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ABSTRACT

Kaschner, Scott R. Ph.D., Purdue University, May 2013. Superstable Manifolds of
Invariant Circles. Major Professor: Roland K. W. Roeder.

Let f : X 99K X be a dominant meromorphic self-map, where X is a compact,

connected complex manifold of dimension n > 1. Suppose there is an embedded copy

of P1 that is invariant under f , with f holomorphic and transversally superattracting

with degree a in some neighborhood. Suppose also that f restricted to this line is given

by z 7→ zb, with resulting invariant circle S. We prove that if a ≥ b, then the local

stable manifold Ws
loc(S) is real analytic. In fact, we state and prove a suitable localized

version that can be useful in wider contexts. We then show that the condition a ≥ b

cannot be relaxed without adding additional hypotheses by presenting two examples

with a < b for which Ws
loc(S) is not real analytic in the neighborhood of any point.
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1. INTRODUCTION

Let f : X 99K X be a dominant meromorphic self-map of a compact, connected

complex manifold X of dimension n > 1. Here, the focus is on the situation in which

there is L ⊂ X, an embedded copy of P1, with f holomorphic in a neighborhood of

L, L is invariant, and f |L is conjugate to z 7→ zb. We also assume L is transversally

superattracting of degree a, that is, the local coordinates of f transverse to L vanish

with order a. Although this is a rather special situation, it has appeared in examples

from [1–4].

For such maps, the Julia set of f |L is an invariant circle S, which is a hyperbolic

set for f . The local stable manifold Ws
loc(S) is a real 2n − 1 dimensional manifold.

We will prove:

Theorem A. If a ≥ b, then Ws
loc(S) has real analytic regularity.

To prove the theorem, we will localize to the situation to a tubular neighborhood

of L which is forward invariant under f . Theorem A is a direct consequence of the

following:

Theorem A’. Let N be a complex manifold with dim(N) ≥ 2, containing an embed-

ded projective line L. Suppose f : N → N a dominant holomorphic map, L is invari-

ant and transversally superattracting with degree a, and f |L is conjugate to z 7→ zb,

having invariant circle S. If a ≥ b, then Ws
loc(S) has real analytic regularity.

In Section 2 we prove Theorem A’ by constructing a semi-conjugacy between f

and z 7→ zb on a forward invariant neighborhood of S.

The proof of Theorem A’ is followed by Section 3, where we provide applications to

certain specific examples, including those from [2, Sec. 6.2] and [1]. These examples

are followed by Section 4, where an alternative proof of Theorem A for a specific

family of maps is provided using holomorphic folations.
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LS

Figure 1.1. Contraction to L and repulsion from S within L
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In Section 5, we show that the condition that a ≥ b cannot be improved without

adding additional hypotheses. We’ll consider two maps for which a < b and Ws
loc(S)

is not analytic. One of them is the Migdal-Kadanoff renormalization map R for the

Ising model on the Diamond Hierarchical Lattice (DHL) that was studied extensively

in [3, 4]. It has a = 2 and b = 4. The other is a polynomial skew product with a = 2

and b = 3.

Let us comment a bit more on the map R. For this map, the invariant circle S has

the physical context of being related to the bottom of the Lee-Yang cylinder, so it is

denoted B. In [4, Lemma 3.2], the authors proved that Ws
loc(B) is a C∞ manifold.

We prove:

Theorem B. The stable manifold Ws
loc(B) is not real analytic at any point.

Proof of this theorem divides into four main parts. First we construct a co-

dimension 1 Böttcher function ϕ defined in a neighborhood of B under the assumption

that Ws
loc(B) is real analytic. Next we extend the domain of ϕ to a neighborhood

of the set obtained from L by removing the two superattracting fixed points. After

that, we develop local properties of R near one of these superattracting fixed points.

Lastly, we examine the behavior of ϕ and R in the extension, from which we derive

a contradiction.

This theorem is of physical interest, since Ws
loc(B) is related to phase transitions

of the Ising model on the DHL at low temperatures; see [3, 4]. In §6, we’ll explain

how Theorem B relates to the limiting distribution of Lee-Yang and Lee-Yang-Fisher

zeros at low temperatures.

1.1 Examples Illustrating Hypotheses

Consider a map f : P2 → P
2 given locally by

f(z, w) = (z2 + wz,w4 + w3z).

This map satisfies the hypotheses of Theorem A with L = {w = 0} and a = 3 > 2 = b.

Figure 1.1 illustrates several different slices of Ws
loc(S) in the plane {w = c} parallel
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c = −0.1 + 0.1i

c = −0.45 + 0.3i

c = 0.2 − 0.2i c = 0.5 − 0.5ic = 0.1 − 0.1i

c = −0.2 + 0.2ic = −0.85 + 0.75i c = −0.75 + 0.5i

Figure 1.2. Ws(S) ∩ {w = c} for f for different c values

to L. In each picture, the visible part of Ws
loc(S) is the boundary between the two

colors, and the gradation of color indicates strength of repulsion from Ws
loc(S) within

{w = c}.

Now consider g : P2 → P
2 given locally by

g(z, w) = (z3 + wz2, w2).

Again, this map satisfies the hypotheses of Theorem A with L = {w = 0}, with the

exception in this case that a = 2 < 3 = b. The darker coloring for small |w| in Figure

1.1 illustrates the domination of the repelling direction over the attracting direction.

Both of these illustrate that examination of stable manifolds in this paper is

necessarily in a very small neighborhood of S. While the slices of Ws
loc(S) appear to

be at least C1 for small |w|, for |w| even near 1, the behavior of the stable manifold

becomes far more complicated.
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c = −0.78 + 0.58i c = −0.75 + 0.5i c = −0.45 + 0.3i

c = −0.1 + 0.1i c = 0.5 − 0.85ic = 0.1 − 0.1i c = −0.3 − 0.4i

c = −0.8 + 0.6i

Figure 1.3. Ws(S) ∩ {w = c} for g with different c values
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1.2 Historical Notes

For a diffeomorphism, the existence and regularity of the local stable manifold for

a hyperbolic invariant manifold N has been studied extensively Hirsch-Pugh-Shub

in [5]. A strong form of hyperbolicity known as normal hyperbolicity is assumed in

order to guarantee a C1 local stable manifold. Specifically, N is called normally

hyperbolic for f if the expansion of Df in the unstable direction transverse to N

dominates the maximal expansion of Df tangent to N and the contraction of Df

in the stable direction transverse to N dominates the maximal contraction of Df

tangent to N ; see [5, Theorem 1.1]. For Cr regularity, there is an analogous condition

in terms of the r-th power of the maximal expansion/contraction tangent to N .

Although the maps considered in this paper are many-to-one, they also do not

fit in the context of [5] since f |L is conformal, forcing that the rates of expansion

tangent to S and transverse to S are equal. Thus, S is not normally hyperbolic.

The construction of the semi-conjugacy in the proof of Theorem A’ is similar

to the proof of the well-known Böttcher’s Theorem from one-dimensional complex

dynamics [6]; see also [7, Ch. 9].

Theorem 1.2.1 (Böttcher) If S is a Riemann surface and f : S → S is given by

f(z) = anz
n + an−1 + zn+1 + · · · with n ≥ 2 and an 6= 0, then there exists a local

holomorphic change of coordinate w = φ(z), with φ(0) = 0, which conjugates f to

the nth power map w 7→ wn throughout some neighborhood of 0. Furthermore, φ is

unique up to multiplication by an (n− 1)st root of unity.

In fact, many of the techniques used in this paper are similar to this classical theorem

in spirit. While Böttcher’s Theorem refers to a holomorphic change of coordinate

(often called a Böttcher coordinate) defined in the neighborhood of a superattracting

fixed point, the function we construct here is neither a coordinate, nor is it defined

in a full neighborhood of a superattracting fixed point. However, by analogy, we call

it a “co-dimension 1 Böttcher function.”

Those interested in the mathematical legacy of Böttcher should see [8]. We will

now briefly describe variants of Böttcher’s Theorem in higher dimensions. It was
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shown by Hubbard and Papadopol in [9] that a Böttcher coordinate in higher dimen-

sion cannot exist in general. With additional hypotheses, their existence has been

proved in [10, Theorem 3.2] and [11]. A more detailed criterion for existence of a

Böttcher coordinate is presented in [12]. The related problem of conjugating a poly-

nomial endomorphism to its highest degree terms in a neighborhood of the hyperplane

at infinity is studied in [9, Theorem 9.3], [13, Theorem 7.4], [14], and [15, Theorem

1]. These authors prove that such a conjugacy exists on the stable set of the Julia

set at infinity, so long as it satisfies suitable hyperbolicity. More recent studies of

superattracting behavior appear in [16, 17].
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2. PROOF OF THEOREM A’

The C
n−1 bundle over P

1 can be described by two systems of locally trivializing

coordinates (z,w) ∈ C × C
n−1 and (ζ,ω) ∈ C × C

n−1. For z 6= 0, the are related

by ζ = 1/z and ω = Azw, with Az : Cn−1 → C
n−1 a linear isomorphism depending

holomorphically on z. Let us choose these trivializations so that the dynamics on the

zero section is z 7→ zb.

We will make use of standard multi-index notation. Given c ∈ Z
n−1
+ and w ∈

C
n−1, wc = wc1

1 w
c2
2 · · ·wcn−1

n−1 and |c| = c1 + · · · + cn−1. We will always use the

standard Hermitian norm |w| = (|w1|2 + · · · + |wn−1|2)1/2 on C
n−1.

Lemma 2.0.2 There are holomorphic functions g1 and gc for each |c| = a such that

in the (z,w) coordinates

f(z,w) =


zb + w · g1(z,w),

∑

|c|=a

wcgc(z,w)


 .

Similarly, there are holomorphic functions h1 and hc for each |c| = a such that in

the (ζ,ω) coordinates

f(ζ,ω) =


ζb + ω · h1(ζ,ω),

∑

|c|=a

ωchc(ζ,ω)


 .

z

w

1/z = ζ

Azw = ω

Figure 2.1. Local coordinates centered on the two fixed points in L
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Proof The proof is the same in both coordinate systems, so we’ll work in the (z,w)

system. Since f | L is the map z 7→ zb, the first coordinate of f minus zb vanishes on L.

Since L is given by w = 0, we have that the first coordinate of f is zb+w ·g1(z,w) for

some holomorphic function g1. Meanwhile, the expression for the second coordinate

follows from the fact that L is transversally superattracting of degree a.

2.1 Hyperbolic theory

We’ll now verify that the local stable manifold Ws
loc(S) is a 2n−1 real-dimensional

topological manifold that is foliated by local stable manifolds of each point of S.

The hyperbolic theory for endomorphisms is somewhat less standard than for

diffeomorphisms. Suitable references from the context of complex dynamics include

[13,18,19]. For consistency, we will use definitions and results from [13, Appendix B].

Let us consider the natural extension

Ŝ := {(xi)i≤0 : xi ∈ S and f(xi) = xi+1}.

We’ll denote such histories by x̂ = (xi)i≤0 ∈ Ŝ. Notice that the action of f naturally

lifts to an action f̂ : Ŝ → Ŝ.

Lemma 2.1.1 S is a hyperbolic set for the map f .

Proof Note that for x ∈ S, we have

Dfx =


 bzb−1 ∂

∂w
g1(z,0)

0 0


 .

Thus, we have Es(x) = ker(Df) and Eu(x̂) ⊂ L, so TxC
n = Es(x)⊕Eu(x̂). Invariance

of Es(x) follows from the fact any point in the kernel is collapsed to (0,0) under Df ,

and invariance of Eu(x̂) follows from the invariance of L. Also, for any vs ∈ Es(x)

and vu ∈ Eu(x̂) with n ≥ 0,

‖Dfn
x v

s‖ = 0 ≤ Cλn‖vs‖ and ‖Dfn
x v

u‖ ≤ Cλ−n‖vu‖,

for C = 1 and λ = 1/2. Thus, we have that S is hyperbolic.
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Therefore, by the stable manifold theorem (see, for example, [20, Theorem 5.2])

each point x ∈ S will have local stable manifold Ws
loc(x) that is a complex n− 1 ball

holomorphically embedded into N and each prehistory x̂ will have a local unstable

manifold Wu
loc(x̂), which is a holomorphic disc. They depend continuously on x and

x̂. (In this case, the unstable manifolds all lie in L.)

Existence of such stable laminations has also been proved in the holomorphic

context by Ushiki [21]. It can be proved in the following simple way as well, which

is a direct generalization of what was done in [1, Proposition 4.2] and [3, Proposition

9.2].

By the stable manifold theorem for a point (see, for example, [22, Sec. 2.6] or [11],

which hold even if Df has an eigenvalue of 0), there exists a local stable manifold,

Ws
loc((1,0)), which is the graph of a holomorphic function z = η1(w) defined on

some (n − 1)-dimensional open ball, Λ, in the w axis. Let Σ ⊂ S to be the set

of iterated preimages of (1,0). Using a suitable invariant cone field and a well-

chosen neighborhood of S, one can take iterated preimages of Ws
loc((1,0)) so that the

preimage through each x ∈ Σ is expressed as the graph of a holomorphic function

ηx(w) defined on Λ, making Λ smaller if necessary. In this way, we can construct

local stable manifolds over Σ, which is dense in S. The function η : Λ × Σ → C

given by η(w, x) = ηx(w) defines a holomorphic motion of Σ ⊂ C, parameterized

by w ∈ Λ ⊂ C
n−1. We may use the λ-lemma [23, 24] to extend η continuously to a

holomorphic motion of Σ = S, obtaining stable manifolds for every point of S.

Definition 2.1.1 A hyperbolic set Λ̂ has a local product structure, if δ > 0 can be

chosen small enough so that for any p ∈ Λ and q̂ ∈ Λ̂, either Ws
δ (p)∩Wu

δ (q̂) is empty

or it is a single point x ∈ Λ so the unique history x̂ of x satisfying xj ∈ Wu
δ (f̂ j(q̂))

for all j ≤ 0 is completely contained in Λ̂.

Lemma 2.1.2 S has local product structure for the map f .

Proof By Lemma 2.1.1, S is hyperbolic. Recall that for any q̂ ∈ Ŝ, we have that

Wu
δ (q̂) = Dδ(q0) ⊂ L, which is the disc of radius δ > 0 centered at the point q
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contained in L. Since Wu
δ (q̂) depends only on q0, existence of a local product structure

for Ŝ is very simple.

By the Stable Manifold Theorem, we may choose δ > 0 small enough so that

for any p ∈ S, we have Ws
δ (p) ∩ L = {p}. Thus, for any two points p, q ∈ S, the

intersection Ws
δ (p) ∩Wu

δ (q̂) = {p}, with p ∈ S. Moreover, p has a unique prehistory

p̂ = (pi)i≤0 with pj ∈ Wu
δ (f̂ j(q̂)) for all j ≤ 0, and it is completely contained in Ŝ as

well.

Given a neighborhood Ω of S, let

Ws
loc(S) := {x ∈ N : fnx ∈ Ω and fnx→ S as n→ ∞} (2.1)

(where Ω is implicit in the notation, and an assertion involving Ws
loc(S) means that

it holds for any sufficiently small neighborhood of S).

Since S has a local product structure Ws
loc(S) is the union of the local stable man-

ifolds Ws
loc(x) of points x ∈ B; see [13, Proposition B.6]. The local stable manifolds

of points are pairwise disjoint and depend continuously on the base point, therefore

we have:

Corollary 2.1.3 Ws
loc(S) is a topological manifold of real dimension 2n− 1.

2.2 Co-dimension 1 Böttcher function

Let (zn,wn) := fn(z,w). Motivated by Böttcher’s theorem [6], [7, p. 86], we

consider a sequence of functions

ϕn(z,w) = z1/b
n

n .

We will show that the ϕn converge uniformly on compact subsets of some forward

invariant neighborhood Ω of S to a holomorphic function ϕ that semi-conjugates f

to z 7→ zb:

ϕ(f(z,w)) = ϕ(z,w)b. (2.2)
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LS x

Figure 2.2. Ws
loc(S), contraction to L, and repulsion from S within L
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To make sense of the bn-th roots and the limit, we’ll rewrite each ϕn as telescoping

product:

ϕ = lim
n→∞

ϕn = z0 ·
z1

1/b

z0
· z2

1/b2

z11/b
· z3

1/b3

z21/b
2
· · · = z0

∞∏

n=0

(
zn+1

znb

) 1

bn+1

, (2.3)

where it follows from Lemma 2.0.2 that

zn+1

znb
=
zbn + wn · g1(zn,wn)

znb
= 1 +

wn

znb
· g1(zn,wn). (2.4)

In the (ζ,ω) coordinates we have:

zn+1

znb
=

ζbn
ζn+1

=
1

1 + ωn

ζbn
· h1(ζn,ωn)

. (2.5)

When working in Ws(η1) we’ll use expression (2.4), when working in Ws(η2) we’ll use

expression (2.5), and when working on Ws
loc(S), we’ll use either.

We’ll construct a forward invariant neighborhood Ω of S so that if (z,w) ∈ Ω ∩
(Ws(η1) ∪Ws

loc(S)), then

∣∣∣∣
wn

znb
· g1(zn,wn)

∣∣∣∣ <
1

2
, (2.6)

and if (ζ,ω) ∈ Ω ∩ (Ws(η2) ∪Ws
loc(S)), then

∣∣∣∣
ωn

ζbn
· h1(ζn,ωn)

∣∣∣∣ <
1

2
. (2.7)

Then, for points in Ω, the bn-th root is defined by taking the branch cut along the

negative real axis. Moreover, this condition will also imply convergence of the infinite

product (2.3) on Ω, since the corresponding sum of logarithms converges:

∞∑

n=1

log

∣∣∣∣
zn+1

znb

∣∣∣∣
1

bn+1

≤
∞∑

n=1

1

bn+1
log 2.

To construct Ω, first note that for any K1 > 0 sufficiently small, {|w| ≤ K1} ∩
(Ws(η1) ∪Ws

loc(S)) is a compact subset of Cn. Since g1 is holomorphic on C
n, there

is a bound |g1(z,w)| ≤ K2 on any such compact set. A similar bound holds in the

other coordinate system. Therefore, it suffices to show:
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Lemma 2.2.1 Given any K > 0, there exists a forward invariant neighborhood of S

in which

|w|
|z|b < K and

|ω|
|ζ|b < K. (2.8)

Proof of this lemma relies on point blow-ups, so let us provide a breif description

of this technique using the definitions from [25]. Let M be a complex manifold of

dimension n, and let z = (z1, . . . , zn) holomorphic coordinates in an open st U ⊂ M

centered around the point p ∈M . The blow-up M̃ of M at p is the complex manifold

obtained by adjoining to M \ {p} the manifold

Ũ = {(z, l) : z ∈ l} ⊂ U × P
n−1

via the isomorphism

Ũ \ (z = 0) ∼= U \ {p}

given by (z, l) 7→ z. One may be tempted to think of this simply as a holomorphic

change of coordinates, and while that is true, what is happening additionally is that

the point p is being replaced by a projective hypersurface. There is a natural projec-

tion map π : M̃ →M extending the identity on M \{p}. By construction, E = π−1(p)

is isomorphic to CP n−1 and is called the exceptional divisor of the blow-up M̃ →M .

Proof [Proof of Lemma 2.2.1] We will take an inductive sequence of b point blow-

ups at each of the two fixed points η1 and η2. Using the forms of f given by Lemma

2.0.2, the calculation will be the same at each of these two points, so we’ll focus on

η1, which is given by (z,w) = (0,0).

We first do a point blow-up at η1, producing an exceptional divisor Eη1,1. Let L̃1

be the proper transform of L. We then blow-up the point intersection point between

Eη1,1 and L̃1, producing a new exceptional divisor Eη1,2 and proper transform L̃2. We

inductively do this b−2 additional times, each time blowing up the intersection point

between the previous exceptional divisor and proper transform of L.
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Consider the system of coordinates z,λ = w

zb
centered at the intersection point of

Eη1,b with L̃b. Let us denote (z′,λ′) = f̃(z,λ), where f̃ is the extension of f to the

final blow-up. We have

z′ = zb + zbλ · g(z, zbλ)

λ′ =
w′

(z′)b
=

Σ|c|=a(z
bλ)cgc(z, z

bλ)

(zb + zbλ · g(z, zbλ))b
=
zb(a−b)Σ|c|=aλ

cgc(z, z
bλ)

(1 + λ · g(z, zbλ))b
.

Notice that this extension f̃ is holomorphic in a neighborhood of (z,λ) = (0,0) and

that this point is superattracting for f̃ .

Therefore, for any ε1 > 0 and K ≥ δ1 > 0, sufficiently small, Ũ1 := {|z| < ε1, |λ| <
δ1} will be forward invariant under f̃ . Hence,

U1(ε1, δ1) := π
(
Ũ1(ε1, δ1)

)
=

{
|z| < ε1,

|w|
|z|b < δ1

}

will be a forward invariant set for f .

As stated before, the same calculation can be done at η2, with analogous results.

In particular, for any ε2 > 0 and K ≥ δ2 > 0 sufficiently small we will have a forward

invariant set for f of the form

U2(ε2, δ2) =

{
|ζ| < ε2,

|ω|
|ζ|b < δ2

}
.

Let V ⊂ N be a forward invariant tubular neighborhood of L and let

V (ε1, ε2) = V \ ({|z| < ε1} ∪ {|ζ| < ε2}) .

Note that if V sufficiently small, then all points of V (ε1, ε2) satisfy (2.8). We will

show that V can be made even smaller, if necessary, in order to make

Ω := V (ε1, ε2) ∪ U1(ε1, δ1) ∪ U2(ε2, δ2)

forward invariant.

Since U1(ε1, δ1) and U2(ε2, δ2) are forward invariant, we need only check that if x ∈
V (ε1, ε2) and f(x) 6∈ V (ε1, ε2), then f(x) ∈ U1(ε1, δ1) ∪ U2(ε2, δ2). Let us focus on

x ∈ Ws(η1), since the proof will be the same for x ∈ Ws(η2).
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S

U1(ε1, δ1) L
η1 η2

U2(ε2, δ2)

V (ε1, ε2)

Figure 2.3. The forward invariant neighborhood Ω
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Let x = (z,w) ∈ V (ε1, ε2) ∩ Ws(η1) and let (z1,w1) = f(z,w). Since (z,w) ∈
V (ε1, ε2), |w|/|z|b < K, so that (2.6) and (2.4) imply that the |z1| ≥ |z|b/2 ≥ εb1/2.

Thus, we need only choose the (forward invariant) tubular neighborhood V sufficiently

small so that

V ∩
{
εb1
2

≤ |z| ≤ ε1

}
⊂ U1(ε1, δ1).

Doing the same thing near η2, we construct a forward invariant neighborhood Ω

satisfying (2.8).

2.3 Completing the proof of Theorem A’

Using the invariance (2.2), for any (z,w) ∈ Ws
loc(S) we have |ϕ(z,w)| = 1 so

that ψ := log |ϕ| will be a real analytic function that vanishes on Ws
loc(S). Notice

on that L, we have ϕ(z,0) = z and hence ψ(z,0) = log |z|. Since the derivative Dψ

is non-zero on S, we have that {ψ = 0} is a real analytic 2n − 1 real-dimensional

manifold in some neighborhood of S.

By Corollary 2.1.3, Ws(S) ⊂ {ψ = 0} is also a real 2n− 1 dimensional manifold.

Thus, by invariance of domain, Ws(S) = {ψ = 0} in this neighborhood.
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3. EXAMPLES ILLUSTRATING THEOREM A

3.1 Regular Polynomial Endomorphisms in Two Dimensions

Suppose f : C2 → C
2 is a degree d regular polynomial endomorphism. Then f has

the form f(x, y) = (p(x, y), q(x, y)) for polynomials p and q. Moreover, if pd(x, y)

and qd(x, y) are the degree d homogeneous terms of p and q, then in homogeneous

coordinates in the line at infinity, L∞ = {Z = 0}, f has the form

f |Z=0 [X : Y : Z] = [pd(X, Y ) : qd(X, Y ) : 0]. (3.1)

Since f is regular, pd and qd have no common zeros, so there is no indeterminacy

on L∞. The coordinate on L∞ is z = Y/X, so if we assume f | L∞ is conjugate to

z 7→ zd, then there are coordinates such that pd(X, Y ) = Xd and qd(X, Y ) = Y d.

Then

f∞(z) =
pd(1, z)

qd(1, z)
= zd, (3.2)

so J∞, the Julia set on L∞, is a geometric circle. Thus, this situation satisfies the

hypotheses of Theorem A with a = b = d, so we have the following:

Corollary 3.1.1 If f is a regular polynomial endomorphism of C2 for which f | L∞

is conjugate to z 7→ zd, then Ws
loc(J∞) has real analytic regularity.

Real analyticity of the stable manifold considered in [2, Section 6.2] is a direct

application of Corollary 3.1.1.
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3.2 Degenerate Newton Mappings

Newton mappings used to find the common roots of P (x, y) = x(1 − x) and

Q(x, y) = y2 + Bxy − y were considered dynamically in [1]. They have the form

N(x, y) =

(
x2

2x− 1
,
y(Bx2 + 2xy − Bx− y)

(2x− 1)(Bx+ 2y − 1)

)
. (3.3)

We will consider their extension as rational maps of P1×P
1. They are skew products

with the first coordinate having superattracting fixed points of degree 2 at x = 0

and x = 1, so the vertical lines {x = 0} × P
1 and {x = 1} × P

1 are transversally

superattracting for N with the same degree. Using the formula, one can check that

N has no indeterminate points in some neighborhood of these two lines.

Restricted to {x = 0}×P
1, N is the one-dimensional Newton map for the quadratic

polynomial with roots at y = 0 and y = 1. It is therefore conjugate to z 7→ z2, having

an invariant circle S0 corresponding to the points of equal distance from y = 0 and

y = 1 in P
1. (S0 is the closure of Im(y) = 1

2
in P

1.)

Similarly, the restriction of N to {x = 1}×P
1 is the one-dimensional Newton map

for the quadratic polynomial with roots at y = 0 and y = 1−B. Thus, it is conjugate

to z 7→ z2, with an invariant circle S1 corresponding to the points of equal distance

from y = 0 and y = 1 − B within P
1.

Both of the lines {0}×P
1 and {1}×P

1 is transversally superattracting with degree

2, with the restriction of N to each of them conjugate to z 7→ z2. Therefore, it follows

immediately from Theorem A that the local stable manifolds Ws
loc(S0) and Ws

loc(S1)

are real analytic. This was proven previously in [1] using more specific details of the

mapping.

3.3 Example with indeterminacy

Consider the polynomial mapping g : C2 → C
2 given by

g(x, y) =
(
x2 + y(1 + xy), y3(1 + xy)

)
. (3.4)
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Within C
2, the line L := {y = 0} is invariant and transversally superattracting with

degree 3 and g|L is given by x 7→ x2. Let S := {|x| = 1, y = 0} be the invariant

circle. Although there is the needed domination between the degrees (3 > 2), to

apply Theorem A we need to check how g extends to a neighborhood of infinity on

L. The extension of g to P
2 is given in homogeneous coordinates by

g[X : Y : Z] = [X2Z3 + Y Z2(Z2 +XY ) : Y 3(Z2 +XY ) : Z5].

There is a point of indeterminacy for g at [1 : 0 : 0] on the projective line Y = 0,

which we’ll also denote by L. Therefore, Theorem A does not immediately apply.

Let us perform two blowups. We first blow-up the point [1 : 0 : 0] and we then

blow-up the point where the proper transform of L intersects the exceptional divisor

over [1 : 0 : 0]. We’ll denote the space obtained after doing these two blow-ups by P̃2,

the projection by π : P̃2 → P
2, the proper transform of L after these two blow-ups

by L̃, the invariant circle within L̃ by S̃, and the lift of g to the blown-up space by

g̃ : P̃2 → P̃2.

A neighborhood of L̃ can be described by two systems of coordinates (x, y) and

(ζ, τ), where x = X/Z, y = Y/Z are the original affine coordinates on C
2 and ζ =

Z/X, τ = XY/Z2. In the first system of coordinates, g̃ is given by (3.4). In the

second system of coordinates, g̃ is given by

g̃(ζ, τ) =

(
ζ2

1 + τ ζ3(1 + τ)
, τ 3ζ (1 + τ)

(
1 + τζ3 + τ 2ζ3

))
.

In the second system of coordinates, L̃ is given by τ = 0, so we see that g̃ is holomor-

phic in a neighborhood of L̃. Moreover, L̃ invariant and transversally superattracting

with degree 3 and g̃|L̃ still given by x 7→ x2. Therefore, Theorem A applies to give

that the local stable manifold Ws
loc

(
S̃
)

for S̃ under g̃ is real analytic.

Notice that g̃ and g are birationally conjugate by means of π. Moreover, restricted

to small neighborhoods of S̃ and S, this birational conjugacy becomes an honest

holomorphic conjugacy. Since the local stable manifolds Ws
loc

(
S̃
)

and Ws
loc(S) are

defined in terms of the action of iterates of g̃ and g, respectively, on these small

neighborhoods, we conclude that Ws
loc(S) is also real analytic.
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This third example illustrates two important considerations about Theorem A.

First, it illustrates that one sometimes needs to do some blow-ups in order to obtain

a map without indeterminacy in a neighborhood of L.

Second, it illustrates the reason why we need to consider arbitrary C
n−1 bundles

over L, since blowing up points of L will change it’s normal bundle. (In this example,

the normal bundle of L is the hyperplane bundle, while the normal bundle of L̃ is the

tautological bundle.)
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4. EXAMPLE OF THEOREM A PROVED USING THE FOLIATION

Consider the family of skew product maps fλ : C2 → C
2 given by

fλ(z, w) = (z2 + λw,w2),

for λ ∈ C. The lines L0 := {w = 0} and L1 := {z = 0} are both invariant.

Moreover, L0 is transversally super-attracting, and fλ|L0 is the map z 7→ z2. Again,

S := {|z| = 1, w = 0} ⊂ L0 is an invariant circle contained in L0.

Thus, this specific example satisfies the hypotheses of Theorem A with a = b = 2,

so

Corollary 4.0.1 For any λ ∈ C, the map fλ generates the stable manifold Ws
loc(S)

with real analytic regularity.

In this situation, however, we present a proof of this result using a different technique.

The corollary will be proved by constructing a backward invariant holomorphic fo-

liation in a neighborhood of S. This foliation will have the property that each leaf

intersects L0 in a unique point, and the projection to L0 along leaves is a holomorphic

function. Since Ws
loc(S) is the preimage under the projection of the real analytic set

S, Ws
loc(S) must also be real analytic.

4.1 Backward Invariant Neighborhoods and Cone Fields

To iteratively pull back a holomorphic foliation of L0 in a neighborhood of S, we

will need a backward invariant set that avoids critical values of fλ (besides L0) in

order to maintain a proper holomorphic foliation. It follows from det(Df) = 4zw

that L0 and L1 are the only critical curves, so let B := {|w| ≥ c|z|2} for some c > 0.

Lemma 4.1.1 There is a c > 0 such that B is backward invariant.
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Proof Suppose fλ(z, w) = (z
′

, w
′

) ∈ B, so we have

c ≤ |w′ |
|z′ |2 =

|w|2
|z2 − aw|2 =

|w/z2|2
|1 − a(w/z2)|2 .

Let x = w/z2, so
√
c ≤ |x|

|1 + ax| ≤ |x|
|1 − |ax|| ,

which yields two cases.

Case one: If 1 > |ax|, then
√
c ≤ |x|/(1− |ax|), which implies

√
c ≤

√
|x|+ c|ax|,

or √
c

1 +
√
c|a| ≤ |x|.

Then

c ≤
√
c

1 +
√
c|a| ≤

∣∣∣w
z2

∣∣∣

precisely when c|a| +
√
c− 1 ≤ 0, or

c ≤
(
−1 +

√
1 + 4|a|

2|a|

)2

. (4.1)

Case two: If 1 < |ax|, then
√
c ≤ |x|/(|ax| − 1), which implies (

√
c|a| − 1)|x| =

√
c|ax| − |x| ≤ √

c. Then if c ≤ 1/|a|2,

√
c ≤

√
c

1 −√
c|a| ≤ |x|.

in which case, we again have c ≤ |w/z2|.
It follows that for

c ≤ min





1

|a|2 ,
(
−1 +

√
1 + 4|a|

2|a|

)2


 (4.2)

that B is backward invariant.

The behavior of fλ near infinity is also relevant, so extend fλ to a map Fλ : P2 → P
2

by

Fλ[Z : W : T ] = [Z2 +λ WT : W 2 : T 2],
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and use local coordinates ω = W/Z and τ = T/Z, so

ω′ =
ω2

1 + aωτ
and τ ′ =

τ 2

1 + aωτ

Then we have |DFλ| = 4ωτ
(1+aωτ)3

= 0 only on {ω = 0} and {τ = 0}, and both of these

lines are totally invariant. Let B
′

:= {|τ | ≥ c|ω|2}, where c is the constant from

Lemma 4.1.1. Observe that in these coordinates,

c ≤ |τ ′|
|ω′|2 =

|τ |2
|ω|4 |1 + aωτ |,

so

c ≤ √
c ≤

∣∣∣ τ
ω2

∣∣∣
√
|1 + aωτ |.

Then in a small enough neighborhood of 0 and for small enough c, we have

c ≤
∣∣∣ τ
ω2

∣∣∣ .

Thus, B
′

is backward invariant in a small enough neighborhood of 0.

Having confined the critical set to a backward invariant set B ∪ B′

, we may, for

some ε > 0, define a neighborhood of L0 \ {0, [1 : 0 : 0]},

Ωε := {|w| < ε} \B ∪ B′

,

on which we can define a foliation.

Lemma 4.1.2 For x ∈ Ωε, the vertical cone field Kv
x = {(u, v) ∈ TxC

2 : |v| ≥
α(x)|u|}, where α(x) = |z/a|, is backward invariant.

Let F be a proper vertical foliation of L0 \ {0, [1 : 0 : 0]} with respect to some

cone field. See Figure 4.1.

Proof We will prove the horizontal cone Kh
x = {(u, v) ∈ TxC

2 : |v| ≤ α(x)|u|} is

forward invariant. For x, f(x) ∈ Ωε, we have

D(fλ)x =


 2z −a

0 2w


 , so D(fλ)x


 u

v


 =


 2zu− av

2wv


 . (4.3)
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L0

L1

B

F

f−1(F)

Figure 4.1. Ωε in a neighborhood of 0

Since x ∈ Ωε, we may assume |w| ≤ c|z|2, where c is the constant defined in Lemma

4.1.1. Moreover, since the cone Kx is horizontal, we have |v| ≤ α(x)|u|. Thus, it

suffices to show |wv| ≤ α(f(x))|zu− v|. Since α(x) = |z/a|,

1 ≤
∣∣∣∣

1

|a|c − 1

∣∣∣∣ ≤
∣∣∣∣
∣∣∣∣
z2

aw

∣∣∣∣− 1

∣∣∣∣ ≤
∣∣∣∣
z2

aw
− 1

∣∣∣∣ ≤ |z2 − aw|/|a|
|w| =

α(f(x))

|w| . (4.4)

Using this, we have

1 ≤ α(fλ(x))

|w| =
α(fλ(x))

|w|

∣∣∣∣
|z|
α(x)

− 1

∣∣∣∣ ≤ α(fλ(x))

∣∣∣∣
zu

wv
− 1

w

∣∣∣∣ =
α(fλ(x))|zu− v|

|wv| .

(4.5)

4.2 Pulling Back the Foliation

Lemma 4.2.1 The intersected preimage f−1
λ (F)∩Ωε is a proper vertical holomorphic

foliation.

Proof Let γz ∈ F , so γz is a holomorphic disc through some point z ∈ L0 \ {0, [1 :

0 : 0]}, that is γz is a submanifold of C2 of complex codimension 1. Note that for any
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x ∈ Ωε \ L0, D(fλ)x has full rank since all critical curves (besides L0) are confined

outside Ωε. Considering the points in L0, recall that fλ | L0 is the map z 7→ z2, so if

x ∈ L0 \ {0, [1 : 0 : 0]}, then Im(Dfx) = L0. Thus, for any x ∈ γz, we have

Im(Dff−1(x)) + Tx(γz) = C
2,

where the terms of the direct sum are linearly independent since Im(Dfx) = L0 and F
is a vertical foliation of L0. Then f is transversal to L0, so by the preimage theorem,

f−1
λ (γz) is a codimension 1 complex manifold through f−1

λ (z) ∈ L0.

Recall that by Lemma 4.1.1 vertical cones must be backward invariant. Thus,

f−1
λ (γz), the codimension 1 complex manifold through f−1

λ (z) ∈ L0, is a vertical

holomorphic disc provided it is bounded away from the critical set. This is achieved

by intersecting f−1
λ (γz) with Ωε.

At this point, we have shown that the foliation F the property that backward

iterates are still vertical foliations, but we still require backward invariance of this

foliation. For this, we consider the limit of backward iterates of F , intersecting with

Ωε after each iterate. That is, we define recursively

Fn := f−1
λ (Fn−1) ∩ Ωε.

Lemma 4.2.2 The sequence of backward iterates Fn converge to a proper vertical

holomorphic foliation, F̃ .

Proof Let ϕn : Ωε → L0 \ {0, [1 : 0 : 0]} be the projection along each leaf γz ∈ Fn

onto z ∈ L0. Since vertical cone fields are backwards invariant, derivatives of ϕn are

uniformly bounded. Then ϕn are locally bounded, so by Montel’s theorem, {ϕn} is

a normal family. Thus, there is a subsequence ϕnk
that converges to a holomorphic

map ϕ̃.

Let F̃ be the foliation whose leaves are defined by γ̃z := ϕ̃−1(z) for any z ∈
L0 \ {0, [1 : 0 : 0]}. Since ϕ̃ | L0 ≡ id, any z ∈ L0 \ {0, [1 : 0 : 0]} is a regular value

for ϕ̃, so by the preimage theorem, each γ̃z is a vertical holomorphic disc. Since F̃
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must agree with the stable foliation of S, which is backward invariant, it follows from

uniqueness of holomorphic functions that F̃ is backward invariant.

Then {γ̃z | γ̃z ∩ L0 ∈ S} = W s(S) must be real analytic since it is a three

real dimensional topological manifold that is a restriction to leaves of a holomorphic

foliation intersecting S.
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5. PROOF OF THEOREM B

We’ll now show that the hypothesis in Theorem A that L is transversally superat-

tracting with degree greater than or equal to the degree of f |L cannot be eliminated

without adding additional hypotheses.

The Migdal-Kadanoff Renormalization map R : P2 → P
2 for the Ising model on

the DHL is given in homogeneous coordinates by

R[U : V : W ] = [(U2 + V 2)2 : V 2(U +W )2 : (W 2 + V 2)2].

For this map, the projective line L0 = {V = 0} is transversally superattracting with

degree 2 with R holomorphic on a forward invariant neighborhood of L0. Restricted

to L0, R is given by u 7→ u4, where u = U/W , so a = 2 and b = 4. The invariant

circle is denoted B := {V = 0, |u| = 1}. Below, we will show that Ws
loc(B) is not real

analytic in the neighborhood of any point of B, thus proving Theorem B.

The second example for which a < b and W s(S) is not real analytic is the following

polynomial skew product of f : P2 → P
2 given in affine coordinates by

f(z, w) = (z3 + 2wz2, w2). (5.1)

One can check that this map is holomorphic on a forward invariant neighborhood in

P
2 of the invariant line L = {w = 0}. Moreover, L is transversally superattracting

with degree 2, and f |L is given by z 7→ z3. Thus, a = 2 < 3 = b. For this map,

Ws
loc(S) is not real analytic in the neighborhood of any point of S.

In this chapter, we’ll provide a detailed proof of Theorem B, showing that Ws
loc(B)

is not real analytic. An adaptation of the same techniques can be used to show the

analogous result for the skew product f . We leave details of this adaptation to the

reader.
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5.1 The Migdal-Kadanoff Renormalization

In the remainder of this section, we will adopt the notation from the recent

preprints [3, 4] by Bleher, Lyubich, and Roeder. Although R : P
2 → P

2 is more

convenient for illustrating Theorem A, in the proof of Theorem B it will be more con-

venient to work the expression of the Migdal-Kadanoff renormalization R : P2 → P
2

in the physical coordinates (z, t). In these coordinates, it is given by

(zn+1, tn+1) =

(
z2n + t2n
z−2
n + t2n

,
z2n + z−2

n + 2

z2n + z−2
n + t2n + t−2

n

)
:= R(zn, tn). (5.2)

We consider (z, t) as affine coordinates on P
2 with z = Z/Y, t = T/Y for some system

of homogeneous coordinates [Z : T : Y ]. The map R has an invariant projective line

L0 = {T = 0} that is transversally superattracting, except for an indeterminate point

at 0 := [0 : 0 : 1], and R|L0 is given by z 7→ z4. The invariant circle is given by

B = {|z| = 1, t = 0}.

The map R is semi-conjugate to R by means of a rational map Ψ : P2 → P
2:

P
2 R−−−→ P

2

yΨ

yΨ

P
2 R−−−→ P

2

(5.3)

with [U : V : W ] = Ψ([Z : T : Y ]) = [Y 2 : ZT : Z2]. The map Ψ sends L0 to L0, B to

B, and is holomorphic in a neighborhood of B. Therefore, Ws
loc(B) = Ψ−1(Ws

loc(B)).

In particular, if Ws
loc(B) were real analytic in the neighborhood of any point of B,

then Ws
loc(B) would be real analytic in the neighborhood of the preimage of that point

under Ψ. So, Theorem B will follow from:

Theorem B’ The stable manifold Ws
loc(B) is not real analytic at any point.

The reason we originally stated Theorem B for R rather than R is that R is

holomorphic in a full neighborhood of L0, so that it illustrates why the hypothesis on

a and b can’t be eliminated in Theorem A. One can also resolve the indeterminacy 0 ∈
L0 for R, placing it in the context of Theorem A, via a suitable birational modification

(two blow-ups and one blow-down), but that is somewhat more complicated.
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We will begin by proving the following proposition, and Theorem B’ will follow

shortly thereafter.

Proposition 5.1.1 Ws
loc(B) is not real analytic in any full neighborhood of B.

This proposition will be proven by contradiction, so for the remainder of this

section, we assume Ws
loc(B) is real analytic in a full neighborhood of B. We will begin

by describing the dynamics of R near L0, and after that, with the construction of a

co-dimension 1 Böttcher function ϕ. This is followed by the extension of the domain

of ϕ and an exploration of the behavior of ϕ and R in the extension. The section

concludes with a proof of Proposition 5.1.1.

5.2 Dynamics in a Neighborhood of the Invariant Line

We will now briefly summarize basic properties of the dynamics for R in a neigh-

borhood of L0 from [3, Sec. 4].

Let D0 := {|z| < 1, t = 0} ⊂ L0. The orbit of any z ∈ D0 will converge to an

indeterminate point 0 := {(0, 0)}. (Informally, we will denote these points by Ws(0).)

Meanwhile, points near 0 but not on L0 will converge to a superattracting fixed point

η := {(0, 1)}.

To see what happens for large |z|, we write R in homogeneous coordinates, ob-

taining

R : [Z : T : Y ] 7→ [Z2(Z2 + T 2)2 : T 2(Z2 + Y 2)2 : (Z2 + T 2)(T 2Z2 + Y 4)]. (5.4)

There is another superattracting fixed point η′ := [1 : 0 : 0], which attracts all points

of L0 with |z| > 1.

Lemma 5.2.1 Ws(0) ∪Ws
loc(η) ∪Ws

loc(B) ∪Ws
loc(η

′) fills some neighborhood of L0 \
{0}.

See [3, Lemma 4.2].



31

There is another invariant line L1 := {t = 1} passing through η and η′. We have

R|L1 : z → z2.

For the remainder of this section, it will convenient to use a system of affine

coordinates centered at η′. We will use (λ = Y/Z − T/Z, τ = T/Z), so that L0 =

{τ = 0} and L1 = {λ = 0}. In these coordinates,

(λn+1, τn+1) =

(
λ2n

(
λn + 2τn
1 + τ 2n

)2

, τ 2n

(
1 + (τn + λn)2

1 + τ 2n

)2
)

:= R(λn, τn). (5.5)

As before, R|L0 : λ→ λ4 and R|L1 : τ → τ 2.

We continue by exploring the some preliminary consequences of the hypothesis

that Ws
loc(B) is real analytic in such a full neighborhood of B.

Proposition 5.2.1 If Ws
loc(B) is real analytic in a full neighborhood of B, then there

is another neighborhood Ω0 of B and a holomorphic function ϕ : Ω0 → C such that

(i) if (λ, τ) ∈ Ω0 and R(λ, τ) ∈ Ω0, then ϕ(R(λ, τ)) = ϕ(λ, τ)4,

(ii) Ws
loc(B) = {|ϕ(λ, τ)| = 1}, and

(iii) ϕ(λ, 0) = λ.

The function ϕ is analogous to the one constructed in the Proof of Theorem A’.

However, Proposition 5.2.1 only gives that ϕ is defined on a small neighborhood of

B, which may not be forward invariant under R.

We will exploit the fact that each x ∈ B is hyperbolic, emitting a stable manifold

Ws
loc(x) that is a one-dimensional holomorphic curve transverse to L0. Together,

the union of stable manifolds of each x ∈ B forms a foliation of Ws
loc(B); see [3,

Proposition 9.2].

The notion of Levi-flat real-codimension 1 hypersurfaces Σ ⊂ C
n will be useful;

for background see [26, 27]. A C2 hypersurface Σ is Levi flat if though each point of

Σ there is a complex codimension 1, holomorphic hypersurface. The union of these

hypersurfaces is called the Levi foliation of Σ. Thus, the preceding paragraph shows

that Ws
loc(B) is Levi flat. Note that there is another, more common but equivalent,
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definition of Levi-flat given in terms of vanishing an appropriate Levi (1, 1)-form [26,

page 126].

Rea’s Theorem [28] holds in any codimension, but here we need only

Theorem 5.2.2 (Rea) Suppose Σ is a Levi-flat, real analytic hypersurface defined

on some open Ω0 ⊂ C
n. Then there is a neighborhood Ω ⊂ Ω0 of Σ to which the Levi

foliation extends uniquely and holomorphically.

We include a sketch of the proof, as it is rather simple in this case.

In a neighborhood of any x ∈ Σ, we can choose a holomorphic coordinate system

(u1, . . . , un) such that Σ = {Imun = 0}. See [27, Remark 4.3]. In these coordinates,

the Levi foliation has leaves given by un = a ∈ R. Thus, a holomorphic extension of

the foliation is obtained by letting a be complex (with small imaginary part).

To see that the extension is unique, suppose (v1, . . . , vn) is another holomorphic

coordinate system defined in a neighborhood of x also with Σ = {Imvn = 0}. In

these coordinates, the Levi foliation and extension are given analogously. To see

that the resulting extension is the same as that obtained using the u-coordinates,

it sufficed to show that the change of coordinates (v1, . . . , vn) = ψ(u1, . . . , un) maps

vertical hyperplanes un = a to vertical hyperplanes vn = b. Since ψ({Imun = 0}) =

{Imvn = 0}, and biholomorphisms send holomorphic hypersurfaces to holomorphic

hypersurfaces, this is true for any real a. Hence, it is true for any complex a (where

ψ is defined).

Proof [Proof of Proposition 5.2.1] As stated above, Ws
loc(B) is foliated by a family

F of holomorphic stable curves at each point in B, so it’s Levi flat. Since Ws
loc(B) is

assumed to be real analytic, Rea’s Theorem implies that this Levi foliation extends

to be a complex analytic foliation in a neighborhood of Ws
loc(B). Since the foliation

F is transverse to L0 at points of B, in a small enough neighborhood Ω̃, each curve γx

of the foliation is transverse to L0. Then we may assume Ω is the union of connected

components in Ω̃ of any leaf that intersects Ω̃ ∩ {λ = 0}. Let ϕ : Ω → C be the map

assigning to each (λ, τ) ∈ Ω the point where γ(λ,τ) intersects τ = 0. From this, (ii)
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and (iii) follow immediately. Note that it follows from a change of coordinates and

the Implicit Function Theorem that ϕ is holomorphic.

Define Ω0 to be the connected component of R−1(Ω) ∩ Ω containing B. For each

τ0 with |τ0| sufficiently small, let Lτ0 := {τ = τ0}. Observe that Bτ0 := Ws
loc(B) ∩Lτ0

is a topological circle. Since Bτ0 ⊂ Ws
loc(B), (i) holds on Bτ0 and, by uniqueness

properties of holomorphic functions, it holds in some open neighborhood of Bτ0 within

Lτ0 . Varying τ0, these neighborhoods form an open neighborhood of B contained in

Ω0 on which (i) holds. This property then extends to all of Ω0, since Ω0 is connected.

We can suppose that the domain Ω0 on which ϕ is defined, given by Proposition

5.2.1, is sufficiently small, so that it is contained in Ws(0) ∪ Ws
loc(η) ∪ Ws

loc(B) ∪
Ws

loc(η
′). Since B has a local product structure, it is isolated in the recurrent set.

Proof of this is similar to [29, Proposition 4.4]. Thus, we can choose Ω0 smaller if

necessary so that each orbit enters and leaves Ω0 at most once.

Proposition 5.2.2 The domain Ω0 may be extended to Ω, a neighborhood of L0 \
{η′, η}, such that ϕ : Ω → C is holomorphic,

(i) If (λ, τ) ∈ Ω and R(λ, τ) ∈ Ω, then ϕ(R(λ, τ)) = ϕ(λ, τ)4,

(ii) Ws
loc(B) = {|ϕ(λ, τ)| = 1}, and

(iii) ϕ(λ, 0) = λ for x ∈ L0 \ {η′, η}.

In general, the push-forward of a function by a mapping is not well-defined. How-

ever, if the mapping is proper, then it is well-defined by averaging over the fibers. It

was shown in [3, Sec. 4.5] that R has topological degree eight. In the proposition

below, we mimic this push forward under a proper mapping.

Proof Let Ωn := {x : R−n{x} ⊆ Ω0} and Cn be the critical value set for Rn. For

x ∈ Ωn \ Cn, we may define

ϕ(x) =
1

8n

8n∑

i=1

ϕ(yi)
4, (5.6)
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where {yi}8ni=1 = R−n{x}. Then locally about each x ∈ Ωn\Cn, ϕ is holomorphic since

each branch of R−n is holomorphic by the Inverse Function Theorem. If x follows a

nontrivial loop around Cn, then ϕ(x) has no monodromy since we are averaging over

all of the fibers in (5.6). Moreover, since |ϕ| is bounded on Ω0, (5.6) implies |ϕ| is

also bounded on Ωn \ Cn. Therefore, by the Riemann Extension Theorem, ϕ can be

extended through the critical value curves to be holomorphic on all of Ωn.

If x ∈ Ωn ∩ Ωm with n ≥ m ≥ 0, then R−n{x},R−m{x} ⊂ Ω0. Since any orbit

enters and leaves Ω0 at most once, for any yi ∈ R−m{x} and each zj ∈ Rm−n{yi}, we

have that zj,R(zj), . . . ,Rn−m(zj) = yi ∈ Ω. Thus, ϕ(yi) = ϕ(Rn−m(zj)) = ϕ(zj)
4n−m

since (i) holds on Ω0. This implies

1

8m

∑

yi∈R−m(x)

ϕ(yi)
4m =

1

8n

∑

zj∈R−n(x)

ϕ(zj)
4n ,

so that the two definition of ϕ agree in Ωn ∩ Ωm.

We obtain a well-defined holomorphic function ϕ on

Ω∞ :=
∞⋃

n=0

Ωn. (5.7)

Then we define Ω to be the connected component of R−1(Ω∞) ∩ Ω∞ containing B.

Now (i) holds on all of Ω using the exactly the same proof as in Proposition 5.2.1.i.

Since L0 is forward invariant, Ω0 intersects L0, and R|L0 is λ 7→ λ4, it follows

that Ω contains L0 \ {η′, η}. The fact that Ws
loc(B) = {|ϕ(λ, τ)| = 1} also follows

from the fact that Ω0 ⊂ Ω.

5.3 Local Properties Near the Fixed Point

In order to study the geometry of the extended domain Ω and the properties of ϕ,

several technical results about the dynamics near η′ will be required. We may choose

ε > 0 sufficiently small so that the bidisk

Xε := {|λ| < ε, |τ | < ε}, (5.8)
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is forward invariant, and R strictly decreases each component in modulus. We con-

tinue by describing the trajectory of orbits as they converge to η′.

Proposition 5.3.1 If ε > 0 is sufficiently small, then for any γ ∈ Z+, if (λ0, τ0) ∈
Xε \ L0, then |λn|/|τn|γ → 0.

This proposition implies that any point near η′ and not on L0 converges to η′ with

an arbitrarily high degree of tangency to L1.

Proof We first proof the proposition when |λ0| ≤ |τ0|γ. Let wn := λn/τ
γ
n , so that

wn+1 =
λn+1

τ γn+1

=
λ2n
τ 2γn

(
(1 + τ 2n)γ−1(λn + 2τn)

(1 + (τn + λn)2)γ

)2

= w2
nτ

2
n

(
(1 + τ 2n)γ−1(2 + wnτ

γ−1
n )

(1 + τn(1 + wnτ
γ
n )2)γ

)2

.

(5.9)

In the (τ, w) coordinates, (0, 0) is a superattracting fixed point for R. Then there

is a δ > 0 such that any point with |τ |, |w| < δ is in Ws((0, 0)). The closed disk

{τ = 0, |w| ≤ 1} collapses to (0, 0). By continuity, there exists ε > 0 such that

R({|τ | < ε, |w| ≤ 1 + ε}) ⊂ {|τ |, |w| < δ} ⊂ Ws((0, 0)). (5.10)

Thus, for (λ0, τ0) ∈ Xε with ε > 0 sufficiently small, if |λ0| ≤ |τ0|γ, then the result

follows.

Now it suffices to show that if τ0 6= 0, then there is some N ≥ 0 so that |λn| ≤ |τn|γ

for any n ≥ N . Let

M1 = min
(λ,τ)∈Xε

∣∣∣∣
1 + (τ + λ)2

1 + τ 2

∣∣∣∣
2

and M2 = max
(λ,τ)∈Xε

9

∣∣∣∣
1

1 + τ 2

∣∣∣∣
2

. (5.11)

As long as |λn| ≥ |τn|γ, we have

|τn+1| ≥M1|τn|2 and |λn+1| ≤M2|λn|2+2/γ . (5.12)

This implies that

|τn| ≥ A1ρ
2n

1 and |λn| ≤ A2ρ
(2+2/γ)n

2 (5.13)

for some Ai > 0 and 0 < ρi < 1. Then

|λn|
|τn|γ

≤ A2

A1

ρ
(2+2/γ)n

2

ργ2
n

1

= Aρ
(2+2/γ)n−aγ2n

2 → 0, (5.14)

where ρ1 = ρa2 and A = A2/A1. Thus, for some iterate m, we have |λm| ≤ |τm|γ .
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Consider the “bullet-shaped” regions Bγ,c := {(λ, τ) : |λ| ≥ c|τ |γ}, and let Bγ ≡
Bγ,1. We will use the following horizontal and vertical cones:

Ch := {|τ | ≤ |λ|} and Cv := {|τ | ≥ |λ|}, (5.15)

noting that Ch = B1.

Corollary 5.3.1 If ε > 0 is sufficiently small, then for any γ ∈ Z+,

R−1(Bγ) ∩Xε ⊂ Bγ.

Corollary 5.3.2 For any γ ∈ Z+,
∞⋂

n=0

R−n(Bγ) ∩Xε = L0 ∩Xε

Lemma 5.3.3 For any sufficiently small ε > σ > 0 and any γ ∈ Z+, there exist

m ∈ Z+ such that R−m(Bγ) ∩
(
Xε \Xσ

)
⊂ Ch.

Proof Consider the compact set K :=
(
Xε \Xσ

)
∩ Cv. It suffices to prove that

there exists m ∈ Z+ such that Rm(K) ⊂ Xε \ Bγ. By the proof of Proposition 1.6,

for each x ∈ K, there exists mx such that for any m ≥ mx, Rmx ∈ Xε \ Bγ, which

is open. Then there is an open neighborhood Ux of x such that Rmx(Ux) ⊂ Xε \ Bγ .

Since K is compact, there exists m such that for any x ∈ K, Rm(x) ∈ Xε \Bγ.

Recall that R|L0 is λ 7→ λ4 and R|L1 is τ 7→ τ 2. The following distortion

estimates allow local approximation of these properties near η′. Also, recall the

notation (λn, τn) = Rn(λ0, τ0). Lastly, given two sequences xn and yn, we will use

xn ≍ yn to mean that a ≤ |xn/yn| ≤ A for some constants 0 < a < A.

Proposition 5.3.2 For ε > 0 sufficiently small and any γ ≥ 1,

(i) If (λi, τi) ∈ Bγ ∩Xε for i = 0, . . . , n, then |λn| ≍ |λ0|4n.

(ii) If (λi, τi) ∈ Xε \Bγ for i = 0, . . . , n, then |τn| ≍ |τ0|2n.



37

Proof Let

Ai =
1

|λn−i|2
∣∣∣∣
λn−i + 2τn−i

1 + τ 2n−i

∣∣∣∣
2

≤ 1 + 5

∣∣∣∣
τn−i

λn−i

∣∣∣∣ , (5.16)

so that |λn−i+1| = Ai|λn−i|4. Inductively, we have

|λn| =

(
n∏

i=1

A4i−1

i

)
|λ0|4

n

. (5.17)

Recall the constants M1 ≤ 1 ≤ M2 from the proof of Proposition 5.3.1, which are

independent of γ. We have |τn| ≥ (M1|τn−i|)2i and |λn| ≤ (M2|τn−i|)(2+2/γ)i , so it

follows that

∣∣∣∣
τn
λn

∣∣∣∣ ≥
M2i

1

M
(2+2/γ)i

2

∣∣∣∣∣
τn−i

λ
(1+1/γ)i

n−i

∣∣∣∣∣

2i

. (5.18)

This implies there is a 0 < δ < 1 such that

5

∣∣∣∣
τn−i

λn−i

∣∣∣∣ ≤ 5(M2|λn−i|)(1+1/γ)i−1M2

M1

∣∣∣∣
τn
λn

∣∣∣∣
1/2i

≤ δ(1+1/γ)i , (5.19)

since M2 is a fixed constant, |λn−i| < ε, and we can choose ε as small as we like.

It suffices to find uniform constants to estimate the product
∏n

i=1A
4i−1

i indepen-

dent n. Observe

n∏

i=1

A4i−1

i ≤
n∏

i=1

(
1 + 5

∣∣∣∣
τn−i

λn−i

∣∣∣∣
)4i−1

≤
∞∏

i=1

(
1 + δ(1+1/γ)i

)4i−1

, (5.20)

where the last product converges since

∞∑

i=1

4i−1 log
(

1 + δ(1+1/γ)i
)

(5.21)

converges. Thus, there is a constant A such that for any n,
∏n

i=1A
4i−1

i ≤ A.

A similar calculation can be done to find a uniform lower bound for the product.

Moreover, the proof for the vertical distortion control is similar (and easier).

Consider R∗(L1), the pullback of the curve L1 = {T = Y }, given by

− Z2(T − Y )2(T + Y )2 = 0. (5.22)
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τ

λ

Xε

η′

D

L0

L1

Cv

Ch

Figure 5.1. Bidisk neighborhood of η′

The pullback of L1 contains L1, {Z = 0}, and {T + Y = 0} (each counted with

multiplicity two). Call this last curve D, so in (λ, τ) coordinates,

D := {λ+ 2τ = 0}. (5.23)

Lemma 5.3.4 If x ∈ Xε \B3 and ε is sufficiently small, then R−1{x} ∩Ch 6= ∅ and

R−1{x} ∩ Cv 6= ∅.

Proof Let N := {|λ| < 1
2
|τ |2}, and note that if x ∈ Xε \ B3, then x ∈ N ∩ Xε.

Suppose x ∈ N ∩Xε and let (λ, τ) ∈ R−1{x}. Recall that the line D := {λ+ 2τ = 0}
has R(D) = L1. Also, note that N is the union over |c| ≤ 1/2 of the curves Pc :=

{λ = cτ 2}, and the preimage of any of these curves, R−1(Pc), is the set of points

satisfying

λ2
(
λ+ 2τ

1 + τ 2

)2

= cτ 4
(

1 + (λ+ τ)2

1 + τ 2

)4

. (5.24)

It follows that if ε > 0 is small enough that
∣∣∣
√
c (1+(λ+τ)2)2

1+τ2

∣∣∣ ≤ 1, then R−1(Pc) is a set

of points that satisfies ∣∣∣∣
λ

τ

∣∣∣∣
|λ+ 2τ |

|τ | ≤ 1. (5.25)
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Since the curve Pc is tangent to L1 and R(D∪L1) = L1, R−1(Pc) must have a branch

tangent to L1 and another branch tangent to D. Moreover, by (5.25), these preimage

curves must be contained in Cv and Ch respectively. Thus, there is a preimage in Ch

and another in Cv.

With a small amount of additional work, one can show that any point x ∈ Xε

with ε sufficiently small has a preimage under the second iterate of R contained in

Ch ∩Xε.

Lemma 5.3.5 For any sufficiently small ε > 0 and any k ∈ Z+, there exist σ > 0

and γ ∈ Z+ such that if x ∈ Xσ \Bγ, then x has a preorbit {xvk,i}ki=1 of length at least

k contained in Cv ∩Xε.

Proof Let R(λ, τ) = (λ′, τ ′) ∈ Xσ \Bγ, so there is a δ1 > 0 such that

1 ≥ |λ′|
|τ ′|γ ≥ |λ|2

|τ |2γ |λ+ 2τ |2(1 − δ1)
2(γ−1). (5.26)

For large enough γ and small enough σ, Lemma 5.3.4 implies there is some preimage

(λ, τ) ∈ Cv. Then |τ | ≤ |2τ + λ|, so

1 ≥ |λ|
|τ |γ−1

(1 − δ1)
γ−1. (5.27)

There are δi for i = 2, . . . , γ − 2 so that after repeating this process, we have

Rγ−2(λ0, τ0) ∈ Xε \Bγ with

1 ≥ |λ0|
|τ0|3

(1 − δ1)
γ−1

2γ−4 (1 − δ2)
γ−2

2γ−3 · · · (1 − δγ−2)
4

2 (1 − δγ−3)
3. (5.28)

Pick σ small enough and γ ≥ k + 3 so that (5.28) implies (λ0, τ0) ⊂ Cv ∩ Xσ and

R−k{x} ⊂ Xε.

Lemma 5.3.6 For any γ ∈ Z+, there exists σ > 0 such that Bγ ∩Xσ ⊂ Ω.

Proof By Proposition 5.2.2, Ω contains some neighborhood of L0 \ {η′, η}. By

Lemma 5.3.2, there exists ε > 0 sufficiently small so that for any γ ∈ Z+, the
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τ

λ

Xε

η′

γk

Xσ

A

L0Sxk

R−n{Sxk
}

A
Ω

L1

Figure 5.2. Xσ (medium gray), A (dark gray), and Ω (light gray)

horizontal distortion estimates can be applied in Bγ ∩Xε. Let A := {aε4j+2

< |λ| <
2Aε4

j

, |τ | < δ}, where a and A are the constants from the distortion estimate, j ∈ Z+

is chosen so that A ⊂ Xε, and δ < 0 is chosen small enough so that A ⊂ Ω. See

Figure 5.2.

Let x = (λ0, τ0) ∈ Bγ ∩Xσ and Sx be the real straight line path connecting x to

(λ0, 0) ∈ L0. If σ < ε is sufficiently small, then by Corollary 5.3.2 and the horizontal

distortion estimates, there is an integer n such that both R−n{Sx},R−n+1{Sx} ⊂
A. Then Sx ⊂ Ω∞ and Sx ⊂ R−1(Ω∞), and since Sx is connected and intersects

(L0 \ {η′, η}) ⊂ Ω, we have that x ∈ Sx ⊂ Ω.

Proposition 5.3.3 For any sequence {xm} ⊂ Ω, if xm → η′, then ϕ(xm) → 0.

Proof By Lemma 5.3.6, there exists σ > 0 such that B3∩Xσ ⊂ Ω. By the uniformity

of ϕ on compact sets and the fact that ϕ|L0 = id, if δ > 0 small enough, then

A := {σ42 < |λ| < σ, |τ | < δ} ⊂ B3, and |ϕ(x)| < 2σ for x ∈ A. By Lemma 5.3.4,

there is a point in the preimage of each xm ∈ Xσ \B3 contained in B3, and Corollary

5.3.1, B3 is backward invariant. Thus, there is a backward orbit of each xm that
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remains in B3 ⊂ Ω. Let {xm,n} be this preorbit. If xm sufficiently close to η′, then

by Corollary 5.3.2 there is an N(m) such that xm,N(m) ∈ A. Using the invariance

ϕ(Rn(x)) = ϕ(x)4
n

, we have

|ϕ(xm)| = |ϕ(xm,N)4
N | < (2σ)4

N

. (5.29)

As m goes to infinity, we need N to go to infinity as well in order for xm,N to remain

in A. This implies that the limm→∞ |ϕ(xm)| = 0.

5.4 Proof of Non-analyticity

Proposition 5.4.1 For any ε > 0 sufficiently small, there is a sequence {xk} con-

verging to η′ such that for each k, xk has a preorbit of length k contained in Cv ∩Xε

and a preorbit of length k contained in Ch ∩Xε. Moreover, any preimage of xk that

is in Xε is in Ω.

Proof By Lemma 5.3.6, there exists ε > 0 sufficiently small so that Xε ∩ Ch ⊂ Ω.

For each k ∈ Z+, we do the following. Using Lemma 5.3.5, there exists γ ∈ Z+ and

σ > 0 such that xk ∈ Xσ \Bγ has a preorbit xvk,i ⊂ Cv of length at least k. Supposing

that σ is smaller if necessary, we can assure that R−k{xk} ⊂ Xε. Requiring that

γ ≥ 3, Lemma 5.3.4 implies that xk has a first preimage, xhk,1, in Ch. Since Ch is

backward invariant by Corollary 5.3.1, xk has a preorbit xhk,i ⊂ Ch of length at least

k.

It remains to show that any preimage of xk that is in Xε is in Ω. First note

that by Lemma 5.3.6, we can choose σ smaller if necessary so that (Bγ+1 ∩Xσ) ⊂ Ω.

By Lemma 5.3.3, there is an m ∈ Z+ such that R−m(Bγ+1) ∩ (Xε \ Xσ) ⊂ Ch.

Let 0 < σ̃ < σ be sufficiently small that if x ∈ Xσ̃, then R−m{x} ⊂ Xσ. Let

xk ∈ (Bγ+1 \ Bγ) ∩ Xσ̃. Using that Bγ+1 is backward invariant, any preimage of

xk that is in Xσ will be in (Bγ+1 ∩Xσ) ⊂ Ω. Meanwhile, by the choice of σ̃, any

preimage that is in Xε \Xσ will be in Xε ∩ Ch ⊂ Ω.
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τ

λ

xhk,n(k)

xvk,k

xvk,0 = xhk,0 = xk

Xε

η′

xvk,i

xhk,k

xvk,n(k)

xhk,1

Figure 5.3. The preorbits {xvk,i} and {xhk,i}

Proof [Proof of Proposition 5.1.1] Let {xk} ⊂ Ω be a sequence as described in

Proposition 5.4.1, and for each k, let {xvk,i}ki=1 ⊂ Cv and {xhk,i}ki=1 ⊂ Ch be preorbits

of length k such that xvk,0 = xhk,0 = xk. Each preorbit {xhk,i}ki=1 can be extended to a

preorbit {xhk,i}n(k)i=1 with the element xhk,n(k) being the last preimage remaining in Xε.

See Figure 5.3. Note that by Proposition 5.4.1 for any 0 ≤ i ≤ n(k), we have both

xvk,i, x
h
k,i ∈ Ω.

We first show there is a subsequence of {xhk,n(k)}, that converges to a point in

L0 \ {η′, η}. By construction, xhk,n(k) is a preimage of xhk,1 ∈ Ch, so

xhk,n(k) ∈
n(k)−1⋂

i=0

R−i(Ch) ∩Xε. (5.30)
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Also by construction, xhk,n(k) ∈ Xε \ R(Xε), which has compact closure. Thus, there

is some subsequence such that xhkj ,n(kj) → x∗ with

x∗ ∈
∞⋂

i=0

R−i(Bγk) ∩Xε = L0 ∩Xε. (5.31)

However, since each xhk,n(k) ∈ Xε \ R(Xε), we must have |x∗| ≥ ε4.

By the vertical and horizontal distortion distortion estimates in Proposition 5.3.2,

preimages of xk are escapingXε faster along xhk,i than xvk,i, so we also have xvk,n(k) ⊂ Xε.

Note that xvk,i may be in Ch for k ≤ i ≤ n(k). Then using both vertical and horizontal

distortion, there is a constant A so that

dist(xvk,n(k), η
′) ≤ A dist(xk, η

′)
1

2k4n−k ≍ A dist(xhk,n(k), η
′)

4
n

2k4n−k ≤ Aε2
k

, (5.32)

which converges to 0 as k → ∞. Thus, the sequence xvk,n(k) converges to η′.

By Proposition 5.3.3, ϕ(xvk,n(k)) → 0 as k → ∞. We also have that |ϕ(xhkj ,n(kj))| →
|ϕ(x∗)| ≥ ε4 as k → ∞. However, xhkj ,n(kj) and xvkj ,n(kj) are both nth preimages of xkj ,

and using the invariance ϕ(Rn(x)) = ϕ(x)4
n

, this implies |ϕ(xvkj ,n(k))| = |ϕ(xhkj ,n(k))|
for every n(k). Then 0 = |ϕ(x∗)| ≥ ε4, a contradiction.

Lemma 5.4.1 If Ws
loc(B) is real analytic at x ∈ B \ {(±i, 0)}, then Ws

loc(B) is real

analytic at R(x).

Proof Images of real analytic hypersurfaces under holomorphic maps were consid-

ered by Baouendi and Rothschild [30]. Suppose that M is a germ of a real ana-

lytic hypersurface in C
N and H is the germ of a holomorphic map from C

N to C
N

with H(0) = 0. The germ H is called finite if every point in some neighborhood of

0 has finitely many preimages. It is shown in [30, Theorem 4] that if H is finite and

M ′ := H(M) is smooth in some neighborhood of 0, then M ′ is actually real analytic.

We are in the position to apply this result, since R sends Ws
loc(B) from the neigh-

borhood of any x ∈ B to Ws
loc(B) within a smaller neighborhood of R(x). However,

we must avoid the vertical lines z = ±i, which are collapsed by R to the fixed point

(1, 0) ∈ B. Away from these lines, R is finite.
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Proof [Proof of Theorem B’] By Proposition 5.1.1, there is some point x ∈ B at

which Ws
loc(B) is not real analytic. We will now use the fact that R is expanding on

B to show that Ws
loc(B) is not real analytic in the neighborhood of any point of B.

Since R|B is z 7→ z4, it is expanding on B, so there is some iterate n such that

Rn(U ∩B) = B. Because we assumed Ws
loc(B) is real analytic at every point of U ∩B,

we can use Lemma 5.4.1 iteratively to see that Ws
loc(B) is real analytic at every point

of B, except perhaps at the iterated images of (±i, 0). However, these consist of just

the fixed point (1, 0). To see that Ws
loc(B) is real analytic at (1, 0) note that (1, 0)

is also the image of (−1, 0) under R, where Ws
loc(B) is real analytic. Thus, Ws

loc(B)

must be real analytic at every point of B, which is impossible by Proposition 5.1.1.

We now know that Ws
loc(B) is not real analytic in the neighborhood of any point

of B. However, it could still be real analytic in the neighborhood of some other point.

We now show that this is also impossible.

Each stable manifold Ws
loc(x0) can be expressed as the graph of a convergent power

series:

z = h(t, z0) =
∞∑

j=0

aj(z0)t
j where x0 = (z0, 0). (5.33)

Since each Ws
loc(x0) depends continuously on z0 ∈ B, the coefficients aj(z0) are con-

tinuous functions of z0. Therefore, there is a uniform radius of convergence δ > 0.

For the remainder of the proof, we suppose that the neighborhood in which Ws
loc(B)

is defined is contained in |t| < δ/3.

Suppose Ws
loc(B) is real analytic in a neighborhood of some x1. Then one can

express leaves of the stable foliation near x1 as graphs of some convergent power

series

z = k(t, z1) =
∞∑

j=0

bj(z1)(t− t1)
j. (5.34)

The function (z1, t) 7→ (z, t), with z given by (5.34), gives a parametrization of Ws
loc(B)

near x1 with z1 varying over the real analytic arc Ws
loc(B)∩{t = t1} and t varying over

some complex disc centered at t0. Since we have assumed Ws
loc(B) is real analytic near

x1, the parameterization is an analytic function. In particular, ∂j

∂tj
z is real analytic
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for each j ≥ 0. Restricting to t = t1 we see that each of the coefficients bj(z1) is a

real analytic function of z1.

We now use this to show that Ws
loc(B) is also real analytic in a neighborhood

of the unique point x0 for which x1 ∈ Ws
loc(x0). Since Ws

loc(x0) is the graph of a

holomorphic function over |t| < δ, |t1| < δ/3 implies that (5.34) converges on the disc

|t−t0| < δ/2. In particular, each of the holomorphic discs defined by (5.34) crosses all

the way through B. As they depend real analytically on z1, this implies that Ws
loc(B)

is real analytic in a neighborhood of x0 ∈ B, which is not possible.
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6. PHYSICAL INTERPRETATION

In this chapter we will relate Theorems B’ to the Ising Model on the DHL. We refer the

reader to [3,4] for physical background. The DHL is a sequence of graphs Γn obtained

in a self-similar way. Associated to each graph is a partition function Zn(z, t) whose

zeros

Sc
n := {(z, t) ∈ C

2 : Zn(z, t) = 0}

describe the singularities of the Ising model associated to Γn. They are called the Lee-

Yang-Fisher zeros. The actual physics is described by the limit n→ ∞. It is proved

in [4] that the limiting distribution of zeros exists as a closed, positive (1, 1)-current

Sc on P
2. In fact, Sc = 1

2
Ψ∗S, where S is the Green current for R. The support of

Sc describes locus where phase transitions occur in C
2.

It is shown in [4] that at low complex temperatures supp Sc coincides with Ws
loc(B).

Combining Theorem B’ with the work from [4] gives the following:

Corollary 6.0.2 At low complex temperatures (|t| small), the locus of phase transi-

tions for the Ising model on the DHL is a 3 real-dimensional manifold that is C∞ but

not real analytic.

A preferred subset of the Lee-Yang-Fisher zeros is obtained by requiring that t ∈
[0, 1], which correspond to “physical” temperatures. The Lee-Yang Circle Theorem

[31,32] asserts that for each n and fixed t0 ∈ [0, 1], zeros of partition function Zn(z, t0)

corresponding to Γn lie on the unit circle Tt0 := {|z| = 1, t = t0}. Let

C = {|z| = 1, t ∈ [0, 1]}.

The Lee-Yang zeros are defined by

Sn := {(z, t) ∈ C : Zn(z, t) = 0}.
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Isakov [33] proved for any t0 > 0 sufficiently small the free energy for the Ising

model on the Z
d lattice with d > 1 does not have analytic continuation through any

point of the circle Tt0 . This implies that the limiting distribution of Lee-Yang zeros

for the Z
d lattice with d > 1 does not have real analytic density in the neighborhood

of any point of the circle t = t0. In the remainder of this chapter, we discuss how

Corollary 6.0.2 can be related to Isakov’s result.

One can check that R maps the Lee-Yang cylinder C into itself, with the Lee-Yang

zeros corresponding to Γn+1 obtained by pulling back the Lee-Yang zeros correspond-

ing to Γn under R|C. The map R : C → C was also studied previously by Bleher and

Žalys [34].

In [3], Bleher, Lyubich, and Roeder describe the limiting distribution of Lee-Yang

zeros for the DHL; let us provide a very brief summary. Let C1 := C \ {t = 1}. It

was shown that R : C1 → C1 is partially hyperbolic, with a unique central foliation

F c which is vertical (with respect to a suitable cone field) on C1. In particular, one

can define the F c holonomy map gt : T0 → Tt. The limiting distribution of Lee-Yang

zeros at temperature t0 ∈ [0, 1) is obtained as the pushforward µt = gt0∗Leb, where

Leb is the normalized Lebesgue measure on T0.

In a neighborhood of B, F c coincides with the stable foliation of B, which is a union

of the real analytic curves Ws
loc(x) ∩ C, taken over x ∈ B. It is shown in [4, Lemma

3.2] that the stable foliation of B within C has the same regularity that the stable

manifold Ws
loc(B) does as a submanifold of C2. (In fact, Ws

loc(B) was shown to be a

C∞ manifold in [4] by first showing that the stable foliation of B within C is C∞.)

Therefore, Theorem B’ implies that the central foliation is not real analytic at

low temperatures. Moreover, by [3], an open dense set of points from C have orbits

converging to B. Since F c is invariant, this implies the following:

Theorem 6.0.3 F c is not real analytic in the neighborhood of any point of C.

Using the holonomy description of the limiting distribution of Lee-Yang zeros, we find

the following modest analog of Isakov’s Theorem for the DHL:
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Corollary 6.0.4 For any z = eiφ ∈ B, there is a dense set of t0 ∈ [0, 1] so that the

limiting distribution of Lee-Yang zeros within Tt0 does not have real analytic density

at (t0, φ).
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7. OPEN PROBLEMS

7.1 Regularity of Superstable Manifolds When b Is Larger Than a

Theorem A naturally leads one to question whether there are necessary conditions

for Ws
loc(S) to be real analytic. If a < b, the superattracting direction is not as strong

as the expansion within L; we believe there should be a way to exploit this to answer

the following question:

Question 1 Is there a “generic” class of mappings f with a < b for which Ws
loc(S)

is not real analytic?

Here we are attempting to generalize of the technique in Section 5 for the Migdal-

Kadanoff renormalization that proves Ws
loc(B) is not real analytic. If f happens

to be a product, the stable manifold will be real analytic, so the class of functions

not producing a real analytic stable manifold is at best generic in some sense. The

technique used for R (given by(5.2)) and f (given by (5.1)) relies on a second invariant

line L1 such that f | L1 is the map w 7→ wa. We suspect one may use the degree a

transversal superattraction of L to generate an invariant cone field to serve the same

purpose in the general case.

Question 2 For any a and b, is Ws
loc(S) a C∞ manifold?

Following the method in [3, Proposition 9.12], define the sequence Bn(x) :=

1
bn
Dfn(x). It is not difficult to show Bn converges uniformly on compact subsets

of Ws
loc(S) at super-exponential rate to a matrix-valued function B(x). The goal

is to prove this function B is C∞ in any neighborhood of S, since one can use the

invariance

bBn(x) = Bn−1(f(x))Df(x) and bB(x) = B(f(x))Df(x), (7.1)
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to extend the result to any compact subset of Ws(S). B(x) and all of its derivatives

are converging so fast that we believe Whitney’s extension theorem could be used to

extendB to a C∞ function in a neighborhood of S. In this case, since L is transversally

superattracting, kerB(x) would be a C∞ holomorphic line field, so that one could

integrate it to get a C∞ foliation by holomorphic discs of S. Within Ws
loc(S), ker(B)

is the field of tangent planes to the Levi foliation of Ws
loc(S). Therefore, Ws

loc(S) is

formed as a union of the holomorphic discs from the C∞ foliation.

The only missing piece is the application of Whitney’s Extension Theorem [35]

which provides a partial converse to Taylor’s Theorem. Let U be an open subset of

R
n, and X a closed subset of U . As described in [36], Whitney’s theorem asserts that

a function f defined in X is the restriction of F 0, a Cm function in U (m ∈ N or

m = +∞) provided there exists a sequence (F k)|k|≤m of functions defined in X which

satisfies for each |k| ≤ m,

(Rm
x F )k(y) := F k(y) −

∑

|j|≤m−|k|

F k+j(x)

j!
· (y − x)j = o(|x− y|m−|k|). (7.2)

Roughly speaking, one must control the tails of the Taylor expansion uniformly.

7.2 Lee-Yang Density

Recall Corollary 6.0.4. Unfortunately, the fact that F s not real analytic at any

point does not imply that none of the non-trivial holomomies are real analytic. Isakov

[33] proved a similar result for Ising models on the Zd lattice. However, Isakov’s result

required a great deal of difficult and complicated analysis. We would like to prove

the analogus result:

Conjecture 1 For temperature 0 < t < tc, the limiting density of Lee-Yang zeros for

the DHL ρt(φ) is C∞, but not real analytic.
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