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ABSTRACT 

Polypharmacy is a general clinical practice, there is a high chance that multiple 

administered drugs will interfere with each other, such phenomenon is called drug-drug 

interaction (DDI). DDI occurs when drugs administered change each other’s 

pharmacokinetic (PK) or pharmacodynamic (PD) response. DDIs in many ways affect the 

overall effectiveness of the drug or at some times pose a risk of serious side effects to the 

patients thus, it becomes very challenging to for the successful drug development and 

clinical patient care. Biomedical literature is rich source for in-vitro and in-vivo DDI 

reports and there is growing need to automated methods to extract the DDI related 

information from unstructured text.  

In this work we present an ontology (PK ontology), which defines annotation guidelines 

for annotation of PK DDI studies. Using the ontology we have put together a corpora of 

PK DDI studies, which serves as excellent resource for training machine learning, based 

DDI extraction algorithms. Finally we demonstrate the use of PK ontology and corpora 

for extracting PK DDIs from biomedical literature using machine learning algorithms.  
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Chapter 1 INTRODUCTION 

1.1 Motivation 
 

When drugs are introduced in the body by any delivery mechanism two broad classes of 

effects take place namely: what body does to the drug termed as pharmacokinetics (PK) and 

what drug does to the body termed as pharmacodynamics (PD). Pharmacokinetics studies 

drug absorption, disposition, metabolism, excretion, and transportation (ADMET) of the drug 

whereas pharmacodynamics involves study of binding of the drug to receptors and following 

the signal cascade towards clinical effect(s) (such as efficacy or off target effects). 

Polypharmacy is a general clinical practice. More than 70% of old population (age >65) takes 

more than 3 medications at the same time in US and some European countries. Given these 

statistics there is a high chance that given drugs will interfere with each other, such 

phenomenon is called drug-drug interaction (DDI). Drug-drug interaction (DDI) occurs when 

drugs administered change each other’s PK or PD response. 

DDIs are a major cause of morbidity and mortality and lead to increased health care costs [1-

4] DDIs total nearly 3% of all hospital admissions and 4.8% of admissions in the elderly.  

DDIs are also a common cause of medical errors, representing 3% to 5% of all inpatient 

medication errors. These numbers may actually underestimate the true public health burden 

of drug interactions as they reflect only well-established DDIs. These DDIs in many ways 

affect the overall effectiveness of the drug or at some times pose a risk of serious side effects 

to the patients [5] thus, it becomes very challenging to for the successful drug development 

and clinical patient care. Regulatory authorities such as the Food and Drug Administration 

(FDA) and the pharmaceutical companies keep a rigorous tab on the DDIs. Major source of 

DDI information is the biomedical literature since most of the in vivo or in vitro DDI research 

carried is reported in it. Due to the unstructured nature of the free text in the biomedical 
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literature it is difficult and laborious process to extract and analyze the DDIs from biomedical 

literature. With the growth of the biomedical literature there is growing need for systems that 

aim at annotating the DDI information in biomedical literature and information extraction 

(IE) systems that aim at extracting DDIs, although some efforts are made in this direction 

there exists significant gap between the resources currently available for annotating and 

extracting DDIs. 

1.2 Background 
 

The use of IE systems to extract relationship among biological entities from biomedical 

literature have been successful to a great extent [6] specifically in the area of protein-protein 

interaction extraction. Researchers have now started to look at extraction of DDI from 

biomedical literature some early attempts include retrieval of DDI relevant articles from 

MEDLINE [7] which forms the basis of IE systems to work upon. There are DDI extraction 

systems based on mechanism based reasoning approach [8], shallow parsing and linguistic 

rule based approach [9] and shallow linguistic kernel based method to extract DDI [10].  

In this work we focus on development of annotation and extraction tools for PK DDI’s by 

means of creating a PK ontology that forms basis for creation of PK corpus of well annotated 

in vitro and in vivo DDI studies. We further demonstrate the usability of the PK DDI corpus 

to be used as gold standard for developing DDI extraction pipelines. In the forthcoming 

chapters creation of PK ontology, PK corpus and extraction methodology is discussed in 

details. 
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Chapter 2 CREATION OF PHARMACOKINETICS ONTOLOGY1 

2.1 Introduction 

Owing to the gifts of web and modern high throughput experiments growth of biomedical 

data has been explosive and continues raking up at a very fast pace, as a result we rely more 

and more on biomedical databases to keep up-to date with the sate of art data. Collection and 

dissemination of biomedical data is a key factor for the research community [11] this plays a 

very important role in translational research facilitating translation “bench-side” to “bed-

side”.  

Ontologies can be defined as collections of formal machine-readable, human-understandable 

representations of entities, and the relations among those entities, within a defined application 

domain. Ontologies aid researchers manage information explosion by providing very detailed 

and precise descriptions of biomedical entities, paving the way for annotating, analyzing and 

integrating results of biomedical research. Key features of ontologies include reusability and 

facilitation of heterogeneous data integration [12]. One of the most widely used ontologies in 

life sciences is Gene Ontology[13].  

2.2 Need for pharmacokinetics ontology 

DDI information is housed in databases like DrugBank [14], DiDB 

(http://www.druginteractioninfo.org/) and PharmGKB [15] each of these databases have their 

strengths but there are certain gaps when it comes to content of pharmacokinetic DDI 

information (in vitro and in vivo), but to address this issue currently there exists no ontology 

to define a PK DDI study and its components. This was the motivation of our research group 

to develop a strong PK ontology, which would eventually translate into information richness 

in this domain. 

1 This chapter is published as: Wu H-Y, Karnik S, Subhadarshini A, Wang Z, Philips S, Han 
X, Chiang C, Liu L, Boustani M, Rocha L et al: An integrated pharmacokinetics ontology 
and corpus for text mining. BMC bioinformatics 2013, 14(1):35. 
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2.3 Pharmacokinetics ontology 

The PK ontology was implemented with Protégé [16] in the Web Ontology Language (OWL 

format). 

Our ontology consists of following components: 

• Experiments 

• Metabolism 

• Transporter  

• Drug 

• Subject 

These components have been summarized in Table 1 and overview of the ontology is 

presented in Figure 1. 

Categories 
Description 

Resources 

Pharmacokinetics 
Experiments 

Pharmacokinetics 
studies and parameters. 
There are two major 
categories: in vitro 
experiments and in vivo 
studies. 

Manually accumulated from textbooks and 
literature sources. 

Transporters Drug transportation 
enzymes 

http://www.tcdb.org 

Metabolism 
Enzymes 

Drug metabolism 
enzymes 

http://www.cypalleles.ki.se/ 

Drugs Drug names http://www.drugbank.ca/ 

Subjects Subject description for 
a pharmacokinetics 
study. It is composed 
three categories: 
disease, physiology, 
and demographics 

http://bioportal.bioontology.org/ontologies/42056 
http://bioportal.bioontology.org/ontologies/39343 
http://bioportal.bioontology.org/ontologies/42067 

Table 1 Components of PK Ontology 
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Figure 1 Overview of PK Ontology 

As ontologies support re-use we have re-used some of the existing ontologies in our PK 

ontology design, and our key contribution in the PK ontology is the definition of the 

experiments component.  

2.4 Experiments section of PK ontology 

This component describes in vitro and in vivo PK DDI experiments, experimental setup and 

the results of results of the same.  

2.4.1 In vitro PK DDI experiments 
 

According to the FDA guidelines2 on drug-drug interaction studies a DDI study generally 

begins with in vitro experiments, which deduce that, a drug is inhibitor, inducer or substrate 

of drug metabolizing enzymes (typically CYP P450 family of oxidative enzymes).  The 

results of in vitro studies are valuable in quantitatively assessing the drug-drug interaction 

potential of an investigational drug and these results serve as decision points for further 

investigation. In the ontology we gather considerations critical for in vitro DDI studies. Table 

2 presents definitions and units of the in vitro PK parameters. The PK parameters of the 

single drug metabolism experiment include Michaelis-Menten constant (Km), maximum 

velocity of the enzyme activity (Vmax), intrinsic clearance (CLint), metabolic ratio, and 

2http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidanc
es/ucm292362.pdf 
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fraction of metabolism by an enzyme (fmenzyme) [17]. In the transporter experiment, the PK 

parameters include apparent permeability (Papp), ratio of the basolateral to apical 

permeability and apical to basolateral permeability (Re), radioactivity, and uptake volume 

[18]. There are multiple drug interaction mechanisms: competitive inhibition, non-

competitive inhibition, uncompetitive inhibition, mechanism based inhibition, and induction 

[19]. IC50 is the inhibition concentration that inhibits to 50% enzyme activity; it is substrate 

dependent; and it doesn’t imply the inhibition mechanism. Ki is the inhibition rate constant 

for competitive inhibition, noncompetitive inhibition, and uncompetitive inhibition. It 

represents the inhibition concentration that inhibits to 50% enzyme activity, and it is substrate 

concentration independent. Kdeg is the degradation rate constant for the enzyme. KI is the 

concentration of inhibitor associated with half maximal Inactivation in the mechanism based 

inhibition; and Kinact is the maximum degradation rate constant in the presence of a high 

concentration of inhibitor in the mechanism based inhibition. Emax is the maximum induction 

rate, and EC50 is the concentration of inducer that is associated with the half maximal 

induction. 

 

Experiment 
Types 

Parameters Description Unit References 

Single Drug 
Metabolism 
Experiment 

Km Michaelis-Menten constant. mg L-1 [17] p28 

 
Vmax Maximum velocity of the 

enzyme activity. 
mg h-1 
mg-1 
protein 

[17] p19 

 
CLint Intrinsic metabolic 

clearance is defined as ratio 
of maximum metabolism 
rate, Vmax, and the 
Michaelis-Menten constant, 

ml h-1 
mg-1 
protein 

[20] p165 
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Km. 
 

Metabolic ratio Parent drug/metabolite 
concentration ratio 

NA 
 

 
fmenzyme Fraction of drug 

systemically available that 
is converted to a metabolite 
through a specific enzyme. 

NA 
[20] xiii 

Single Drug 
Transporter 
Experiment 

Papp The apparent permeability 
of compounds across the 
monolayer cells. 

cm/sec [18] 

 
Re 

Re is the ratio of basolateral 
to apical over apical to 
basolateral. 

NA [18] 

 
Radioactivity Total radioactivity in 

plasma and bile samples is 
measured in a liquid 
scintillation counter 

dpm/mg 
protein 

[18] 

 
Uptake Volume The amount of radioactivity 

associated with the cells 
divided by its concentration 
in the incubation medium. 

ul/mg 
protein 

[18] 

Drug 
Interaction 
Experiment 

IC50 Inhibitor concentration that 
inhibits to 50% of enzyme 
activity. 

mg L-1 
 

 
Ki Inhibition rate constant for 

competitive inhibition, 
noncompetitive inhibition, 
and uncompetitive 
inhibition. 

mg L-1 [17] p103 

 
Kdeg The natural degradation rate 

constant for the Enzyme. 
h-1 [19] 

 
KI The concentration of 

inhibitor associated with 
half maximal Inactivation in 
the mechanism based 
inhibition. 

mg L-1 
[19] 

 
Kinact The maximum degradation 

rate constant in the presence 
of a high concentration of 
inhibitor in the mechanism 
based inhibition. 

h-1 
[19] 
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Emax Maximum induction rate Unit free 

[19] 

 
EC50 The concentration of 

inducer that is associated 
with the half maximal 
induction. 

mg L-1 
[19] 

Type of Drug 
Interactions 

Competitive inhibition, 
noncompetitive inhibition, 
uncompetitive inhibition, 
mechanism based 
inhibition, and induction. 

Rostami-Hodjegan and 
Tucker 

  

Table 2 in vitro PK Parameters 

In vitro experimental conditions are described in Table 3. Metabolism enzyme experiment 

conditions include buffer, NADPH sources, and protein sources. In particular, protein sources 

include recombinant enzymes, microsomes, hepatocytes, and etc. Sometimes, genotype 

information is available for the microsome or hepatocyte samples. Transporter experiment 

conditions include bi-directional transporter, uptake/efflux, and ATPase. Other factors of in 

vitro experiments include pre-incubation time, incubation time, quantification methods, 

sample size, and data analysis methods. 

Experimental 
Conditions 

 

Drugs Substrate, metabolite, and 
inhibitor/inducer 

FDA Drug 
Interaction 
Guidelines2. 

Metabolism 
Enzymes 

Buffer 
Salt composition 

EDTA concentration 

MgCl2 concentration Cytochrome b5 
concentration 

NADPH 
source 

Concentration of exogenous NADPH added 
isocytrate dehydrogenase + NADP 

protein Non-
recombinant 
enzymes 

Microsomes (human liver 
microsomes, human 
intestine microsomes, S9 
fraction, cytosol, whole cell 
lysate, hepatocytes. 
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Recombinant 
enzymes 

Enzyme name mg/mL or 
uM 

genotype 
 

Transporters Bi-Directional CHO; Caco-2 cells; HEK-293; Hepa-RG; 
LLC; LLC-PK1 MDR1 cells; MDCK; 
MDCK-MDR1 cells; Suspension Hepatocyte Transport 

Uptake/efflux tumor cells, cDNA transfected cells, oocytes 
injected with cRNA of transporters 

ATPase membrane vesicles from various tissues or 
cells expressing P-gp, Reconstituted P-gp 

Other factors Pre-incubation time 

Incubation time 

Quantification 
methods 

HPLC/UV, LC/MS/MS, LC/MS, 
radiographic 

Sample size 

Data Analysis log-linear regression, plotting; and nonlinear 
regression 

Table 3 in vitro Experiment Conditions 

2.4.2 In vivo PK DDI experiments 
 

In vivo PK DDI studies aim at comparing substrate concentrations with and without the 

interacting drug, these type of studies typically address number of questions of the interaction 

between two drugs and clinical consequences of the same.  

Table 4 provides compilation of in vivo PK parameters based on information summarized 

from two text-books[20, 21]. There are several main classes of PK parameters. Area under 

the concentration curve parameters are (AUCinf, AUCSS, AUCt, AUMC); drug clearance 

parameters are (CL, CLb, CLu, CLH, CLR, CLpo, CLIV, CLint, CL12); drug concentration 

parameters are (Cmax, CSS); extraction ratio and bioavailability parameters are (E, EH, F, FG, 

FH, FR, fe, fm); rate constants include elimination rate constant k, absorption rate constant ka, 
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urinary excretion rate constant ke, Michaelis-Menten constant Km, distribution rate constants 

(k12, k21), and two rate constants in the two-compartment model (λ1, λ2); blood flow rate (Q, 

QH); time parameters (tmax, t1/2); volume distribution parameters (V, Vb, V1, V2, Vss); 

maximum rate of metabolism, Vmax; and ratios of PK parameters that present the extend of 

the drug interaction, (AUCR, CL ratio, Cmax ratio, Css ratio, t1/2 ratio). 

Category Name Description Unit Reference 

PK parameters AUCinf Area under the drug concentration time 
curve. 

mg h 
L-1 

[20] p37 

AUCSS Area under the drug concentration time 
curve within a dosing curve at steady 
state. 

mg h 
L-1 

[20] pxi 

AUCt Area under the drug concentration time 
curve from time 0 to t. 

mg h 
L-1 

[20] p37 

AUMC Area under the first moment of 
concentration versus time curve. 

mg2 h 
L-2 

[20] p486 

AUCR AUC ratio (drug interaction parameter). Unit 
free 

 

CL Total clearance is defined as the 
proportionality factor relating rate of drug 
elimination to the plasma drug 
concentration. 

ml h-1 
[20] p23 

CLb Blood clearance is defined as the 
proportionality factor relating rate of drug 
elimination to the blood drug 
concentration. 

ml h-1 RT p160 

CLu Unbound clearance is defined as the 
proportionality factor relating rate of drug 
elimination to the unbounded plasma drug 
concentration. 

ml h-1 
[20] p163 

CLH Hepatic portion of the total clearance. ml h-1 
[20] p161 

CLR Renal portion of the total clearance. ml h-1 
[20] p161 

CLpo Total clearance of drug following an oral 
dose. 

ml h-1 
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CLIV Total clearance of drug following an IV 
dose. 

ml h-1 
 

CLint Intrinsic metabolic clearance is defined as 
ratio of maximum metabolism rate, 
Vmax, and the Michaelis-Menten 
constant, Km. 

ml h-1 
[20] p165 

CL12 Inter-compartment distribution between 
the central compartment and the 
peripheral compartment. 

ml h-1 
 

CL ratio Ratio of the clearance (drug interaction 
parameter). 

Unit 
free 

 

Cmax Highest drug concentration observed in 
plasma following administration of an 
extravascular dose. 

mg L-

1 

[20] pxii 

Cmax ratio The ratio of Cmax (drug interaction 
parameter). 

Unit 
free 

 

Css Concentration of drug in plasma at steady 
state during a constant rate intravenous 
infusion. 

mg L-

1 

[20] pxii 

Css ratio The ratio of Css (drug interaction 
parameter). 

Unit 
free 

 

E Extraction ratio is defined as the ratio 
between blood clearance, CLb, and the 
blood flow. 

Unit 
free 

[20] p159 

EH Hepatic extraction ratio. Unit 
free 

[20] p161 

F Bioavailability is defined as the 
proportion of the drug reaches the 
systemic blood. 

Unit 
free 

[20] p42 

FG Gut-wall bioavailability. Unit 
free 

 

FH Hepatic bioavailability. Unit 
free 

[20] p167 

FR Renal bioavailability. Unit 
free 

[20] p170 

fe Fraction of drug systemically available 
that is excreted unchanged in urine. 

Unit 
free 

[20] pxiii 
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fm Fraction of drug systemically available 
that is converted to a metabolite. 

Unit 
free 

[20] pxiii 

fu Ratio of unbound and total drug 
concentrations in plasma. 

Unit 
free 

[20] pxiii 

k Elimination rate constant. h-1 
[20] pxiii 

K12, k21 Distribution rate constants between 
central compartment and peripheral 
compartment. 

h-1 
 

ka Absorption rate constant. h-1 
[20] pxiii 

ke Urinary excretion rate constant. h-1 
[20] pxiii 

km Rate constant for the elimination of a 
metabolite. 

h-1 
[20] pxiii 

Km Michaelis-Menten constant. mg L-

1 

[20] pxiii 

MRT Mean time a molecular resides in body. h 
[20] pxiv 

Q Blood flow. L h-1 
[20] pxiv 

QH Hepatic blood flow. L h-1 
[20] pxiv 

tmax Time at which the highest drug 
concentration occurs following 
administration of an extravascular dose. 

h 
[20]  pxiv 

t1/2 Half-life of the drug disposition. h 
[20]  pxiv 

t1/2 ratio Half-life ratio (drug interaction 
parameter). 

Unit 
free 

 

t1/2,α Half-life of the fast phase drug 
disposition. 

h 
 

t1/2,β Half-life of the slow phase drug 
disposition. 

h 
 

V Volume of distribution based on drug 
concentration in plasma. 

L 
[20]  pxiv 

Vb Volume of distribution based on drug 
concentration in blood. 

L 
[20]  pxiv 

V1 Volume of distribution of the central 
compartment. 

L 
[20]  pxiv 
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V2 Volume of distribution of the peripheral 
compartment. 

L 
 

Vss Volume of distribution under the steady 
state concentration. 

L 
[20]  pxiv 

Vmax Maximum rate of metabolism by an 
enzymatically mediated reaction. 

mg h-

1 

[20]  pxiv 

λ1, λ2 Disposition rate constants in a two-
compartment model. 

h-1 
[21] p84 

Pharmacokinetics 
Models Non-

Compartment 
Use drug concentration measurements directly 
to estimate PK parameters, such as AUC, CL, 
Cmax, Tmax, t1/2, F, and V. 

[21] p409 

One 
Compartment 
Model 

It assumes the whole body is a homogeneous 
compartment, and the distribution of the drug 
from the blood to tissue is very fast. It assumes 
either a first order or a zero order absorption rate 
and a first order eliminate rate. Its PK 
parameters include (ka, V, CL, F). 

[20] p34 
[21] p1 

Two 
Compartment 
Model 

It assumes the whole body can be divided into 
two compartments: central compartment (i.e. 
systemic compartment) and peripheral 
compartment (i.e. tissue compartment). It 
assumes either a first order or a zero order 
absorption rate and a first order eliminate and 
distribution rates. Its PK parameters include (ka, 
V1, V2, CL, CL12, F). 

[21] p84 

Study Designs Hypothesis Bioequivalence, drug interaction, 
pharmacogenetics, and disease conditions. 

 

Design Single arm or multiple arms; cross-over or fixed 
order design; with or without randomization; 
with or without stratification; prescreening or 
no-prescreening; prospective or retrospective 
studies; and case reports or cohort studies. 

 

Sample size The number of subjects, and the number of 
plasma or urine samples per subject. 

 

Time points Sampling time points and dosing time points. 
 

Sample types Blood, plasma, and urine. 
 

Dose Subject specific doses. 
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Quantification 
methods 

HPLC/UV, LC/MS/MS, LC/MS, radiographic 
 

Table 4 In vivo PK studies 

It is also shown in Table 4 that two types of pharmacokinetics models are usually presented 

in the literature: non-compartment model and one or two-compartment models. There are 

multiple items need to be considered in an in vivo PK study. The hypotheses include the 

effects of bioequivalence, drug interaction, pharmacogenetics, and disease conditions on a 

drug’s PK. The design strategies are very diverse: single arm or multiple arms, cross-over or 

fixed order design, with or without randomization, with or without stratification, pre-

screening or no-pre-screening based on genetic information, prospective or retrospective 

studies, and case reports or cohort studies. The sample size includes the number of subjects, 

and the number of plasma or urine samples per subject. The time points include sampling 

time points and dosing time points. The sample type includes blood, plasma, and urine. The 

drug quantification methods include HPLC/UV, LC/MS/MS, LC/MS, and radiography. 

CYP450 family enzymes predominantly exist in the gut wall and liver. Transporters are tissue 

specific. Table 5 presents the tissue specific transports and their functions. Probe drug is 

another important concept in the pharmacology research. An enzyme’s probe substrate means 

that this substrate is primarily metabolized or transported by this enzyme. In order to 

experimentally prove whether a new drug inhibits or induces an enzyme, its probe substrate is 

always utilized to demonstrate this enzyme’s activity before and after inhibition or induction. 

An enzyme’s probe inhibitor or inducer means that it inhibits or induces this enzyme 

primarily. Similarly, an enzyme’s probe inhibitor needs to be utilized if we investigate 

whether this enzyme metabolizes the drug. Table 6 presents all the probe inhibitors, inducers, 

and substrates of CYP enzymes. Table 7 presents all the probe inhibitors, inducers, and 
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substrates of the transporters; this information is compiled from the FDA guidelines for DDI 

studies2. 

Gene Aliases Tissue type Function 

ABCB1 P-gp, MDR1 Intestinal enterocyte, kidney proximal tubule, 
hepatocyte (canalicular), brain endothelia 

Efflux 

ABCG2 BCRP Intestinal enterocyte, hepatocyte (canalicular), 
kidney proximal tubule, brain endothelia, placenta, 
stem cells, mammary gland (lactating) 

Efflux 

SLCO1B1 OATP1B1, OATP-
C, OATP2, LST-1 

Hepatocyte (sinusoidal) Uptake 

SLCO1B3 OATP1B3, OATP-
8 

Hepatocyte (sinusoidal) Uptake 

SLC22A2 OCT2 Kidney proximal tubule Uptake 

SLC22A6 OAT1 
Kidney proximal tubule, placenta 

Uptake 

SLC22A8 OAT3 Kidney proximal tubule, choroid plexus, brain 
endothelia 

Uptake 

Table 5 Tissue Specific Transporters 
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CYP 
Enzymes 

          Inhibitors     Inducers Substrates 

CYP1A2 
Ciprofloxacin, enoxacin, 
fluvoxamine, Methoxsalen, 
mexiletine, oral 
contraceptives, 
phenylpropanolamine, 
thiabendazole, vemurafenib, 
zileuton, acyclovir, 
allopurinol, caffeine, 
cimetidine, daidzein, 
disulfiram, Echinacea, 
famotidine, norfloxacin, 
propafenone, propranolol, 
terbinafine, ticlopidine, 
verapamil 

Montelukast, phenytoin, 
smokers versus non-
smokers, moricizine, 
omeprazole, 
phenobarbital 

Alosetron, caffeine, 
duloxetine, melatonin, 
ramelteon, tacrine, 
tizanidine, theophylline, 
tizanidine 

CYP2B6 Clopidogrel, ticlopidine 
prasugrel 

Efavirenz, rifampin, 
nevirapine 

Bupropion, efavirenz 

CYP2C8 Gemfibrozil, fluvoxamine, 
ketoconazole, trimethoprim 

Rifampin Repaglinide, Paclitaxel 

CYP2C9 Amiodarone, fluconazole, 
miconazole, oxandrolone, 
capecitabine, cotrimoxazole, 
etravirine, fluvastatin, 
fluvoxamine, metronidazole, 
sulfinpyrazone, tigecycline, 
voriconazole, zafirlukast 

Carbamazepine, 
rifampin, aprepitant, 
bosentan, phenobarbital, 
St. John’s wort 

Celecoxib, Warfarin, 
phenytoin 

CYP2C19 Fluconazole, fluvoxamine, 
ticlopidine, esomeprazole, 
fluoxetine, moclobemide, 
omeprazole, voriconazole, 
allicin (garlic derivative), 
armodafinil, carbamazepine, 
cimetidine, etravirine, human 
growth hormone (rhGH), 
felbamate, ketoconazole, oral 
contraceptives 

Rifampin, artemisinin Clobazam, lansoprazole, 
omeprazole, 
Smephenytoin, S-
mephenytoin 

CYP3A 
Boceprevir, clarithromycin, 
conivaptan, grapefruit juice, 
indinavir, itraconazole, 

Avasimibe, 
carbamazepine, 

Alfentanil, aprepitant, 
budesonide, buspirone, 
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ketoconazole, 
lopinavir/ritonavir, 
mibefradil, nefazodone, 
nelfinavir, posaconazole, 
ritonavir, saquinavir, 
telaprevir, telithromycin, 
voriconazole, amprenavir, 
aprepitant, atazanavir, 
ciprofloxacin, crizotinib, 
darunavir/ritonavir, diltiazem, 
erythromycin, fluconazole, 
fosamprenavir, grapefruit 
juice, imatinib, verapamil, 
alprazolam, amiodarone, 
amlodipine, atorvastatin, 
bicalutamide, cilostazol, 
cimetidine, cyclosporine, 
fluoxetine, fluvoxamine, 
ginkgo, goldenseal, isoniazid, 
lapatinib, nilotinib, oral 
contraceptives, pazopanib, 
ranitidine, ranolazine, 
tipranavir/ritonavir, 
ticagrelor, zileuton 

 

phenytoin, rifampin, St. 
John’s wort, bosentan, 
efavirenz, etravirine, 
modafinil, nafcillin, 
amprenavir, aprepitant, 
armodafinil, 
clobazamechinacea, 
pioglitazone, prednisone, 
rufinamide, vemurafenib 

conivaptan, darifenacin, 
darunavir, dasatinib, 
dronedarone, eletriptan, 
eplerenone, everolimus, 
felodipine, indinavir, 
fluticasone, lopinavir, 
lovastatin, lurasidone, 
maraviroc, midazolam, 
nisoldipine, quetiapine, 
saquinavir, sildenafil, 
simvastatin, sirolimus, 
tolvaptan, tipranavir, 
triazolam, ticagrelor, 
vardenafil, Alfentanil, 
astemizole, cisapride, 
cyclosporine, 
dihydroergotamine, 
ergotamine, fentanyl, 
pimozide, quinidine, 
sirolimus, tacrolimus, 
terfenadine 

CYP2D6 Bupropion, fluoxetine, 
paroxetine, quinidine, 
cinacalcet, duloxetine, 
terbinafine, 

NA Atomoxetine, desipramine, 
dextromethorphan, 
metoprolol, nebivolol, 
perphenazine, tolterodine, 
venlafaxine, Thioridazine, 
pimozide amiodarone, celecoxib, 

clobazam, cimetidine, 
desvenlafaxine, diltiazem, 
diphenhydramine, echinacea, 
escitalopram, febuxostat, 
gefitinib, hydralazine, 
hydroxychloroquine, 
imatinib, methadone, oral 
contraceptives, pazopanib, 
propafenone, ranitidine, 
ritonavir, sertraline, 
telithromycin, verapamil, 
vemurafenib 

Table 6 in vivo Probe Inhibitors/Inducers/Substrates of CYP Enzymes 
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Transporter Inhibitor Inducer Substrate 

P-gp Amiodarone, azithromycin, 
captopril, carvedilol, 
clarithromycin, conivaptan, 
cyclosporine, diltiazem, 
dronedarone, erythromycin, 
felodipine, itraconazole, 
ketoconazole, lopinavir and 
ritonavir, quercetin, 
quinidine, ranolazine, 
ticagrelor, verapamil 

Avasimibe, 
carbamazepine, 
phenytoin, rifampin, 
St John’s wort, 
tipranavir/ritonavir 

Aliskiren, ambrisentan, 
colchicine, dabigatran 
etexilate, digoxin, 
everolimus, fexofenadine, 
imatinib, lapatinib, 
maraviroc, nilotinib, 
posaconazole, ranolazine, 
saxagliptin, sirolimus, 
sitagliptin, talinolol, 
tolvaptan, topotecan 

BCRP Cyclosporine, elacridar 
(GF120918), eltrombopag, 
gefitinib 

NA 
Methotrexate, 
mitoxantrone, imatinib, 
irrinotecan, lapatinib, 
rosuvastatin, sulfasalazine, 
topotecan 

OATP1B1 Atazanavir, cyclosporine, 
eltrombopag, gemfibrozil, 
lopinavir, rifampin, ritonavir, 
saquinavir, tipranavir 

NA Atrasentan, atorvastatin, 
bosentan, ezetimibe, 
fluvastatin, glyburide, SN-
38 (active metabolite of 
irinotecan), rosuvastatin, 
simvastatin acid, 
pitavastatin, pravastatin, 
repaglinide, rifampin, 
valsartan, olmesartan 

OATP1B3 Atazanavir, cyclosporine, 
lopinavir, rifampin, ritonavir, 
saquinavir 

NA Atorvastatin, rosuvastatin, 
pitavastatin, telmisartan, 
valsartan, olmesartan 

OCT2 Cimetidine, quinidine NA Amantadine, amiloride, 
cimetidine, dopamine, 
famotidine, memantine, 
metformin, pindolol, 
procainamide, ranitidine, 
varenicline, oxaliplatin 

OAT1 Probenecid NA Adefovir, captopril, 
furosemide, lamivudine, 
methotrexate, oseltamivir, 
tenofovir, zalcitabine, 
zidovudine 
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OAT3 Probenecid cimetidine, 
diclofenac 

NA 
Acyclovir, bumetanide, 
ciprofloxacin, famotidine, 
furosemide, methotrexate, 
zidovudine, oseltamivir 
acid, (the active metabolite 
of oseltamivir), penicillin 
G, pravastatin, 
rosuvastatin, sitagliptin 

Table 7 in vivo Probe Inhibitors/Inducers/Substrates of Selected Transporters 

 

2.4.3 Metabolism component 
 

The cytochrome P450 superfamily (officially abbreviated as CYP) is a large and diverse 

group of enzymes that catalyze the oxidation of organic substances. The substrates of CYP 

enzymes include metabolic intermediates such as lipids and steroidal hormones, as well as 

xenobiotic substances such as drugs and other toxic chemicals. CYPs are the major enzymes 

involved in drug metabolism and bioactivation, accounting for about 75% of the total number 

of different metabolic reactions [22]. CYP enzyme names and genetic variants were mapped 

from the Human Cytochrome P450 (CYP) Allele Nomenclature Database (http://www. 

cypalleles.ki.se/). This site contains the CYP450 genetic mutation effect on the protein 

sequence and enzyme activity with associated references. 

2.4.4 Transporters component 
Transport Proteins are proteins that serve the function of moving other materials within an 

organism. Transport proteins are vital to the growth and life of all living things. Transport 

proteins involved in the movement of ions, small molecules, or macromolecules, such as 

another protein, across a biological membrane. They are integral membrane proteins; that is 

they exist within and span the membrane across which they transport substances. Their names 

and genetic variants were mapped from the Transporter Classification Database 

(http://www.tcdb.org).  
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2.4.5 Drugs component 
 

Drug names was created using the drug names from DrugBank 3.0 [14]. DrugBank consists 

of 6,829 drugs that can be grouped into different categories of FDA-approved, FDA approved 

biotech, nutraceuticals, and experimental drugs. The drug names are mapped to generic 

names, brand names, and synonyms. 

2.4.6 Subject component 
 

Subject component includes existing ontologies for human disease ontology (DOID) [23], 

Suggested Ontology for Pharmacogenomics (SO-Pharm) [24] and mammalian phenotype 

(MP) [25] from http://bioportal.bioontology.org (see Table 1). 

2.5 Applications of the PK Ontology 

To demonstrate utility of the PK Ontology we present 3 case studies in which the ontology 

was used in annotation.  

 

2.5.1 Example 1: An annotated tamoxifen pharmacogenetics study 
 

This example shows how to annotate a pharmacogenetics studies with the PK ontology. We 

used a published tamoxifen PG study [26]. This PG study investigates the genetic effects 

(CYP3A4, CPY3A5, CYP2D6, CYP2C9, CYP2B6) on the tamoxifen pharmacokinetics 

outcome (tamoxifen metabolites) among breast cancer patients. It was a single arm 

longitudinal study (n = 298), patients took SOLTAMOXTM 20mg/day, and the drug steady 

state concentration was sampled (1, 4, 8, 12) months after the tamoxifen treatment. The study 

population was a mixed Caucasian and African American. The key information from this 

tamoxifen PG trial was extracted as a summary list and the pre-processed information was 

mapped to the PK ontology Ref. Figure 2 (under heading Pharmacogenomics Trial). We can 
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see from the annotation mapping that key information from the study can be easily 

summarized using the ontology.  

Figure 2 Annotated Pharmacogenomics Study using PK Ontology 

2.5.2 Example 2 midazolam/ketoconazole drug interaction study 
 

This was a cross-over three-phase drug interaction study [27] (n = 24) between midazolam 

(MDZ) and ketoconazole (KTZ). Phase I was MDZ alone (IV 0.05 mg/kg and PO 4mg); 

phase II was MDZ plus KTZ (200mg); and phase III was MDZ plus KTZ (400mg). Genetic 

variable include CYP3A4 and CYP3A5. The PK outcome is the MDZ AUC ratio before and 
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after KTZ inhibition. Annotated version of this study is presented in Ref. Figure 2 (under 

heading Drug Interaction Trial) 

2.5.3 Example 3 in vitro Pharmacokinetics Study 
 

This was an in vitro study [28], which investigated the drug metabolism activities for 3 

enzymes, such as CYP3A4, CYP3A5, and CYP3A7 in a recombinant system. Using 10 

CYP3A substrates, they compared the relative contribution of 3 enzymes among 10 drug’s 

metabolism. Annotated version of this study is presented in Figure 3. 
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Figure 3 Annotated in vitro PK study using PK Ontology 
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Chapter 3 CREATION OF PHARMACOKINETICS CORPUS3 

3.1 Introduction 

With the continuous growth of biomedical literature extracting information from biomedical 

literature by means of human annotators is a herculean task. Machine learning and NLP 

methods show tremendous promise in this area to help annotators keep tabs on the collection 

and summarization of biomedical data from literature that is unstructured.  

For successful application of machine learning and NLP methods to automatically extract 

information from biomedical literature there is need for an annotated corpora. Availability of 

such corpora makes it feasible to develop algorithms that learn from the corpus and scale 

across the vast array of biomedical literature.  

A well-annotated corpus can be put to use for following tasks in the biomedical domain:  

• Named Entity Recognition (Recognition of gene, protein, disease mentions) 

• Entity mention normalization. (Gene/protein name normalization) 

• Relation Extraction (Extraction of relation between genes/proteins) 

In biomedical domain GENIA [29] corpus is one of the most widely used semantically 

annotated corpus, along with corpora like MedTag[30], PennBioIE 

(http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2008T20), LINNEAUS 

[31] which are facilitate training of systems that perform Named Entity Recognition (NER) 

of various biological entities. Corpora like GNAT [32] are widely used for gene mention 

normalization. To extract protein-protein interactions (PPI) corpora like BioInfer [33], 

AIMed (ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/), HPRD50 

3 This chapter is published as: Wu H-Y, Karnik S, Subhadarshini A, Wang Z, Philips S, Han 
X, Chiang C, Liu L, Boustani M, Rocha L et al: An integrated pharmacokinetics ontology 
and corpus for text mining. BMC bioinformatics 2013, 14(1):35. 
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(http://www.bio.ifi.lmu.de/publications/RelEx/), IEPA 

(http://class.ee.iastate.edu/berleant/s/IEPA.htm ), LLL 

(http://genome.jouy.inra.fr/texte/LLLchallenge/) provide annotated PPI data that is used 

widely to develop PPI extraction methodologies. All these corpora serve as valuable tools for 

the community. 

However, there is a lack of such corpus for the PK DDI domain and this has been our 

motivation to develop a semantically annotated corpus taking cues from the PK ontology 

developed in Chapter 2 as our baseline.  

3.2 Creation of PK Corpus 

Our PK corpus consists of four broad classes of PK studies number of Pubmed abstracts 

manually annotated for each categories is represented in the parenthesis:  

• Clinical PK studies (n = 56) 

• Clinical pharmacogenetic studies (n = 57) 

• in vivo DDI studies (n = 218) 

• in vitro drug interaction studies (n = 210) 

Abstracts of clinical PK studies were selected from previous work from Dr. Li’s lab, in which 

the most popular CYP3A substrate, midazolam was investigated [34]. Clinical 

pharmacogenetic abstracts were selected based on the most polymorphic CYP enzyme, 

CYP2D6.  The articles for in vivo and in vitro DDI studies were gathered by querying 

Pubmed in bulk via. eUtils interface with probe substrates/inhibitors/inducers for metabolism 

enzymes reported in Table 6 as query terms. Once abstracts were collected we followed an 

annotation pipeline where we selected most relevant abstracts for inclusion in the corpus.  
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Abstracts collected in the previous step were annotated manually by a team of curators which 

included 3 masters and one Ph.D. students with different training backgrounds: 

computational science, biological science, and pharmacology respectively. In addition a 

random subset of 20% of the abstracts that had consistent annotations among four annotators, 

were double-checked and reviewed by two Ph.D. level scientists having extensive knowledge 

in pharmacology, drug interactions model based PK. Annotation workflow presented in 

Figure 4 was applied to each of the four classes in the PK corpus. We annotated key entities 

like drug names, enzymes involved in drug metabolism, PK parameters, numerical values, 

units associated with the PK parameters, DDI mechanisms and change verbs as these 

components are vital in describing a PK study pertaining to DDI. Guidelines for the 

annotation of the above listed entities are described as follows:  

Drug Names:  

We used drug generic names from Drug Bank as our standards in tagging drugs in the 

abstracts. In addition to drug names we also tagged drug metabolites, as these are important 

in describing a PK DDI study. For tagging the metabolites we used linguistic cues from 

chemistry like presence of suffixes or prefixes like: oxi, hydroxyl, methyl, acetyl, N-dealkyl, 

N-demethyl, nor, dihydroxy, O-dealkyl, and sulfo. These prefixes and suffixes represents 

metabolites formed in phase I metabolism (oxidation, reduction, hydrolysis), and phase II of 

drug metabolism (methylation, sulphation, acetylation, glucuronidation) [35]. 

Enzyme Names: 

We tagged all the CYP450 family of enzymes described in human cytochrome P450 allele 

nomenclature database, http://www. cypalleles.ki.se/. Variations of the enzyme or gene 

names were considered. We used following regular expression to identify CYP450 names 
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and variants in the text (?:cyp|CYP|P450|CYP450)?[0--9][a-zA-Z][0--

9]{0,2}(?:\*[0--9]{1,2})?$. 

PK Parameters: 

We tagged PK parameter and respective units (if present in the abstract) according to Table 2 

and Table 4.  

Numerical Data: 

In addition to PK parameters we tagged numerical values associated with them along with 

any p-values mentioned in the abstracts.  

Mechanisms: 

For tagging the mechanism by which one drug affects other we resorted to use of verbs that 

are often used to describe DDI and metabolism of drugs. We made use of the following 

regular expression to tag the mechanisms:  

inhibit(e(s|d)?|ing|ion(s)?|or)$, catalyz(e(s|d)?|ing)$, 
correlat(e(s|d)?|ing|ion(s)?)$, metaboli(z(e(s|d)?|ing)|sm)$, 
induc(e(s|d)?|ing|tion(s)?|or)$, 
form((s|ed)?|ing|tion(s)?|or)$, 
stimulat(e(s|d)?|ing|ion(s)?)$, 
activ(e(s)?|(at)(e(s|d)?|ing|ion(s)?))$, and 
suppress(e(s|d)?|ing|ion(s)?)$. 

Change: 

 Numerical data associated with the PK parameters describes quantitative change, to address 
qualitative change of PK parameters following words were tagged in the corpus: 
strong(ly)?, moderate(ly)?, high(est)?(er)?, slight(ly)?, 
strong(ly)?, moderate(ly)?, slight(ly)?, significant(ly)?, 
obvious(ly)?, marked(ly)?, great(ly)?, pronounced(ly)?, 
modest(ly)?, probably, may, might, minor, little, negligible, 
doesn’t interact, affect((s|ed)?|ing|ion(s)?)?$, 
reduc(e(s|d)?|ing|tion(s)?)$, and increas(e(s|d)?|ing)$. 

 

37  



After tagging the relevant entities in the abstract we moved to the next step of annotation i.e. 

sentence level annotation which involved identifying sentence(s) which encompass 

information key to the DDI study that is the central topic of the abstract. We categorized 

these sentences into two types namely:  

• Clear DDI Sentence (CDDIS): two drug names (or drug-enzyme pair in the in vitro study) 

are in the sentence with a clear interaction statement, i.e. either interaction, or non-

interaction, or ambiguous statement (i.e. such as possible or might and etc.). 

• Vague DDI Sentence (VDDIS): One drug or enzyme name is missed in the DDI sentence, 

but it can be inferred from the context. Clear interaction statement also is required.  

CDDIS and VDDIS were further distilled into sub-categories as these sentences are of high 

value for annotation.   
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Figure 4 PK Corpus Annotation Workflow 

 Due to fundamental difference between in vivo DDI studies and in vitro DDI studies, their 

DDI relationships were defined differently. In in vivo studies, three types of DDI 

relationships were defined (Table 8): DDI, ambiguous DDI (ADDI), and non-DDI (NDDI). 

Four conditions are specified to determine these DDI relationships. Condition 1 (C1) requires 

that at least one drug or enzyme name has to be contained in the sentence; condition 2 (C2) 

requires the other interaction drug or enzyme name can be found from the context if it is not 

from the same sentence; condition 3 (C3) specifies numeric rules to defined the DDI 

relationships based on the PK parameter changes; and condition 4 (C4) specifies the language 

expression patterns for DDI relationships. Using the rules summarized in Table 8, DDI, 

ADDI, and NDDI can be defined by C1 ˄ C2 ˄ (C3 ˅ C4). The priority rank of in vivo PK 

parameters is AUC > CL > t1/2 > Cmax. In in vitro studies, six types of DDI relationships were 

defined (Table 8). DDI, ADDI, NDDI were similar to in vivo DDIs, but three more drug-
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enzyme relationships were further defined: DEI, ambiguous DEI (ADEI), and non-DDI 

(NDEI). C1, C2, and C4 remained the same for in vitro DDIs. The main difference is in C3, 

in which either Ki or IC50 (inhibition) or EC50 (induction) were used to defined DDI 

relationship quantitatively. The priority rank of in vitro PK parameters is Ki > IC50. In Table 

9 eight examples of how DDIs or DEIs were determined in the sentences. 

DDI 
relationship 

C1 C2 C3** C4** 

IN VIVO STUDY 
DDI Yes Yes The PK parameter with the highest 

priority* must satisfy p-value <0.05 and 
FC > 1.50 or FC < 0.67 

Significant, obviously, 
markedly, greatly, 
pronouncedly and etc. 

Ambiguous 
DDI (ADDI) 

The PK parameter with the highest 
priority* in the conditions of p-value 
<0.05 but 0.67 < FC < 1.50; or FC >1.50 
or FC <0.67, but p-value > 0.05. 

Modestly, moderately, 
probably, may, might, and 
etc. 

Non-DDI 
(NDDI) 

The PK parameter with the highest 
priority*are in the condition of p-value > 
0.05 and 0.67 < FC < 1.50 

Minor significance, 
slightly, little or negligible 
effect, doesn’t interact etc. 

IN VITRO STUDY 
DDI Yes Yes (0< Ki < 10 or 0< EC50 < 10 microM, 

and p-value <0.05) 
Significant, obviously, 
markedly, greatly, 
pronouncedly and etc. 

DEI 

Ambiguous 
DDI (ADDI) 

(10 < Ki < 100 or 10 < EC50 < 100 
microM, and p-value <0.05 or vice versa) 

Modestly, moderately, 
probably, may, might, and 
etc. Ambiguous 

DEI (ADEI) 
Non-DDI 
(NDDI) 

(Ki > 100 microM or EC50 > 100 
microM, and p-value >0.05) 

Minor significance, 
slightly, little or negligible 
effect, doesn’t interact etc. Non-DEI 

(NDEI) 
Table 8 DDI Categories in PK Corpus 

Note: 

C1: At least one drug or enzyme name has to be contained in the sentence. 
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C2: Need to label the drug name if it is not from the same sentence. 

C3: PK-parameter and value dependent. 

C4: Significance statement. 

*Priority issue: When C3 and C4 occur and conflict, C3 dominates the sentence.**For the 

priority of PK parameters: AUC > CL > t1/2 > Cmax;; the priority of in vitro PK parameters: 

Ki>IC50. 
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PMID DDI sentence Relationship and comment 
20012601 The pharmacokinetic parameters of verapamil 

were significantly altered by the co-administration 
of lovastatin compared to the control. 

Because of the words, 
“significantly”, (Verapamil, 
lovastatin) is a DDI. 

20209646 The clearance of mitoxantrone and etoposide was 
decreased by 64% and 60%, respectively, when 
combined with valspodar. 

Because of the fold changes 
were less than 0.67, 
(mitoxantrone, valspodar.) and 
(etoposide, valspodar) are 
DDIs. 

20012601 The (AUC (0-infinity)) of norverapamil and the 
terminal half-life of verapamil did not significantly 
changed with lovastatin coadministration. 

Because of the words, “not 
significantly changed”, 
(verapamil, ovastatin) is a 
NDDI. 

17304149 Compared with placebo, itraconazole treatment 
significantly increase the peak plasma 
concentration (Cmax) of paroxetine by 1.3 fold 
(6.7 2.5 versus 9.0 3.3 ng/mL, P≤0.05) and the area 
under the plasma concentration-time curve from 
zero to 48 hours [AUC(0–48)] of paroxetine by 1.5 
fold (137 73 versus 199 91 ng*h/mL, P≤0.01). 

AUC has a higher rank than 
Cmax, and it had a 1.5 fold-
change and less than 0.05 p-
value, thus, (itraconazole, 
paroxetine) is a DDI. 

13129991 The mean (SD) urinary ratio of dextromethorphan 
to its metabolite was 0.006 (0.010) at baseline and 
0.014 (0.025) after St John’s wort administration 
(P=.26) 

The change in PK parameter is 
more than 1.5 fold but P-value 
is >0.05. Thus, 
(dextromethorphan, St John’s 
wort) is an ADDI. 

19904008 The obtained results show that perazine at its 
therapeutic concentrations is a potent inhibitor of 
human CYP1A2. 

Because of words, “potent 
inhibitor”, (perazine, CYP1A2) 
is a DEI. 

19230594 After human hepatocytes were exposed to 10 
microM YM758, microsomal activity and mRNA 
level for CYP1A2 were not induced while those for 
CYP3A4 were slightly induced. 

Because of words, “not 
induced” and “slightly 
induced”, (YM758, CYP1A2) 
and (YM758, CYP1A2) are 
NDEIs. 

19960413 From these results, DPT was characterized to be a 
competitive inhibitor of CYP2C9 and CYP3A4, 
with K(i) values of 3.5 and 10.8 microM in HLM 
and 24.9 and 3.5 microM in baculovirus-insect 
cell-expressed human CYPs, respectively. 

Because K was larger than 
10microM, (DPT, CYP2C9) 
and (DPT, CYP3A4) are 
ADEIs. 

Table 9 DDI Examples from PK Corpus 

We calculate Krippendorff's alpha [36] to evaluate the reliability of annotations by our 
annotators, it serves as a measure of inter-annotator agreement. The frequencies of key 
entities, DDI sentences, and DDI pairs are presented in Table 10 along with their 
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Krippendorff's alphas. Note that the total DDI pairs refer to the total pairs of drugs within a 
DDI sentence from all DDI sentences. 

Key Terms Annotation Categories Frequencies Krippendorff's alpha 
Drug 8633 0.953 
CYP 3801 
PK Parameter 1508 
Number 3042 
Mechanism 2732 
Change 1828 
Total words 97291 

DDI sentences CDDI sentences 1191 0.921 
VDDI sentences 120 
Total sentences 4724 

DDI Pairs DDI 1239 0.905 
ADDI 300 
NDDI 294 
DEI 565 
ADEI 95 
NDEI 181 
Total Drug Pairs 12399 

Table 10 Annotation Performance Summaries 

Our corpus was constructed as follows to be machine-readable: raw abstracts were 

downloaded from PubMed in XML format. Then XML files were converted into GENIA 

corpus format following the document type definition (DTD) from the GENIA corpus [29]. 

The sentence detection in this step is accomplished by using the Perl module 

Lingua::EN::Sentence, from CPAN. Resulting corpus files were then tagged with the 

prescribed three levels of PK and DDI annotations. Finally, a cascading style sheet (CSS) was 

used to assign different colors for the entities in the corpus. This feature allows the users to 

visualize annotated entities. Figure 5 presents example of in vivo DDI abstract from the 

corpus with the respective color legend. We would like to acknowledge that a DDI Corpus 

was recently published as part of a text mining competition DDIExtraction 2011 
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(http://labda.inf.uc3m.es/DDIExtraction2011/dataset.html). The DDIs in this corpus were 

clinical outcome oriented, not PK oriented. They were extracted from DrugBank, not from 

PubMed abstracts. Our PK corpus complements to their corpus very well. PK Corpus and PK 

Ontology described in Chapter 2 and associated data is available for download at 

http://rweb.biostat.iupui.edu/corpus/ and http://rweb.biostat.iupui.edu/ontology/ respectively.  

 

 

Figure 5 Visual Example of Annotated in vivo DDI abstract  
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Chapter 4 EXTRACTION OF DDI PAIRS FROM PK CORPUS4 

4.1 Introduction 

We demonstrate the usability of the PK corpus developed in Chapter 3 by utilizing the corpus 

for training a machine-learning model aimed at extracting DDI pairs from the corpus 

automatically. We also applied this approach on the DDIExtraction 2011 

(http://labda.inf.uc3m.es/DDIExtraction2011/dataset.html) corpus as we participated in the 

DDIExtraction 2011 competition.  

4.2 All paths graph kernel 

We implemented the approach described by Airola et al. [37] for the DDI extraction.  This 

approach has been previously applied for extraction of protein-protein interactions. Prior to 

performing DDI extraction, the testing and validation DDI abstracts in our corpus was pre-

processed and converted into the unified XML format [37]. Then following steps were 

performed: 

• Drugs were tagged in each of the sentences using dictionary based on DrugBank[14]. 

This step revised our prescribed drug name annotations in the corpus. One purpose is 

to reduce the redundant synonymous drug names. The other purpose is only keep the 

4 This chapter is published as: Wu H-Y, Karnik S, Subhadarshini A, Wang Z, Philips S, Han 
X, Chiang C, Liu L, Boustani M, Rocha L et al: An integrated pharmacokinetics ontology 
and corpus for text mining. BMC bioinformatics 2013, 14(1):35. and Karnik S, 
Subhadarshini A, Wang Z, Rocha LM, Li L: Extraction of Drug-Drug Interactions Using 
All Paths Graph Kernel. In: Drug-Drug Interaction Extraction (DDIExtraction 2011): 
2011. 
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parent drugs and remove the drug metabolites from the tagged drug names from our 

initial corpus, because parent drugs and their metabolites rarely interacts. In addition, 

enzymes (i.e. CYPs) were also tagged as drugs, since enzyme-drug interactions have 

been extensively studied and published. The regular expression of enzyme names in 

our corpus was used to remove the redundant synonymous gene names. 

• Each of the sentences was subjected to tokenization, PoS tags and dependency tree 

generation using the Stanford parser [38]. 

• C2n drug pairs form the tagged drugs in a sentence were generated automatically, and 

they were assigned with default labels as no-drug interaction. Please note that if a 

sentence had only one drug name, this sentence did not have DDI. This setup limited 

us considering only CDDI sentence in our corpus. 

• The drug interaction labels were then manually flipped based on their true drug 

interaction annotations from the corpus. Please note that our corpus had annotated 

DDIs, ADDIs, NDDIs, DEIs, ADEIs, and NDEIs. Here only DDIs and DEIs were 

labeled as true DDIs. The other ADDIs, NDDIs, DEIs, and ADEIs were all 

categorized into the no-drug interactions. 

Then sentences were represented with dependency graphs using interacting components 

(drugs) (Figure 6). The graph representation of the sentence was composed of two items: i) 

One dependency graph structure of the sentence; ii) a sequence of PoS (part-of-speech) tags 

(which was transformed to a linear order "graph" by connecting the tags with a constant edge 

weight). We used the Stanford parser [38] to generate the dependency graphs. Airola et al. 

proposed to combine these two graphs to one weighted, directed graph. This graph was fed 

into a support vector machine (SVM) for DDI/non-DDI classification. More details about the 

all paths graph kernel algorithm can be found in [39]. A graphical representation of the 

approach is presented in Figure 6. 
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Figure 6 Summary of All Paths Graph Kernel 

DDI extraction was implemented for the in vitro and in vivo DDI corpora separately we split 

both the corpora into 70-30 fraction, we kept 30% fraction aside for testing the extraction 

performance. We also applied this method to the dataset from the DDIExtraction 2011 

corpus. 

Table 11 presents the training sample size and testing sample size in all corpus sets and 

Table 12 presents the performance of DDI Extraction. 
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Dataset Abstracts Sentences DDI Pairs True DDI Pairs 

in vivo DDI Training 174 2112 2024 359 

in vivo DDI Testing 44 545 574 45 

in vitro DDI Training 168 1894 7122 783 

in vitro DDI Testing 42 475 1542 146 

DDIExtraction 2011 Training NA                 3621 NA 20888 

DDIExtraction 2011 Testing NA 1539 NA 7036 

Table 11 Summary of the Datasets used for DDI Extraction 

Datasets Precision Recall F-measure 
in vivo DDI Training 0.67 0.78 0.72 
in vivo DDI Testing 0.67 0.79 0.73 
in vitro DDI Training 0.51 0.59 0.55 
in vitro DDI Testing 0.47 0.58 0.52 
DDIExtraction 2011 Training 0.42 0.42 0.42 

DDIExtraction 2011 Testing 0.14 0.12 0.17 

Table 12 Summary of Performance of DDI Extraction 

Error analysis was performed in test data to evaluate the extraction algorithm quality. Table 

13 summarizes the results. Among the known reasons for the false positives and false 

negatives, the most frequent one is that there are multiple drugs in the sentence, or the 

sentence is long. The other reasons include that there is no direct DDI relationship between 

two drugs, but the presence of some words, such as dose, increase, and etc., may lead to a 

false positive prediction; or DDI is presented in an indirect way; or some NDDI are inferred 

due to some adjectives (little, minor, negligible). 

 

 

 

48  



 

 

 

No. Error Categories Error 
type 

Frequency Examples 
In 
vivo 

In 
vitro 

1 There are multiple drugs 
in the sentence, and the 
sentence is long. 

FP 6 34 PMID: 12426514. In 3 subjects with 
measurable concentrations in the single-dose 
study, rifampin significantly decreased the 
mean maximum plasma concentration 
(C(max)) and area under the plasma 
concentration-time curve from 0 to 24 h 
[AUC(0–24)] of praziquantel by 81% (P 
<.05) and 85% (P <.01), respectively, 
whereas rifampin significantly decreased the 
mean C(max) and AUC(0–24) of 
praziquantel by 74% (P <.05) and 80% (P 
<.01), respectively, in 5 subjects with 
measurable concentrations in the multiple-
dose study 

FN 2 17 PMID: 10608481. Erythromycin and 
ketoconazole showed a clear inhibitory effect 
on the 3-hydroxylation of lidocaine at 5 
microM of lidocaine (IC50 9.9 microM and 
13.9 microM, respectively), but did not show 
a consistent effect at 800 microM of 
lidocaine (IC50 >250 microM and 75.0 
microM, respectively). 

49  



2 There is no direct DDI 
relationship between 
two drugs, but the 
presence of some words, 
such as dose, increase, 
and etc. may lead to a 
false positive prediction 

FP 6 14 PMID: 17192504. A significant fraction of 
patients to be treated with HMR1766 is 
expected to be maintained on warfarin 

3 DDI is presented in an 
indirect way. 

FN 2 19 PMID: 11994058. In CYP2D6 poor 
metabolizers, systemic exposure was greater 
after chlorpheniramine alone than in 
extensive metabolizers, and administration of 
quinidine resulted in a slight increase in 
CLoral. 

4 Design issue. Some 
NDDI are inferred due 
to some adjectives 
(little, minor, negligible) 

FP 1 3 PMID: 10223772. In contrast,the effect of 
ranitidine or ebrotidine on CYP3A activity in 
vivo seems to have little clinical significance. 

5 Unknown FP 5 44 PMID: 10383922. CYP1A2, CYP2A6, and 
CYP2E1 activities were not significantly 
inhibited by azelastine and the two 
metabolites. 

FN 6 26 PMID: 10681383. However, the most 
unusual result was the interaction between 
testosterone and nifedipine. 

Table 13 Error Analyses from Test Data 
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Chapter 5: CONCLUSIONS AND FUTURE DIRECTIONS 

 

In this work we developed PK ontology and used the annotation guidelines to assemble the 

PK corpus and used the PK corpus to demonstration application of machine learning and 

NLP to extract DDI pairs from unstructured text. Our annotation pipeline is very strong 

thanks to the collective experience of highly experienced team for mentors in Dr Li’s group 

our group used similar annotation technique to demonstrate use of biomedical text to 

understand DDIs [40].  

There are certain areas where we can improve like the performance of extraction of DDI 

pairs, which advocates for using new methods to make use of high quality PK corpus which 

will in turn will improve the performance of DDI extraction and facilitate creation of 

comprehensive PK DDI database which will be an important asset for the research 

community.
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