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ABSTRACT 
 

Meredith Kohr Owen 
 
 

EFFECT OF CORONARY PERIVASCULAR ADIPOSE TISSUE ON VASCULAR 

SMOOTH MUSCLE FUNCTION IN METABOLIC SYNDROME 

 
           Obesity increases cardiovascular disease risk and is associated with 

factors of the “metabolic syndrome” (MetS), a disorder including hypertension, 

hypercholesterolemia and/or impaired glucose tolerance. Expanding adipose and 

subsequent inflammation is implicated in vascular dysfunction in MetS. 

Perivascular adipose tissue (PVAT) surrounds virtually every artery and is   

capable of releasing factors that influence vascular reactivity, but the effects of 

PVAT in the coronary circulation are unknown. Accordingly, the goal of this 

investigation was to delineate mechanisms by which lean vs. MetS coronary PVAT 

influences vasomotor tone and the coronary PVAT proteome. We tested the 

hypothesis that MetS alters the functional expression and vascular contractile 

effects of coronary PVAT in an Ossabaw swine model of the MetS. Utilizing 

isometric tension measurements of coronary arteries in the absence and presence 

of PVAT, we revealed the vascular effects of PVAT vary according to anatomical 

location as coronary and mesenteric, but not subcutaneous adipose tissue 

augmented coronary artery contractions to KCl. Factors released from coronary 

PVAT increase baseline tension and potentiate constriction of isolated         

coronary arteries relative to the amount of adipose tissue present. The effects of 

coronary PVAT are elevated in the setting of MetS and occur independent of 
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endothelial function. MetS is also associated with substantial alterations in the 

coronary PVAT proteome and underlying increases in vascular smooth muscle 

Ca2+ handling via CaV1.2 channels, H2O2-sensitive K+ channels and/or upstream 

mediators of these ion channels. Rho-kinase signaling participates in the increase 

in coronary artery contractions to PVAT in lean, but not MetS swine. These data 

provide novel evidence that the vascular effects of PVAT vary according to 

anatomic location and are influenced by the MetS phenotype.  

 
Johnathan D. Tune, Ph.D., Chair  
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Chapter 1: Introduction 

The Pandemic of Obesity 

Today there are more people in the world that are overweight than 

underweight (Figure 1.1)2, 10. In the last 50 years, humans have become an obese 

species. Expansive accumulation of fat depots enabled by “thrifty” genes was once 

a natural and advantageous adaptation of earlier human cultures to survive 

between periods of feast and famine11. However, as societies have evolved and 

modern agriculture developed, this “thrifty genotype” is destructive in an era of 

abundant food sources and increasingly sedentary lifestyle. Increased food 

availability has helped to mitigate world hunger, while overabundance of food and 

declining physical activity continues to fuel an obesity pandemic.  

 

Figure 1.1 Pandemic of Obesity of Males, ages 20+. Worldwide, 2.8 million 
people die each year as a result of being overweight (BMI ≥ 25 kg/m2) (including 
obesity (BMI ≥ 30 kg/m2)).2  
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The most recent estimates reveal that ~36% of adults in the United States 

are obese (defined as a body mass index, BMI ≥ 30 kg/m2)12 and approximately 

17% of children between the ages of 2-19 have already been classified as obese13, 

implicating a perilous phenotype for the future14. Although America has 

acknowledged this growing problem, efforts to curb obesity in the United States 

have fallen short. Projections speculate that more than half of the US population 

will be obese by 20202. Once considered a high income country problem, many 

low and middle-income countries are also experiencing widespread obesity, which 

is currently the fifth leading risk for death globally. These data illustrate the 

shocking predicament that plagues modern society2. 

 

Obesity, the Metabolic Syndrome and Cardiovascular Disease 

Excess weight decreases mental concentration, productivity, can limit 

mobility, and even obstruct normal respiratory function, leading to sleep apnea15. 

While this growing pandemic is problematic in itself, the corresponding increase in 

obesity-associated cardiovascular diseases will wreak havoc on our healthcare 

system. Cardiovascular disease (CVD) remains the leading cause of death 

worldwide (Figure 1.2)2. Overweight individuals have an increased risk for heart 

diseases including heart attack, congestive heart failure, sudden cardiac death, 

angina, and dysrhythmia as well as other obesity associated morbidities that are 

placing additional pressure on healthcare providers16. The surgeon general 

suggests that even moderate excess weight (10 to 20 lbs.) can increase an 

individual’s risk of cardiovascular-related death2. While modern medicine has 
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helped improve the outcome and even prevent some obesity-associated 

cardiovascular events, costly procedures and loss of productivity are contributing 

to growing financial burdens17. Recent estimates suggest the US spends between 

$147 and $210 billion dollars annually on diseases related to obesity17. Between 

2010 and 2030, total direct medical costs related to cardiovascular disease are 

projected to triple, from $273 billion to $818 billion. Real indirect costs (due to lost 

productivity) are estimated to increase from $172 billion in 2010 to $276 billion in 

203018. Unless we can find ways to ameliorate the pathologic consequences of 

obesity, these projections ensure greater mortality and strain on our healthcare 

system and economy.  

  
Figure 1.2 reveals the distribution of deaths due to non-communicable 

disease, including diabetes and cardiovascular disease. Although it is appreciated 

that obesity increases morbidity and mortality due to CVD, the mechanisms linking 

the two are poorly understood. Early intervention may be the most effective way of 

preventing CVD, but routine measurements such as body weight or BMI are not 

informative enough to assess CVD risk19,20. In addition to weight gain, factors 

Figure 1.2 Proportion of global 
noncommunicable disease 
deaths under the age of 70, by 
cause of death. Cardiovascular 
disease remains the leading 
cause of death worldwide2.  
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independent of body mass, such as genetic predisposition and inflammation also 

contribute to overall CVD susceptibility6, 21. Obesity alone increases CVD risk and 

all-cause mortality22, but weight gain is typically accompanied by additional 

metabolic conditions including dyslipidemia, hyperglycemia, insulin resistance, 

impaired glucose tolerance and hypertension, each of which can exacerbate 

cardiovascular risk23. Collectively, three or more of these conditions render the 

diagnosis of the “Metabolic Syndrome” (MetS)24 and each multiply the risk for a 

cardiovascular event, such as a fatal myocardial infarction or stroke4, 25 (Figure 

1.3).   

Components of the MetS do not develop overnight. It is understood that 

early changes in metabolism can affect cardiovascular health long before the 

clinical diagnosis of disease. Physicians can test and identify each of these 

conditions and give a better risk assessment, but there are still many questions 

regarding the specific processes that link obesity/MetS to CVD. Abnormal weight 

gain during childhood or adolescence can have a large impact on diabetes and 

cardiovascular risk even at a normal BMI range6, suggesting that methods to 

identify disease earlier are necessary to prevent the progression of cardiovascular 

disease.  

Figure 1.3 Prevalence of Metabolic Syndrome (MS) and associated 
cardiovascular disease events. Diagnosis of Metabolic syndrome with World 
Health Organization (WHO) criteria. CVD risk factors include elevated lipids, 
obesity, diabetes, blood pressure and smoking and reductions in blood glucose 
tolerance. Subjects were followed for two years to evaluate the CVD events 
associated with metabolic syndrome. Events included complications from coronary 
artery disease, cerebrovascular disease, peripheral artery disease, retinopathy, 
nephropathy, neuropathy and death.4 
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Accordingly, the long term goal of this research is to identify 

mechanisms by which obesity and MetS contribute to the initiation and 

progression of CVD. Identifying these mechanisms will assist in providing novel 

therapeutic targets to reduce the cardiovascular complications in MetS.  

 

Metabolic Syndrome and Coronary Artery Disease 

As the coronary circulation is heterogeneous, coronary artery disease 

(CAD) encompasses both microvascular and macrovascular disease26. 

Microvascular dysfunction impairs the ability of the circulation to alter resistance, 

preventing alterations in blood flow to meet tissue demand. In contrast, 

atherosclerosis is a process where early diffuse CAD can change fluid dynamics 

across the length of the artery, but is more dangerous as it progresses, when artery 

stenosis can lead to plaque rupture, thrombosis, and tissue death27.  

Regulation of myocardial oxygen delivery is essential for normal cardiac 

function because the heart is constantly working and adapting to maintain cardiac 
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output. Myocardial oxygen demand varies depending on the relative energy 

expenditure of the organs (i.e. during periods of rest/exercise), therefore, the ability 

of the circulation to redirect blood flow from inactive to metabolically active organs 

is crucial for maintaining adequate energy supply. This is tightly regulated by 

vascular smooth muscle cells, which control tone with the integration of local 

hemodynamic, hormonal and nervous system signals.  

Alterations in the control of coronary blood flow could underlie the dramatic 

risk of cardiovascular morbidity and mortality associated with the MetS. Growing 

evidence suggests that diffuse coronary vascular dysfunction is a powerful, 

independent risk factor for cardiac mortality among both diabetics and 

nondiabetics alike28, 29. Coronary flow reserve (CFR) is the maximum increase in 

blood flow through the coronary arteries above the normal resting volume. CFR is 

dependent on the extent of focal coronary artery stenosis, the fluid dynamic effect 

of diffuse atherosclerosis,27 and the presence of microvascular dysfunction28. In 

diabetics, vascular dysfunction precedes overt atherosclerosis and is associated 

with greater cardiovascular mortality29. However, in both diabetic and non-diabetic 

patients, coronary vascular dysfunction as measured by impaired CFR was an 

independent correlate of cardiac and all-cause mortality. Although non-diabetic 

patients had lower cardiac mortality overall, diabetic patients that maintained CFR 

(>1.6) had similar cardiovascular mortality as non-diabetic patients with normal 

CFR, suggesting early alterations in vascular function underlie the adverse 

cardiovascular events in the MetS28.  
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Coronary Microvascular Dysfunction in Metabolic Syndrome  

Previous studies from our laboratory have established that obesity/MetS 

significantly impairs the ability of the coronary circulation to regulate microvascular 

resistance, which is required to balance myocardial oxygen delivery and 

metabolism30, 31, 32, 33, 34. Regulation of myocardial oxygen delivery is critical for 

maintaining overall cardiac function. The heart has limited anaerobic capacity and 

utilizes a high rate of oxygen extraction at rest (70-80%), requiring a continuous 

supply of oxygen to maintain normal cardiac output and blood pressure. Coronary 

microvascular dysfunction in the MetS is evidenced by reduced coronary venous 

PO2 
31, 32, 33, 34, diminished vasodilation to endothelial-dependent and independent 

agonists (i.e. flow reserve)35, 36, 28, 37, 38, 39, and altered functional and reactive 

hyperemia31, 32, 33, 34, 40, all of which occur prior to overt CVD. Our findings indicate 

that this impairment is related to increased activation of vasoconstrictor neuro-

humoral pathways (e.g. a1 adrenoceptor41, angiotensin/AT1 signaling30, 33 along 

with decreased function of vasodilatory K+ channels (e.g. BKCa channels42, KV 

channels34). Recent evidence suggests that coronary microvascular dysfunction in 

MetS could also be related to increases in mineralocorticoid signaling which lead 

to marked alterations in the transcription, expression and activity of K+ channels 

and L-type Ca2+ (CaV1.2) channels43, 44, 45, 46, 47, which are central to 

electromechanical coupling in smooth muscle48 and to the overall regulation of 

coronary vasomotor tone48, 49. The mechanism mediating the altered expression 

and/or function of these channels and contributing to microvascular dysfunction in 

MetS is currently under investigation.  
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Coronary Macrovascular Dysfunction in Metabolic Syndrome 

In contrast to the microcirculation, the larger conduit vessels contribute very 

little to blood flow regulation50, 51, but are more prone to atherosclerosis, a form of 

vascular dysfunction that develops over decades. CAD is one of the most common 

manifestations of atherosclerosis52, which is a chronic disease characterized by 

the thickening of arteries. Atherosclerosis is caused by an innate immune 

response, involving the recruitment and activation of monocytes that respond to 

an excessive accumulation of modified lipids in the arterial wall.  

 

Figure 1.4 Atherosclerosis Timeline. As atherosclerosis develops, blunted 
responses to vasodilatory mediators and progressive endothelial dysfunction 
occur early, while smooth muscle proliferation and collagen production help to 
stabilize plaques as atherosclerosis progresses.5 
 

The buildup of inflammatory cells within the arterial wall leads to local 

production of chemokines, interleukins, and proteases that enhance the influx of 

monocytes and lymphocytes, thereby promoting a vicious cycle of immune cell 

recruitment and the progression of lesions53. Individuals with atherosclerosis can 

remain asymptomatic for decades, but over time, inadequate removal of fats and 
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cholesterol from in and around the vasculature can lead to the development of 

plaques in the vessel wall (Figure 1.4). Overt plaque formation or ruptured plaques 

and subsequent thrombosis formation can impede blood flow to downstream 

tissues, often resulting in tissue death26.  

There are several potential mediators of atherosclerosis with increasing 

adiposity, including factors involved in blood pressure regulation, glucose 

tolerance, lipid metabolism, and chronic inflammation16, 54, 7. Systemic 

inflammation plays a pivotal role in the genesis and progression of 

atherosclerosis55, 56, 53. This inflammatory signaling is accompanied by endothelial 

and smooth muscle dysfunction as well as altered expression of angiogenic factors 

that result in structural remodeling and functional changes to the vessel57. The 

endothelium is an important paracrine organ that participates in regulating vascular 

tone, smooth muscle proliferation, and inflammation. Endothelial injury is thought 

to be an initiating event in atherosclerosis, causing adhesion of platelets and/or 

monocytes and release of growth factors, which leads to smooth muscle migration 

and proliferation58. Endothelial dysfunction is also characterized by impaired 

endothelial nitric oxide (NO) release and a subsequent decrease in blood flow to 

target tissues59.  

Smooth muscle dysfunction is another hallmark of atherosclerosis60. 

Healthy smooth muscle cells are fully differentiated and contractile, but in the face 

of cardiovascular risk factors they dedifferentiate to a more proliferative 

phenotype61, 62. During the progression of atherosclerosis, infiltration of lipid laden 

cells and inflammatory signaling lead to neointima formation, in which the vascular 
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media layer thickens as smooth muscle cells replicate to remodel the vascular 

wall63. Although endothelial dysfunction may initiate, contribute to, and exacerbate 

atherosclerosis58, additional evidence suggests smooth muscle dysfunction could 

be the initiating event in atherosclerosis, organizing the angiogenic response that 

leads to accumulation and retention of lipids in the arterial wall64. Studies with 

adults at risk for atherosclerosis support the hypothesis that smooth muscle 

dysfunction may occur independently of impaired endothelial-dependent 

vasodilation. In these patients, vasodilation to exogenous NO with nitroglycerin 

(NTG) was impaired simultaneously with impaired endothelial-dependent 

vasodilation65, suggesting smooth muscle and endothelial dysfunction occur 

concomitantly. Therapeutic interventions designed to prevent or revert the 

progression to these dysfunctional cell fates are critical for ameliorating 

cardiovascular disease in the metabolic syndrome.  

In addition to what we understand about changes in blood flow and vessel 

remodeling that accompany MetS, knowledge of the specific cellular and molecular 

mechanisms that underlie changes in vascular smooth muscle function during the 

progression of atherosclerosis may elucidate targets for intervention. Intracellular 

calcium is a secondary messenger that is required for smooth muscle contraction. 

Alterations in intracellular calcium handling can cause changes in the function of 

these cells and is implicated in phenotypic modulation of smooth muscle cells, 

characterized by proliferation and migration66. Coronary smooth muscle cells of 

diabetic dyslipidemic swine exhibit impaired Ca2+ extrusion, down regulation of 

voltage-gated calcium channel (CaV1.2) expression, increases in Ca2+ 
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sequestration by the SR, increased nuclear localization of Ca2+, and increased 

calcium-dependent K+ channel activity67, 68, 66 impairing the ability of these cells to 

properly regulate blood flow.  

The elaborate cell signaling and heterogeneous nature of atherosclerosis 

often make it hard to distinguish between cause and effect in the pathogenesis of 

CVD, but it is clear that modulation of the coronary smooth muscle cell phenotype 

is required for overt atherosclerosis to occur. Both microvascular and 

macrovascular dysfunction contribute to cardiovascular morbidity and mortality26, 

but it is still unclear what aspect of MetS is responsible for mediating these 

changes. In order to prevent obesity-induced CVD, we must understand how fat 

accumulation influences vascular cellular function. Together, these studies 

suggest that alterations in ion channel function and intracellular Ca2+ handling, 

indicative of changes in smooth muscle gene expression, are required for the 

progression of vessels into the diseased state, but the mechanisms by which 

weight gain and MetS increase CAD risk and contribute to micro/macrovascular 

smooth muscle dysfunction has yet to be determined.  

 

Adipose Tissue, Distribution and Inflammation 

To this cause, several investigators are actively researching adipose tissue 

and its dynamic endocrine and paracrine action in health and disease. White 

adipose tissue (WAT) is the fat that stores triglycerides and from which lipids are 

mobilized for systemic utilization when energy is required69. The discovery of leptin 

in 1994 encouraged scientists to reconsider the role of adipose tissue, and it is 
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now recognized as a metabolically active endocrine and paracrine organ55, 70. As 

developing preadipocytes differentiate to become mature adipocytes, they acquire 

the ability to synthesize hundreds of proteins, many of which are released as 

enzymes, cytokines, growth factors, and hormones involved in overall energy 

homeostasis (Figure 1.5). Moreover, adipose tissue does not just contain 

adipocytes (30-50%), but is also composed of stromavascular cells, including 

preadipocytes, fibroblasts, mesenchymal stem cells, endothelial progenitor cells, 

T cells, B cells, mast cells, and adipose tissue macrophages71. Each of these 

populations has its own chemical messenger arsenal that allows communication 

between cell types72.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5 Factors derived from adipose tissue contribute to cardiovascular 
disease in obesity. Adipose contributes to endothelial dysfunction through the 
direct effect of adipokines, adiponectin and TNF-α, which are secreted by fat tissue 
after macrophage recruitment through MCP-1. Fat accumulation, insulin 
resistance, liver-induced inflammation and dyslipidemic features may all lead to 
the premature atherosclerotic process6. 
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Originally, adipokines were defined as peptides secreted by adipocytes 

whereas cytokines referred to the peptides secreted from the stromavascular cells, 

but these terms often overlap as adipokines may be secreted from both16. These 

chemical messengers (“adipokines”) allow adipose tissue to influence a breadth of 

physiological functions including energy and feeding regulation, glucose and lipid 

metabolism, thermogenesis, neuroendocrine function, reproduction, immunity, and 

most relevantly cardiovascular function9, 73, 74, 75 (Figure 4). Adipokines can 

influence cardioprotection by promoting proper endothelial function and 

angiogenesis, as well as reducing hypertension, atherosclerosis, 

and inflammation76, 77. However, if this balance is disrupted, changes in adipokine 

signaling can lead to defective smooth muscle contractility, inflammation, and 

damage to blood vessels, resulting in conditions such as hypertension, 

atherosclerosis, as well as endothelial, smooth muscle, and myocardial 

dysfunction16, 74. Despite these associations, we still do not understand how 

specific adipokines may function in MetS to promote vascular dysfunction.  

Adipose tissue can be found throughout the body. Following the onset of 

obesity, the secretory function of adipose is modified by changes in the cellular 

composition of the tissue, including alterations in the number, phenotype, and 

localization of immune, vascular, and structural cells. The function of adipose is 

dependent upon its anatomical location and the relative composition of the cells 

types present. There are several adipose tissue depots, including the visceral and 

subcutaneous, which are the two most abundant stores of fat in the body. These 

fats express unique profiles of adipokines78 and individuals typically accumulate 
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excess fat in one or both of these depots. Accumulation of visceral adipose tissue, 

located inside the peritoneal cavity and on or around visceral organs plays a major 

role in the development of insulin resistance and is correlated with relative 

cardiometabolic risk79, whereas subcutaneous adipose tissue, located just 

underneath the skin is a major source of leptin production and aids in energy 

homeostasis. Preferential distribution within this depot is associated with reduced 

risk of metabolic complications in obesity80. These differences suggest that body 

shape can be informative of CVD risk, but more importantly, highlight the 

heterogeneity of adipose tissue function dependent upon its location in the body. 

In addition to the major fat stores, adipose can be found on or surrounding organs 

such as the kidneys, liver, and the heart. These depots are thought to work 

individually, providing structural support and contributing to local organ function, 

as well as contributing systemically to overall energy homeostasis 7.  

Excess quantities of fat on or around the heart may explain why apple-

shaped individuals are more prone to cardiovascular complications, but studies 

also suggest that changes in adipokine expression can exacerbate disease risk in 

obesity81, 82. Adipokines have effects that may be beneficial and/or detrimental to 

cardiovascular physiology. For example, adiponectin is cardioprotective against 

myocardial ischaemia/reperfusion (I/R) injury, whereas leptin and tumor necrosis 

factor alpha (TNFα) may play a detrimental role in cardiac remodeling by limiting 

the extent of myocardial hypertrophy16, 77. Adipose tissue expansion in obesity and 

alterations in adipokine production have led to the proposed “Adipokine 

Hypothesis”, which implicates these signaling molecules as the causative link 
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between MetS and CVD82. It is now appreciated that adipokine expression 

changes in the disease state, but the mechanism for this change is unclear.  

Obesity is characterized by a chronic, low-grade pro-inflammatory state in 

adipose tissue causing hyperplasia and hypertrophy of fat cells83, 84. As adipocytes 

hypertrophy with increasing weight gain, cells outstrip their blood supply which can 

lead to capillary rarefaction and localized hypoxia in adipose tissue85. This causes 

up-regulation of inflammatory adipokines, such as inflammation and causing 

alterations in insulin-mediated capillary recruitment89, 90 57, 60, 69, 91.  

 

A cohort study in Denmark revealed that arachidonic acid content in gluteal 

adipose tissue was positively associated with risk of myocardial infarction, 

regardless of diet48, suggesting that changes to adipose tissue signaling may 

sustain CVD independent of obesity. Anti-inflammatory adipocyte products such 

as NO and adiponectin, which normally confer protection against inflammation and 

obesity-linked insulin resistance, are decreased in obese patients8, 84, 89. These 

Figure 1.6 Perivascular 
adipose tissue. Interaction of 
perivascular adipose tissue with 
vascular endothelium, smooth 
muscle, and immune cells and 
several of the PVAT-derived 
mediators involved. PVAT is 
situated outside the adventitial 
layer of the vessel wall (a.k.a. 
periadventitial adipose tissue) 
with proximity allowing for 
paracrine signaling and 
regulation of vascular 
homeostasis3.  
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obesity-induced changes to adipose proximal to blood vessels can have direct 

vascular consequences on the underlying endothelium and vascular smooth 

muscle89, 92 and can lead to vascular diseases such as hypertension, 

atherosclerosis, and vascular dysfunction. Adipose tissue itself is highly 

vascularized and surrounds virtually every vessel in the human body, providing 

mechanical support and making it capable of sending chemical messengers and 

vasoactive mediators into the bloodstream93. This fat that surrounds vessels, 

termed perivascular adipose tissue, or “PVAT”, is located outside the adventitial 

layer of the vessel wall (Figure 1.6).  

 

Perivascular Adipose Tissue 

Several studies propose that PVAT-derived factors traverse the vessel wall 

to directly influence local smooth muscle and/or endothelial cell function. This is 

supported by the fact that PVAT is contiguous with the adventitia and no fascia 

separates surrounding adipocytes from the vascular wall94, and adipocytes have 

been demonstrated to invade  the outer region of the adventitia in the setting of 

obesity95, 96, allowing this local tissue to mobilize near vessels with the potential for 

direct paracrine communication9. The vasa vasorum are small arteries that branch 

off conduit vessels, traverse the vessel wall, and return into the lumen of the 

conduit arteries97, 98. This extensive small artery network connects the adipose 

tissue to the vessel lumen and offers an additional route for PVAT action, limiting 

the necessary diffusion distance. The proximal location, active paracrine nature of 
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adipose tissue and clear association between obesity and cardiovascular disease 

implicate local PVAT and PVAT-derived factors in vascular dysfunction.   

Although PVAT provides structural support and insulation to blood vessels 

which may be protective in its native setting93, the specific changes to adipose 

tissue and the extent to which adipose-derived adipokines may influence vascular 

smooth muscle and endothelial function during disease progression are still 

unclear. In 1991, Soltis and Cassis compared the contractile responses of rat 

aortas cleaned of surrounding PVAT or with the natural PVAT left intact. Aortas 

with PVAT were less responsive to increasing concentrations of norepinephrine, 

suggesting that PVAT was producing a dilatory agent that buffered the degree of 

vasoconstriction99. 
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Since this pivotal discovery, several groups have tried to characterize and 

identify the vascular effects of PVAT. This anti-contractile influence of PVAT led to 

the discovery of an adipocyte-derived relaxing factor (ADRF). Gollasch’s group 

has shown that PVAT plays a major role in vasoregulation of visceral arteries, such 

as the aorta and mesenteric arteries (Figure 1.7),100 and depending on the 

vascular bed and animal model, may cause endothelial dependent and/or 

independent vasorelaxation101,102. PVAT releases soluble factors that cause 

subsequent smooth muscle vasodilation by converging on a number of different K+ 

channels103, 101, 104, 105, 106. PVAT-conditioned media (bath solution exchange) 

experiments revealed ADRF was transferable107, 105, lost with heating (65°C), and 

Figure 1.7. PVAT-derived factors limit vascular reactivity to serotonin in 
mouse mesenteric vascular beds via outside-to-inside paracrine signaling. 
Representative recording of perfusion pressure for perfused isolated mesenteric 
beds in the absence (fat-) and presence (fat+) of perivascular fat. Dashed lines 
represent 30 mmHg. Meticulous removal of PVAT from the mesenteric artery 
bed potentiated constriction to serotonin. This preparation of the entire 
mesenteric bed revealed the outside-to-inside paracrine signaling capability of 
local adipose tissue1.  
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not adsorbed by fatty acid-free serum albumin103, indicating the PVAT-derived 

factor is likely a peptide rather than lipid103.  

Only a handful of groups have been able to examine the vascular effects of 

human PVAT. In the internal thoracic arteries from patients undergoing elective 

coronary artery bypass grafting, Gao et al. found the presence of PVAT attenuated 

the maximal contraction to U-46619 and phenylephrine105. In this vascular bed, 

PVAT exerted its anti-contractile effects via endothelium-dependent relaxation 

through NO release and subsequent BKCa channel activation, and by an 

endothelium-independent mechanism involving H2O2 and subsequent activation of 

soluble guanylyl cyclase105, 104. In addition, healthy adipose tissue around human 

small arteries secretes factors that influence vasodilation by increasing NO 

bioavailability8, also implicating endothelial NO production as a target of regulation 

of tone by PVAT.  

The variety of cell types present in PVAT and the high degree of signaling 

complexity make it hard to distinguish which adipokine (or combination thereof) is 

the responsible ADRF(s). Fesus et al. showed that adiponectin could induce 

vasodilation of KV channels in rat aorta and mouse mesenteric arteries, but was 

likely not the ADRF, as PVAT from adiponectin knockout mice maintained the anti-

relaxing influence1. Gollasch found that inhibitors of the hydrogen sulfide producing 

enzyme, Cystathionin-γ-Lyase (CSE), inhibited the anti-contractile effects of 

PVAT, implicating H2S as a candidate or potential modulator of ADRF108, 100. Other 

groups have implicated angiotensin 1-7101, NO109 and leptin110 as possible 

endothelial-dependent ADRFs. Together, these studies implicate several ADRFs, 
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endothelial-dependent and independent signaling pathways, and various smooth 

muscle K+ channels as potential mediators of PVAT’s observed effect. Whether 

the variety of animal models and vascular beds, expression of adipokines, and/or 

underlying differences in endothelial and smooth muscle function are responsible 

for these differences will need to be determined.  

In contrast to the well-documented ADRF, a limited amount of evidence 

suggests that PVAT may also have a constricting influence111, 112, 112, 113. In the 

mesenteric arteries of Wistar-kyoto rats, intact PVAT caused a greater contractile 

response to electrical field stimulation (EFS) than rings with PVAT removed. PVAT 

also potentiated contractions to KCl in rats. This was mediated by NAPDH-oxidase 

increases in superoxide production of PVAT111, 112. While potentiated 

vasoconstriction may actually represent attenuation of vasodilator influences by 

superoxide112, 114, transfer experiments have demonstrated that the influence of 

PVAT is due to its function as a paracrine tissue rather than adipose merely 

obstructing or absorbing vasoactive mediators103, 105, 115, 8, 16. As PVAT has become 

respected as a local active paracrine influence on vascular function, several 

groups sought to examine whether PVAT is involved in the vascular dysfunction 

observed in obesity and MetS. 

 

PVAT in obesity 

Increased pro-inflammatory adipokines in PVAT after endovascular injury 

demonstrates that the vasculature has the capacity to communicate with the 

surrounding adipose tissue, allowing for cross-talk between endothelial cells, 
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vascular smooth muscle cells, and surrounding PVAT116, 117. Inflamed PVAT has 

particular ramifications for CVD, given the effects adipokines have on 

cardiovascular pathophysiology as well as obesity and diabetes16. During obesity, 

the architectural changes to PVAT from infiltrating inflammatory cells in addition to 

gene expression changes during disease progression have direct consequences 

on the normal vascular function of PVAT (Figure 1.8).  
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Figure 1.8 Phenotypic modulation of adipose tissue. With weight gain, 
adipocytes hypertrophy owing to increased triglyceride storage. With limited 
obesity, it is likely that the tissue retains relatively normal metabolic function and 
has low levels of immune cell activation and sufficient vascular function. However, 
qualitative changes in the expanding adipose tissue can promote the transition to 
a metabolically dysfunctional phenotype. Macrophages in lean adipose tissue 
express markers of an M2 or alternatively activated state, whereas obesity leads 
to the recruitment and accumulation of M1 or classically activated macrophages, 
as well as T cells, in adipose tissue7.  
 
 In obesity, PVAT expansion causes oxidative stress, inhibiting NO 

production105, 118 and abolishing the anti-contractile influence of the PVAT8. 

Endothelial dysfunction is characterized by a defect in the normal vasodilator 

response to agonists or changes in blood flow. Endothelial-derived NO causes 

vascular relaxation119, but also suppresses atherosclerosis by reducing endothelial 

cell activation, smooth muscle proliferation, leukocyte and platelet activation, and 

reducing the number of monocyte-platelet aggregates in the circulation120. In 

hypoxia, macrophages and reactive oxygen species (ROS) also appear to 

attenuate anti-contractility in PVAT121, while leptin, resistin, and visfatin may 

contribute to atherosclerosis, inflammation, and endothelial dysfunction90, 110, 122, 
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89. Insulin affects vasoregulation by acting on different signaling pathways 

regulating NO and endothelin-1 release123. In vitro, inflammation induced with 

TNFα or hypoxia attenuated the anti-contractile effect of PVAT, suggesting 

alterations in the paracrine signaling of PVAT may directly influence insulin 

sensitivity of resistance vessels or tissue perfusion124, 125. The etiology of the 

vascular dysfunction in MetS is dependent on the vessel size and diffusion 

distance, organ localization, and underlying pathological status (inflammation, 

atherosclerosis, neovascularization from the intima) of the vessel itself123.  

In 2009, Greenstein et al. studied PVAT in human obesity. They isolated 

small arteries from human gluteal subcutaneous fat biopsies with and without fat 

and found the anti-contractile effect of PVAT was lost in arteries from obese 

patients8 (Figure 1.9). This change in PVAT function in obesity was thought to be 

due to increased pro-inflammatory macrophages121 and alterations in adipokine 

production96, 94, 72. This study on small arteries is an important indicator of how 

PVAT may contribute to blood flow regulation by altering the vascular response of 

small arteries, which ultimately drive blood flow.  
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Figure 1.9 Effect of obesity and the metabolic syndrome on anti-contractile 
capacity of PVAT in small arteries from subcutaneous gluteal fat. A, In healthy 
control participants, PVAT exerted a significant anti-contractile effect compared 
with contractility of arteries without PVAT. C, In patients with obesity and metabolic 
syndrome, the presence of PVAT had no effect on contractility8.  
 

Atherosclerosis is a chronic condition that involves progressive cellular 

dysfunction. Studies in obese humans and animal models implicate both 

inflammation of PVAT and corresponding endothelial and smooth muscle 

dysfunction in the disease process. The nature of this disease process 

compounded with the variability of PVAT’s influence between vascular beds and 

the variety of signaling molecules involved create more questions than answers 

regarding PVAT in disease. Studies are needed that better characterize particular 

vascular beds and PVAT depots in appropriate models of human disease, 

particularly CVD, which claims hundreds of thousands of lives annually. However, 

due to a limited number of large animal models, how coronary PVAT directly 

contributes to coronary vascular dysfunction, remains to be determined.  
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Coronary PVAT 

The role of PVAT in the control of vasomotor tone and potential role in the 

pathogenesis of CAD is not well understood. Coronary PVAT is a visceral thoracic 

fat depot defined as the adipose tissue directly surrounding the coronary 

arteries126. Several groups implicate coronary PVAT in the initiation and 

progression of CAD. The Framingham heart study127, 128 revealed that coronary 

PVAT volume was an independent risk marker for CVD. Echocardiography129, 130, 

computed tomography131, 132 and magnetic resonance imaging127 have revealed 

the quantity of fat on the heart is correlated with parameters of the MetS, such as 

increased waist circumference, hypertriglyceridemia and hyperglycemia, and with 

CAD92.  

This naturally occurring adipose depot expands with obesity,131, 133 and 

atherosclerotic plaques have been shown to occur predominately in epicardial 

coronary arteries that are encased in PVAT134, 95, 131, 132. Furthermore, autopsies 

revealed that patients with a myocardial muscle bridge spanning the epicardial 

surface of the heart had limited atherosclerosis within the portion of the vessel 

surrounded by muscle as opposed to PVAT135. Herrmann et al. demonstrated that 

increased coronary vasa vasorum neovascularization preceded overt coronary 

endothelial dysfunction and atherosclerotic disease in domestic swine fed a high 

fat diet, which could serve as a potential conduit that could traffic harmful 

adipokines between the PVAT and the vascular wall98.  
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Table 1.1 Relationship between coronary PVAT expression, coronary artery 
disease and obesity/Metabolic Syndrome.9  
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In addition, several changes to PVAT expression occur with increasing 

obesity. Multiple groups have documented pathogenic adipokine profiles from 

human coronary PVAT with increasing macrophage infiltration compared to 

abdominal adipose136, 137. Our recent review highlights the known coronary 

adipose-derived factors that are altered with weight gain (Table 1.1)9. This is not 

a comprehensive list of adipokines secreted by coronary PVAT, but an introduction 

to the complex nature of adipose tissue and the dynamic changes that occur in 

paracrine signaling with the development of MetS. While there are clear 

associations between the volume, inflammatory state, and adipokine profile of 

PVAT and the severity of vascular dysfunction, we have yet to identify a 

mechanistic link. 

Although numerous studies indicate that PVAT releases relaxing factors 

which attenuate vasoconstriction to a variety of compounds in peripheral vascular 

beds103, 8, data on the vascular effects of coronary PVAT are equivocal89, 9, 102, 138, 

110. Depending on the vessel size and diffusion distance, organ localization, and 

underlying pathological status (inflammation, atherosclerosis, neovascularization 

from the intima) the extent to which adipokines influence the vasculature may 

differ123. In particular, experiments in isolated arteries from lean and 

hypercholesterolemic swine show little/no effect of coronary PVAT on coronary 

artery contractions or endothelial-dependent vasodilation102. In contrast, PVAT has 

been found to impair coronary endothelial function in vitro and in vivo in normal-

lean dogs138 and significantly exacerbate underlying endothelial dysfunction in 

obese swine with MetS110. These differences in the paracrine effects of coronary 



28 
 

vs. other peripheral PVAT depots are likely related to alterations in adipocytokine 

expression profile between these beds, as well as the consequences of underlying 

state of micro/macrovascular dysfunction113, 125. While recent studies have begun 

to uncover pathophysiologic changes that occur in PVAT,8, 56, 73, 88, 89, 96, 136, 139-141 

the functional phenotypic effects of obesity on coronary PVAT remain poorly 

understood.  

 

Proposed Experimental Aims 

The current literature implicates PVAT in outside-to-inside coronary 

vascular dysfunction and our lab has shown that local PVAT aggravates 

endothelial dysfunction in MetS and that MetS is associated with altered CaV1.2 

and K+ channel function. However, the contribution of PVAT to vascular function 

in lean and obese states is still not well understood. With these theories in mind, 

the central focus of this work is to investigate the potential role of coronary PVAT 

in the development of smooth muscle dysfunction. Specifically, the goal of the 

following studies is to determine the mechanisms by which local PVAT regulates 

coronary vascular reactivity in lean and MetS swine. These objectives will be 

addressed in studies designed to examine the following Specific Aims: 

1. Test the hypothesis that coronary PVAT augments tension development 

of coronary arteries and is potentiated in MetS. Rationale for AIM1 is based 

on the evidence that PVAT impairs coronary vasodilation in lean animals and 

coronary vascular dysfunction is related to increased activation of 

vasoconstrictor neuro-humoral pathways (e.g. α1 adrenoceptors41, 



29 
 

angiotensin/AT1,30, 33 mineralocorticoid signaling along with decreased function 

of vasodilatory K+ channels (e.g. BKCa channels31, 42, KV channels34, 40, 49) in 

obesity/MetS. We aim to examine how PVAT specifically influences baseline 

and agonist-induced tension development in isolated lean and MetS coronary 

arteries.  

2. Identify and examine the potential coronary PVAT-derived factors that 

mediate the vascular effects in lean vs. MetS coronary arteries. We 

hypothesize that marked changes in adipokine protein expression may underlie 

the difference in extent of vascular dysfunction between lean and MetS swine. 

We aim to perform a global proteomics assessment of the PVAT-derived 

factors that may influence vascular function in lean vs. MetS. Rationale for our 

hypothesis is based on the evidence that PVAT releases a transferable peptide 

that mediates its vascular effect which is functionally altered in several vascular 

beds in MetS.  

3. Identify the specific vascular smooth muscle signaling pathways and end 

effector ion channels that mediate the vascular consequences of PVAT in 

MetS. Rationale for this aim is based on independent reports of PVAT and 

MetS altering ion channel function and Ca2+ handling. We hypothesize that 

local PVAT may mediate these changes in ion channel function and aim to 

examine the specific vascular smooth muscle ion channels involved in 

mediating the effects of PVAT.  

Our findings provide novel evidence regarding the potential role for specific 

coronary PVAT-derived proteins in coronary vascular dysfunction in the setting of 
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obesity. Altogether, findings from the proposed investigations will be the first to 

specifically address the role coronary PVAT plays in smooth muscle function and 

possibly contributes to CVD. Proteins identified as dysregulated in MetS will 

provide potential targets for therapeutic intervention.  
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Chapter 2 

Perivascular adipose tissue potentiates contraction of coronary vascular 

smooth muscle: Influence of obesity 
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Abstract 

Background: This investigation examined the mechanisms by which coronary 

perivascular adipose tissue (PVAT)-derived factors influence vasomotor tone and 

the PVAT proteome in lean vs. obese swine.  

Methods and Results: Coronary arteries from Ossabaw swine were isolated for 

isometric tension studies. We found that coronary (P = 0.03) and mesenteric (P = 

0.04), but not subcutaneous adipose tissue, augmented coronary contractions to 

KCl (20 mM). Inhibition of CaV1.2 channels with nifedipine (0.1 µM) or diltiazem 

(10 µM) abolished this effect. Coronary PVAT increased baseline tension and 

potentiated constriction of isolated arteries to PGF2α in proportion to the amount 

of PVAT present (0.1-1.0 g). These effects were elevated in tissues obtained from 

obese swine and were observed in intact and endothelium denuded arteries. 

Coronary PVAT also diminished H2O2-mediated vasodilation in lean, and to a 

lesser extent in obese arteries. These effects were associated with alterations in 

the obese coronary PVAT proteome (detected 186 alterations) and elevated 

voltage-dependent increases in intracellular [Ca2+] in obese smooth muscle cells. 

Further studies revealed that a Rho-kinase inhibitor fasudil (1 µM) significantly 

blunted artery contractions to KCl and PVAT in lean, but not obese swine. 

Calpastatin (10 μM) also augmented contractions to levels similar to that observed 

in the presence of PVAT. 

Conclusions: Vascular effects of PVAT vary according to anatomic location and 

are influenced by an obese phenotype. Augmented contractile effects of obese 

coronary PVAT are related to alterations in the PVAT proteome (e.g. calpastatin), 
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Rho-dependent signaling, and the functional contribution of K+ and CaV1.2 

channels to smooth muscle tone. 
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Introduction 

Adipose tissue normally surrounds the major conduit coronary arteries on 

the surface of the heart. The volume of this perivascular adipose tissue (PVAT) 

expands with obesity130, 142 and has been shown to be a strong, independent 

predictor of coronary atherosclerosis132. Recent studies implicate PVAT as a ready 

source of vasoactive factors and inflammatory mediators capable of influencing 

vasomotor function143. Thus, there is growing evidence that adipocyte-derived 

factors originating outside of the coronary vasculature are capable of affecting 

vascular homeostasis1, 100, 139, 144. This “outside-to-inside” signaling paradigm is 

supported by several studies indicating that adventitial factors significantly 

diminish vascular function1 and influence compositional changes in the inner 

intimal layer91. Thus, local adipose in the heart could be an important regulator of 

vascular function and disease progression. 

Although numerous studies indicate that PVAT releases relaxing factors 

which attenuate vasoconstriction to a variety of compounds in peripheral vascular 

beds8, 103, data on the vascular effects of coronary PVAT are equivocal9, 102, 110, 138. 

In particular, experiments in isolated arteries from lean and hypercholesterolemic 

swine show little/no effect of coronary PVAT on coronary artery contractions or 

endothelial-dependent vasodilation102. In contrast, PVAT has been found to impair 

coronary endothelial function in vitro and in vivo in normal-lean dogs138 and 

significantly exacerbate underlying endothelial dysfunction in obese swine with the 

metabolic syndrome (MetS)110. These differences in the paracrine effects of 

coronary vs. other peripheral PVAT depots are likely related to alterations in 
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adipocytokine expression profile between these beds, as well as the 

consequences of underlying co-morbidities (e.g. obesity) on these profiles113, 125. 

While recent studies have begun to uncover pathophysiologic changes that occur 

in PVAT9, 145, the functional phenotypic effects of obesity on coronary PVAT remain 

poorly understood. 

Accordingly, the goal of this investigation was to dissect the mechanisms 

by which lean and obese PVAT-derived factors influence vasomotor tone and the 

coronary PVAT proteome. In particular, we tested the hypothesis that obesity 

markedly alters the functional expression and vascular effects of coronary PVAT 

in favor of an augmented vasoconstriction. This hypothesis is supported by earlier 

data demonstrating that obesity increases the intracellular Ca2+ concentration in 

isolated smooth muscle cells42, 66 and enhances coronary vasoconstriction to 

neurohumoral modulators both in vitro and in vivo 33, 41, 146. Our findings provide 

novel evidence regarding the potential role for specific coronary PVAT-derived 

proteins in coronary vascular dysfunction in the setting of obesity. 

 

Methods 

Ossabaw swine model of obesity 

Lean animals (n = 37) were fed ~2200kcal/day standard chow containing 

18% kcal from protein, 71% kcal from complex carbohydrates, and 11% kcal from 

fat. Obese animals (n = 23) were fed an atherogenic diet containing ≥ 8000 

kcal/day, 16% kcal from protein, 41% kcal from complex carbohydrates, 19% kcal 

from fructose, 43% kcal from fat and supplemented with 2.0% cholesterol and 
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0.7% sodium cholate by weight (5B4L and KT-324, Purina Test Diet, Richmond, 

IN). Swine of either sex were fed their respective diets for 6-12 months. Lean male 

Sprague-Dawley Rats (n = 4, 250-300 g) were also utilized for aortic ring 

experiments.  

 

Functional assessment of isolated coronary rings  

Studies on isolated coronary arteries in the presence and absence of 

coronary PVAT were performed as previously described110 (see Supplement for 

detailed methodology and protocols). Briefly, coronary arteries from lean and 

obese swine were dissected and cleaned of adventitial adipose tissue. Adjacent 

adipose was cleaned of myocardium and stored in ice-cold Ca2+-free Krebs for 

later use. Arteries were cut into 3 mm rings and mounted in organ baths for 

isometric tension studies (Figure 2.1). Once an optimal level of baseline passive 

tension was obtained (~4 g), arteries were stimulated with either KCl (10-60 mM) 

or prostaglandin F2α (PGF2α; 10 µM) to obtain control responses in the absence 

of PVAT. Known quantities of adipose tissue (0.1-1.0 g) were then added to the 

organ baths and arteries allowed to incubate for 30 min at 37°C. Arteries were then 

stimulated again with KCl or PGF2α in the presence of PVAT; i.e. paired studies 

in the absence and presence of PVAT were performed on the same arteries. Time 

control studies were also performed in response to these agonists following a 30 

min incubation period in the absence of PVAT. Identical studies were also 

performed in rat aortic rings exposed to rat peri-aortic adipose tissue. Equimolar 

replacement experiments of K+ for Na+ revealed no differences in the amount of 
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tension developed in isolated coronary arteries when compared to paired 

responses without equimolar substitution (Supplemental Figure 2.1). 

For bioassay experiments, organ baths were drained after control 

responses and filled with a filtered (0.2 µm) PVAT conditioned supernatant (0.3 g 

PVAT in 5 ml of Ca2+ containing Krebs buffer). Arteries were incubated with this 

supernatant for 30 min prior to repeat administration of 20 mM KCl. Experiments 

to examine the effects of lean and obese PVAT on coronary vasodilatory 

responses to H2O2 (1 µM-1 mM) were performed in isolated lean and obese 

coronary arteries pre-constricted with either KCl (60 mM) or U46619 (1 µM).  

Additional “crossover” experiments were performed in lean coronary 

arteries incubated for 30 min with coronary PVAT obtained from a lean or obese 

animal sacrificed on the same day. Effects of coronary PVAT-derived factors on 

sarcoplasmic reticulum Ca2+-ATPase (SERCA) were examined by inhibition of 

SERCA with cyclopiazonic acid (CPA, 10 μM). The role of Rho kinase in PVAT-

mediated coronary vasoconstriction was assessed by incubation of lean and obese 

arteries with the Rho kinase inhibitor fasudil (1 μM).147 Further studies to examine 

the effects of calpastatin (1-10 μM) or negative (scrambled) calpastatin peptide (10 

µM) on coronary artery contractions were also performed. 

 

Proteomic analyses 

Upon sacrifice, hearts were extracted and the aorta immediately perfused 

with 1L ice-cold Ca2+-free Krebs to remove the blood proteins. Coronary PVAT was 

excised from the heart, rinsed with PBS and minced. PVAT (0.3 g) was incubated 
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in 5 mL Ca2+-free Krebs in a 37°C shaking bath and filtered (0.2 μm) before flash 

freezing the filtrate in liquid N2. Filtered protein concentration was determined by 

the Bradford method (Bio-Rad)148. Samples were reduced and alkylated by 

triethylphosphine and iodoethanol and subjected to trypsin digestion as 

described149. Digested samples were analyzed using a Thermo-Finnigan linear 

ion-trap (LTQ) mass spectrometer coupled with a Surveyor autosampler and MS 

HPLC system (Thermo-Finnigan). Tryptic peptides were analyzed using a C18 RP 

column as described149. Data were searched against the most recent UniProt 

protein sequence database of Eutheria using SEQUEST (v. 28 rev. 12) algorithms 

in Bioworks (v3.3). General parameters were set to: peptide tolerance 2.0 amu, 

fragment ion tolerance 1.0 amu, enzyme limits set as “fully enzymatic - cleaves at 

both ends”, and missed cleavage sites set at 2. Searched peptides and proteins 

were validated by PeptideProphet150 and ProteinProphet151 in the Trans-Proteomic 

Pipeline (TPP, v3.3.0) (http:// tools.proteomecenter.org/software.php). Only 

proteins with probability ≥ 0.90 and peptides with probability ≥ 0.80 were reported. 

Protein quantification by label-free quantitative mass spectrometry (LFQMS) was 

performed using IdentiQuantXLTM software as described152. Protein quantities are 

based on the sum of all corresponding peptide ion intensities derived from the 

area-under-the-curve of their extracted ion chromatograms and thus have no units.  

 

Fluorescence Imaging  

Whole-cell intracellular Ca2+ levels were measured at room temperature (22 

to 25°C) using the fluorescent Ca2+ indicator fura-2, AM and the InCa++ Ca2+ 



39 
 

Imaging System (Intracellular Imaging, Cincinnati, OH) as previously described43. 

Briefly, freshly dispersed cells were incubated with 2.5 µM fura-2, AM (Molecular 

Probes) at 37°C for 30 min before being washed in low Ca2+ buffer without fura-2 

for 20 min. Fura-2 loaded cells were switched to a 2 mM Ca2+ physiologic salt 

solution before being placed on a coverslip contained within a constant-flow 

superfusion chamber that was mounted on an inverted epifluorescence 

microscope (model TMS-F, Nikon). Data are expressed as area under the curve 

(AUC) of the F360/380 ratio during stimulation with KCl (80 mM).   

 

Statistical analyses  

Data are presented as mean ± standard error. Phenotypic data for lean vs. 

obese swine were assessed by t-test. For isometric tension studies, two-way 

ANOVA was used to test the effects of the PVAT (Factor A) relative to doses of 

specific agonists (Factor B). When statistical differences were found with ANOVA 

(P < 0.05) a Student-Newman-Keuls multiple comparison test was performed. 

Comparison of individual protein quantity via experimental group means generated 

by LFQMS was performed within the IdentiQuantXL platform using a student’s t-

test. All P-values were transformed into q-values to estimate the False Discovery 

Rate (FDR)153. To interpret the biological relevance of the differential protein 

expression data, protein lists and their corresponding expression values (fold 

change) were uploaded onto the Ingenuity Pathway Analysis (IPA) software server 

(http://www.ingenuity.com) and analyzed using the Core Analysis module to rank 

the proteins into top molecular and cellular functions and canonical pathways.  
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Results 

Vascular effect of PVAT from different anatomical depots   

The representative tracing in Figure 2.2A outlines the protocol utilized to 

examine the vascular effects of coronary, subcutaneous and mesenteric PVAT on 

tone of isolated coronary arteries from lean swine at baseline and in response to 

20 mM KCl. In these paired studies, arteries were contracted with KCl before and 

after 30 min incubation with 0.3 g of PVAT. Data are expressed as delta active 

tension, which reflects the difference in tension generated in response to KCl, 

independent of modest increases in baseline tension that tended to occur during 

the incubation period (average 0.67 ± 0.16 g; P = 0.06). Thus, changes in delta 

active tension do not take into account changes in baseline tension. In lean 

coronary arteries, coronary (P = 0.03) and mesenteric (P = 0.04) PVAT significantly 

increased the tension generated in response to 20 mM KCl (Figure 2.2B) relative 

to time control KCl responses in the absence of PVAT (dashed line). These 

coronary contractions were completely reversed by inhibition of CaV1.2 channels 

with 10 μM diltiazem (Figure 2.2A) or 0.1 μM nifedipine. In contrast, incubation 

with subcutaneous PVAT did not significantly alter coronary artery contractions to 

KCl (P = 0.67), with values similar to time controls. Further studies in tissues 

obtained from Sprague-Dawley rats also revealed no effect of rat aortic PVAT on 

KCl-induced contractions of thoracic aortic rings (Figure 2.2B).  

Additional bioassay experiments which involved the transfer of swine 

coronary PVAT-conditioned media, instead of the addition of whole 0.3 g pieces of 
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PVAT to the tissue bath, also revealed similar increases in tension development in 

response to KCl administration relative to paired, non-PVAT treated control 

responses (P = 0.04; data not shown).  

 

Vascular effects of lean vs. obese coronary PVAT  

Phenotypic data on a subset of lean (n = 6) and obese (n = 10) swine utilized 

for this investigation are outlined in Table 1. Swine listed were fed high-calorie 

atherogenic diet for ~6 months, which resulted in significant increases in body 

weight, heart weight, total cholesterol and the LDL/HDL ratio. To initially examine 

the effects of lean vs. obese coronary PVAT on baseline tension, coronary artery 

rings were incubated with known quantities of PVAT (0.1-1.0g) for 30 min. For 

these studies, PVAT from lean and obese swine were added to tissue baths 

containing coronary arteries obtained from the same lean or obese heart; i.e. lean 

PVAT paired with lean coronary artery and obese PVAT paired with obese 

coronary artery. We found that coronary PVAT increased baseline tension of both 

lean and obese coronary arteries (Figure 2.3A) and noted that this effect was 

dependent on the amount of PVAT added to the bath (Figure 2.3B). Importantly, 

the increase in basal tone was markedly augmented in tissues obtained from 

obese vs. lean swine (P < 0.001). Administration of coronary PVAT also increased 

tension of isolated coronary arteries pre-contracted with 10 μM PGF2α (Figure 

2.3C). This increase in tension generated with PVAT was also related to the 

amount of PVAT present in the bath (P < 0.001) and was significantly augmented 

in obese vs. lean swine (P < 0.001) (Figure 2.3D). Coronary contractions to PGF2α 
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+ PVAT were only partially reversed by the administration of 10 μM diltiazem (82 

± 7%, Figure 2.3C), but were completely reversed by 1.0 μM nifedipine (99 ± 

0.4%).  

 Cumulative responses of endothelium intact and denuded coronary 

arteries to increasing concentrations of KCl (10-60 mM) before and during 

incubation with coronary PVAT are shown in Figure 2.4. Addition of 0.3 g of PVAT 

increased active tension generated by endothelium intact coronary arteries in both 

lean (P = 0.005, Figure 2.4A) and obese swine (P = 0.009, Figure 2.4B). Similar 

responses in the presence of PVAT were also observed in endothelium denuded 

coronary arteries from lean (Figure 2.4C) and obese swine (Figure 2.4D) 

(denudation confirmed by < 30% relaxation to 1 μM bradykinin). Further studies 

also revealed that H2O2-mediated vasodilation was markedly attenuated by the 

presence of coronary PVAT (Figure 2.5A) and that this inhibitory effect was much 

more prominent in tissues obtained from lean (Figure 2.5B) vs. obese (Figure 

2.5C) swine. Importantly, H2O2-induced dilation was completely abolished by pre-

contracting lean and obese coronary artery rings with 60 mM KCl (Figure 2.5).   

 To evaluate the vasoactive properties of lean vs. obese coronary PVAT 

independent of differences in coronary artery responsiveness, we performed 

“crossover” experiments in which KCl-induced contractions of coronary arteries 

from lean-control swine were assessed before and after incubation with PVAT from 

either lean or obese swine (Figure 2.6A). For these studies, tissues were obtained 

from lean and obese swine sacrificed on the same day. We found that lean and 

obese coronary PVAT augmented contractions of lean coronary arteries to 20 mM 
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KCl to a similar degree (Figure 2.6B). Further studies also showed that increases 

in KCl-induced coronary artery contractions to 20 mM KCl in the presence of PVAT 

were not significantly altered by inhibition of the sarcoplasmic reticulum Ca2+-

ATPase with cyclopiazonic acid (CPA, 10 μM, Figure 2.6C). However, consistent 

with earlier studies31, fura-2 imaging experiments revealed that increases in 

intracellular Ca2+ concentration in response to 80mM KCl were significantly 

elevated in isolated coronary artery smooth muscle cells not exposed to PVAT 

from obese vs. lean swine (Figure 2.6D).  

 

Obesity markedly alters the protein expression profile of coronary PVAT 

To examine whether differences in vascular responses to coronary PVAT 

are associated with changes in the expression profile of PVAT, a global proteomic 

assessment was performed on supernatants obtained from lean and obese 

coronary PVAT. Data revealed substantial alterations in the proteome in the setting 

of obesity. Overall, we detected alterations in 186 proteins (P ≤ 0.05) in obese vs. 

lean PVAT (complete listing of 1,472 quantified non-redundant proteins provided 

in Supplemental Table 1). A listing of the top up-regulated and down-regulated 

proteins is provided in Table 2. Ingenuity Pathway Analysis software revealed 

several proteins involved in cellular growth and proliferation (51 molecules) and 

cellular movement (39 molecules). In particular, increases in RhoA (2.9-fold) and 

calpastatin (1.6-fold) are of interest as these pathways are directly linked to smooth 

muscle contraction, Ca2+ sensitization, and both are implicated in the progression 

of hypertension154, 155.    
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To examine whether Rho kinase signaling participated in the augmented 

effects of coronary PVAT in coronary arteries, we performed studies on isolated 

arteries in the presence of the Rho kinase inhibitor fasudil (1 µM). We found that 

fasudil alone dramatically decreased maximal active tension development in 

response to KCl in lean coronary arteries (Figure 2.7A vs. Figure 2.4A, P < 0.001) 

and diminished the effect of PVAT on KCl contractions (Figure 2.7C). This effect 

of fasudil was less apparent in obese arteries where maximal contractions to KCl 

were similar to that of untreated-controls (Figure 2.7B vs. Figure 2.4B, P = 0.108). 

Despite blunting lean coronary KCl contractions, in the presence of fasudil, PVAT 

still elevated contractions relative to control in both lean and obese arteries (P = 

0.003 and P = 0.037, respectively).  

Additional proof-of-principle studies were performed to investigate the 

effects of calpastatin on coronary artery contractions. In these experiments, lean 

coronary arteries were incubated with increasing concentrations of calpastatin 

peptide for 30 min without PVAT (1-10 μM, Figure 2.7D). We found that calpastatin 

dose-dependently increased tension development of lean coronary arteries to 20 

mM KCl (P = 0.008) and that 10 μM calpastatin augmented contractions to a similar 

extent as PVAT itself (1.82 ± 0.45 vs. 1.49 ± 0.19). Negative control experiments 

revealed no effect of a scrambled calpastatin peptide (10 μM) on coronary artery 

contractions to 20 mM KCl (Figure 2.7D).  
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Discussion 

The present investigation was designed to elucidate the mechanisms by 

which lean and obese PVAT-derived factors influence vasomotor tone and the 

coronary PVAT proteome. The studies were designed to test the hypothesis that 

obesity markedly alters the functional expression and vascular effects of coronary 

PVAT in favor of an augmented contractile phenotype. The major new findings of 

this study include: 1) vascular effects of PVAT vary according to anatomical 

location as coronary and mesenteric, but not subcutaneous adipose tissue 

augmented coronary artery contractions to KCl; 2) factors derived from coronary 

PVAT increase baseline tension and potentiate constriction of isolated coronary 

arteries to PGF2α relative to the amount of adipose tissue present; 3) vascular 

effects of coronary PVAT are markedly elevated in the setting of obesity and occur 

independent of effects on, or alterations in coronary endothelial function; 4) 

augmented effects of obese coronary PVAT are associated with substantial 

alterations in the PVAT proteome and underlying increases in vascular smooth 

muscle Ca2+ handling via CaV1.2 channels, H2O2-sensitive K+ channels or 

upstream mediators that converge on these channels; 5) factors converging on 

Rho-kinase are largely responsible for the increase in coronary artery contractions 

to PVAT in lean, but not obese swine. These findings provide the first evidence 

that factors released from coronary PVAT initiate/potentiate coronary 

vasoconstriction and that this effect is augmented in the setting of obesity.  
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Differential effects of coronary PVAT in lean vs. obese swine 

Currently, data on the vascular effects of coronary PVAT are rather limited 

and conflicting, as PVAT has been shown to either decrease endothelial-

dependent dilation in lean-healthy dogs118 or to have limited/no effect on 

endothelial function in lean110, 156 or hypercholesteromic102, 156 swine. In contrast, 

findings from Payne et al. indicate that coronary PVAT significantly exacerbates 

underlying endothelial dysfunction in the setting of obesity and the MetS110. 

Additional findings suggest that coronary PVAT has relatively modest “anti-

contractile” effects in lean and hypercholesterolemic swine102, which differs from 

numerous other studies which found evidence of adipose derived relaxing factors 

(ADRFs) in PVAT surrounding vessels such as the aorta, mesenteric arteries, and 

internal thoracic arteries (see 100 for review). Taken together, these earlier studies 

suggest that the expression and effects of PVAT-derived factors may differ 

substantially between vascular beds and can be influenced by underlying disease 

states. 

Our present data support differential effects of PVAT from different 

anatomical depots in that coronary and mesenteric, but not subcutaneous adipose 

tissue augmented coronary artery contractions in response to smooth muscle 

depolarization with 20 mM KCl (Figure 2.2B). Consistent with previous studies107, 

this effect was not observed in aortic tissues obtained from rats. Further studies 

supporting the presence of coronary adipose-derived constricting factors showed 

that the addition of coronary PVAT to PGF2α-constricted arteries actually 

increased coronary vasomotor tone (Figure 2.3C), as opposed to decreasing 
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tension, which would be expected if ADRFs predominated in coronary PVAT. 

Bioassay experiments involving the transfer of PVAT-conditioned media to isolated 

coronary arteries support the release of transferable (paracrine) constricting 

factors from coronary PVAT (P = 0.04). Importantly, these effects were dependent 

on the amount of PVAT added to the baths (Figure 2.3) and were significantly 

greater than responses observed in parallel time-control studies. Our findings are 

consistent with studies that found PVAT attenuated vasodilator influences in obese 

mice114 and potentiated vasoconstriction to electrical field stimulation in rat 

mesenteric arteries111.  

A novel finding of this investigation is that the effects of coronary PVAT on 

baseline and agonist-mediated contractions were markedly elevated in tissue 

obtained from obese vs. lean swine (Figure 2.3B and 2.3D). To address whether 

this augmentation was related to inherent mechanistic differences in vascular 

smooth muscle, crossover studies were performed in which coronary PVAT from 

either lean or obese swine was added to clean, lean coronary arteries. We found 

that PVAT from lean and obese swine increased coronary contractions to 20 mM 

KCl to a similar extent (Figure 2.6B). Additional experiments in clean, obese 

arteries yielded similar results (data not shown). Consistent with earlier data from 

our laboratory and others which indicate that obesity augments CaV1.2 current and 

vasoconstriction42, 157 34, the present fura-2 Ca2+ imaging studies support that 

voltage-dependent increases in intracellular Ca2+ concentration to KCl are 

significantly greater in isolated smooth muscle cells from obese vs. lean swine 

(Figure 2.6D). Based on these findings we propose that the augmented contractile 
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effects of obese coronary PVAT are related to inherent differences in smooth 

muscle responsiveness between obese and lean coronary arteries, and that this 

effect is mediated by elevated activity/ expression of CaV1.2 channels and/or 

alterations in the role of K+ channels in obese arteries34. Importantly, inhibitory 

effects of PVAT derived-factors on K+ channels (Figure 2.5) would also serve to 

activate CaV1.2 channels and augment coronary artery contractions49. However, 

the exact K+ channel subtypes on smooth muscle and/or the endothelium affected 

by coronary PVAT warrants further investigation. 

We postulate that these effects of PVAT derived factors occur independent 

of influences on coronary endothelium or decreased Ca2+ buffering by the 

sarcoplasmic reticulum as endothelial denudation (Figure 2.4C and 2.4D) or 

inhibition of the SERCA pump with CPA (Figure 2.6C) had little/no effect on the 

contractile effects of PVAT. However, we cannot rule out the possibility that the 

observed effects of coronary PVAT are mediated by factors released from 

endothelial cells within the PVAT vasculature and/or by factors released from other 

cell types within the PVAT.  
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Effects of obesity on coronary PVAT proteome and mechanisms of coronary 

contraction   

Although recent evidence indicates that hypercholesterolemia, obesity and 

diabetes alter phenotypic expression patterns of specific adipokines in coronary 

PVAT at the protein and mRNA level9, 141, 156, no study has performed global 

proteomic screening of the coronary PVAT proteome in lean vs. obese subjects. 

Data from our LC-MS/MS revealed significant dysregulation in the abundance of 

numerous proteins in obese PVAT supernatant, many of which were not previously 

reported9. In general, Ingenuity Pathway Analysis indicated that a significant 

number of altered proteins corresponded with pathways associated with cellular 

growth-proliferation and movement. In particular, it was intriguing that expression 

of RhoA was significantly elevated in samples obtained from obese vs. lean 

coronary PVAT (Table 2.2), which suggests that the enhanced effects of obese 

coronary PVAT could be mediated via increases in Rho-kinase-mediated 

constriction. Interestingly, we documented that inhibition of Rho-kinase with fasudil 

markedly reduced the maximal contractions to KCl in lean arteries (Figure 2.4A 

versus 2.7A), but had little effect on maximal KCl contractions in obese arteries 

(Figure 2.4B versus 2.7B). In addition, fasudil significantly diminished PVAT-

mediated increases in coronary artery contractions to 20 mM KCl in lean but not 

obese arteries (Figure 2.7C). These data indicate that PVAT-derived factors 

increase coronary artery contractions in lean swine via a Rho-kinase dependent 

mechanism, whereas increases in contraction in obese swine occur via Rho-
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independent pathways; i.e. alteration in the contribution of K+ channels (Figure 

2.5) or augmented function of CaV1.2 channels (Figure 2.6D).  

Additional proof of principle studies were performed based on our global 

proteomics data which detected significant up-regulation of calpastatin fragments 

in PVAT supernatant of obese vs. lean swine. This protein, encoded by the CAST 

gene, was recently shown to be a partial agonist for the intracellular domain of 

CaV1.2 channels in smooth muscle158. Our experiments documented, for the first 

time, that calpastatin dose-dependently augments coronary artery contractions, at 

levels similar to that observed in the presence coronary PVAT (Figure 2.7D). 

Although these data suggest that calpastatin is a coronary adipose-derived 

constricting factor, further studies are needed to more directly address the vascular 

effects of calpastatin.  

 

Limitations of the study 

 It is important to recognize that these studies were conducted using 

coronary samples obtained from lean and obese swine hearts, thus it is presently 

unclear to what extent these findings translate to the human clinical setting. 

However, our data provide direct evidence of differential effects of PVAT from 

different anatomic depots in the same species as well as the influence of 

underlying phenotype (obesity) that should be further explored. Coronary artery 

tension in this study was measured after relatively short term exposure to PVAT in 

vitro (30 min). Thus, whether such effects of PVAT would manifest in vivo has yet 

to be established. LFQMS analysis revealed only the most abundant proteins 
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present in the PVAT supernatants and those identifiable/quantifiable by trypic 

digestion. This approach may not detect potentially relevant proteins present in 

low concentration (e.g. specific adipokines such as leptin (18kDa) or resistin (11 

kDa) or those that were either not effectively proteolyzed or are so small as to yield 

a few detectable peptides). We acknowledge that the focus on the coronary PVAT 

proteome eliminates examination of bioactive lipids or other macromolecules that 

may contribute to the effects of PVAT. However, while we cannot rule out this 

possibility, our initial studies have demonstrated no effect of lysophosphatidic acid 

on baseline coronary artery tension or KCl-induced contractions. Furthermore, we 

submit that it is unlikely that vasoactive factors responsible for the effects of 

coronary PVAT in this investigation are hydrophobic lipids, as these molecules are 

insoluble in the Krebs buffer utilized in the present experiments. This point is 

supported by the recent study of Lee et al. which required the use of a PVAT 

superfusion bioassay cascade system in order to discern vascular effects of PVAT-

derived palmitic acid methyl ester159. Clearly, further investigation regarding the 

identity of the coronary PVAT-derived factors, the specific cell types involved and 

the influence obesity has on these cells and factors is warranted.  

 

Conclusions and implications 

Data from this investigation provide novel evidence that coronary PVAT is 

capable of releasing factors that initiate/potentiate contraction of coronary arteries, 

independent of effects on coronary endothelium. Importantly, the vascular 

influence of PVAT is specific to anatomic location and is augmented in the setting 
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of obesity. We propose this augmented effect of PVAT is related to alterations in 

Rho-dependent signaling, increased functional expression of CaV1.2 channels 

and/or diminished/altered activity of K+ channels in obese coronary arteries. In 

addition, marked alterations in the expression profile of the coronary PVAT 

proteome in obese swine uncovers new potential therapeutic target proteins (e.g. 

calpastatin) and signaling pathways that may not only contribute to the regulation 

of vascular smooth muscle tone, but to the initiation of smooth muscle 

differentiation and proliferation observed in obesity-induced cardiovascular 

disease9, 141, 160, 161.  
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Tables and Figures 

 

 
Table 2.1 Phenotypic characteristics of lean and obese Ossabaw swine. 
Values are mean ± SE for 12-month old lean (n = 6) and obese (n = 10) swine. *P 
< 0.05 t-test, lean vs. obese swine. 
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Table 2.2 Secreted protein expression profile of coronary PVAT in obese 
versus lean swine. Values for fold change in expression of obese (n = 5) vs. lean 
(n = 5) coronary PVAT supernatants.  
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Figure 2.1 Representative picture illustrating isolation of coronary artery 
PVAT and isometric tension methodology. RV (right ventricle), LV (left 
ventricle), RCA (right coronary artery), LCX (left circumflex artery), LAD (left 
anterior descending artery), PVAT (perivascular adipose tissue). 1) Lean and 
obese hearts were excised upon sacrifice and perfused with Ca2+-free Krebs to 
remove excess blood; 2) Arteries and PVAT were grossly isolated from the heart; 
3) the myocardium was removed; 4) arteries were further isolated and surrounding 
PVAT dissected away; 5) 3 mm lean and obese arteries were mounted in organ 
baths at 37°C.  
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Figure 2.2 Representative tracing of paired experiments to assess the 
vascular effects of PVAT from different anatomical depots. A, Representative 
wire myograph tracing of tension generated by arteries before (x) and after (y) the 
addition of PVAT to the organ bath. Upward deflections indicate an increase in 
tension (constriction). The difference in tension generated by each artery before 
(x) and after (y) PVAT is expressed as Delta Active Tension (g) and is independent 
of changes in baseline with PVAT. B, Delta active tension (g) of coronary arteries 
before and after exposure to coronary PVAT, subcutaneous adipose or mesenteric 
PVAT (0.3 g each). *P < 0.05 vs. average of paired time controls (represented by 
dashed line; 1.01 ± 0.21 g).  
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Figure 2.3 Effect of PVAT on baseline tension and response to PGF2α. A, 
Representative tracings of a lean and obese artery after addition of 0.3 g PVAT for 
30 min. B, Addition of coronary PVAT (0.1-1.0g) to the organ bath increased 
tension in both lean and obese arteries and was dependent on the amount of 
coronary PVAT added to the bath. C, Representative tracing of a lean artery 
contracted with PGF2α to plateau, incubation with PVAT and treatment with 
diltiazem (10 μM). D, Delta active tension of arteries stimulated with PGF2α before 
and after the addition of coronary PVAT (0.1-1.0 g). *P < 0.05 vs. average of paired 
time controls (represented by dashed line; 0.29 ± 0.08 g). #P < 0.05 lean vs. obese, 
same amount of PVAT.  
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Figure 2.4 KCl dose-response curves in intact and denuded coronary arteries 
in the presence and absence of PVAT. Cumulative dose-response data of lean 
(A) and obese (B) arteries to KCl (10-60 mM) before and after coronary PVAT 
incubation (30 min). Arteries were incubated with coronary PVAT from the same 
animal on the same day. Cumulative dose-response data from denuded lean (C) 
and obese (D) vessels before and after PVAT incubation. *P < 0.05 vs. no PVAT-
control at same KCl concentration.  
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Figure 2.5 Effect of PVAT on coronary vasodilation to H2O2. A, Representative 
tracings of H2O2-induced relaxations of lean control arteries pre-constricted with 1 
μM U46619 in the absence and presence of PVAT. Average percent relaxation of 
lean (B) and obese (C) control and PVAT-treated arteries to H2O2 after pre-
constriction with either U46619 (1 μM) or KCl (60 mM). *P < 0.05 vs. control at 
same H2O2 concentration. 
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Figure 2.6 Vascular effects of lean vs. obese coronary PVAT. A, 
Representative tracings of lean arteries treated with 20 mM KCl, exposed to either 
lean or obese PVAT. B, Delta active tension (g) to 20 mM KCl of lean arteries 
exposed to time control, lean or obese PVAT. *P < 0.05 vs. control. C, Delta active 
tension (g) to 20 mM KCl after exposure to SERCA inhibition with CPA (10 μM) P 
< 0.05 vs. control. D, F360/F380 ratio of fura-2 experiments after stimulation of 
isolated lean (n = 4) and obese (n = 5) coronary vascular smooth muscle with 80 
mM KCl. *P < 0.05 obese vs. lean.  
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Figure 2.7 Effects of Rho kinase signaling and calpastatin on coronary artery 
contractions to KCl. Lean (A) and obese (B) arteries were incubated with 1 μM 
fasudil for 10 min prior to dose-responses to KCl (10-60 mM) in the absence and 
presence of coronary PVAT. *P < 0.05 vs. no PVAT-control at same KCl 
concentration. C, Delta active tension (g) in response to 20 mM KCl in lean and 
obese PVAT control and PVAT + fasudil-treated arteries *P < 0.05 vs. respective 
PVAT control. D, Delta active tension (g) to 20 mM KCl after incubation with 
increasing concentrations of calpastatin (1-10 μM) or scrambled calpastatin 
peptide (10 μM Neg Cnt) for 30 min. *P < 0.05 relative to time control.  
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Chapter 3: Conclusion 
 

 
Summary of the Findings 
 

Unless dramatic changes are made to educating the general population 

about proper nutrition and improving physical and cardiovascular health, the 

pandemic of obesity will continue to spread worldwide. As obese children become 

adults, the dramatic prevalence of MetS will challenge healthcare systems to 

manage the rise in associated cardiovascular diseases. Although we are beginning 

to uncover some of the vast capabilities of adipose tissue as an endocrine and 

paracrine organ, the exact mechanism(s) by which increasing adiposity in obesity 

leads to cardiovascular disease is not yet understood.  

Mounting evidence suggest phenotypic changes to PVAT could contribute 

to obesity associated cardiovascular disease. In particular, echocardiography130, 

magnetic resonance imaging129 and computed tomography131, 132 reveal coronary 

PVAT is one of the best predictors of CAD, even more predictive of atherosclerotic 

burden that visceral adipose92. This is important because it suggests a novel, 

paracrine pathway to the development of vascular disease that may function 

independent of changes to visceral adipose and systemic adipokine levels. 

Furthermore, in addition to the increase in PVAT volume, studies reveal local 

inflammation and aberrant regulation of adipokines released from coronary PVAT 

may also exacerbate underlying vascular dysfunction in MetS82, 95, 118, 137, 145. The 

effects of adipokines on hypertension, endothelial function, cardiac pathology, 

atherosclerosis and inflammation implicate this local adipose depot in the 
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pathogenesis of vascular dysfunction, however, no one has established a causal 

link between PVAT and coronary artery disease.   

With these earlier studies in mind, the central focus of the present 

investigation was to investigate the potential role of coronary PVAT in the 

development of smooth muscle dysfunction. Specifically, our goal was to elucidate 

the mechanisms by which lean and MetS PVAT-derived factors influence vascular 

smooth muscle ion channel function and the coronary PVAT proteome. The major 

findings of our investigation are summarized: 

 

Aim 1: Test the hypothesis that coronary PVAT augments tension 

development of coronary arteries and is potentiated in MetS.  Results from 

these studies indicate that PVAT-derived factors are capable of influencing 

coronary vasomotor tone in lean “healthy” arteries. Independent of any changes 

associated with MetS, addition of lean PVAT to a cleaned isolated coronary artery 

increased baseline tension, and augmented constriction of coronary arteries to 

other pharmacological stimuli (Figure 2.3). These effects were dependent upon 

the amount of adipose tissue present and were observed in denuded arteries, 

suggesting the effect of PVAT in the coronary circulation is volume-dependent, 

endothelial-independent and mediated by direct action on coronary vascular 

smooth muscle cells.  

Our data support that the vascular effects of PVAT vary according to the 

anatomical location as coronary and mesenteric adipose tissue potentiated 

contraction of coronary arteries, whereas subcutaneous adipose and rat periaortic 
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adipose tissue attenuated constriction relative to the time control rings in coronary 

and rat aorta, respectively (Figure 2.2). To specifically examine the role of 

potential “ADRFs” in coronary PVAT, adipose tissue was added to coronary 

arteries pre-constricted with PGF2α. We found that the addition of PVAT to these 

pre-constricted arteries augmented coronary artery tension, suggesting the 

predominance of adipose derived constricting factors in coronary PVAT of 

Ossabaw swine.   

 Experiments to examine the vasoregulatory effects of PVAT in the setting 

of MetS demonstrated that MetS PVAT also increased baseline tension and 

PGF2α mediated contractions of isolated coronary arteries, but that the increases 

relative to the amount of PVAT added were significantly elevated compared to the 

lean-controls (Figure 2.3). Taken together, our findings related to Aim 1 provide 

novel evidence that factors released from coronary PVAT are capable of 

augmenting coronary vasomotor tone, independent of effects on endothelium. In 

addition, the effect of coronary PVAT derived constricting factors is augmented in 

the setting of obesity/MetS, suggesting these factors are altered in disease.  

 

Aim 2: Identify and examine the potential coronary PVAT-derived 

factors that mediate the vascular effects in lean vs. MetS coronary arteries. 

To accomplish this aim we performed global proteomic assessment of coronary 

PVAT from lean and MetS swine. This examination represents the first systematic 

examination of the coronary PVAT proteome and revealed substantial alterations 

in the proteome in the setting of obesity. Overall, we detected alterations in 186 
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proteins (P ≤ 0.05) in obese vs. lean PVAT (complete listing of 1,472 quantified 

non-redundant proteins provided in Supplemental Table 1). Ingenuity Pathway 

Analysis software revealed several proteins involved in cellular growth and 

proliferation (51 molecules) and cellular movement (39 molecules). However, 

increases in RhoA (2.9-fold) and calpastatin (1.6-fold) were of particular interest 

as these pathways are directly linked to smooth muscle contraction, Ca2+ 

sensitization, and both are implicated in the progression of hypertension154, 155. 

Further studies to examine the effects of calpastatin, a known endogenous calpain 

inhibitor155, 158 revealed that this protein augments contractions of isolated coronary 

arteries to an extent similar to coronary PVAT (Figure 2.7). Although calpastatin 

has been implicated as an agonist of L-type calcium channels in ventricular 

cardiomyocytes158, this study is the first investigate its effects on vascular 

reactivity. A potential role for RhoA is discussed in Aim 3. Overall, the marked 

alterations in the expression profile of the coronary PVAT proteome in MetS swine 

uncovers new potential therapeutic target proteins (e.g. calpastatin) and signaling 

pathways that should be further explored.  

 

Aim 3: Identify the specific vascular smooth muscle signaling 

pathways and end effector ion channels that mediate the vascular 

consequences of PVAT in MetS. To examine potential mechanisms by which 

coronary PVAT augments smooth muscle contraction, we first examined the effect 

of PVAT on lean vs. MetS coronary vasodilation in response to H2O2; which has 

been previously shown to induce dilation via activation of K+ channels162. Our 
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findings revealed that H2O2-mediated vasodilation was markedly attenuated by the 

presence of coronary PVAT (Figure 2.5A) and that this inhibitory effect was much 

more prominent in tissues obtained from lean (Figure 2.5B) vs. obese (Figure 

2.5C) swine. More recent experiments documented similar inhibitory effects of 

PVAT on coronary vasodilation in response to adenosine (Figure 3.1). 

Interestingly, vasodilation to adenosine in the absence of PVAT was diminished in 

lean vs. MetS coronary arteries (P ≤ 0.001). In contrast, previous in vivo studies 

revealed that the increase in coronary blood flow to adenosine was diminished in 

MetS v. Lean swine163, while the responses of pressurized arterioles to the 

adenosine analog 2-chloroadenosine (2-CAD) were not different between early 

stage MetS v. lean swine164. These differences in the effect of PVAT indicate that 

the MetS significantly alters the adipocytokine factors released from PVAT (Aim 

2), the vascular effects of these factors, and/or the underlying mechanisms of 

smooth muscle contraction and dilation.  

 
Figure 3.1 Effect of PVAT on coronary vasodilation to Adenosine. Average 
percent relaxation of lean (A) and MetS (B) control and PVAT-treated arteries to 
Adenosine after pre-constriction with U46619 (1 μM). *P < 0.05 vs. control at same 
Adenosine concentration.  
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In studies to examine these potential mechanisms we found that Rho kinase 

expression was increased 2.9-fold in MetS PVAT supernatant, but interestingly 

that Rho kinase inhibition in MetS tissues did not reduce tension development nor 

influence the effect of PVAT on MetS contractions to KCl as observed in lean 

coronary arteries (Figure 2.7A and B). These data, which indicate that the MetS 

alters the regulatory pathways responsible for vascular smooth muscle 

contraction, are further supported our Ca2+ imaging experiments which 

demonstrated that the rise in intracellular Ca2+ concentration in response to KCl-

induced depolarization was significantly elevated in isolated coronary vascular 

smooth muscle cells from MetS vs. lean swine (Figure 2.6D). In addition, our 

“crossover” studies also support that the vascular effect of PVAT is dependent on 

the underlying phenotypic state of the coronary vascular smooth muscle (Figure 

2.6A and B).  

Taken together, these studies indicate that the expression and effect of 

PVAT-derived factors differs substantially between vascular beds and is influenced 

by underlying disease states (see schematic diagram in Figure 3.2). Additional 

studies to delineate which PVAT-derived factors (e.g. calpastatin) are influencing 

coronary vascular reactivity could provide novel targets for intervention before 

progression into overt atherosclerosis. In addition, future studies on coronary 

vascular smooth muscle ion channels and signaling pathways will need to consider 

the influence of this proximal adipose depot.  
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Figure 3.2 Schematic representing proposed mechanisms of coronary PVAT 
action on vascular smooth muscle reactivity. Proteomics revealed increased 
Calpastatin, RhoA and decreased DDAH protein expression in MetS PVAT 
supernatants vs. lean. Our data propose PVAT increases contraction by releasing 
factors that converge on CaV1.2 channels increasing its activity. PVAT also 
attenuates relaxation to H2O2 and adenosine, which is proposed to occur via 
inhibition of BKCa and KV channel activity. Additionally, inhibition of K+ channel 
activity in vascular smooth muscle couples to increased CaV1.2 channel activity, 
potentiating constriction even further.  
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Future Directions and Proposed Studies 

 This investigation uncovered many novel observations regarding the role of 

PVAT on coronary smooth muscle vascular reactivity; however, several key issues 

still require elucidation. In particular, we have yet to identify the specific PVAT-

derived factors that facilitate the effects observed in lean vs. MetS coronary 

arteries. In addition we have yet to narrow down the specific signaling cascades 

involved in converging on smooth muscle CaV1.2 and K+ channels. However, 

identification of these channels have provided a starting point with which 

subsequent investigations involving inhibition of smooth muscle signaling 

pathways may elucidate key mediators involved. In addition, our translational pig 

model will help to facilitate studies that knock down or up-regulate specific PVAT-

derived targets that may be mediating vascular dysfunction in MetS. Together, 

these proposed issues will help to advance our understanding of how perivascular 

adipose-derived adipokines contribute to coronary artery disease.  

 

Coronary Smooth Muscle Signaling  

 Our studies identified several ion channels that function to mediate changes 

in vascular tone in the presence of PVAT. Subsequent experiments to identify the 

specific smooth muscle signaling pathways involved in activation of these ion 

channels may uncover mechanisms by which PVAT can influence coronary 

reactivity. In addition, understanding how PVATs effect on signaling pathways 

differs in MetS may help to unravel the specific vascular smooth muscle alterations 

that occur as a result of phenotypic changes to PVAT.  
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 Several signaling pathways converge on the contractile apparatus in 

vascular smooth muscle. Our data show normal rho kinase signaling may be less 

active in MetS vascular smooth muscle cells, however, overall tension 

development between lean and MetS was unchanged. This suggests there may 

be compensatory signaling to maintain contraction in the absence of rho kinase 

activity. This could explain why expression of RhoA was augmented in supernatant 

from MetS vs. lean swine (i.e. compensatory increases in expression with 

decreased activity/contribution). Future studies to address the relative activity and 

functional expression of signaling intermediates in these vasoregulatory pathways 

may elucidate changes required for progression into atherosclerosis in the setting 

of MetS.  

 

Examination of Specific Targets 

 There is a need to further characterize the link between coronary PVAT-

derived factors and the initiation and progression of coronary atherogenesis in 

obesity/MetS. Based on recent data from our laboratory implicating a potential role 

for both leptin and calpastatin in endothelial and smooth muscle dysfunction in 

MetS, we are currently planning to conduct future studies to locally knockdown and 

overexpress these proteins in coronary PVAT using lentiviral vectors delivered with 

a microinjection catheter.  
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Figure 3.3. Coronary Perivascular Transfection. A) Picture and schematic of 
Mercator Micro-Injection Catheter. When the desired injection site is reached in 
the coronary artery, the balloon is inflated with saline to allow lentiviral vector 
injection through the blood vessel wall, directly into the surrounding perivascular 
adipose tissue. This keeps the concentration high near the target site only. B) 
Reporter assay confirming lentiviral vector expression in the circumflex artery 
(CFX) and no expression in the control, right coronary artery (RCA). TRPC6 figure 
provided by Dr. Alexander Obukhov.  
 

Utlizing these catheters and angiography, siRNA directed at proteins such 

as leptin or calpastatin could be delivered to the adjacent PVAT surrounding a 

coronary artery (Figure 3.3). Additionally, a GFP-labeled artery delivered to an 

alternative conduit artery would allow a pig to serve as its own control. These 

target-specific studies would help to determine whether these proteins contribute 

to processes such as endothelial and smooth muscle dysfunction in the face of a 

high fat diet. During several months of local knock down or up regulation with or 

without the atherogenic diet, coronary artery stenosis could be measured in vivo 

using intravascular ultrasound to examine whether either of these proteins 

participates in plaque development. Additional functional isometric tension studies, 

western blots and immunohistochemistry could be performed in vitro to closely 

examine the influence of these targets over the course of disease progression.  
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Stromal Vascular Cell Types  

 In our proteomic assessment, we were careful not to assume all of the 

proteins were derived from adipocytes. Stromal vascular cells include pre-

adipocytes, monocytes and macrophages, fibroblasts and vascular endothelial 

and smooth muscle cells that compose the small arteries in the PVAT itself. As 

these cell types produce their own chemical messengers, delineating which 

vascular mediators are coming from which of the cell types may help to elucidate 

a cell-specific messenger that could be targeted in MetS. Specifically, macrophage 

polarization has been shown to occur in adipose tissue with obesity88. Further 

characterization of the differential adipokine secretion in M1 versus M2 

macrophages could help to elucidate the link between obesity, inflammation and 

vascular dysfunction.  

 

Concluding Remarks 

 Despite the growing pandemic, the pathophysiologic mechanisms linking 

obesity, MetS and CVD remain poorly understood. We have found that obesity and 

MetS are associated with vascular endothelial dysfunction and smooth muscle ion 

channel dysregulation. The central goal of this investigation was to examine the 

extent to which local PVAT derived factors modulate was a coronary vascular 

smooth muscle function and potentially to the development of CAD in MetS. 

Results from these investigations illustrate that PVAT-derived factors impair 

coronary vascular smooth muscle function by converging on ion channels that 

promote vasoconstriction. These investigations are the first to globally characterize 
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alterations to the PVAT secretome in MetS. Importantly, perivascular adipose-

derived calpastatin production may increase in MetS and drive the enhanced 

constriction observed in the presence of PVAT. Above all, the present findings 

suggest that local PVAT contributes to the normal control of coronary tone and the 

contribution of PVAT changes as disease progresses, and highlight the potential 

diagnostic benefit of monitoring coronary PVAT expansion and protein expression.  
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Appendix 

 
Supplementary Methods 
 

Isolation of coronary artery rings  

Lean and obese swine hearts were excised upon sacrifice and the aorta 

cannulated to perfuse the coronary tree with 4°C, Ca2+-free Krebs solution (131.5 

mM NaCl, 5 mM KCl, 1.2 mM NaH2PO4, 1.2 mM MgCl2, 25 mM NaHCO3, 10 mM 

glucose) in order to rinse the excised heart of blood and blood proteins. After 

perfusion, coronary arteries from lean and obese swine were grossly dissected 

from the heart, and further isolated from surrounding myocardium and adventitia 

using a dissecting microscope. Adjacent adipose was cleaned of myocardium and 

stored in ice-cold Ca2+-free Krebs for later use in the protocols outlined. Following 

adventitial removal, arteries were cut into 3 mm rings and mounted in water-

jacketed organ baths filled with a Ca2+-containing Krebs solution (131.5 mM NaCl, 

5 mM KCl, 1.2 mM NaH2PO4, 1.2 mM MgCl2, 25 mM NaHCO3, 10 mM glucose, 4 

mM CaCl2) at 37°C (Figure 2.1). Optimal length (passive tension) was assessed 

by contractions of isolated arteries to 60 mM KCl. Passive tension was increased 

in gram increments until there was <10% change in active tension development to 

60 mM KCl (typical optimal passive tension equaled ~4 g). Once the arteries had 

stabilized at their respective baseline tensions they were subjected to the following 

protocols outlined. 
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Vascular effects of adipose tissue from different anatomical beds 

 In order to obtain control responses, clean isolated coronary artery rings 

were contracted with 20 mM KCl absence of adipose tissue. After the artery 

contractions stabilized, the rings were washed and allowed to return to baseline 

passive tension. The arteries were then incubated with no adipose tissue (i.e. time-

control, n = 10) or 0.3 g of adipose tissue obtained from coronary (n = 5), 

subcutaneous (n = 5), or mesenteric (n = 3) depots for 30 min. Following this 

incubation period, contractile responses to 20 mM KCl then repeated. Active 

tension development of the same artery to repeated administration of KCl is 

reported as “delta active tension”; i.e. the difference in active tension development 

to KCl in the presence of PVAT minus the active tension development in the 

absence of PVAT (Figure 2.2A). Thus, paired comparisons of a single artery with 

and without PVAT were performed to determine the effects of PVAT on coronary 

vasomotor responsiveness. Identical studies were also performed in rat aortic rings 

(n = 3) that were exposed to rat peri-aortic adipose tissue. 

 

Bioassay experiments with coronary PVAT supernatant 

Bioassay experiments were conducted on clean coronary artery rings that 

had not been previously exposed to PVAT. In these studies, coronary artery 

responses to 20 mM KCl were compared in the same artery in the absence of 

PVAT (control) and following the addition of a filtered (0.2 μm filter) supernatant 

containing Ca2+-Krebs buffer that had been incubated with 0.3g of coronary PVAT 

for 30 min.  
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Effect of coronary PVAT on baseline tension and response to PGF2-α 

To examine the vasoactive effects of coronary PVAT on baseline coronary 

artery tension, weighed quantities of lean ((Control, n = 21) (0.1 g, n = 9) (0.3 g, n 

= 20) (1.0 g, n = 7)) and obese ((Control, n = 17) (0.1 g, n = 4) (0.3 g, n = 15) (1.0 

g, n = 4)) coronary PVAT were added to organ baths containing clean (PVAT free) 

coronary arteries at 37°C. In these studies, lean coronary arteries were exposed 

to PVAT from the same lean swine while obese coronary arteries were also 

exposed to PVAT from the same obese swine (i.e. paired artery-PVAT responses 

from the same lean or obese animals were compared). Baseline tension of the 

arteries exposed to these different quantities of PVAT was then followed over a 30 

min time period. Coronary artery responses to PGF2α (10 µM) were also obtained 

in the absence and presence of lean ((Control, n = 7) (0.1 g, n = 8) (0.3 g, n = 6) 

(1.0 g, n = 6)) and obese ((Control, n = 5) (0.1 g, n = 3) (0.3 g, n = 4) (1.0 g, n = 

6)) coronary PVAT.  

Diltiazem (10 μM) or Nifedipine (0.1 μM) was added to selected baths at the 

plateau of the KCl or PGF2α + PVAT contraction to examine the conuMtribution of 

voltage-dependent Ca2+ (CaV1.2) channels to these contractions. 
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Effects of lean vs. obese PVAT on KCl Dose-Responses in intact and denuded 

arteries  

Coronary contractions to increasing concentrations of KCl (10-60 mM) were 

examined before and after incubation with coronary PVAT (0.3 g for 30 min) in 

intact (lean, n = 8; obese, n = 6) and endothelium denuded arteries (lean, n = 7; 

obese, n = 8). The endothelium was removed by gently rubbing fine-tip forceps 

along the lumen of the artery and confirmed by <30% relaxation to 1 μM bradykinin. 

To determine whether adding extracellular K+ increases active tension when 

osmolarity is maintained by simultaneously removing equimolar Na+, a modified 

Krebs was used that substituted equimolar Na+ for 20 or 60 mM K+. This equimolar 

replacement did not significantly change tension development compared to paired 

responses without substitution (P = 0.154 at 20 mM; P = 0.122 at 60 mM), 

suggesting the effects of KCl are independent of osmolarity changes with 

application of extracellular KCl (Figure A). Additional control experiments also 

revealed no significant changes in the tension development of isolated coronary 

arteries exposed to 10-60 mM NaCl (instead of KCl), further supporting that the 

coronary effects of KCl are not related to changes in osmolarity. As outlined, paired 

artery-PVAT responses from the same lean or obese animals were compared in 

these studies. 
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Effects of lean vs. obese PVAT on H2O2-mediated coronary vasodilation 

The effects of PVAT on coronary vasodilation to H2O2 (1 μ–1 mM) were 

examined in isolated arteries pre-constricted with either KCl (60 mM) or U46619 

(1 μM). In these experiments, coronary arteries were incubated without or with 0.3 

g of coronary PVAT from the same animal (lean, n = 5 or obese, n = 9) for 30 min 

prior to pre-contraction. PVAT was absent in arteries contracted with KCl (lean, n 

= 3; obese, n = 3). Once coronary contractions to KCl or U46619 stabilized, 

increasing concentrations of H2O2 were added to the baths in a cumulative 

manner.  

 

Crossover study: Vascular effects of lean vs. obese PVAT 

 To further examine the vascular effects of lean vs. obese coronary PVAT 

on artery contractions to 20 mM KCl, additional “crossover” experiments were 

performed in lean coronary arteries that were incubated for 30 min with 0.3 g of 

coronary PVAT obtained from either a lean (n = 7) or obese (n = 11) animal 

sacrificed on the same day; i.e. lean coronary arteries were exposed to coronary 

PVAT obtained from a lean and obese swine (Figure 2.6A). Delta active tension 

was determined in response to repeated administration of 20 mM KCl before and 

after incubation of PVAT in the same artery. Similarly, to determine the effects of 

coronary PVAT-derived factors on sarcoplasmic reticulum Ca2+-ATPase (SERCA), 

coronary contractions to 20 mM KCl before and after PVAT incubation were 

examined in the presence of the SERCA inhibitor cyclopiazonic acid (CPA, 10 μM, 

n = 6).  
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Effects of PVAT on Rho kinase and calpastatin on coronary artery contractions to 

KCl 

Similar to studies outlined, concentration response studies to KCl (10-60 

mM) were conducted in lean (n = 6) and obese (n = 8) arteries in the presence of 

the Rho kinase inhibitor, fasudil (1 μM). In these experiments, fasudil was added 

10 min prior to the KCl responses in the absence and presence of 0.3 g of PVAT147 

(30 min incubation) in the same coronary artery.  

Further studies were also performed to examine the effects of 30 min 

incubation of calpastatin ((1 μM, n = 3) (3 μM, n = 7) (10 μM, n = 4) Calbiochem)) 

or negative (scrambled) calpastatin peptide (10 μM, n = 3, Calbiochem) on 

coronary artery contractions to 20 mM KCl.  

 

 

 

 

 

 

 

 

 

 

Figure A KCl contractions with equimolar Na+ substitution. Equimolar 
replacement of K+ for Na+ did not significantly change tension development of 
isolated coronary arteries (n = 3) when compared to paired responses without 
equimolar substitution (P = 0.154 at 20 mM; P = 0.122 at 60 mM). 
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Honors and Awards 
 
2011   Abstract Award, Indiana Physiological Society Meeting 
2012   Abstract Award, Indiana Physiological Society Meeting 
2013 SEBM Young Investigator Award, Experimental Biology 

Meeting 
2013 APS Cardiovascular Section Research Recognition Award, 

Experimental Biology Meeting 
 
Publications 
 
Peer-Reviewed Journal Articles        
    
1. Berwick ZC, Dick GM, Moberly SP, Kohr MC, Sturek M, Tune JD. Contribution 

of voltage-dependent K+ channels to metabolic control of coronary blood flow. 
J. Mol. Cell Cardiol. April; 52(4):912-919, 2012.  
 



 
 

2. Berwick ZC, Moberly SP, Kohr MC, Kurian M, Morrical E, and Tune JD. 
Contribution of voltage-dependent K+ and Ca2+ channels to coronary 
pressure-flow autoregulation. Basic Res Cardiol., 107:1-11, 2012.  
 

3. Payne GA, Kohr MC, Tune JD. Epicardial perivascular adipose tissue as a 
therapeutic target in obesity-related coronary artery disease. Br. J. Pharmacol. 
Feb; 165(3):659-669, 2012.  
 

4. Moberly SP, Berwick ZC, Kohr MC, Mather K, Tune JD. Intracoronary 
glucagon-like peptide 1 preferentially augments glucose uptake in ischemic 
myocardium independent of changes in coronary flow. Experimental Biology of 
Med., 237:334-342, 2012.  
 

5. Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC, Moberly SP, 
Alloosh M, Sturek M, Tune JD. Perivascular adipose tissue potentiates 
contraction of coronary vascular smooth muscle: Influence of obesity. 
Circulation. DOI: 10.1161/CIRCULATIONAHA.112.001238. 2013.   
 

6. Moberly SP, Mather KJ, Berwick ZC, Owen MK, Hutchins GD, Green MA, Ng 
Y, Considine RV, Perry KM, Chisholm RL, Tune JD. Impaired cardiometabolic 
responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. 
Br. J. Pharmacol. In Press.  
 

7. Berwick ZC, Dick GM, O’Leary HA, Bender SB, Goodwill AG, Moberly SP, 
Owen MK, Miller SJ, Obukhov AG, Tune JD. Contribution of electromechanical 
coupling between KV and CaV1.2 channels to coronary dysfunction in 
metabolic syndrome. Basic Res Cardiol. In Press. 
 

Manuscripts in Preparation 
 

1. Casalini ED, Owen MK, Goodwill AG, Moberly SP, Berwick ZC, Tune JD. Role 
of hydrogen sulfide in the regulation of coronary blood flow. In Preparation.   
 

2. Goodwill AG, Casalini ED, Owen MK, Conteh A, Sassoon D, Shatagopam K, 
Dick GM, Tune JD. Role of voltage-dependent Kv7 channels in the regulation 
of coronary blood flow. In Preparation.   
 

3. McKenney ML, Owen MK, Alloosh M, Schultz KA, Tune JD, Sturek MS. 
Dysfunction of coronary smooth muscle Ca2+ regulation in the progression of 
metabolic syndrome and coronary artery disease in Ossabaw miniature swine. 
In Preparation.  
 



 
 

Published Abstracts Presented at National Meetings     
 

1. Kohr MC, Payne GA, Lai X, Witzmann FA, and Tune JD. Altered protein 
expression of coronary perivascular adipose tissue in metabolic syndrome. 
Experimental Biology, 2011.  
 

2. Moberly SP, Berwick ZC, Kohr MC, Svendsen M, Mather KJ, Tune JD. 
Intracoronary Infusion of Glucagon-like peptide 1 acutely enhances myocardial 
glucose uptake during ischemia in canines. Experimental Biology, 2011.  
 

3. Kohr MC, Lai X, Moberly SP, Berwick ZC, Witzmann FA, Tune JD. Augmented 
coronary vasoconstriction to epicardial perivascular adipose tissue in metabolic 
syndrome. Experimental Biology, 2012.  
 

4. McKenney ML, Kohr MC, Alloosh MA, Schultz KA, Bell LN, Tune JD, Sturek 
MS. Dysfunction of coronary smooth muscle Ca2+ regulation in the progression 
of metabolic syndrome and coronary artery disease in Ossabaw miniature 
swine. Experimental Biology 2012.  
 

5. Berwick ZC, Dick GM, Bender SB, Moberly SP, Kohr MC, Goodwill AG, Tune 
JD. Contribution of Cav1.2 channels to coronary microvascular dysfunction in 
metabolic syndrome. Experimental Biology, 2012. 
 

6. Berwick ZC, Moberly SP, Kohr MC, Morrical EB, Kurian MM, Goodwill AG, 
Tune JD. Contribution of voltage-dependent potassium and calcium channels 
to coronary pressure-flow autoregulation. Experimental Biology, 2012.  
 

7. Moberly SP, Berwick ZC, Kohr MC, Mather K, Tune JD. Cardiac responses to 
intravenous glucagon-like peptide 1 are impaired in metabolic syndrome. 
Experimental Biology, 2012.  
 

8. Owen MK, Krenzke R, Dick GM, Tune JD. Perivascular Adipose Tissue impairs 
H2O2-mediated vasodilation in the coronary circulation. Experimental Biology 
2013.   
 

9. Casalini ED, Owen MK, Goodwill AG, Moberly SP, Berwick ZC, Tune JD. Role 
of hydrogen sulfide in the regulation of coronary blood flow. Experimental 
Biology 2013.  

 



 
 

10. Goodwill AG, Casalini ED, Owen MK, Conteh A, Sassoon D, Shatagopam K, 
Dick GM, Tune JD. Role of voltage-dependent Kv7 channels in the regulation 
of coronary blood flow. Experimental Biology 2013.  

 

Grants and Fellowships 
  
T32 5T32DK064466-09, National Institutes of Health, Research Training Program 
in Diabetes and Obesity (Pre-doctoral, 2011-2013); Effects of epicardial 
perivascular adipose tissue on coronary vascular smooth muscle function 
in metabolic syndrome.  
 
Teaching Assignments 
 
IUPUI 
F557 Physiology II      2011 (Fall)   

Physiology of the Circulation: Control Mechanisms   
   

IU School of Medicine  
F503 Basic Human Physiology    2012 (Fall)  
 Hemodynamics  

Vascular Tone 
Regulation of Blood Pressure 
Cardiovascular Disease 

 
Service 
 
K-12 Outreach                      
 
St. Malachy School  
6th Grade (Digestive System)    2012  
 “How to make poop” (45 students) 
6th - 8th Grades (Body Systems)    2012 – 2013 
 Heart Dissection Lab (135 students) 

St. Simon School  

7th Grade (Digestive System)    2013 
 “How to make poop” (52 students) 

Community    

Mentor, Project SEED Summer Research Internship Program for Economically 
Disadvantaged High School Students:  
 Jacob Burton-Edwards    2010 
 Micah Brown      2011  
 Carmen Hu      2012  



 
 

Other Professional Activities 
 
Invited Seminar Presentations        
    
2012 – Augmented coronary vasoconstriction to epicardial perivascular adipose 

tissue in metabolic syndrome  
INPhys Meeting, Ball State University, Muncie, IN 
 

2012 – Fat and the Heart: Linking Obesity to Cardiovascular Disease  
DePauw University, Greencastle, IN 
 

2013 – Study of Digestive and Regulatory Processes through Exploration of      
Fasted and Postprandial blood Glucose 
 Experimental Biology Meeting, Boston, MA 


