33: B,C). The importance of anterior specification of the astrocytes stems from the 

important concept that all retinal astrocytes are derived in early forebrain regions of the 

developing neural tube and eventually migrate through the optic nerve to take their position as 

astroglia in the retina. A complete lack of HOXB4 is indicative of such a pattern of derivation 

from the human iPS cells.  

 

4.2.7 Increase in GFAP Expression at Later Time Points of Differentiation 

Next, the study established the qualitative increase in GFAP and OTX2 expression in astrocytes 

with a comparative analysis at different time points on course of differentiation. Astrocytes were 

analyzed after approximately 100 days of differentiation by ICC (Figure 34: A). Similar ICC 

analysis was done after 150 days of differentiation. By 120 days, the astrocyte cultures were 
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passaged up to 3 times using accutase providing an enriched population of astrocytes in culture. 

Cells until then were maintained in RDM and 20ng/uL of EGF/FGF/ Heparin (EFH). To measure 

GFAP expression at 150 days of differentiation, astrospheres were plated onto laminin coated 

polyornithine 4-well plates and cultured without the growth factors but in the presence of 

FBS during the last month to provide further nutrient enrichment for better survival and 

maturation of this cell type. Indeed, ICC analysis revealed enhanced expression of GFAP over the 

time course of differentiation from 100 days to 150 days and more OTX2 positive cells compared 

to Day 125 (Figure 34: B,C). However, the qualitative increase in GFAP seemed to be attributed 

to the eventual loss of the mitotically active nature and further experiments were devised to study 

astrocyte doubling time and senescence as an important feature of further characterization of this 

in vitro derived cell type.  

 

4.2.8 Measurement of Astrocyte Proliferation/ Doubling Rate 

To measure proliferation statistics of astrocytes, a strategy was devised to maintain and passage 

astrocyte cultures at consistent time intervals for a predetermined period of time. To achieve this 

end, experiments were conducted simultaneously with both the human iPS cell lines in use for the 

experiments in this entire study, Usher iPS and TIPS-5 lines. Proliferating cultures of plated 

astrocytes were passaged every week for a total period of 4 weeks from day 100 to day 130 of 

differentiation. The passaging of astrocytes was accomplished with accutase as explained and 

cells were grown in RDM and 20ng/mL EFH. Beginning at each passage and for each subsequent 

passage, a total of 100,000 cells each were plated onto 2 wells of a 6-well plate and expanded in 

EFH for 1 week. At the end of each week, viable cell counts were taken from both wells with the 

aid of trypan blue solution and the average of the 2 numbers were determined to be the acceptable 

cell count for that passage. Similarly, counts were taken for rest of the time points for both cell 

lines and proliferation/ day and doubling times calculated (Figure 35). For the TIPS-5 iPS cell 
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line, there was a progressive decrease of proliferation and increase in doubling time of astrocytes 

measured. 

2.13, and 3.17 days for the next 3 passages respectively. For the Usher syndrome iPS cell line, a 

similar trend was observed however, the proliferation was not as pronounced as the TIPS-5 iPS 

cell line. Proliferation rates dec  

for the next 3 passages respectively. Similarly, the increase in doubling time measured 5.96 days 

at passage 1 to 6.03, 6.86, and 6.93 for the next 3 passages respectively. The presence of 

neuronal-like or proliferating neural progenitor cells was nullified by the almost lack of 

expression of PAX6 in these cultures after 125 days of differentiation. 

 

4.3 Discussion and Future Studies 

New avenues of disease research are under investigation after the discovery of human iPS cells 

by Yamanaka and colleagues in 2007. These cells are essentially embryonic-like in terms of their 

potency and can be coaxed to differentiate to potentially any cell type in the human body. The 

importance of directed differentiation of somatic cell types from ES/ iPS cells is critical for cell 

replacement strategies in degenerative diseases. Once an efficient protocol to do so has been 

established, work needs to be done to characterize, enhance, and purify such cell populations to 

be tested in preclinical and eventually clinically models of diseases.  

 

This works cites efforts to establish methods to derive and characterize the affected cell types in 

the most prevalent retinal degenerative disease, glaucoma. Tackling differentiation of 2 somatic 

cell types associated with the disease individually, this study is successful in using techniques 

including ICC and PCR, to characterize the derived somatic cells types by the expression of 

developmentally associated transcription factors specific to each cell type. Further approaches 
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were undertaken to characterize the morphological differences between RGCs and other 

neuroretinal cell types derived in the process. This study provides methods to identify RGC 

neurons in culture and discusses novel ways and valuable data for the quantification of 

morphological properties of RGCs including its bigger cell bodies and longer axons which can be 

used as identifying properties compared to other retinal neurons including the photoreceptors and 

interneurons. The amount of RGCs identified by the translational co-expression of BRN3 and 

yield of RGCs by intrinsic or extrinsic manipulation of the cell system. Further RGCs 

characterization is established by RT-PCR and qPCR experiments identifying RGC specific 

genes ATOH7 and THY1.2 and documenting the stepwise increase in BRN3 expression starting 

from a pluripotent iPS cell source through the neural and retina progenitor stages to the eventual 

derivation of RGCs. Experiments with similar goals have been attempted but require better 

optimization for definitive and replicable results. The study overall provides a robust way to 

generate RGCs in culture from human iPS cells. Human iPS cells were also shown to be 

successful in deriving astrocyte like cells identified by their physical and molecular 

characteristics. This work also demonstrates the ability to maintain and expand human iPS cells 

derived astrocytes in vitro and provides further characterization by measuring the doubling rates 

of these cell types. A timeline for the specification of the non-retinal neurospheres in suspension 

to growth as astrocytes as adherent cultures is shown in this study. In vitro passaging of 

astrocytes with accutase reveals an enrichment of astrocytes and decrease in progenitor and post-

mitotic neuronal cells. The anterior origin of these astrocytes is anticipated by determining the 

anterior nature of these cells as characterized by the expression of OTX2 and lack of the posterior 

markers, HOXB4. This work also provides evidence for the qualitative increase in GFAP 

expression within astrocyte populations as an indication of more survival and maturation at later 

time points up to 150 days of differentiation.  
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Overall, this work has shown methods to efficiently derive and characterize RGCs and astrocytes 

although much work still needs to be done. In future studies, the yield of RGCs could be 

increased by exogenous addition of growth factors known to be associated with RGCs 

specification or use overexpression of RGCs specific genes to improve its production. 

Electrophysiological studies of iPS-RGCs would be an elegant way to establish their functional 

properties. Prolonged differentiation of iPS cultures could be planned to further study the onset of 

more RGC related proteins and track changes in proteins used in this study. Astrocytes would 

need more molecular characterization with markers like S100ß, PAX2, and VIMENTIN. 

Identification of retina specific astrocytes as found dispersed in the nerve fiber layer and the optic 

nerve regions would be the next steps in further understanding this glial cell type. A major future 

application of this study is to use information from this work and apply the same to iPS cells 

derived from cells of glaucoma patients. One would then be able to successfully compare a 

diseased phenotype with a control to better understand the complications in vitro. Another area to 

explore will be to initiate a co-culture system of RGCs and retinal astrocytes where the dynamics 

of interactions between the 2 somatic cell types could provide significant insights as to how these 

cell types are affected and behave in glaucoma.  
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CHAPTER 5 – DISCUSSION 

 

The last decade has seen a capacious amount of increase in works related to stem cells and their 

application in different human organ systems. Different aspects of human biology have been 

under continuous study using the incredible potential of stem cells. The two breakthrough 

landmarks in the field spaced 9 years apart, human ES cells in 1998 and human iPS cells in 2007, 

have dramatically changed the landscape of studying human biology and finding cures for 

currently untreatable cell degenerative diseases. The discovery of iPS cells, more so, has been 

welcomed in the scientific community, as it does away with any ethical dilemmas of working 

with human embryos and at the same time bearing resemblances in function and appearance to 

the currently clinically acceptable human ES cells. The use of iPS cells in disease research is 

based on the goals of finding genetic and environmental cues of disease ontogeny and 

development, generating clinical grade cells that are transplantation competent, and identifying 

novel mechanisms and drugs that could intervene or completely halt disease progression.  

The research presented in this work, overall, demonstrates the promising ability of human iPS 

cells to be used as a model system for the study of retinal development and degenerative diseases. 

In this study, human iPS cells were successfully used to establish a developmentally analogous 

time line for the derivation of retinal cells, in addition to the differentiation of mature retinal 

neurons that are specifically affected in complex types of blinding diseases. From the first known 

studies identifying primate ES cell-derived RPE cells in 2002 [125],  the generation of retinal 

cells from  human pluripotent stem cell sources including ES cells and iPS cells, today, has been 

achieved by several labs with different efficiencies [30, 126-129]. This study provides in an 
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achievable time frame identification of the onset of specific retinal cell types and shows novel 

ways and strategies to characterize them.  

 

Using human iPS cells to study neurodegenerative diseases is a very popular research domain but 

is still restricted to the laboratory culture dish. The methods of generation of iPS cells make it less 

conducive to use in a human patient setting, although new virus/ integration free methods to 

derive iPS cells have been successfully reported [96, 99, 130]. Using human iPS cells to model 

retinal degenerative disease has only been a very recent endeavor, with the first reports for RP 

being published only in 2011 [49]. There have been proof-of-principle studies demonstrating the 

use of patient specific iPS cells to model diseases including gyrate atrophy and Best disease [107, 

109] and many more efforts are required to unravel the complexities associated with the highly 

prevalent retinal diseases like RP, AMD, and glaucoma. The use of iPS cells in culture can be 

used to either study disease progression and phenotype if using patient specific cells or be used to 

provide a novel source for functioning somatic cell types affected in the disease if working with 

wild type cell lines that can be transplanted into patients to reverse or slow down the progression 

of the disease. In this study, the above two concepts are simultaneously applied to someday 

develop tools to study blinding disorders including, Usher syndrome and glaucoma. 

 

The first half this work demonstrates the potency of the iPS cell line derived from skin fibroblasts 

of a patient with type III Usher syndrome, to differentiate in accordance to previously established 

studies, towards an anterior neuroepithelium and progressing through all major stages of retinal 

development. The differentiation of the Usher iPS cell line was assessed though the initial eye 

field specification, optic-vesicle definitive retinal progenitor stage, and finally to the final 

derivation of mature retinal cell types [107]. The patient specific cell line was characterized from 

its pluripotent stage termed as day 0 until 70 days of differentiation, during which the different 
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developmental checkpoints were analyzed by utilizing the expression of stage specific 

transcription factors and proteins. As described in chapter 3, establishing the pluripotency of the 

cell line is the most critical point, when working with stem cells. The completely undifferentiated 

state of the Usher syndrome iPS cell line was shown by its specific brightfield morphologies and 

molecular expression profiles. The anterior region of the developing neural tube gives rise to the 

future areas of brain and eyes which was shown by the expression of anterior neural and eye field 

specific-factors including, PAX6, OTX2, SIX6, RAX, LHX2. The separation of neurospheres in 

suspension for retinal differentiation was based on a method described previously [107]. The iPS-

retinal progenitor cells were characterized as neurons and subsequently cultured for greater 

lengths of time for generation or retinal cell types. After 40 days, the first signs of the outer 

pigmented layer of the retina, RPE, emerged. These were distinctly recognized by their 

cobblestone morphology and onset and gradual increase in brown-black pigmentation in 

brightfield. The expression of RPE related proteins including EZRIN and BESTROPHIN, 

identifying its apical-basal property respectively, and RPE65, CRALBP was shown in ICC and 

RT-PCR experiments further confirmed its specification. The generation of more neuroretinal cell 

types from a subset of retinal progenitor cells was shown, including RGCs and photoreceptors, 

after 70 days of differentiation. Using ICC analysis, a general trend was observed in the 

progression from an immature to a mature state of photoreceptors as identified by expression 

patterns of CRX and RECVOERIN. RGCs were also present as subsets in differentiated cells, 

identified definitely by the widely established RGCs marker, BRN3, a POU domain transcription 

factor. The BRN3 antibody used was capable of identifying all three forms of the protein 

including BRN3A, BRN3B, and BRN3C. Further specification was achieved by a subset of 

BRN3 positive cells expressing another transcription factor specific to RGCs and progenitors in 

the retina, ISLET1. In totality, the patient specific cell line was shown to be competent for 



61 
 

	
  

	
  

recapitulating retinal development in vitro and successful in deriving, in good amounts, 

photoreceptors as early as after 70 days of differentiation.  

 

The second half of this study concentrated on establishing a timeline for optimizing a protocol for 

the derivation of RGCs and astrocytes, affected cell types in glaucoma, from non-glaucoma 

patient iPS cells. Two iPS cell lines mentioned in the methods section were used interchangeably 

in this part of the work. The use of the Usher iPS cell line was justified because there is no known 

reason to believe it would affect the derivation of RGCs in culture. The results of this work 

further confirmed this theory. Based on the findings of a recent paper in the field that showed that 

RGCs can be detected at earlier timepoints, after 40 days of differentiation [122], this study 

confirmed the generation of RGCs from iPS cells at the same time point by identifying 

populations of cells expressing the RGC specific BRN3 and the neural cytoskeletal marker, ß-III 

TUBULIN. Tubulin positive neurites were observed to be specific and emanating from the 

BRN3/ DAPI double positive nuclei. Since BRN3 identifies a large subset of RGCs but not all of 

them [21, 131], the study further characterized the RGCs populations by immunostaining for 

restricted markers for RGCs in the retina, PAX6 and ISLET1. PAX6 is developmentally 

restricted to RGCs during later time points and is known to promote differentiation of retinal 

progenitor cells to non-photoreceptor neurons [132]. ICC revealed different populations of cells 

including a population that was only BRN3 positive, one that co-expressed BRN3 and ISLET1/ 

PAX6, another which was only positive for ISLET1 or PAX6, and the remaining cells that only 

stained for DAPI. Cell populations expressing BRN3 individually or in combination were 

definitive for RGCs specification, given its derivation through a retinal progenitor stage of cells. 

PAX6 is a broad neural progenitor marker and restriction to RGCs neurons is expected at later 

stages in in vitro culture. The expression of PAX6 together with BRN3 in the same cells, along 

with cells expressing these markers individually can be early signs of RGCs maturation and 
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PAX6 restriction. The study quantified the number of cells that doubly expressed BRN3 and 

ISLET1 -expressed BRN3 and ISLET1. Total 

cells positive for only BRN3 or ISLET1 was around 18

start and what to expect when trying to increase or improve the yield in future studies. Similar 

studies looking at derivation of RGCs as cell replacement resources have been published with 

mouse ES cells reported to gen  positive cells after 50 days of 

differentiation [133]. Another study with mouse iPS cell  positive 

cells, after overexpression of the RGC specific MATH5 in addition to external factors including 

DKK1 and Noggin [134]

RGC-like cells from mouse ES cells treated with FGF2 and SHH [135]. This study established a 

serum-free method to derive RGCs with better productive efficiencies without the addition of any 

exogenous factors and at an attainable time frame. Next, this work showed novel ways to 

characterize the RGCs derived from iPS cells. Morphological traits including bigger cell bodies 

and thicker and longer axons for conduction of the electrical impulse are features that distinguish 

RGCs from other cell types in the retina. The study used molecular approaches to firstly identify 

these dissimilarities and then quantify the differences. The differences in cell sizes were 

compared for BRN3/ ß-III TUBULIN double positive neurons with ß-III TUBULIN positive 

neurons that were BRN3 negative. All cell populations were derived from iPS-retinal progenitor 

cells. BRN3 positive nuclei of cells were surrounded by the ß-III TUBLIN staining identifying 

the cell body, dendrites, and axon. Cell body areas were demarcated using tools in the microscope 

and values of areas covered calculated. The differences in cell sizes between the two 

corresponding populations were clearly significant with a p value of 0.0047 and a mean cell body 

size of 102.18 square microns (S.E. of 9.35) for BRN3 positive neurons versus 61.17 square 

microns (S.E. of 0.88) for the BRN3 negative neurons. BRN3 negative neurons were consistently 
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measured to be of the same sizes. Using similar tools, RGC axons were identified by BRN3 

positive TAU positive cells. The lengths of these cells were measured in microns and compared 

to neurite lengths of photoreceptors derived from the same cell line. The differences in neurite 

lengths between these 2 neuroretinal cell types, 95.31 microns (S.E. of 6.28) for RGCs and 29.18 

microns (S.E. of 3.67) for photoreceptors demonstrates the ability of human iPS cells to generate 

RGCs with morphological traits similar to their in vivo counterparts (p = 0.0008). The second cell 

type in glaucoma that affects the ONH is the retinal astrocytes. In this study the derivation of 

astrocytes based on their brightfield morphologies and GFAP expression was achieved using the 

lines of iPS cells. A protocol to passage and purify these cell types was demonstrated using 

accutase that enriched for the non-post-mitotic astrocytes gradually from among a population of 

mixed astrocytes and neuronal cells. Astrocytes with different morphologies characteristics were 

observed at longer time points in culture, after approximately 110 days. Both protoplasmic: long 

cell bodies with unbranched processes, and fibrous type: short stellate shaped bodies with 

branched processes, type astrocytes were observed in brightfield. A gradual increase in GFAP 

and OTX2 expression was observed until 150 days of differentiation indicating more maturation 

and specification of astrocyte cells. The anterior nature of these astrocytes was established after a 

few passages with accutase by the positive expression of OTX2 after 125 days and lack of 

markers for posterior origins in the developing nervous system, HOXB4. The field of cells 

yielded a high number of OTX2 positive cells from the plated astrospheres, indicating the highly 

anterior nature of these cells. The non-post-mitotic nature of astrocytes was characterized by 

measuring the proliferation rate of astrocytes in a controlled protocol as described in chapter 4. 

The results revealed a gradual decrease in proliferation and increase in doubling time from day 

100 up to day 130. The doubling rate for astrocytes derived from TIPS-5 iPS cell line increased 

by a factor of approximately 1.29 days for the 4 passages. For the Usher iPS cell line, the 

doubling rate increased similarly by 1.05 days. The proliferation rates of cells was however quite 
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higher for the former cell line. This can indicate a property of cell line to cell line variation. The 

lack of progenitor cells in these cultures was confirmed by the very low levels of PAX6.  

 

Overall, this study provides novel insights into the use of human iPS cells in retinal disease 

research. It established a proof-of-principle study that affected cell types can be generated from 

patients suffering from Usher syndrome and such a system can be used to further study the 

neurogenetic abnormalities of this disease. Human iPS cells can also be used to generate RGCs 

and astrocytes with reasonable efficiency, both of which are cell types that degenerate in 

glaucoma. The study provided novel evidence of molecular and physical characterization of 

RGCs, and established the anterior nature of the astrocytes derived from iPS cells. The 

differentiation of RGCs and astrocytes from non-glaucoma patient derived iPS cells lays the 

groundwork for future disease modeling of this disorder by the direct applications of this study to 

glaucoma patient derived iPS cells and paves the way for future work in cell replacement and 

drug screening applications in glaucoma research. 

 

 

 

 

 

. 



65 
	
  

	
  

 

 

 

 

 

 

 

 

 

 

 

                                                               
                                                              REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 



65 
	
  

	
  

 
 
 
 
 

REFERENCES 
 

1. Purves, D., Augustine, G., and Fitzpatrick, D., Initial Formation of the Nervous System: 
Gastrulation and Neurulation. Neuroscience2001, Sunderlan (MA): Sinauer Associates. 

2. Weinstein, D.C. and A. Hemmati-Brivanlou, Neural Induction. Annual Review of Cell 
and Developmental Biology, 1999. 15(1): p. 411-433. 

3. Li, H., et al., A single morphogenetic field gives rise to two retina primordia under the 
influence of the prechordal plate. Development, 1997. 124(3): p. 603-615. 

4. Fuhrmann, S., Chapter Three - Eye Morphogenesis and Patterning of the Optic Vesicle, 
in Current Topics in Developmental Biology, L.C. Ross and A.R. Thomas, Editors. 2010, 
Academic Press. p. 61-84. 

5. Lamb, T.D., Collin, S.P., and Pugh, E.N., Evolution of the vertebrate eye: opsins, 
photoreceptors, retina and eye cup. Nature Reviews Neuroscience, 2007. 8(12): p. 960-
976. 

6. Wawersik, S. and Maas R.L., Vertebrate eye development as modeled in Drosophila. 
Human Molecular Genetics, 2000. 9(6): p. 917-925. 

7. Gamm, D.M. and Meyer, J.S., Directed differentiation of human induced pluripotent stem 
cells: a retina perspective. Regenerative Medicine, 2010. 5(3): p. 315-317. 

8. Harris, W.A., Cellular diversification in the vertebrate retina. Current Opinion in 
Genetics & Development, 1997. 7(5): p. 651-658. 

9. Cepko, C.L., et al., Cell fate determination in the vertebrate retina. Proceedings of the 
National Academy of Sciences, 1996. 93(2): p. 589-595. 

10. Sidman, R.L., Histogenesis of the mouse retina.Studies with [3H] thymidine. , 1961, New 
York: Acadmeic Press. 

11. Rapaport, D.H., et al., Timing and topography of cell genesis in the rat retina. The 
Journal of Comparative Neurology, 2004. 474(2): p. 304-324. 

12. Zuber, M.E., et al., Specification of the vertebrate eye by a network of eye field 
transcription factors. Development, 2003. 130(21): p. 5155-5167. 

13. Bailey, T.J., et al., Regulation of vertebrate eye development by Rx genes. The 
International Journal of Developmental Biology, 2004. 48: p. 761-770. 

14. Ikeda, H., et al., Generation of Rx+/Pax6+ neural retinal precursors from embryonic 
stem cells. Proceedings of the National Academy of Sciences of the United States of 
America, 2005. 102(32): p. 11331-11336. 

15. Ohsawa, R. and Kageyama, R., Regulation of retinal cell fate specification by multiple 
transcription factors. Brain Research, 2008. 1192(0): p. 90-98. 

16. Graw, J., Chapter Ten - Eye Development, in Current Topics in Developmental Biology, 
K. Peter, Editor 2010, Academic Press. p. 343-386. 

17. Liu, I.S.C., et al., Developmental expression of a novel murine homeobox gene (Chx10): 
Evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron, 
1994. 13(2): p. 377-393. 

18. Brown, N.L., et al., Math5 is required for retinal ganglion cell and optic nerve formation. 
Development, 2001. 128(13): p. 2497-2508. 



66 
	
  

	
  

19. Brzezinski Iv, J.A., Prasov, L., and Glaser, T., Math5 defines the ganglion cell 
competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. 
Developmental Biology, 2012. 365(2): p. 395-413. 

20. Wang, S.W., et al., Requirement of math5 in the development of retinal ganglion cells. 
Genes & Development, 2001. 15(1): p. 24-29. 

21. Xiang, M., et al., The Brn-3 family of POU-domain factors: primary structure, binding 
specificity, and expression in subsets of retinal ganglion cells and somatosensory 
neurons. The Journal of Neuroscience, 1995. 15(7): p. 4762-4785. 

22. Hatakeyama, J., et al., Roles of homeobox and bHLH genes in specification of a retinal 
cell type. Development, 2001. 128(8): p. 1313-1322. 

23. Fujitani, Y., et al., Ptf1a determines horizontal and amacrine cell fates during mouse 
retinal development. Development, 2006. 133(22): p. 4439-4450. 

24. Li, S., et al., Foxn4 Controls the Genesis of Amacrine and Horizontal Cells by Retinal 
Progenitors. Neuron, 2004. 43(6): p. 795-807. 

25. Dyer, M.A., et al., Prox1 function controls progenitor cell proliferation and horizontal 
cell genesis in the mammalian retina. Nature Genetics, 2003. 34(1): p. 53-58. 

26. Chen, S., et al., Crx, a Novel Otx-like Paired-Homeodomain Protein, Binds to and 
Transactivates Photoreceptor Cell-Specific Genes. Neuron, 1997. 19(5): p. 1017-1030. 

27. Furukawa, T., Morrow, E.M., and Cepko, C.L., Crx, a Novel otx-like Homeobox Gene, 
Shows Photoreceptor-Specific Expression and Regulates Photoreceptor Differentiation. 
Cell, 1997. 91(4): p. 531-541. 

28. Cheng, H., et al., Photoreceptor-specific nuclear receptor NR2E3 functions as a 
transcriptional activator in rod photoreceptors. Human Molecular Genetics, 2004. 
13(15): p. 1563-1575. 

29. Mears, A.J., et al., Nrl is required for rod photoreceptor development. Nature Genetics, 
2001. 29(4): p. 447-452. 

30. Meyer, J.S., et al., Modeling early retinal development with human embryonic and 
induced pluripotent stem cells. Proceedings of the National Academy of Sciences, 2009. 
106(39): p. 16698-16703. 

31. Lamba, D.A., Karl, M.O., and Reh, T.A., Strategies for retinal repair: cell replacement 
and regeneration, in Progress in Brain Research, E.M.H.I.H.J.W.A.B.B.G.J.B. Joost 
Verhaagen and F.S. Dick, Editors. 2009, Elsevier. p. 23-31. 

32. Ong, J.M. and Da Cruz, L., A review and update on the current status of stem cell 
therapy and the retina. British Medical Bulletin, 2012. 102(1): p. 133-146. 

33. Roesch, K., et al., The transcriptome of retinal Müller glial cells. The Journal of 
Comparative Neurology, 2008. 509(2): p. 225-238. 

34. Newman, E., Glia of the retina, in Retina, S. Ryan, Editor 2001, Mosby: St. Louis. p. 89-
103. 

35. Hernandez, M.R., The optic nerve head in glaucoma: role of astrocytes in tissue 
remodeling. Progress in Retinal and Eye Research, 2000. 19(3): p. 297-321. 

36. Tibbetts, M.D., et al., Stem cell therapy for retinal disease. Current Opinion in 
Ophthalmology, 2012. 23(3): p. 226-34. 

37. West, E.L., et al., Cell transplantation strategies for retinal repair, in Progress in Brain 
Research, E.M.H.I.H.J.W.A.B.B.G.J.B. Joost Verhaagen and F.S. Dick, Editors. 2009, 
Elsevier. p. 3-21. 

38. Meyer, J.S., Katz, M.L., and Kirk, M.D., Stem Cells for Retinal Degenerative Disorders. 
Annals of the New York Academy of Sciences, 2005. 1049(1): p. 135-145. 

39. Jin, Z.B., et al., Induced pluripotent stem cells for retinal degenerative diseases: a new 
perspective on the challenges. Journal of Genetics, 2009. 88(4): p. 417-424. 



67 
	
  

	
  

40. Siqueria, R.C., Stem cell therapy for retinal diseases: update. Stem Cell Research & 
Therapy, 2011. 2(6): p. 50. 

41. Giles, C.L. and S. A.R., Intracranial hypertension and tetracycline therapy. American 
Jounral of Ophthalmology, 1971. 72(5): p. 981-982. 

42. Minckler, D.S., Histology of optic nerve damage in ocular hypertension and early 
glaucoma. . Survey of Ophthalmology, 1989. 33: p. 401-411. 

43. Anderson, D.R. and Hendrickson, A., Effect of Intraocular Pressure on Rapid 
Axoplasmic Transport in Monkey Optic Nerve. Investigative Ophthalmology & Visual 
Science, 1974. 13(10): p. 771-783. 

44. Quigley, H., Guy, J., Anderson, D.R., Blockade of rapid axonal transport: Effect of 
intraocular pressure elevation in primate optic nerve. Archives of Ophthalmology, 1979. 
97(3): p. 525-531. 

45. Casson, R.J., et al., Definition of glaucoma: clinical and experimental concepts. Clinical 
& Experimental Ophthalmology, 2012. 40(4): p. 341-349. 

46. Schwartz, S.D., et al., Embryonic stem cell trials for macular degeneration: a 
preliminary report. The Lancet, 2012. 379(9817): p. 713-720. 

47. Lu, B., et al., Long-Term Safety and Function of RPE from Human Embryonic Stem Cells 
in Preclinical Models of Macular Degeneration. STEM CELLS, 2009. 27(9): p. 2126-
2135. 

48. Hamel, C., Retinitis pigmentosa. Orphanet Journal of Rare Diseases, 2006. 1: p. 40. 
49. Jin, Z.B., et al., Modeling Retinal Degeneration Using Patient-Specific Induced 

Pluripotent Stem Cells. PLoS ONE, 2011. 6(2): p. e17084. 
50. Roux, A.F., [Molecular updates on Usher syndrome]. Journal for Ophthalmology, 2005. 

28(1): p. 93-97. 
51. Reiners, J., et al., Molecular basis of human Usher syndrome: Deciphering the meshes of 

the Usher protein network provides insights into the pathomechanisms of the Usher 
disease. Experimental Eye Research, 2006. 83(1): p. 97-119. 

52. Smith, R., et al., Clinical diagnosis of the Usher syndromes. Usher Syndrome 
Consortium. American Jounral of Medical Genetics, 1994. 50(1): p. 32-38. 

53. Fairchild, P.J., The challenge of immunogenicity in the quest for induced pluripotency. 
Nature Reviews Immunology, 2010. 10(12): p. 868-875. 

54. Evans, M.J. and Kaufman, M.H., Establishment in culture of pluripotential cells from 
mouse embryos. Nature, 1981. 292(5819): p. 154-156. 

55. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in 
medium conditioned by teratocarcinoma stem cells. Proceedings of the National 
Academy of Sciences, 1981. 78(12): p. 7634-7638. 

56. Santos, F., et al., Dynamic Reprogramming of DNA Methylation in the Early Mouse 
Embryo. Developmental Biology, 2002. 241(1): p. 172-182. 

57. Meissner, A., et al., Genome-scale DNA methylation maps of pluripotent and 
differentiated cells. Nature, 2008. 454(7205): p. 766-770. 

58. Thomson, J.A., et al., Embryonic Stem Cell Lines Derived from Human Blastocysts. 
Science, 1998. 282(5391): p. 1145-1147. 

59. Nichols, J. and Smith, A., Naive and Primed Pluripotent States. Cell Stem Cell, 2009. 
4(6): p. 487-492. 

60. Reubinoff, B.E., et al., Embryonic stem cell lines from human blastocysts: somatic 
differentiation in vitro. Nature Biotechnology, 2000. 18(4): p. 399-404. 

61. Gertow, D.K., et al., Organized Development from Human Embryonic Stem Cells after 
Injection into Immunodeficient Mice Stem Cells and Development, 2004. 13(4): p. 421-
435. 



68 
	
  

	
  

62. Reubinoff, B.E., et al., Neural progenitors from human embryonic stem cells. Nature 
Biotechnology, 2001. 19(12): p. 1134-1140. 

63. Mummery, C., et al., Cardiomyocyte differentiation of mouse and human embryonic stem 
cells. Journal of Anatomy, 2002. 200(3): p. 233-242. 

64. Rambhatla, L., et al., Generation of Hepatocyte-Like Cells From Human Embryonic Stem 
Cells. Cell Transplantation, 2003. 12(1): p. 1-11. 

65. Kaufman, D.S., et al., Hematopoietic colony-forming cells derived from human 
embryonic stem cells. Proceedings of the National Academy of Sciences, 2001. 98(19): p. 
10716-10721. 

66. Coraux, C., et al., Embryonic Stem Cells Generate Airway Epithelial Tissue. American 
Journal of Respiratory Cell and Molecular Biology, 2005. 32(2): p. 87-92. 

67. Tabar, V., et al., Therapeutic cloning in individual parkinsonian mice. Nature Medicine, 
2008. 14(4): p. 379-381. 

68. Takahashi, K. and Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse 
Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006. 126(4): p. 663-
676. 

69. Yu, J., et al., Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. 
Science, 2007. 318(5858): p. 1917-1920. 

70. Takahashi, K., et al., Induction of Pluripotent Stem Cells from Adult Human Fibroblasts 
by Defined Factors. Cell, 2007. 131(5): p. 861-872. 

71. Hanna, J.H., Saha, K., and Jaenisch, R., Pluripotency and Cellular Reprogramming: 
Facts, Hypotheses, Unresolved Issues. Cell, 2010. 143(4): p. 508-525. 

72. Chan, E.M., et al., Live cell imaging distinguishes bona fide human iPS cells from 
partially reprogrammed cells. Nature Biotechnology, 2009. 27(11): p. 1033-1037. 

73. Mikkelsen, T.S., et al., Dissecting direct reprogramming through integrative genomic 
analysis. Nature, 2008. 454(7200): p. 49-55. 

74. Okita, K. and Yamanaka, S., Induced pluripotent stem cells: opportunities and 
challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 
2011. 366(1575): p. 2198-2207. 

75. Boland, M.J., et al., Adult mice generated from induced pluripotent stem cells. Nature, 
2009. 461(7260): p. 91-94. 

76. Kang, L., et al., iPS Cells Can Support Full-Term Development of Tetraploid Blastocyst-
Complemented Embryos. Cell Stem Cell, 2009. 5(2): p. 135-138. 

77. Zhao, X.-y., et al., iPS cells produce viable mice through tetraploid complementation. 
Nature, 2009. 461(7260): p. 86-90. 

78. Stadtfeld, M., et al., Aberrant silencing of imprinted genes on chromosome 12qF1 in 
mouse induced pluripotent stem cells. Nature, 2010. 465(7295): p. 175-181. 

79. Lensch, M.W., et al., Teratoma Formation Assays with Human Embryonic Stem Cells: A 
Rationale for One Type of Human-Animal Chimera. Cell Stem Cell, 2007. 1(3): p. 253-
258. 

80. Park, I.-H., et al., Disease-Specific Induced Pluripotent Stem Cells. Cell, 2008. 134(5): p. 
877-886. 

81. Maherali, N., et al., Directly Reprogrammed Fibroblasts Show  Global  Epigenetic 
Remodeling and Widespread Tissue Contribution. Cell Stem Cell, 2007. 1(1): p. 55-70. 

82. Wernig, M., et al., In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like 
state. Nature, 2007. 448(7151): p. 318-324. 

83. Lowry, W.E., et al., Generation of human induced pluripotent stem cells from dermal 
fibroblasts. Proceedings of the National Academy of Sciences, 2008. 105(8): p. 2883-
2888. 



69 
	
  

	
  

84. Liao, J., et al., Generation of Induced Pluripotent Stem Cell Lines from Adult Rat Cells. 
Cell Stem Cell, 2009. 4(1): p. 11-15. 

85. Li, W., et al., Generation of Rat and Human Induced Pluripotent Stem Cells by 
Combining Genetic Reprogramming and Chemical Inhibitors. Cell Stem Cell, 2009. 4(1): 
p. 16-19. 

86. Liu, H., et al., Generation of Induced Pluripotent Stem Cells from Adult Rhesus Monkey 
Fibroblasts. Cell Stem Cell, 2008. 3(6): p. 587-590. 

87. Esteban, M.A., et al., Generation of Induced Pluripotent Stem Cell Lines from Tibetan 
Miniature Pig. Journal of Biological Chemistry, 2009. 284(26): p. 17634-17640. 

88. Shimada, H., et al., Generation of canine induced pluripotent stem cells by retroviral 
transduction and chemical inhibitors. Molecular Reproduction and Development, 2010. 
77(1): p. 2-2. 

89. Loh, Y.-H., et al., Generation of induced pluripotent stem cells from human blood. 
Blood, 2009. 113(22): p. 5476-5479. 

90. Liu, H., et al., Generation of endoderm-derived human induced pluripotent stem cells 
from primary hepatocytes. Hepatology, 2010. 51(5): p. 1810-1819. 

91. Eminli, S., et al., Reprogramming of Neural Progenitor Cells into Induced Pluripotent 
Stem Cells in the Absence of Exogenous Sox2 Expression. STEM CELLS, 2008. 26(10): 
p. 2467-2474. 

92. Aasen, T., et al., Efficient and rapid generation of induced pluripotent stem cells from 
human keratinocytes. Nature Biotechnology, 2008. 26(11): p. 1276-1284. 

93. Fusaki, N., et al., Efficient induction of transgene-free human pluripotent stem cells using 
a vector based on Sendai virus, an RNA virus that does not integrate into the host 
genome. Proceedings of the Japan Academy, Series B, 2009. 85(8): p. 348-362. 

94. Stadtfeld, M., et al., Induced Pluripotent Stem Cells Generated Without Viral Integration. 
Science, 2008. 322(5903): p. 945-949. 

95. Okita, K., et al., A more efficient method to generate integration-free human iPS cells. 
Nature Methods, 2011. 8(5): p. 409-412. 

96. Warren, L., et al., Highly Efficient Reprogramming to Pluripotency and Directed 
Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell, 2010. 
7(5): p. 618-630. 

97. Kim, D., et al., Generation of Human Induced Pluripotent Stem Cells by Direct Delivery 
of Reprogramming Proteins. Cell Stem Cell, 2009. 4(6): p. 472-476. 

98. Huangfu, D., et al., Induction of pluripotent stem cells by defined factors is greatly 
improved by small-molecule compounds. Nature Biotechnology, 2008. 26(7): p. 795-797. 

99. Shi, Y., et al., Induction of Pluripotent Stem Cells from Mouse Embryonic Fibroblasts by 
Oct4 and Klf4 with Small-Molecule Compounds. Cell Stem Cell, 2008. 3(5): p. 568-574. 

100. Hockemeyer, D., et al., A Drug-Inducible System for Direct Reprogramming of Human 
Somatic Cells to Pluripotency. Cell Stem Cell, 2008. 3(3): p. 346-353. 

101. Sommer, C.A., et al., Excision of Reprogramming Transgenes Improves the 
Differentiation Potential of iPS Cells Generated with a Single Excisable Vector. STEM 
CELLS, 2010. 28(1): p. 64-74. 

102. Sareen, D. and C.N. Svendsen, Stem cell biologists sure play a mean pinball. Nature 
Biotechnology, 2010. 28(4): p. 333-335. 

103. Ebert, A.D., et al., Induced pluripotent stem cells from a spinal muscular atrophy patient. 
Nature, 2009. 457(7227): p. 277-280. 

104. Dimos, J.T., et al., Induced Pluripotent Stem Cells Generated from Patients with ALS 
Can Be Differentiated into Motor Neurons. Science, 2008. 321(5893): p. 1218-1221. 



70 
	
  

	
  

105. Soldner, F., et al., Parkinson's Disease Patient-Derived Induced Pluripotent Stem Cells 
Free of Viral Reprogramming Factors. Cell, 2009. 136(5): p. 964-977. 

106. Raya, A., et al., Disease-corrected haematopoietic progenitors from Fanconi anaemia 
induced pluripotent stem cells. Nature, 2009. 460(7251): p. 53-59. 

107. Meyer, J.S., et al., Optic Vesicle-like Structures Derived from Human Pluripotent Stem 
Cells Facilitate a Customized Approach to Retinal Disease Treatment. STEM CELLS, 
2011. 29(8): p. 1206-1218. 

108. Jin, Z.B., et al., Integration-Free Induced Pluripotent Stem Cells Derived from Retinitis 
Pigmentosa Patient for Disease Modeling. Stem Cells Translational Medicine, 2012. 
1(6): p. 503-509. 

109. Singh, R., et al., iPS cell modeling of Best disease: insights into the pathophysiology of 
an inherited macular degeneration. Human Molecular Genetics, 2013. 22(3): p. 593-607. 

110. Brown, M.E., et al., Derivation of induced pluripotent stem cells from human peripheral 
blood T lymphocytes. PLoS ONE, 2010. 5(6). 

111. Krencik, R., et al., Specification of transplantable astroglial subtypes from human 
pluripotent stem cells. Nature Biotechnology, 2011. 29(6): p. 528-534. 

112. Krencik, R. and Zhang, S.C., Directed differentiation of functional astroglial subtypes 
from human pluripotent stem cells. Nature Protocols, 2011. 6(11): p. 1710-1717. 

113. Wang, D.Y., et al., Gene mutations in retinitis pigmentosa and their clinical implications. 
Clinica Chimica Acta, 2005. 351(1–2): p. 5-16. 

114. Ahmed, Z.M., et al., USH1H, a novel locus for type I Usher syndrome, maps to 
chromosome 15q22-23. Clinical Genetics, 2009. 75(1): p. 86-91. 

115. Millán, J., et al., An update on the genetics of usher syndrome. Journal for 
Ophthalmology, 2011. 

116. Saihan, Z., et al., Update on Usher Syndrome. Current Opinion in Neurology, 2009. 
22(1): p. 19-27. 

117. Egawa, N., et al., Drug Screening for ALS Using Patient-Specific Induced Pluripotent 
Stem Cells. Science Translational Medicine, 2012. 4(145): p. 145ra104. 

118. Liang, P., et al., Drug Screening Using a Library of Human Induced Pluripotent Stem 
Cell–Derived Cardiomyocytes Reveals Disease-Specific Patterns of Cardiotoxicity. 
Circulation, 2013. 127(16): p. 1677-1691. 

119. Stone, J. and Dreher, Z., Relationship Between Astrocytes, Ganglion Cells and 
Vasculature of the Retina. The Journal of Comparative Neurology, 1987. 255: p. 35-49. 

120. Rodieck, R.W., Binmoeller, K.F., and Dineen, J., Parasol and midget ganglion cells of 
the human retina. The Journal of Comparative Neurology, 1985. 233(1): p. 115-132. 

121. Dacey, D.M. and Petersen, M.R., Dendritic field size and morphology of midget and 
parasol ganglion cells of the human retina. Proceedings of the National Academy of 
Sciences, 1992. 89(20): p. 9666-9670. 

122. Phillips, M.J., et al., Blood-Derived Human iPS Cells Generate Optic Vesicle–Like 
Structures with the Capacity to Form Retinal Laminae and Develop Synapses. 
Investigative Ophthalmology & Visual Science, 2012. 53(4): p. 2007-2019. 

123. Kolb, H., Morphology and Circuitry of Ganglion Cells, in Webvision: The Organization 
of the Retina and Visual System H. Kolb, et al., Editors. 2001: Salt Lake City (UT): 
University of Utah Health Sciences Center. 

124. Beale, R. and Osborne, N.N., Localization of the Thy-1 antigen to the surfaces of rat 
retinal ganglion cells. Neurochemistry International, 1982. 4(6): p. 587-595. 

125. Kawasaki, H., et al., Generation of dopaminergic neurons and pigmented epithelia from 
primate ES cells by stromal cell-derived inducing activity. Proceedings of the National 
Academy of Sciences, 2002. 99(3): p. 1580-1585. 



71 
	
  

	
  

126. Lamba, D.A., et al., Generation, Purification and Transplantation of Photoreceptors 
Derived from Human Induced Pluripotent Stem Cells. PLoS ONE, 2010. 5(1): p. e8763. 

127. Lamba, D.A., et al., Efficient generation of retinal progenitor cells from human 
embryonic stem cells. Proceedings of the National Academy of Sciences, 2006. 103(34): 
p. 12769-12774. 

128. Osakada, F., et al., Toward the generation of rod and cone photoreceptors from mouse, 
monkey and human embryonic stem cells. Nature Biotechnology, 2008. 26(2): p. 215-
224. 

129. Osakada, F., et al., In vitro differentiation of retinal cells from human pluripotent stem 
cells by small-molecule induction. Journal of Cell Science, 2009. 122(17): p. 3169-3179. 

130. Anokye-Danso, F., et al., Highly Efficient miRNA-Mediated Reprogramming of Mouse 
and Human Somatic Cells to Pluripotency. Cell Stem Cell, 2011. 8(4): p. 376-388. 

131. Xiang, M., et al., Brn-3b: a POU domain gene expressed in a subset of retinal ganglion 
cells. Neuron, 1993. 11(4): p. 689-701. 

132. Canto-Soler, M.V., et al., Transcription factors CTCF and Pax6 are segregated to 
different cell types during retinal cell differentiation. Developmental Dynamics, 2008. 
237(3): p. 758-767. 

133. Parameswaran, S., et al., Induced Pluripotent Stem Cells Generate Both Retinal Ganglion 
Cells and Photoreceptors: Therapeutic Implications in Degenerative Changes in 
Glaucoma and Age-Related Macular Degeneration. STEM CELLS, 2010. 28(4): p. 695-
703. 

134. Chen, M., et al., Generation of Retinal Ganglion–like Cells from Reprogrammed Mouse 
Fibroblasts. Investigative Ophthalmology & Visual Science, 2010. 51(11): p. 5970-5978. 

135. Jagatha, B., et al., In vitro differentiation of retinal ganglion-like cells from embryonic 
stem cell derived neural progenitors. Biochemical and Biophysical Research 
Communications, 2009. 380(2): p. 230-235. 

 

 

 

 

 

 

 

 

 

 

 

 



72 
	
  

	
  

 

 

                                                                   
                                                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                     TABLES 



72 
	
  

	
  

Table 1: List of Primary Antibodies Used for Immunocytochemistry Analysis 

 

 

 

 

 

 

 

  

  

Antibody Type Source Dilution 
Bestrophin Mouse monoclonal Chemicon 1:100 

ß-III Tubulin Rabbit polyclonal Covance 1:1000 
Brn3 Goat polyclonal Santa Cruz 1:200 

Chx10 Sheep polyclonal Exalpha Biologicals 1:200 
Crx Mouse monoclonal Abnova 1:100 

Ezrin Rabbit polyclonal Cell Signaling Technology 1:100 
GFAP Mouse monoclonal Chemicon 1:5000 
Hoxb4 Rat polyclonal MRC NIMR 1:50 
Islet1 Mouse monoclonal Columbia University 1:200 
Lhx2 Goat polyclonal Santa Cruz 1:1000 

MAP-2 Rabbit polyclonal Santa Cruz 1:200 
Nanog Goat polyclonal R&D Biosystems 1:20 
Oct4 Rabbit polyclonal Stemgent 1:100 
Otx2 Goat polyclonal R&D Biosystems 1:1000 
Pax6 Mouse polyclonal Stemgent 1:100 

Recoverin Rabbit polyclonal Chemicon 1:1000 
Six6 Rabbit polyclonal Sigma Life Science 1:200 
Sox1 Goat polyclonal R&D Biosystems 1:1000 
Sox2 Rabbit polyclonal R&D Biosystems 1:100 

SSEA-4 Mouse monoclonal Stemgent 1:100 
Tau Mouse monoclonal Santa Cruz 1:50 

Tra-1-60 Mouse monoclonal Stemgent 1:100 
Tra-1-81 Mouse monoclonal Stemgent 1:100 

ZO-1 Rabbit polyclonal Invitrogen 1:100 
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Table 2: List of Primers Used for RT-PCR Analysis 

Gene Forward (5’ – 3’) Reverse (5’ – 3’) Band Size (bp) 

α-fetoprotein AGA ACC TGT CAC  
AAG CTG TG 

GAC AGC AAG CTG 
AGG ATG TC 676 

Atoh7 GAG CGC GCG TTG 
CAC 

GGG TCT CGT ACT 
TGG ACA GC 210 

Best1 GCA AGC AGG CGT  
TTA GCA TGC C 

CTG GGA GAC GAT 
GTC CAC GGC T 92 

Brachyury ACC CAG TTC ATA  
GCG GTG AC 

CAA TTG TCA TGG 
GAT TGC AG 392 

Brn3 GCA AGC AGG CGT  
TTA GCA TGC C 

CTG GGA GAC GAT 
GTC CAC GGC T 344 

Chx10 ATT CAA CGA AGC  
CCA CTA CCC AGA 

ATC CTT GGC TGA 
CTT GAG GAT GGA 229 

Cralbp  TTC AAG GGC TTT  
ACC ATG CAG CAG 

AGT ACC ATG GCT 
GGT GGA TGA AGT 130 

Crx TAT TCT GTC AAC  
GCC TTG GCC CTA 

TGC ATT TAG CCC 
TCC GGT TCT TGA 253 

Ezrin  ACC ACC ATG GAT  
GCA GAG CTG GA 

ACA CTT CCC GGA 
GGC CGA TAG T 101 

Gapdh ACC ACA GTC CAT  
GCC ATC AC 

TCC ACC ACC CTG 
TTG CTG TA 450 

Lhx2 CAA GAT CTC GGA  
CCG CTA CT 

CCG TGG TCA GCA 
TCT TGT TA 284 

Mitf  TTC ACG AGC GTC  
CTG TAT GCA GAT 

TTG CAA AGC AGG 
ATC CAT CAA GCC 106 

Nanog CAA AGG CAA  
ACA ACC CAC TT 

TCT GCT GGA GGC 
TGA GGT AT 158 

Nr2e1 ATG GCA AAT TCT  
GTG GCG CTG AAG 

GCG CTG ATT TCC 
CAA GTG CAT TCT 352 

Oct4 CGA GCA ATT TGC  
CAA GCT CCT GAA 

TTC GGG CAC TGC 
AGG AAC AAA TTC 324 

Otx2 CAA CAG CAG AAT 
GGA GGT CA 

CTG GGT GGA AAG 
AGA GAA GCT G 

429, 190 
(qPCR) 

Pax6 CGG AGT GAA TCA  
GCT CGG TG 

CCG CTT ATA CTG 
GGC TAT TTT GC 

301 (+5a), 259 
(-5a) 

Pedf  AGA TCT CAG CTG  
CAA GAT TGC CCA 

ATG AAT GAA CTC 
GGA GGT GAG GCT 127 

Rax  GAA TCT CGA AAT  
CTC AGC CC 

CTT CAC TAA TTT 
GCT CAG GAC 279 

RPE65 GCC CTC CTG CAC  
AAG TTT GAC TTT 

AGT TGG TCT CTG 
TGC AAG CGT AGT 92 

Six3 CGA GCA GAA GAC 
GCA TTG CTT CAA 

CGG CCT TGG CTA 
TCA TAC ATC ACA 395 

Six6 ATT TGG GAC GGC  
GAA CAG AAG ACA 

ATC CTG GAT GGG 
CAA CTC AGA TGT 384 
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Sox1 CAA TGC GGG GAG 
GAG AAG TC 

CTC TGG ACC AAA 
CTG TGG CG 464 

Sox2 CCC CCG GCG GCA  
ATA GCA 

TCG GCG CCG GGG 
AGA TAC AT 448 

Thy 1.2 TAG TCG ACC AGA  
GCC TTC GT 

GCC CTC ACA CTT 
GAC CAG TT 311 

ZO-1  AGA CCG TGC TGA  
CTT CTG GAG ATT 

ACT TTG TTT GAA 
CAG GCT GAG CGG 101 
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Table 3: List of Primers Used for qRT-PCR Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Gene Forward (5’ – 3’) Reverse (5’ – 3’) Band Size (bp) 

ß-Actin GCG AGA AGA TGA 
CCC AGA TC 

CCA GTG GTA CGG 
CCA GAG G 103 

Brn3 AGC GCT CTC ACT  
TAC CCT TAC ACA 

AAA TGG TGC ATC 
GGT CAT GCT TCC 94 

Pax6 AGT GAA TCA GCT CGG 
TGG TGT CTT 

TGC AGA ATT CGG 
GAA ATG TCG CAC 120 
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Figure 1: Development of the retina. (a) The formation of the eye is initiated in the 
regions of the neural plate. (b) The neural plate proceeds to fold upwards and inwards. (c) 
The optic grooves evaginate. (d) The two distinct optic vesicles now bulge further towards 
the surface ectoderm. (e) The optic vesicle coordinates with the head ectoderm to form the 
lens placode. (f) The optic vesicle now invaginates to form the optic cup and the 
specialized layers of retina and RPE. (g) The axons of RGCs are enclosed together at the 
close of the choroid fissure to form the optic nerve. (Adapted with permission from Nature 
Reviews Neuroscience, [5]) 
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Figure 2: Role of multiple transcription factors in the retina. The different types and 
combinations of transcription factors associated with the specification and differentiation 
of retinal cell types during development. (Adapted with permission from Brain Research, 
[15]) 

Figure 3: The Retina. The highly defined and layered structure of the retina comprises of 
5 sets of interconnected neurons and the outermost RPE. Light incident on the ventral part 
of the eye traverses through all layers to be processed by the photoreceptors first and then 
travel back towards to the RGCs and to the brain via the optic nerve. (Adapted with 
permission from Elsevier Books, [37]) 
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Figure 4: Different source of pluripotent stem cells. Sources of pluripotent stem cells 
during chronological stages of development. iPS cells are sources of pluripotent stem cells 
achieved by inducing mature somatic cells to an embryonic-like state via genetic 
reprogramming. (Adapted with permission from Cell, [71]) 

Figure 5: Disease Modeling 
Using Human iPS Cells. A 
schematic of how patient 
derived iPS cells can be used to 
model cellular degenerative 
diseases. Starting with somatic 
cells, e.g. skin, blood, of 
patients, these cells can be 
induced to become patient 
specific iPS cells that are 
isogenic in character. Disease 
specific iPS cells can then be 
directed to differentiate towards 
the affected cell type in vitro. 
Affected cell types derived can 
be analyzed for disease 
phenotype and progression, 
testing drug candidates, or 
transplantation after gene 
correction. (Adapted with 
permission from Nature Reviews 
Immunology, [53]) 
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Figure 6: Maintenance and passaging of human iPS cells. Passaging of human iPS 
cells starts by identifying, marking (A), and scraping out any spontaneously differentiated 
colonies. The colonies are made then incubated in dispase for 15-20 minutes to allow for 
loosening of colonies (B,C) and then mechanically dislodged, triturated, and replated in 
fresh mTeSRTM1 medium (D). 

Figure 7: Timeline for neural induction of human iPS cells. Human iPS cells were 
differentiated according to the timeline shown. iPS cells were differentiated as embryoid 
bodies and eased into NIM during the first 6 days. Embryoid bodies were then plated and 
grown as adherent clusters until day 16 in NIM. At day 16, the clusters were lifted and 
allowed to form spheres for the next 2 days in RDM. The spheres were differentiated for 
later time points in suspension. Starting day 30, high number of neural cells was observed 
in culture. 
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Figure 8: ICC Analysis of Pluripotency of Usher iPS Cells. Following 
numerous passages, Usher Syndrome iPS cells maintained the expression of 
all pluripotency-related characteristics examined by immunocytochemistry 
(A-F), including the transcription factors SOX2, OCT4, and NANOG (A, C, 
E).  Furthermore, these cells expressed pluripotency-related cell surface 
antigens such as TRA-1-60 (B), SSEA-4 (D), and TRA-1-81 (F). (Scale bars, 
15 µm in panels A-F). 

Figure 9: Brightfield stage of 
pluripotency. Colonies of Usher 
iPS cells exhibited typical 
pluripotent morphologies with 
tightly packed cells with a clearly 
defined and phase bright edges to 
each colony.   
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Figure 10: Transcript Analysis of 
Factors Associated with 
Pluripotency. RT-PCR analysis 
confirmed the expression of 
pluripotency-related genes, OCT4, 
NANOG, and SOX2, as well as the lack 
of expression of markers of 
differentiation, AFP (endoderm), 
BRAC (mesoderm), and PAX6 
(ectoderm). 
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Figure 11: ICC Analysis of Primitive Neural Induction of Usher iPS 
Cells. After 10 days of differentiation, immunocytochemistry results 
demonstrated near uniform expression of early neural developmental 
transcription factors including PAX6 (A), SOX1 (B), OTX2 (C), and LHX2 
(D). (Scale bars, 15 µm in panels A-D). 

Figure 12: Brightfield stage of 
neural induction. At day 10, 
neural progenitor cells were 
characterized as outwardly 
proliferating cells from plated 
embryoid bodies. 
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Figure 13: Transcript Analysis of 
Primitive Neural Induction of Usher 
iPS Cells. RT-PCR analysis confirmed 
the expression of numerous early 
neurodevelopmental transcription 
factors, PAX6, SOX1, OTX2, LHX2, 
including the expression of factors for 
eye field specification including, RAX, 
SIX3, SIX6, and TLL. 

Figure 14: Identification of retinal and non-retinal neurospheres. At day 18, two 
distinct populations of spheres were identified. One population of spheres expressed a 
uniform phase bright ring around its periphery and had an optic vesicle-like appearance 
(A) whereas the other population had a uniformly darker appearance with internalized 
rosettes (B). 



84 
	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
   	
  

	
  

	
  

	
  

	
  

	
  

	
  

Figure 15: ICC Analysis of Retinal Progenitor Cells Derived from Usher 
iPS Cells. (A-D) Following 20 days of differentiation, a subset of cells 
exhibited numerous characteristics of retinal progenitor cells, including the 
expression of key transcription factors including LHX2, PAX6, SIX6, and 
CHX10. (Scale bars, 15 µm in panels A-D). 

Figure 16: Transcript 
Analysis of Retinal 
Progenitor Cells Derived 
from Usher iPS Cells. 
Gene expression analysis 
further confirmed the 
expression of key 
transcription factors 
associated with retinal 
progenitor cells including, 
RAX, CHX10, PAX6, 
LHX2, and OTX2. 
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Figure 17: ICC Analysis of Neuronal Specification from Usher iPS Cells. 
(A, B) After 30 days of differentiation, cells exhibited numerous 
characteristics of neurons, including the expression of transcription factors 
PAX6 and OTX2, as well as the cytoskeletal proteins ß-III TUBULIN and 
MAP2. (Scale bars, 15 µm in panels A and B). 

Figure 18: Brightfield example 
of in vitro derived neuronal cells. 
Under brightfield microscopy, 
numerous neuronal morphologies 
were observed including well 
defined and emanating axonal like 
processes from in vitro derived 
neuronal cell bodies. 
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Figure 19: Identification of RPE Differentiation by increase in pigmentation. The 
successful generation of RPE cells from Usher iPS cells was identified after 40-50 
days of differentiation. RPE exhibited typical cobblestone morphologies with 
characteristic pigmentation that increased in intensity with increasing timepoints in 
culture (A, B). 

Figure 20: ICC analysis of RPE Differentiation from Usher iPS Cells. After 60 
days, RPE was characterized by immunocytochemistry. RPE cells co-expressed the 
tight junction protein ZO-1 and OTX2 (A-C), and stained positive for other RPE 
specific proteins including the apical-basal proteins, EZRIN and BEST1 respectively 
(D-F). 
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Figure 21: Transcript analysis of RPE Differentiation from Usher iPS 
Cells. Gene expression profiling of iPS derived RPE cells further confirmed 
the expression of RPE specific factors including MITF, RPE65, PEDF, and 
CRALBP. 

Figure 22: Transcript Analysis 
of Retinal Progenitor Cells at 
Day 70. Gene expression results 
after 70 days of differentiation 
revealed the expression of 
markers associated with retinal 
progenitor cells including the 
broad marker CHX10, and CRX, 
a transcription factor 
characteristic of photoreceptor 
precursors.  
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Figure 23: Differentiation of RGCs at day 70. The generation of RGCs from Usher 
iPS cells was analyzed by immunostaining after 70 days of differentiation. Subsets of 
retinal progenitor cells adopted characteristics of retinal ganglion cells, including the 
expression of the transcription factors BRN3 and ISLET1. (Scale bars, 15 µm). 

Figure 24: Differentiation of photoreceptors at day 70. ICC analysis of in vitro 
Usher iPS derived photoreceptors revealed expression of CRX and RECOVERIN, 
indicating a progressive increase from a more immature to a more mature 
photoreceptor cell type. (Scale bars, 15 µm). 
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Figure 25: Identification of RGC neurons at day 40.  RGCs were derived after 40 
days of differentiation and identified by the expression of the RGC specific 
transcription factor BRN3. The neural nature of RGCs were further characterized by 
co-expression of BRN3 with the neural cytoskeletal marker ß-III TUBULIN (A) and 
with the axon specific marker, TAU (B). (Scale bars 11 µm in panel A, 15 µm in panel 
B) 
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Figure 26: Further molecular characterization of RGCs. The differentiation of 
RGCs was further characterized by immunocytochemistry after 40 days of 
differentiation. (A) A subset of retinal progenitor cells co-expressed RGC specific 
factors BRN3 and ISLET1. (B) A population of cells was also double positive for 
BRN3 and PAX6, a neurodevelopmental marker known to be restricted to RGCs in 
the retina during later ontogenesis.  (Scale bars 6.25 µm in panel A, 3.40 µm in panel 
B) 
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Figure 27: Quantification of yield of RGCs. After 40 days of differentiation the 
amount of human iPS-derived RGCs was quantified by counting the number of cells 

(S.E. of 3.09
population of cells expressed both BRN3 and ISLET1. (Scale bar, 19 µm) 
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Figure 28: Quantification of cell 
sizes of RGCs. Cell body areas of cells 
expressing ß-III TUBULIN with (A) or 
without (B) BRN3 derived from the 
same set of retinal progenitor cells was 
analyzed. RGCs identified by the 
positive expression of BRN3 had a 
significantly greater mean cell soma 
area of 102.18 µm2 (S.E. of 9.35) 
compared to 67.17 µm2 (S.E. of 0.88) 
for that of other neuronal cell types 
derived in the process. (n=4, p<0.05). 
(Scale bars, 15 µm in panels A and B) 
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Figure 29: Quantification of RGCs 
and Photoreceptor neurite lengths. 
The difference in lengths between the 
human iPS-derived RGC axons and 
photoreceptor neurites was measured. 
RGC axons were identified by the co-
expression of BRN3 and TAU (A) 
whereas photoreceptors were identified 
by their mature expression of the 
RECOVERIN protein (B). 
Measurement revealed a statistically 
significant difference with a mean 
length of 95.31 µm (S.E. of 6.28) for 
RGCs compared to 29.18 µm (S.E. of 
3.67) for that of photoreceptors. 
(p<0.05). (Scale bars, 10 µm in panel 
A and 4.44 µm in panel B). 
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Figure 30: PCR analysis of RGCs specification. Gene expression analysis further 
confirmed the specification of RGCs from human iPS cells after 40 days of 
differentiation. RT-PCR revealed expression of RGC specific genes including BRN3, 
ATOH7, THY1.2 and PAX6. qPCR analysis further demonstrated the progressive increase 
in BRN3 expression pattern from day 0 to day 40 in 10 day intervals. A similar trend was 
observed with PAX6, expected to peak earlier due to early neural specification from 
human iPS cells. 
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Figure 31: Differentiation of astrocytes at day 60. First signs of astroglial cells 
were observed in culture after 60 days of differentiation. Astrocytes appeared in their 
characteristic stellate type morphology and expressed the astrocyte specific 
cytoskeleton protein GFAP. ICC also revealed characteristic elongated processes 
generally associated with glial cell types. (Scale bars, 15 µm) 

Figure 32: Brightfield timeline for in vitro astrocyte enrichment. In vitro culture 
and differentiation of the astrospheres (A) in suspension followed by passaging with 
accutase revealed a progressive increase in non-post-mitotic astrocyte numbers and 
specification (B-C) as identified under bright field microscopy over a period of 110 
days of differentiation.  
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Figure 33: Anterior specification of astrocytes. After 125 days of differentiation, a 
qualitative increase in the expression of GFAP was observed (A). The astrocytes also 
expressed OTX2, a marker for anterior neural development (B), and were negative for 
the expression of HOXB4, a marker associated with spinal cord/ventral neural 
development (C). (Scale bars, 15 µm in panels A and B, 6.90 µm in panel C). 

Figure 34: Long term differentiation of astrocytes. Prolonged differentiation of 
astrocytes in serum conditions revealed a higher amount of maturation of in vitro 
derived astrocytes identified by the qualitative increase in intensity and number and of 
cells expressing GFAP (A-B) and OTX2 (C) until 150 days of differentiation. (Scale 
bars, 15 µm in panels A-C). 
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Figure 35: Measurement of astrocyte proliferation/ doubling rate. Rates of astrocyte 
proliferation were analyzed for both iPS cell lines. A general trend of decreasing ability to 
divide was observed from day 100 to day 130 for both. However, the TIPS-5 iPS cell line 
was more proliferative indicative of less doubling time between passages (1.48 days for 
passage 1 to 1.72, 2.13, and 3.17 for the next 3 passages) compared to that of the Usher 
iPS cell line, (5.96 days at passage 1 to 6.03, 6.86, and 6.93 for the next 3 passages). 
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