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ABSTRACT 

Pusha, Ayana T. M.S.M.E., Purdue University, May 2013. Multiple Turbine Wind Power 

Transfer System Loss and Efficiency Analysis. Major Professor: Afshin Izadian. 

 

 

A gearless hydraulic wind energy transfer system utilizes the hydraulic power 

transmission principles to integrate the energy of multiple wind turbines in a central 

power generation location. The gearless wind power transfer technology may replace the 

current energy harvesting system to reduce the cost of operation and increase the 

reliability of wind power generation. It also allows for the integration of multiple wind 

turbines to one central generation unit, unlike the traditional wind power generation with 

dedicated generator and gearbox.  A Hydraulic Transmission (HT) can transmit high 

power and can operate over a wide range of torque-to-speed ratios, allowing efficient 

transmission of intermittent wind power. The torque to speed ratios illustrates the 

relationship between the torque and speed of a motor (or pump) from the moment of start 

to when full-load torque is reached at the manufacturer recommended rated speed.  

 

In this thesis, a gearless hydraulic wind energy harvesting and transfer system is 

mathematically modeled and verified by experimental results. The mathematical model is 

therefore required to consider the system dynamics and be used in control system 

development.  Mathematical modeling also provided a method to determine the losses of 

the system as well as overall efficiency.  The energy is harvested by a low speed-high 

torque wind turbine connected to a high fixed-displacement hydraulic pump, which is 

connected to hydraulic motors. Through mathematical modeling of the system, an 

enhanced understanding of the HTS through analysis was gained that lead to a highly 



xii 

efficient hydraulic energy transmission system.  It was determined which factors 

significantly influenced the system operation and its efficiency more. It was also 

established how the overall system operated in a multiple wind turbine configuration.  

 

The quality of transferred power from the wind turbine to the generator is important 

to maintaining the systems power balance, frequency droop control in grid-connected 

applications, and to ensure that the maximum output power is obtained.  A hydraulic 

transmission system can transfer large amounts of power and has more flexibility than a 

mechanical and electrical system. However high-pressure hydraulic systems have shown 

low efficiency in wind power transfer when interfaced with a single turbine to a ground-

level generator. HT’s generally have acceptable efficiency at full load and drop efficiency 

as the loading changes, typically having a peak around 60%.  The efficiency of a HT is 

dependent on several parameters including volumetric flow rate, rotational speed and 

torque at the pump shaft, and the pressure difference across the inlet and outlet of the 

hydraulic pump and motor.   

 

It has been demonstrated that using a central generation unit for a group of wind 

turbines and transferring the power of each turbine through hydraulic system increases 

the efficiency of the overall system versus one turbine to one central generation unit. The 

efficiency enhancement depends on the rotational speed of the hydraulic pumps. 

Therefore, it is proven that the multiple-turbine hydraulic power transfer system reaches 

higher efficiencies at lower rotational speeds. This suggests that the gearbox can be 

eliminated from the wind powertrains if multiple turbines are connected to the central 

generation unit. Computer simulations and experimental results are provided to quantify 

the efficiency enhancements obtained by adding the second wind turbine hydraulic pump 

to the system. 
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1. INTRODUCTION TO WIND ENERGY 

 

 

Harnessing the energy of wind has been one of man’s earliest achievements, which 

has led to wind-generated electricity. To date, most wind power generation systems 

consist of a wind turbine, a gearbox, and a generator to harvest the wind energy and 

produce electric power. A gearbox is required to speed up the wind turbine’s shaft before 

it is connected to electric generators. However, gearboxes are expensive, bulky, and 

require regular maintenance, which makes wind energy production expensive. 

 

 

 Background and Motivation 1.1

Wind is the fastest growing and most widely used form of the emerging renewable 

energy technologies in the generation of electricity. Due to the many advances in wind 

generation technology, the potential for wind as a power source is immense. Wind energy 

is the kinetic energy of air in motion and when converted into useful forms of energy 

becomes wind power which can be used to generate electricity or mechanical power.  

Wind turbines use the kinetic energy found in wind to rotate a propeller with two to three 

blades.  This propeller is connected to a rotor hub that spins a central shaft through a gear 

box that dramatically increases the rotational speed of the shaft.  The shaft is then used to 

power an electric generator to make electricity.  The generator produces electricity 

through electromagnetic induction which is the result of a conductor moving through a 

magnetic field.  Electricity can then be sent out to the power grid or stored for later use.  

Wind turbines should be mounted as tall as necessary to capture wind speeds above 5 

miles per hour  (2.24 m/s) to start generating power and to be as effective and efficient as 

possible. 
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     Shown in Figure 1.1, the subsystems of a traditional wind turbine include the 

following components [1]: 

 

 The rotor which comprises of the blades (two to three) and the hub.  The hub 

connects the blades to the motor through the use of a gear. 

 

 The drivetrain, contains the rotating parts, includes a low speed shaft on the rotor 

side, a gearbox, and a high speed shaft on the generator side. The other drivetrain 

components are a mechanical break, support bearings, one or more couplings, and 

the rotating parts of the generator. 

 

 The nacelle, acting as protection from the elements, is the wind turbine housing 

for and the mainframe and the yaw system.  The mainframe provides for the 

mounting and proper alignment of the drive train components.  The yaw system 

keeps the rotor shaft properly aligned with the wind. 

 

 The tower structure and supporting foundation. 

 

 The control system includes sensors (speed, position, flow, current, and voltage), 

actuators (motors, pistons, magnets, and solenoids), controllers, and power 

amplifiers. 

 

 Electrical components such as transformers, cables, power electronic converters, 

switchgears, power factor correction capacitors, yaw and pitch motors. 

 

For a traditional wind power generation system to harvest wind energy and produce 

electric power, the subsystems mentioned above are required.  These components, the 

gearbox specifically, are costly and massive in size.  Regular maintenance is required 

which can considerably increase operation costs. The gearless power transfer system will 

transfer power of a high torque/low speed wind turbine to a high speed generator 
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increasing the efficiency.  This alternative to the traditional design of the wind turbine 

power train may replace the current energy harvesting technologies to reduce the cost and 

increase the reliability of wind power generation. 

 

 

 

 

 Statement of the Problem/Purpose of Project 1.2

Of the emerging renewable energy technologies, wind being the fastest growing and 

most widely used in the production of electricity, has the potential to be an immense 

power source.  For a traditional wind power generation system to harvest wind energy 

and produce electric power, the required components include a wind turbine, gearbox, 

transformer, and a generator.  These components, the gearbox specifically, are 

Figure 1:  Wind Turbine Components Invalid source specified. Figure 1.1  Wind Turbine Components [41] 
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expensive, and require regular maintenance, which makes the wind energy production 

expensive. They also cause the towers that house them to be massive in size. Each wind 

turbine requires its own generator and power converter causing synchronization 

throughout the power plant of the harvested power difficult to control.  Furthermore 

there is a tremendous amount of noise generated from the wind turbine blades. 

 

The aim of this project is to design and simulate a high-pressure hydraulic system to 

couple and transfer energy harvested from multiple-wind turbines to a central power 

generation unit.  The gearbox of a traditional wind turbine will be removed and replaced 

with a hydraulic pump in the nacelle that is connected to a hydraulic motor and generator 

by way of high pressure hydraulic piping on ground level.  By eliminating the gearbox, 

there will be an increase in the power transfer efficiency.  Operation and capital costs of 

the wind power plant could be reduced considerably.  A control unit consisting of a 

directional valve coupled to a PI controller will control the speed rotation through the use 

of a bypass auxiliary power unit in a closed loop control system.  This new approach 

integrates electrical and mechanical systems to produce renewable energy.  Unlike 

traditional wind power generation, the hydraulic transmission system also allows for the 

integration of multiple wind turbines to one central generation unit and utilization of 

several forms of storage units. 

 

 

 Research Goals and Approach 1.3

Thesis presents an alternative approach to the traditional wind turbine design by 

proposing a gearless power transfer system.   The prototype developed, has removed the 

standard gearbox and instead uses a hydraulic transmission.  A hydraulic transmission 

contains a hydraulic pump that provides a hydraulic motor with hydraulic fluid through 

high-pressure hydraulic pipelines.  The speed of rotation of the pump’s shaft determines 

how much fluid is produced and delivered to the motor affecting its shaft velocity. 
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A gearless power transfer system allows for the removal of the large gearbox to 

reduce the size of the nacelle and the cost of maintenance but to fully uncover the 

commercial potential of such a system the following goals must be implemented: 

 

1. To calculate the losses of each component in the gearless power transfer system, 

 

2. To determine the overall efficiency of the system by calculating the power 

transferred   from the hydraulic pump to hydraulic  motor, and  

 

3. To establish a method to increase system efficiency. 

 

To achieve these goals three steps were taken.  A model of each component of the 

system was developed to discover the dynamics of the system.  A loss model was also 

developed to determine the loss of each component as well. These models were validated 

with simulation software in Matlab.  Next a gearless power transfer system prototype was 

assembled to obtain experimental results. These results include the power transfer 

through the system and the overall system efficiency.  Thirdly, the simulation results 

obtained were then validated by experimental results.  

 

 

 Thesis Outline 1.4

Comprised of eight chapters, this thesis begins with Chapter 1 which begins with the 

Background and Motivation, Statement of the Problem and Purpose, and includes 

Research Goals and the Approach taken to complete this research.  Chapter 2 discusses 

the history of the traditional wind turbine, siting specifications, and wind characteristics.  

Most importantly there will be a comparison of the traditional wind turbine to the 

hydraulic system proposed in this research. Chapter 3 provides mathematical modeling of 

the system components to evaluate system dynamics and control development.  Chapter 4 

assists in the understanding of system losses and how these losses affect the overall 

system efficiency.  Validation of the mathematical model and loss model using a Matlab 
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simulation toolbox is attained in Chapter 5.  Chapter 6 discusses in detail the design and 

fabrication of a gearless power transfer system as an experimental setup.  Experimental 

results are examined in Chapter 7.  Chapter 8 ends the thesis with the conclusion of the 

research, recommendations, and future work.   
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2.  HISTORY OF WIND ENERGY 

 

 

 Traditional Wind Turbines 2.1

A wind turbine is a machine that converts the power in wind into electricity.  In 

modern wind turbines, the actual conversion process uses aerodynamic force of lift to 

produce a net positive torque on a rotating shaft, resulting in the production of 

mechanical power and then in its transformation to electricity in a generator.  Wind 

turbines can only produce energy in response to the wind that is immediately available 

unlike almost all other generators [1].  The design of modern large scale wind turbines 

have led to two configurations, horizontal axis wind turbine (HAWT) and vertical axis 

wind turbine (VAWT), with HAWT’s being the most common. HAWT’s are designed 

with the rotor and electric generator located at the top of the tower to have their axis of 

rotation parallel to the ground and must be pointed into the wind.  VAWT’s are designed 

with the axis of rotation vertically and does not need to be pointed into the wind to be 

operational.  The generator and gear box can be placed near the ground, making it easier 

to maintain.  In this research only HAWT’s will be discussed in detail.
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Figure 2.1  HAWT/VAWT configuration 

 

To effectively construct a horizontal axis wind turbine the necessary components (See 

Figure 2.1) include a rotor subsystem, drivetrain subsystem, nacelle subsystem, tower 

subsystem, and ground equipment.  The rotor subsystem comprises of the hub and blades 

of the wind turbine and is considered to be the most important components from a 

performance and overall cost standpoint.  Two or three blades are connected to a central 

hub and act as a propeller.  As the rotor turns, the blades generate an imaginary surface 

whose projection on a vertical plane is called a swept area.  The rotor orientation denotes 

the location of the rotor with respect to the tower and can be either downwind or upwind.  

A downwind rotor faces the same direction in which the wind is blowing while an 

upwind rotor is facing into or against the wind.  For large scale wind turbines, the rotor 

subsystem usually includes a mechanism for adjusting blade pitch.  Blade pitch is the 

angle between the blade chord line and the plane of rotation.  The pitch change 

mechanism provides a means to controlling starting and stopping torque, and peak power 

controlling either the angle of the outboard section of each blade or the entire blade.  
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Materials used to construct rotor blades are glass fiber composites, steel spars with non-

structural composite fairings, and welded steel airfoils.  These materials are chosen by 

system engineering and established based on the size, weight, maintenance and cost of 

wind turbine [1, 3].    

 

The drivetrain of a wind turbine involves a combination of mechanical and electrical 

components required to convert the mechanical power received from the rotor hub to 

electrical power.  There is a low speed shaft located on the rotor side, a gearbox that 

increases the rate of rotation of the rotor from a low value to a speed that can drive a 

generator, a high speed shaft on the generator side, a rotor brake and an electric 

generator.  The low speed shaft is the most critical component of an HAWT because of 

its dual structural/mechanical function.  Rotor weight, thrust, torque, and lateral forces 

cause fatigue loading on this component whose design lifetime usually equals or exceeds 

that of the total system.  The gearbox has a step up ratio that is equal to the generator 

shaft speed divided by the turbine shaft speed that is as high as 100.  The electric 

generators used for larger wind turbines are AC induction or synchronous generators. 

They provide a constant or near constant rotational speed of the generator when the 

generator is directly connected to a utility network.  Induction generators are used on the 

majority of wind turbines that are installed in grid connected applications due to the 

torsional damping provided by their inherent slip.  High slip can provide a modest 

amount of softness to the drivetrain although efficiency is reduced in the process.  These 

generators operate within a narrow range of speeds slightly higher than its synchronous 

speed and are rugged, inexpensive, and easy to connect to an electrical network.  

Synchronous generators are more beneficial than induction generators in that they 

provide higher power quality and higher efficiency but require external voltage regulators 

and are unable to provide significant softness or damping to the drivetrain [1, 3]. 

 

The nacelle is the structure that houses and protects the machine bedplate or main 

frame and the yaw orientation system.  It is the primary load path from the turbine shaft 

to the tower and is a combination of welded and bolted steel sections which form trusses 
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or box beams.  The bedplate is used to mount the shaft bearings, drivetrain components, 

and the yaw orientation system.  The yaw orientation system is employed to keep the 

rotor shaft properly aligned with the wind.  The primary component of the yaw system is 

an active yaw drive with a large bearing that connects the bedplate to the tower.  There 

are also one or more motors that drive a pinion gear against a bull gear attached to the 

yaw bearing.  Yaw breaks hold the nacelle in position while a yaw slip ring transfers 

electrical power, control signals, and data from the moving nacelle to stationary cables in 

the tower [3].   

 

The tower of a wind turbine raises the rotor and drivetrain to an elevation of 1 to 1.5 

times the rotor diameter or a minimum of 20 meters.  The height of the tower is 

calculated based on the marginal increase in energy capture and the marginal increase in 

system cost (construction and maintenance cost).  In modern wind turbines, towers are 

primarily free standing and made of steel tubing, lattice, or concrete.  Towers are 

supported on large foundations or smaller foundations with tie downs consisting of rock 

anchors.  Anchor bolts securing the tower to the foundation usually extend down to the 

bottom of the concrete.   A ladder and power lift is added for maintenance as well as 

cables for carrying power, control signals, and operational data between the nacelle yaw 

slip ring and the ground [1, 3].  

 

Ground equipment includes any components that interface the wind turbine with the 

electric utility or distribution system.  These components include a ground control unit, 

data recording devices, transformers, circuit breakers, and electronics [3]. 

 

 

 Siting 2.2

Wind turbines operate as a part of a larger power producing and consuming system 

such as large electrical networks, isolated diesel powered grid systems, or as stand-alone 

power for a specific load.  To integrate wind power into these systems, its needs to be 

considered the ideal location to place wind turbines, turbine installation, turbine operation 
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and grid connection.  Turbines may be installed as a single unit or as a wind farm, or 

array.  The installation of an individual wind turbine or an array of turbines require a 

significant amount of planning, coordination, and design work [1].   

 

 

2.2.1 Choosing a Location 

Wind turbine siting can be defined as the method in which a wind turbine or wind 

farm is placed to maximize the cost of energy while minimizing noise, visual impacts and 

the unit cost of generating electricity [1 ,4].  A siting study needs to be completed before 

the installation of wind turbines to determine where to locate them.  A siting study ranges 

from the placement of a single wind turbine or of multiple wind turbines in a wind farm 

to wind prospecting for suitable turbine sites over a wide geographical area.    

 

There are five stages that the siting of a single turbine or wind farm for utility 

interconnection can be divided into. The first stage is the identification of geographic 

areas needing further study.  Areas with high average wind speeds within the region of 

interest are identified using a wind resource atlas and any other available wind data.  The 

characteristics of turbine types or designs under consideration are used to establish the 

minimum useful wind speed for each type.  The selection of candidate sites involves the 

potential windy sites within the region being identified where the installation of one or 

more wind turbines appears to be practical from engineering and public acceptance 

standpoints.  If there is significant variation within the candidate site, detailed analysis is 

required to identify the best areas.  To evaluate wind resource, topological considerations, 

ecological observations, and computer modeling may be used while geologic, social and 

cultural issues are considered [1].   

 

Preliminary evaluation of the candidate site is stage three of siting. At this point each 

potential candidate site is ranked according to its economic potential and the most viable 

sites are examined for any environmental impact, public acceptance, safety, and 

operational problems that would adversely affect their suitability as a wind turbine site.  

Once the best candidate sites are selected, a preliminary measurement program may be 
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required.  A more comprehensive measurement may be required to choose a final site 

which includes wind shear and turbulence in addition to wind speed and prevailing wind 

directions.  Stage five, or micro-siting, allows for the exact location of the turbines and 

their energy production needs to be determined.  This is usually completed with computer 

programs that can model the wind field and the various aerodynamic interactions between 

turbines that affect energy capture [1]. 

 

Micro-siting is the placement of multiple wind turbines in an existing wind farm. 

Maximizing production is the main objective to adding wind turbines but wind flow, 

terrain, equipment access, environmental and land use issues, and visual impact must be 

taken into consideration.  To maximize production, careful attention must be paid to the 

prevailing wind direction(s), wind obstructions from man-made structures or vegetation, 

and terrain effects.  Another important factor is the impact of wind disturbance caused by 

one turbine on another turbine.  To eliminate reduced wind speeds and increased 

turbulence due to other turbines in the area, turbines should be placed at least two rotor 

diameters apart in the plane perpendicular to the prevailing wind direction and at least ten 

rotor diameters apart in the plane parallel to the prevailing wind direction.  Due to the 

turbulent wind flow created by a structure extending vertically twice the height of the 

structure, turbines should be placed at a distance of at least twenty times the height of any 

man made structure or vegetation upwind of the project [5].   

 

To estimate the wind resource at the candidate site, there are several approaches used 

which include ecological methods, the use of wind atlas data, computer modeling, 

statistical methods, and long term site specific data collection. Ecological methods are 

most useful during initial site selection and in geographical areas with very little available 

wind data and works best in coastal regions, mountainous terrain, and river valleys and 

gorges exhibiting strong channeling of wind.  Ecological methods are based on the 

deformation of vegetation by high average winds which are used to estimate the average 

annual wind speed and to compare candidate sites even when no wind data are available.  

The use of wind atlas data from a nearby site may be used to determine local long term 
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wind conditions.  With the creation of computer modeling programs the local wind field 

of an area can be estimated and wind turbine layout in a wind farm can be optimized.  

These programs use topographical information and long term upper level meteorological 

data and nearby surface level wind data.  Statistical methods use data from nearby sites to 

predict the wind resource at a candidate site.  Site specific data collection is the most 

ideal and accurate approach to determining the wind resource but the most costly and 

time consuming.  It measures the wind speed, wind direction, wind shear, turbulence 

intensity, and temperature at the exact location of interest [1 ,4].   

 

 

2.2.2 Grid Connection of Traditional Wind Turbine 

An electric grid can be separated into generation, transmission, distribution, and 

supplier feeders.  Large wind turbines are most often connected to the distribution system 

whereas smaller wind turbines are connected into the feeder system.  For the traditional 

means of producing electricity, generation has been provided by large synchronous 

generators powered by fossil or nuclear fuel or hydroelectric turbines.  The synchronous 

generators respond to load variations, keep the system frequency stable and adjust the 

voltage and power factor at the generating station as needed.  Power is produced at high 

voltage by these generators which feed current into a high voltage transmission system 

used to distribute the power over large regions.  The transmission systems use high 

voltage to reduce the losses in the power transmission lines.  Local distribution systems 

operate at lower voltage, distributing the power to local neighborhoods.  The voltage is 

reduced further and the power is distributed through feeders to one or more consumers. 

 

To connect and disconnect the wind turbine to an existing electrical grid requires the 

use of a switchgear.  A switchgear consists of large contactors controlled by 

electromagnets and should be designed for fast automatic operation.  To ensure that 

turbine problems do not affect the grid or vice versa, protection equipment should be 

added.  Provision should be made for rapid disconnection in case of a short circuit or 

overvoltage in the wind farm.  The wind farm should also be disconnected from the grid 
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in case of a deviation of the grid frequency from the rated frequency due to a grid failure 

or a partial or full loss of one of the phases in a three-phase grid.  Electrical conductors 

also connect the wind turbine to the grid as well as being used for transformers and 

dissipate power because of their electrical resistance.  These losses reduce system 

efficiency and can damage if wires and cables get too hot.   Transformers, located at 

substations, are used to connect electrical circuits at different voltage levels.  Grounding 

equipment protects against lightning damage and short circuits to ground. 

 

Turbine-grid interactions are contingent on the electrical behavior of the turbines 

under consideration and the electric grids to which the turbines are connected.  

Introducing a wind turbine to a distribution grid can limit the magnitude of wind power 

or it can help to support and stabilize a local grid.  The four main concerns are steady 

state voltages, flickering, harmonics, and islanding.  Steady state voltage changes can 

occur in the connected grid system when there is a change in the mean power production 

and reactive power needs of the turbine or a wind farm.  If the grid is weak, there will be 

an increase in the voltage fluctuations.  Flickering take place when there is a disturbance 

to the network voltage that occurs faster than steady state voltage changes.  These 

changes are fast enough and of a large enough magnitude that there is a noticeable 

change in the brightness of the lights.  Flickers are caused by the connection and 

disconnection of wind turbines to a grid, the changing of generators, and by torque 

fluctuations in fixed-speed turbines as a result of turbulence, wind shear, tower shadow, 

and pitch angles.  Variable speed turbines do not usually impose rapid voltage 

fluctuations on the network but may cause flickering when connected and disconnected.  

Sinusoidal voltages and currents are created in the distribution system at frequencies that 

are multiples of the grid frequency by the power electronics in variable wind turbines.  

The isolation of a self-supporting section of an electric grid is referred to as islanding. 

Though it poses a low risk, islanding can cause current to flow into a grid fault from a 

disconnected section of the grid, endangering repair personnel and causing 

synchronization problems upon reconnection of the islanded grid to the main grid.  
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 Variability of Wind Energy 2.3

The variability of wind in wind generation is a critical factor that makes it difficult to 

predict the power that will be produced during a given time span.  A wind turbine only 

produces when wind is available.  Wind speed varies with the time of day, season, and 

location above ground making it easier to forecast energy production than power. 

 

 

2.3.1 Wind Fluctuation 

There are several methods in which to determine the variations of wind speed in time.  

Atmospheric motions vary over a wide range of time scales (seconds to months) and 

space scales (meters to kilometers).  Long-term variability or inter-annual variations in 

wind occur over a time scale greater than one year[1].  Inter-annual variations have a 

large effect on long term wind turbine production and are almost as important as 

estimating the long term mean wind at a site.  It has been concluded by meteorologists 

that it takes 30 years of data to determine long term values of weather or climate and that 

it takes at least five years to arrive at a reliable average annual wind speed at a given 

location.  Yet one year of record data is generally sufficient to predict long term seasonal 

mean wind speeds within an accuracy of 10% with a confidence level of 90% [1, 4].   
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Figure 2.2  Land Based and Offshore Annual Average Wind  

Speed at 80 m (United States) [6] 

 

 
Figure 2.3  Wind Resources and Transmission Lines [6] 
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Seasonal and monthly variability, or annual variations, have wind speeds that vary 

from season to season.  These changes are common over most of the world.  The measure 

of seasonal variation in the wind at a given site depends on latitude and position with 

respect to specific features such as land masses and water.  Mid latitude continental 

locations that are well exposed will experience higher winds in the winter and spring, 

primarily because of large scale storm activity.  However mountain passes in coastal 

areas may experience strong winds in the summer when cool maritime air moves into a 

hot interior valley.  Within a given season, time variations in the wind over periods of one 

to several days can be caused by disturbances in the overall flow pattern such as cyclonic 

storms in temperate latitudes and traveling wave systems in the tropics.  The above 

disturbances are capable of causing the output of a wind power station to cycle between 

zero and rated power several times a month [4].  

 

Wind variations can occur on a diurnal or daily time scale in both the tropical and 

temperate latitudes and is triggered by the differential heating of the earth’s surface 

during the daily radiation cycle.  There is an increase in wind speed during the day 

created by the variations in radiation flux with the wind speeds lowest during the night.  

For tropical latitudes, the variations are more pronounced over land areas and during dry 

seasons when the humidity content of the air is very low and the skies are cloudless.  

Temperate latitudes have prominent variations over flat land areas. Diurnal variation in 

wind speed may vary with location and altitude above sea level but generally have the 

largest changes during the spring and summer and the smallest throughout the winter [1, 

4]. 

 

Turbulence and gusts cause short term variations in wind speed.  Short term 

variations deal with time intervals of ten minutes or less.  Turbulence can be defined as 

the mixing of cold and warm air in the atmosphere by wind.  It can be thought of as 

random wind speed fluctuations imposed on the mean wind speed which occurs in the 

direction of the wind, perpendicular to the wind, and vertical to the wind.  A gust is a 

sudden burst of high speed wind and is a discrete event within a turbulent wind field [1]. 
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2.3.2 Power Available from Wind 

Power from the wind can be measured in wind power density and is proportional to 

the area swept by the rotor, density of the air, and the cube of the wind velocity.  Power 

production potential of a wind turbine must take into account the fluid mechanics of the 

flow passing through a power producing rotor, and the aerodynamics and efficiency of 

the rotor/generator combination.  In practice a maximum of 45% of the available wind 

energy is harvested by the best modern horizontal axis wind turbines [1]. 

 

Available wind power is given by the following equations.  The mass flow rate of air 

dt

dm

can be determined through the rotor disk of area A.  The mass flow rate is a function 

of air density, ρ, from the continuity equation of fluid mechanics and air velocity U. 

 

AU
dt

dm


                                                             (1) 

 

To calculate the kinetic energy per unit time, or power of the flow is given by: 
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                                                   (2) 

The wind power per unit area, A

P

 or wind power density is: 
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U
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P
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                                                           (3) 

 

 

 Components of a Hydraulic Turbine 2.4

A gearless hydraulic wind energy harvesting and transfer system is comprised of 

several components that when assembled, harvest energy by a low speed-high torque 

wind turbine connected to a high displacement hydraulic pump, which provide hydraulic 

fluid to a central generation unit composed of hydraulic motors.  This system has no 
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gearbox unlike the traditional wind turbine configurations. Figure 5 illustrates how these 

components are constructed to harvest energy from the wind.  

  

 
Figure 2.4  A gearless hydraulic wind energy harvesting  

and transfer system 

 

 

2.4.1 Hydraulic Pump/Motors 

A hydraulic pump converts mechanical energy into hydraulic energy and behaves as 

the heart of the system.  The mechanical energy is delivered to the pump through a prime 

mover or wind turbine for this application and causes a partial vacuum at the inlet of the 

pump.  This enables atmospheric pressure to force the fluid through the inlet line and into 

the pump.  The pump then pushes the fluid into the hydraulic system. For fluid power 

applications, a positive displacement pump or fixed displacement proves to be more 

beneficial than a dynamic or non-positive displacement pump due to its high pressure 

capabilities, small compact size, high volumetric efficiency, and great flexibility of 

performance [7].  The amount of fluid discharged per revolution cannot be varied. 
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Of the various types of positive displacement pumps, an internal gear pump has been 

chosen for this research.  An internal gear pump is comprised of an internal gear, a large 

exterior gear, a crescent shaped seal, and an external housing.  When hydraulic fluid 

inters the inlet of the pump, the motion of the gears draw fluid from the hydraulic system 

and forces it around both sides of the crescent seal which acts as a seal between the 

suction and discharge ports.  When the teeth of the gears mesh together on the side 

opposite of the crescent seal, the fluid is forced to enter the discharge port or outlet of the 

pump [7]. 

 
 

Figure 2.5  Top and side view of hydraulic pump/motor 

 

 

The hydraulic motor has a similar configuration to the hydraulic pump mentioned 

above.  Like the pump, it is of positive displacement. Motors are driven by the hydraulic 

fluid while the pumps drive the fluid.  This action causes the motor to develop torque and 

produce continuous rotary motion.  Torque is generated due to the hydraulic pressure 

acting on the surfaces of the gear teeth [7].  Depending on the direction of fluid flow, the 

gear motor can reverse its direction of rotation.  At the inlet of the motor there is high 

pressure while the motor outlet delivers low pressure creating a large load on the shaft.   

 

 

2.4.2 Hydraulic Lines/Fittings 

Hydraulic lines are used to distribute pressurized fluid through the hydraulic system 

from hydraulic pump to hydraulic motor.  Pipe, seamless tubing and hose are the most 

frequently used.  It is important that the sizing of these lines be designed around the 
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maximum fluid velocity and the maximum working pressure of the system which is set 

by the pressure relief valve setting.   

 

Pipes and pipe fittings are designed by the ANSI standard into nominal size and 

schedule number.  The nominal size is neither the outside diameter nor the inside 

diameter but indicates the thread size for the mating connections.  Pipes are designed 

with male tapered threads to connect to hydraulic components.  Pipe joints are sealed by 

an interference fit between male and female threads, or metal to metal contact, as the 

pipes are tightened causing one of the major drawbacks with using piping.  The pipe must 

be tightened further to reseal once taken apart.  Teflon tape helps in the resealing of pipe 

joints.  Pipes are not the ideal option for bending around obstructions and require 

numerous types of fittings to make end connections and change direction.  The addition 

of these fittings increases the opportunity for leakage in the hydraulic circuit [7, 8].   

 

Hydraulic tubing has a thinner wall when compared to hydraulic piping and is 

specified by its outside diameter and for this reason there are other methods than 

threading that have been developed to connect tubing. These methods include specific 

types of fittings.  It can be bent into almost any shape, reducing the amount of fittings 

necessary in a hydraulic system and can be reused without any sealing problems.  Tubing 

is sealed through flared or flareless fittings. The three categories of flared fittings include 

two piece, three piece, and inverted flare.  A two piece flare is used to connect lines for 

lower pressure applications but can weaken the tubing by twisting it as the fitting is 

tightened.  A three piece flare fitting is used for high pressure applications and utilizes a 

sleeve that is placed on the tubing before it is flared.  When the flare nut is tightened, the 

sleeve absorbs the twisting friction produced by the nut so that only the axial forces are 

exerted against the flared tube.  The inverted flare fitting uses the same concept of the 

three piece flare but is designed with a male thread on the compression nut.  As the wall 

thickness of the tubing increases to produce tubing with a higher pressure rating, flaring 

more becomes difficult. For a flareless fitting, a ferrule is pressed against the tubing and 



22 

sits into the surface where it cannot be removed.   Flareless fittings are subject to leak if 

under tightened or over tightened [7, 8].    

 

Hose is used when hydraulic components are subject to vibration and movement and 

is reinforced with either fabric or wire.  The fabric reinforced hose has a plastic (rubber) 

inner tube covered by one or more layers of woven fabric with an outer surface protected 

by a rubber or plastic covering.  The wire reinforced hose has a synthetic rubber outer 

coating to protect the wire. Pipe and steel tubing should not be connected directly to a 

hydraulic pump due to the natural vibration of the pump.  Over time the vibration can 

damage the connections and amplify the pump noise.  By using hose, the oil’s pulsations 

can be dampened [7]. 

 

 

2.4.3 Hydraulic Valves 

Hydraulic circuits are primarily controlled through the use of valves.  The three basic 

types of valves are pressure control valves, directional control valves, and flow control 

valves. 

 

 

2.4.3.1 Pressure Relief Valve 

Pressure relief valves are utilized to protect the hydraulic system against overpressure 

due to a valve closing, equipment failure or excessive loading on the motor.  The pressure 

relieve valve is the most commonly used valve and can be found in practically every 

hydraulic system and is generally the first component downstream from the pump. Its 

function is to limit the pressure to a specified value, the cracking pressure, by diverting 

pump flow back to the tank in an open system and to the pump in a closed system.  When 

the hydraulic system reaches the cracking pressure, the resulting hydraulic force exceeds 

the spring force and the poppet is forced off its seat.  Flow is then permitted to travel 

through the outlet to the tank or pump as long as the high pressure level is maintained.  
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As the fluid is diverted the pressure inside the system will decrease causing the poppet to 

be reseated and the valve to close.   

 
Figure 2.6  Pressure Relief Valve 

 

 

2.4.3.2 Check Valve 

A check valve is a two port directional control valve with one port for fluid entry 

while the other port is for the fluid to exit.  The main purpose of a check valve is to 

permit free flow in one direction and prevent any flow in the opposite direction.  They are 

analogous to a diode in electric circuits.  It is designed with a spring that holds a poppet 

flush to a seat in the closed position.  As fluid passes between the seat and poppet of the 

valve, the fluid pressure overcomes the spring force.  If fluid attempts flow in the 

opposite direction, the fluid pressure pushes the poppet in the closed position allowing no 

flow. 

 

 
Figure 2.7  Check Valve 
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2.4.3.3 Electronically Adjustable Proportional Flow Control Valve 

A proportional flow control valve is an electrically controlled valve that uses a 

solenoid that produces a force proportional to the current in the coils.  By controlling the 

current in the solenoid coil, the position of the spring-loaded and compensator spool can 

also be controlled [7].  Both directional and flow control are centralized in a single valve.  

As hydraulic fluid enters the valve, flow is manipulated to compensate for the load 

disturbance and to keep speed of the motor as close to the set point as possible. 

 

 

2.4.4 Hydraulic Transmission System 

A Hydraulic Transmission System (HTS) can be defined as a ‘pump-controlled 

motor’. In general, it consists of a fixed displacement pump driven by the prime-mover 

and one or more either fixed or variable-displacement motors [9]. For this renewable 

energy application, the prime mover will be a wind turbine.  The hydraulic transmission 

uses the pump to convert the inputted mechanical energy into pressurized fluid through 

hydraulic hoses and deliver and distribute the motor(s) to convert the potential energy 

back to mechanical energy [10] without the use of gear boxes. These transmissions can 

be used to transmit power in applications where the design of a geared drivetrain may be 

undesirable or impossible [11].  The overall hydraulic system is a closed loop.   

 

A HTS is identified as an exceptional means of power transmission when variable 

output velocity is required in engineering applications in the fields of manufacturing, 

automation, and heavy duty vehicles [12]. They offer fast response times, maintain 

precise velocity under varying loads [13], including high durability and the ability to 

produce large forces at high speeds [14].  HTS are known for having low inertia of its 

rotating members permitting fast starting and stopping with smoothness and precision 

and infinitely variable speed and torque in either direction and over the full speed and 

torque ranges [7].  It also offers a more decoupled dynamic allowing for multiple 

input/multiple output configurations not permitted by its electrical counterpart but has 

had a slow transition into the powering of wind turbines due to lower energy efficiency, 
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leakage, and noise [15].  The disadvantages associated with a HTS include the decrease 

in efficiency from the use of a set of gears for the same task, and there is a much softer 

transmission of power than a mechanical gear train [11].  It is important that the dynamic 

contribution of the transmission be considered. 

 

A hydraulic transmission system can transfer large amount of power and has more 

flexibility than a mechanical and electrical system. However, this configuration of 

hydraulic power transmission has already been tested for wind and resulted in low 

efficiency. Power transfer efficiency in a hydraulic transmission system is evaluated by 

examining the pressure losses through a fixed displacement hydraulic pump coupled to a 

fixed displacement hydraulic motor and generator by way of high pressure hydraulic 

piping.  There are many variables that significantly affect the behavior of a hydraulic 

transmission system [16], including 1) the pressure differential across the pump and 

motor, 2) the rotational speed of the pump, motor and prime mover, 3) volumetric 

displacement of pump and motor, and 4) density, effective bulk modulus, and dynamic 

viscosity of the fluid.  Conventional variable speed hydraulic drives exhibit the 

ruggedness, weight and controllability required for large wind turbines; however, HTS’ 

generally have acceptable efficiency at full load and drop efficiency as the loading 

changes, typically having a peak around 60%, as a result of the loss mechanisms internal 

to pumps and motors [17, 18, 19].  HT’s offer an infinite speed ratio range, while 

gearboxes, though readily available, have the drawback of only offering fixed speed 

ratios [18].  

 

 

 System Sensor 2.5

 

 

2.5.1 Flow Sensor 

To observe the amount of flow passing through the hydraulic system, flow sensors 

can be inserted into the system at designated components.  A Hall Effect flow rate sensor 
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consists of a magnetic multi bladed free spinning rotor mounted inside at right angles to 

the flow.  As flow passes through the sensor, the turbine spins due to the force of the 

flow. A square wave pulse is generated from magnets embedded in the blades of the rotor 

each time it passes the Hall Effect sensor. The Hall Effect sensor has a built in pre-

amplifier and works well with lower flow rates. 

 

 
Figure 2.8  Flow Sensor 

 

 

2.5.2 Pressure Sensor 

A pressure sensor produces a signal as a function of the pressure imposed.  Acting as 

a transducer, pressure is converted into an analog electrical signal such as voltage.  The 

conversion of pressure into an electrical signal is achieved by the physical deformation of 

strain gages which are fused with high temperature glass to a stainless steel diaphragm.  

A deflection occurs in the diaphragm which introduces strain to the gages when pressure 

is applied to the sensor.  The strain produces an electrical resistance change proportional 

to the pressure.  Detecting is done without the sensor coming in contact with the object 

eliminating mechanical wear on both. 
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Figure 2.9  Pressure Sensor 

 

 

2.5.3 Speed Sensor 

A geartooth Hall effect sensor is used to detect the shaft speed of the hydraulic pump 

and motor.  This type of sensor detects the variation in flux found in the air gap between 

a magnet and passing ferrous gear teeth.  In order to detect the passing gear teeth with a 

Hall Effect sensor, a magnetic source is needed.  By arranging a permanent magnet such 

that the axis of magnetization is pointing toward the surface of the gear teeth this can be 

accomplished.  As a tooth moves across the surface of the magnet the flux will become 

attracted to the lower reluctance path provided by the ferrous steel structure.  When this 

occurs the flux density measured by the Hall element between the face of the sensor and 

the gear tooth increases [20].  The change in the magnetic flux produces a square wave 

pulse which is emitted as a voltage. 

 

 
Figure 2.10  Speed Sensor 
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 Energy Storage 2.6

To provide energy storage to this system, a hydraulic accumulator has been 

integrated.  This device is a pressure storage reservoir in which a non-compressible 

hydraulic fluid is held under pressure by an external source, compressed gas.  In a 

compressed gas accumulator there are two chambers that are separated by an elastic 

diaphragm.  The top chamber contains the compressed gas that provides the compressive 

force on the hydraulic fluid while the bottom chamber houses the hydraulic fluid and is 

connected to a hydraulic line in the system.  As the volume of the compressed gas 

changes, the pressure of the gas (and the pressure on the fluid) changes inversely [21].  

For example as the pressure increases, the volume of the gas decreases, causing energy to 

be stored. 

 

An accumulator can maintain system pressure for periods of slight leakage, aid the 

hydraulic pump in delivering power to the system and absorb pressure interruptions by 

smoothing out pulsations. However its main function in this system will be to store 

energy during low demand periods and to respond immediately to temporary demand.   A 

hydraulic accumulator is defined by [7] as device that stores potential energy by means of 

either gravity, mechanical springs, or compressed gases.  The stored potential energy in 

the accumulator acts as a quick secondary source of fluid power capable of doing useful 

work as required by the gearless energy transfer system.  In this system a compressed gas 

accumulator has been chosen for further study.  Compressed gas accumulators, or hydro-

pneumatic accumulators, provide the system with a lightweight energy storage option, the 

ability to accept both high frequencies and high rates of charging/discharging [22], 

immediate failure, simple maintenance, and it is not susceptible to contamination.  The 

disadvantages include sizing constraints, sudden failure allowing gas to escape into the 

system, and difficulties operating at high flow rates.  From an environmental standpoint, 

the use of an accumulator as energy storage proves to be fuel free and has low impact on 

the environment [23].   
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The compressed gas accumulator operates in accordance with Boyle’s law of gases 

[7].  Boyle’s law states that the pressure of a gas is inversely proportional with its volume 

if the temperature is held at a constant and is defined by the following equation:   

 

kpV n                                                                  (4) 

 

where p is system pressure, V is the volume of the gas, and k is a constant.  When a 

change has been introduced to the system, the resulting equation is used to determine 

pressure or volume of an ideal gas: 

 

nn VpVp 2211                                                              (5) 

 

p1 and V1 are the original pressure and volume and p2 and V2 are the pressure and volume 

resulting from the change.   
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Typically the pressure in the gas chamber is equal to the pressure in the fluid chamber but 

if the pressure at the accumulator inlet drops below the accumulator’s precharge value, 

the gas chamber gets isolated from the system.  In this case the pressure in the gas 

chamber remains constant and equal to the precharge value, while the pressure at the inlet 

depends on the pressure in the system to which the accumulator is connected.  If the 

pressure at the inlet builds up to the precharge value or higher, the chamber starts 

interacting again [24]. 
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3. SYSTEM LOSS AND EFFICIENCY 

 

 

Power transfer efficiency in a hydraulic transmission system (HTS) is evaluated by 

examining the pressure losses through a fixed displacement hydraulic pump coupled to a 

fixed displacement hydraulic motor and generator.  The wind turbine is of variable speed 

which offers increased efficiency in capturing the energy from the wind over a wider 

range of wind speeds. [25].  The power transferred from the wind turbine to the generator 

is important to maintaining the system’s power balance and droop frequency control 

when connected to a network and to ensure that the maximum [26, 27]   output power is 

obtained for a certain wind speed. 

 

 

 Energy Equation 3.1

The Bernoulli equation is one of the most useful and referred to as the most 

fundamental relationship of fluid mechanics [7, 28, 29].  It is the sum of the piezometric 

pressure and kinetic pressure and is derived by applying Euler’s equation, or the 

conservation of energy law, along a streamline.  There are several restrictions that apply 

when using Bernoulli’s equation and can only be applied to certain flow conditions.  

These assumptions include a flow that is steady, frictionless and inviscid (zero viscosity). 

The fluid must perform no work and has no work performed on it, and is incompressible.  

Euler’s equation can be defined as the sum of the forces acting on a fluid element to the 

element’s acceleration according to Newton’s second law. To derive Euler’s equation a 

cylindrical element is considered in an arbitrary direction l with cross sectional areal ΔA 

in a flowing fluid.  The element oriented at an angle α with respect to the horizontal 

plane.  The element has been isolated from the flow field and is being treated as a “free 

body” where the presence of the surrounding fluid is replaced by pressure forces acting 
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on the element which is being accelerated in the l-direction.  Utilizing Newton’s second 

law in the l-direction [30]: 

 

ll maF                                                                   (9) 

 

lgravitypressure maFF                                                        (10) 

 

where the mass of fluid element is                                                                     

 

lAm                                                                  (11) 

 

and the net force due to pressure in the l-direction is 

 

ApAppApFpressure  )(                                              (12) 

 

The piezometric pressure is represented by p, and ρ is the fluid density. The force due to 

gravity with the component of weight in the negative l-direction can be written as 

  

           sinWWF lgravity                                                    (13) 

 

l

z




sin illustrates the relationship between angle α, Δz and Δl.  Fgravity then becomes  

 

l

z
WFgravity




                                                         (14) 

 

The weight of the element is AlW   . Specific weight, γ, is the gravitational force per 

unit volume of fluid or simplified weight per unit volume.  Substituting the mass of the 

element and the forces on the element into Equation (10) yields: 
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                                                   (15) 

 

Dividing through by ΔAΔl, Equation (7) becomes 
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The differential equation for acceleration in the l-direction is determined by taking the 

limit as Δl approaches zero 
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Since γ is constant for an incompressible flow, then 
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Taking Euler’s Equation (18) and replacing direction l with s, the distance along a path 

line, and replacing acceleration la with ta , this equation is transformed into  
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The local acceleration is zero for a steady flow making the path line a streamline.  For a 

streamline, the properties only depend on s.  The partial derivatives are then converted 

into ordinary derivatives 
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Moving all the terms to one side and integrating yields the Bernoulli’s equation with C 

being a constant 

 

C
V

zp 
2

2

                                                  (21) 

 

When (21) is divided by the specific weight, an equivalent form the Bernoulli’s equation 

is formed where 


p
is the pressure head, z is the elevation head (potential) and  

g

V

2
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velocity head (kinetic) 
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                                                (22) 

 

To illustrate the flow through a pipe with two distinct locations (Subscripts 1 and 2) in 

the flow the following equation is used 
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System behavior can be determined for ideal conditions and used to target maximum 

performance. 

 

In a hydraulic system, the pipes as well as other components such as valves and pipe 

fittings create frictional losses.  To take into account these frictional losses, the Bernoulli 

Equation (23) was extended.  The extended Bernoulli’s equation or energy equation is 

expressed as:  
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For a system containing a pump to supply energy to maintain a specific amount of flow 

or to extract energy through the use of a motor, additional terms must be added 

 

  lossesmotorspump HH
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where H p is the pump head, H m  is the motor head, and H L is the head loss.  All other 

components of this equation will be discussed in detail later in Section 3.2 of this chapter. 

 

The Energy equation is similar to the Bernoulli equation but is not the same equation 

in that the Energy equation is applied to an inlet section and an outlet section in a pipe 

and then terms are equated as they apply to the pipe and for a steady, viscous, 

incompressible flow in a pipe.  The Bernoulli’s equation is applied by selecting two 

points on a streamline and then equating terms at these points and is for a steady, 

incompressible, inviscid flow [30].  Figure 3.1 displays how the energy equation would 

be applied between two points throughout a double turbine hydraulic system performing 

a complete energy analysis, determining frictional losses in valves and fittings, and head 

losses in pipes, pumps and motors.  Table 3.1 provides a breakdown of points on the 

streamline and the components on each streamline. 
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Figure 3.1  Schematic for the calculations of frictional losses  

in a hydraulic system 

 

 

Table 3.1  Energy equation points on streamline 

Points on 

Streamline 

Components along Streamline 

1-2 Check Valve, Pipeline, Hydraulic 

Pump 

2-3 Pipeline, Bend 

3-6 Pipeline, Bend 

4-5 
Check Valve, Pipeline, Hydraulic 

Pump 

5-6 Pipeline, Bend 

6-7 Pipeline 

7-8 Pipeline, Pressure Relief Valve 

7-9 Pipeline, Bend 

9-10 Hydraulic Motor 

10-1 Pipeline 
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 Loss Modeling 3.2

The main cause of energy losses in fluid power systems is produced by friction.  For 

this research friction can be defined as the resistance to flow which is a measure of the 

viscosity of fluid.  The greater the viscosity of fluid, the less readily it flows and the more 

energy needed to move the fluid.   This energy loss is transferred into heat (wasted 

energy), which dissipates into the surrounding air.  It results in a loss of potential energy 

and surfaces as a loss in pressure or head [7].   

 

The loss in head is the decline in the overall head or pressure (sum of the elevation 

head, velocity head, and pressure head) of the fluid as it moves through a fluid system.  

Head associates the energy in an incompressible fluid to the height of an equivalent static 

column of that fluid.  Head loss is separated into two main components, losses in pipes 

and losses in valves, bends, and fittings [7]. Head loss in pipes can be computed with the 

use of the Darcy-Weisbach equation.  The Darcy-Weisbach illustrates how head loss is 

the related to the friction factor, pipe length to diameter ratio, and velocity.  It can be 

utilized for both laminar and turbulent flow that is fully developed and steady through 

round or non-round pipes. 

 

The Darcy-Weisbach equation is derived by assuming a fully developed and steady 

flow in a round tube of a constant diameter D.  A cylindrical control volume of diameter 

D and length ΔL is placed inside the pipe.  A radial coordinate in the r-direction and an 

axial coordinate in the stream wise direction, s-direction, is also defined.  Applying the 

momentum equation to the fully developed and steady flow in a round tube gives 

 

   
cv cs

dAvdVv
dt

d
F V                                          (26a) 

(Net forces) = (Momentum accumulation rate) + (Net efflux of momentum)        (26b) 

 

Both the momentum accumulation term and the net efflux of momentum is zero when 

analyzing each of the above three terms in the s-direction thus reducing Equation 26a and 

26b to  0F .  Summing the forces in the s-direction results in: 
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0 weightshearpressure FFF                                                  (27a) 
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Applying the energy Equation 25 to the cylindrical control volume and recognizing that

0 mp HH , 21 VV  , and 21   , the energy equation reduces to 

                                                  

lHzpzp   )()( 2211                                               (29) 

 

Combining Equations 28 and 29 and replace ΔL by L yields  
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Rearranging the right side Equation (30) results in 

 

)
2

)()(

2

4
()2)(

2

4
)((

2

2

0

2

2

0

g

V

D

L

V

V

VD

L
H l












                                    (31) 

 

2

2

0

V
f




                                                         (32) 

 



38 
























g

V

D

L
fH L

2

2

                                                  (33)  

 

where f is the frictional factor,  0 is the sheer stress applied to the pipe wall, ρ is the fluid 

density,  L is the length of pipe, D is the pipe inside diameter, V is the average fluid 

velocity, and g is the acceleration of gravity.  Head loss is the conversion of useful 

mechanical energy to waste thermal energy through viscous action between fluid 

particles [30].  Frictional factor f is a dimensionless quantity that is used to illustrate the 

frictional losses in pipe flow.  It is associated with the shear stress applied to the walls of 

the pipe [28].   

 

When a real fluid flows through the interior of a pipe, the velocity profile presents a 

maximum at the center as a consequence of the viscosity. The shear stress of the pipe 

wall is directly proportional to the velocity gradient [28, 30, 31]: 
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where μ is the viscosity of the fluid, r is any radial location, L is a finite length of 

pipeline, p is the pipe pressure, a is the radius of the pipe, A is the area of the pipe, and Q 

is the volumetric flow rate. It can be concluded that the smaller the pipe diameter, the 

larger the value of fluid velocity. 

 

The volumetric flow rate, Q, is the volume of fluid that passes through an area per 

unit time.  It is based on a constant flow velocity over the cross-sectional area [30] and 

can be obtained by determining the cross section of the pipe and integrating:  

 

rVdrVdAdQ 2                                                     (39) 
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The above equation is a relation for pipe flow known as the Hagen-Poiseuille law. 

 

The friction factor f can also be determined through the use of the Reynolds Number 

(RE)
RE

f
64

 .  It is the ratio between inertial forces and viscous forces and is 

dimensionless.  The Reynolds Number is utilized to determine the conditions governing 

the transition from laminar flow to turbulent flow [7] or vice versa.  A change from 

laminar flow to turbulent flow takes place approximately at 2000.  A flow with a 

Reynolds Number greater than 2000 and less than 4000 is unpredictable and is 

considered transitional because it changes between laminar and turbulent states.  

Turbulent flow has a Reynolds Number greater than 4000. 
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where μ is, the absolute viscosity, and ν is the kinematic viscosity.  Table 3.2 illustrates 

how the flow is characterized based on the value of the Reynolds Number [28].   

 

Table 3.2  Dependence of pipe flow regime on the Reynolds Number 

Approximate 

Value of 

Reynolds 

Number 

Flow Regime Pressure 

Gradient is 

Proportional 

to 

 

< 2,000 Laminar Q   

2,000 - 4,000 Transition Variable  

> 4,000 Turbulent QQ
28.1

   

 

Laminar flow occurs when adjacent fluid layers move smoothly with respect to each 

other and has a smooth, parabolic velocity distribution.  Turbulent flow is unsteady and 

characterized by intense cross-stream mixing.  A near uniform velocity distribution 

occurs across the pipe because the high velocity fluid at the pipe center is transported by 

turbulent eddied across the pipe to the low velocity region near the wall.  Unsteady flow 

causes fluctuations at any point in the pipe with time [30].  It is assumed that if the 

Reynolds number lies within the transition or critical zone, the flow is considered as 

turbulent.  Turbulent flow results in a larger amount of losses, therefore hydraulic 

systems are generally designed to operate in a laminar flow region as in this case.  Table 

3.2 also indicates that the when there is restriction in the flow, there is a pressure drop 

across the component that depends on the geometry of the restriction and has been 

observed to be proportional to the flow rate squared [31]. 

 

The main source of energy loss in system occurs in valves and fittings.  This is due to 

the change in the cross section of the flow path and in the change in the direction of the 

flow [7].  The head losses in fittings and valves are proportional to the square of the 

velocity of the fluid [7, 32].   
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where K is the loss coefficient of the fitting or valve.  The loss coefficient accounts for 

the loss in mechanical energy caused by viscous effect on a flowing fluid through a 

partially open valve or pipe bend. With the use of the Darcy-Weisbach equation it can be 

illustrated that the head loss in a pipe is proportional not only to the square of the fluid 

but also to the length of the pipe due to fluid friction.  This length of a pipe is regarded as 

the equivalent length of a particular fitting or valve.  For the equivalent length technique 

the head loss for a fitting or valve is set equal to the head loss of the pipe: 

 

HH pipeLtingvalveorfitL )()(                                                 (45) 

 





































g

V

D

L
f

g

V
K e

22

22

                                                (46) 

 

f

KD
Le                                                           (47) 

 

where Le  is the equivalent length or entrance length.  The entrance length is the distance 

required for flow to develop in a pipe and depends on the shear stress that acts on the pipe 

wall.  Until a flow is fully developed it is called a developing flow and is defined as the 

region in which the velocity distribution changes in the stream wise direction as viscous 

effects cause the plug type profile to gradually change into a parabolic profile.  Once the 
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parabolic distribution is attained, the flow becomes fully developed.  Near the pipe 

entrance, the radial velocity gradient is high creating large shear stress for laminar flow.  

As the velocity profile progresses to a parabolic shape, the velocity gradient and the wall 

shear stress decrease until a constant value is achieved.  The entry length is defined as the 

distance at which the shear stress reaches to within 2% of the fully developed value [30].   

 

Pump head or motor head can be determined using the following equation.  H p , pump 

head, represents the energy per pound of fluid added by the pump, while H m , motor head, 

represents the energy per pound of fluid removed by the hydraulic motor 
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The loss in pressure for each component of head loss can be determined with the 

following: 

 

HSGHp LOHLL *)*( 2 
                                              (49) 

 

where SG is the specific gravity of the fluid, and 
 OH 2  is the specific weight of water. 

 

 

 Hydraulic Power 3.3

Hydraulic power or fluid power is the use of pressurized fluid to generate, transmit and 

control power.  Fluid is sent to a hydraulic motor through way of a hydraulic pump that 

converts hydraulic power into a mechanical output capable of doing work on a load.  

Both pump and motor lose energy due to mechanical friction, viscous dissipation, and 

leakage [30].  Hydraulic power can be defined as the following 

 

pQHHPPowerHydraulic _
                                        (50) 

 



43 

where p is pressure in PSI and Q is the volumetric flow rate in gallons per minute (GPM).  

In this research, there will be the use of electrical power, hydraulic power, and 

mechanical power which are all typically involved in hydraulic systems.  This is 

illustrated in Figure 3.2.  This flow chart indicates how the power created by an electric 

motor can be used to rotate the shaft of a hydraulic pump creating pressure and a flow of 

fluid to produce a hydraulic power that is then delivered to a hydraulic motor.  The 

hydraulic power is then converted to mechanical power and is applied to an external load. 

 

Figure 3.2  Conversion of power from input electrical to mechanical  

to hydraulic to output mechanical in hydraulic system [7] 

 

Figures 3.3 and 3.4 demonstrate how power is distributed throughout a single-wind 

turbine hydraulic system and a double turbine hydraulic system. 

 

 

Figure 3.3  Power transfer of single-wind turbine 
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Figure 3.4  Power transfer of double-wind turbine 

 

 

 System Efficiency 3.4

Efficiency is equal to the output power divided by the input power.  It is used to 

calculate power loss in a hydraulic system and is always less than 100%.  Efficiency 

determines the amount of power that is actually delivered in comparison to the power 

received [7].  The overall efficiency of the system seen in Figures 3.3 and 3.4, are related 

to mechanical loss and volumetric loss which is due to the fluid’s viscosity. Volumetric 

losses take place when there is internal leakage as the fluid travels through the gear teeth 

of a pump or motor.  Volumetric efficiency for a gear pump or motor typically ranges 

from 80% to 90%. Mechanical efficiency accounts for the mechanical losses caused from 

gears, bearings, and mating parts.  There is a reduction in the power transferred from the 

shaft to the fluid in the pump or from the shaft of the motor to the pump. The efficiency 

of a pump or motor can be calculated as follows: 
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                                            (51) 

 

where  vol
 is the volumetric efficiency and mech

 is the mechanical efficiency.  The 

hydraulic system used in this research converts mechanical energy from a prime mover 

into fluid flow and pressure causing work to be performed on an external load by a 

motor.  Pressure is generated due to the restriction of flow in the hydraulic system.  
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4. MATHEMATICAL MODELING OF SYSTEM 

A mathematical model of the system is required to consider the system dynamics 

which can be used in control system development. With the mathematical model of this 

system, an enhanced understanding of the hydraulic transmission system through analysis 

can be gained.  It can be determined which factors are of greater importance in the system 

and how different parts of the system are related.   

 

 

 One Wind Turbine/One Central Generation Unit 4.1

The schematic diagram of the hydraulic transmission system being considered for this 

work is given in Figure 4.1.  The fixed displacement pump, driven by a wind turbine, is 

coupled to a fixed displacement hydraulic motor to which it supplies hydraulic power. A 

pressure relief valve is used to protect the system from excessive pressure. 

 

 

 Multiple Wind Turbine/One Central Generation Unit 4.2

Figure 4.2 provides an illustration of the second configuration being investigated to 

increase system efficiency.  A second hydraulic pump, also driven by a wind turbine, has 

been added to the configuration in Figure 4.1. 
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Figure 4.1  Hydraulic wind power transmission system, single- 

wind turbine schematic 

 

 

 

 

 

Figure 4.2  Hydraulic wind power transmission system,  

double-wind turbine schematic. 
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 Mathematical Modeling of Components 4.3

The components of the hydraulic power transfer circuit and their governing equations 

are illustrated below.   

 

 

4.3.1 Fixed Displacement Pump 

In the hydraulic transmissions, shown in Figure 4.1 and Figure 4.2, the output shaft 

velocity of the hydraulic motors is controlled by the flow rate of the hydraulic fluid, 

which is supplied from the hydraulic pump(s) [10]. As mentioned earlier, the pump is 

driven by a wind turbine. In this model, the flow rate is being controlled by varying the 

shaft velocity of the fixed displacement pump(s). 

 

The flow that a fixed displacement pump generates is modeled as a function of pump 

displacement, shaft velocity, and the leakage coefficient [33] as  

PkDQ leakppp  
                                                 (52) 
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where Qp is the pump flow rate, Dp is the pump displacement, ωp is the angular velocity 

of the pump, kleak is the leakage coefficient, P is the system pressure, and kHP  is the 

Hagen-Poiseuille coefficient which is calculated using the following parameters: nominal 

angular velocity (ωnom),  nominal fluid kinematic viscosity (υnom), nominal pressure 

(pnom), fluid density (ρ), and as volumetric efficiency (ηv).   

 

 



49 

4.3.2 Pressure Relieve Valve 

The pressure relieve valve is modeled as a close/open valve energized at a preset 

pressure value. The valve is open if the pressure exceeds the preset value, and for 

pressures below this value, the valve is closed. The following two equations are given for 

passing flow rate through the pressure relieve valve: 

 

)( bzbv PPkQ   if bPP 
                                                    (55) 
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                                                     (56) 

 

where Qv is the flow rate through the valve, kzb is the flow discharge coefficient, and Pb is 

the valve preset pressure setting. 

 

 

4.3.3 Fluid Compressibility 

In connecting the wind turbine to the motors in our prototype, we have used flexible 

hoses. The dynamics of these pressurized hoses are modeled as volume with a fixed bulk 

modulus. The fluid compressibility [13, 34] relation can be illustrated as  
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                                                  (57) 

 

where β is the fluid bulk modulus and V  is the fluid volume subjected to pressure effect.   

 

This equation also provides the resultant pressure at a given flow rate. It is assumed 

that pressure drop in the hydraulic hose is negligible. 
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4.3.4 Hydraulic Motor and Load 

Like hydraulic pumps, the governing equation of a motor is a function of 

displacement factor, leakage coefficient, and flow rate and is expressed as [35] 

 

PkDQ leakmmm  
                                                     (58) 

 

where Qm is the pump flow rate, Dm is the pump displacement, and ωm is the angular 

velocity of the motor. 

 

The motor’s moment of inertia, damping coefficient, and the load connected to the 

motor’s shaft determine the torque dynamics, and can be expressed as  
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where Tm is the torque produced by the motor, Im is the inertia moment of motor, Bm is the 

damping coefficient of motor, and Tl is the load torque. 

 

The output shaft velocity of the motor under loading condition (speed drop due to 

loading) in the mathematical modeling of the system can be determined using Equation 

(59) as  

 

lmmmmm TBTI 



,                                                   (61) 

 

m

lmmm
m

I

TBT 


 


                                                      (62) 
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4.3.5 Hydraulic Transmission System 

The HTS comprises of a combination of the mathematical model of the system 

components mentioned above. The mathematical expression of the overall system can be 

obtained from the block diagram shown in Figure 4.3 and Figure 4.4 for above 

configurations. Equations (57) and (62) are the structure for which the mathematical 

model of the HTS system is built. We have used Matlab/Simulink to carry out the 

simulation results and to solve these nonlinear equations.  

 

 

 

 

Figure 4.3  Mathematical Model Block Diagram  

(One Pump, One Motor) of Hydraulic Power Transfer System 
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Figure 4.4  Mathematical Model Block Diagram  

(Two Pumps, One Motor) of Hydraulic Power Transfer System 
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5. VALIDATION OF MODELING USING SIMULATION SOFTWARE 

 SimHydraulics Toolbox 5.1

To validate the mathematical model presented in Chapter 4, a hydraulic system was 

created with Matlab’s SimHydraulics toolbox.  SimHydraulics is a tool used for modeling 

and simulating hydraulic power and control systems in the Matlab/Simulink environment.  

It provides an extensive library of hydraulic components and building blocks that can be 

connected to behave as physical networks.  SimHydraulics uses block modeling with 

each block being defined by inserting manufacturing specifications of each component.  

Sensors in SimHydraulics return the pressure differential, flow of the hydraulic fluid, and 

shaft velocity of the pump and motor.  Figure 5.1 and 5.2 illustrates how the hydraulic 

components are assembled to represent the wind turbine hydraulic power transfer system 

of a single wind turbine and multi-wind turbine system. 

 

Figure 5.1  Single-wind turbine SimHydraulics schematic
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Figure 5.2  Multi-wind turbine SimHydraulics schematic 

 

 

A wind turbine velocity was applied to the shaft of the SimHydraulic model as well 

as the Mathematical model to determine if both systems behaved similarly and to 

demonstrate the quality of power transfer from high torque/low speed wind turbine to a 

main and auxiliary high speed generator.  Validation of the mathematical model is 

important because it considers the system dynamics and can be used in control 

development.  With the mathematical model of this system, an enhanced understanding 

of the HTS through analysis can be gained.  It can be determined which factors are of 

greater importance in the system and how different parts of the system are related. 

 

 

 Model Validation 5.2

As verification to our mathematical modeling, the HTS was also simulated using 

SimHydraulics, a hydraulics toolbox provided by Matlab and Simulink®, and compared 

to the mathematical model obtained in Chapter 4. The following assumptions were 

considered to develop the model [35]: 
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1. The hydraulic fluid is assumed incompressible. 

 

2. No loading is considered on pump and motor shafts (i.e. inertia, friction, spring 

and etc.). 

 

3. Leakage inside the pump and motor are assumed to be linearly proportional to 

their respective pressure differential [36].  

 

Single-Wind Turbine: In the first simulation, a fixed displacement pump with a 

displacement of 0.517 

3in
rev provided hydraulic fluid to a main motor (Motor A) with a 

displacement of 0.097

3in
rev  . As Figure 5.3 demonstrates, the wind turbine velocity was 

increased from 200 RPM to 650 RPM in 15 seconds creating a motor velocity of 0 RPM 

to 2451 RPM in the SimHydraulics model. The motor velocity reached 2338 RPM in the 

Mathematical model, which verifies the accuracy of mathematical model in the speed 

calculations. It can be seen that the same system dynamics are produced for both models. 
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Figure 5.3  Velocity profile of a single-wind turbine  

hydraulic power transfer system 

 

 

Figure 5.4 shows the flows in the hydraulic system. As the figure illustrates, a 

flow of 0 GPM to 1.216 GPM flows through the hydraulic pump while the motor 

experiences a flow of 0 GPM to 1.215 GPM.  The mathematical model also produces a 

similar flow to the SimHydraulic model with a pump flow of 0 GPM at 200 RPM to 1.1 

GPM while the motor flow was observed to be 0 GPM to 1.099 GPM at 650 RPM.  

Figure 5.4 verifies the mathematical model predictions with the simulations created using 

SimHydraulics.  
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Figure 5.4  Flow profile of a single-wind turbine hydraulic power transfer system 

 

 

Double-Wind Turbines: In the second simulation, two fixed displacement pumps (as 

seen in Figure 5.2) with similar displacements of 0.517 

3in
rev  generated hydraulic fluid 

to the main motor A with a displacement of 0.097

3in
rev  . Wind turbine A was driven at a 

constant velocity of 400 RPM while wind turbine B was varied from 200 RPM to 650 

RPM to measure the effect of rotational speed on power transfer efficiency.   The motor 

of the SimHydraulics model produced a velocity of 0 RPM to 3670 RPM whereas the 

motor of the Mathematical model reached a high of 3582 RPM.  There is little variance, 

88 RPM, in the velocities produced by the motors of the SimHydraulics model and the 

Mathematical model (Figure 5.5). 
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Figure 5.5  Velocity profile of a double-wind turbine hydraulic power transfer system 

 

 

Figure 5.6 illustrates the flows of pumps A and B, and motor A. Since pump A 

generates a constant velocity, a steady flow of 0.7905 GPM for the SimHydraulics Model 

and 0.7341 GPM for the Mathematical model are generated. As the input speed to pump 

B is varied, it generated a range of flows from 0 GPM to 1.008 GPM (SimHydraulics 

Model) and 0 GPM to 0.9302 GPM (Mathematical Model) causing the motor to 

experience a flow increase from 0 GPM to 1.798 GPM (SimHydraulic Model) and 0 

GPM to 1.664 GPM (Mathematical Model).   
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Figure 5.6  Flow profile of a double-wind turbine hydraulic power transfer system 

 

It can be observed from Figure 5.6 that as the velocity of wind turbine B is increased 

the variation between the SimHydraulic Model and Mathematical Model increases. The 

slight difference in flow calculations is originated from the leakage factor that is set as 

affixed number in Mathematical Model, but is obtained from system operating conditions 

in the SimHydraulics Model. 

 

 

 System Loss and Efficiency Validation 5.3

Single-Wind Turbine: The overall system efficiency of the single turbine simulation 

(Figure 5.7) was 80.01% from the SimHydraulic model while the mathematical model 

yielded an efficiency of 85.67%. The difference is originated from the hose dynamics and 

losses associated with joints and connections which has not been represented in the 

Mathematical Model.  
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Figure 5.7  System efficiency of a single-wind turbine hydraulic power transfer system 

 

 

Double-Wind Turbines:  The system overall power transfer efficiencies obtained 

from mathematical model and SimHydraulics are shown in Figure 5.8. Because of 

changes in parameter calculation and slight dynamic differences in the math model and 

that of SimHydraulics, the overall efficiencies of the systems deviated by maximum 

3.5%. It can be observed from Figure 5.8 that by increasing the number of wind turbines, 

the overall system efficiency will increase.  The overall system efficiency of the double 

turbine simulation was 90.95% from the SimHydraulic model while the mathematical 

model yielded an efficiency of 87.75%. 
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Figure 5.8  System efficiency of a double-wind turbine hydraulic power transfer system 

 

 

The power transfer efficiencies obtained from the Mathematical and SimHydraulics 

model in single-and double-wind turbine power plants are compared in Figure 5.9. By 

increasing the number of wind turbines to the hydraulic system, there was an increase in 

the overall efficiency. 
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Figure 5.9  System efficiency comparison of single-wind and  

double-wind turbine hydraulic power transfer system. 

 

 

 Results and Discussion 5.4

As the figure illustrates, the mathematical model shows an efficiency increase of 

5.28% in average when double-wind turbines are operated in parallel in a hydraulic wind 

power plant reaching maximum of 90.95%. SimHydraulics predicted an increase of 

7.74% when double-wind turbines operated reaching the maximum of 87.75%. The 

difference in prediction is originated from the level of details considered in calculations. 

The simulation results proved that double-wind turbines generate higher efficiencies than 

a single-wind turbine in a hydraulic power transfer system. 
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6. DESIGN AND FABRICATION OF GEARLESS POWER TRANSFER SYSTEM 

 

 

 Design Specifications 6.1

For a traditional wind power generation system to harvest wind energy and produce 

electric power, the required components include a wind turbine, gearbox, and a generator.  

These components, the gearbox specifically, are expensive, bulky, and require regular 

maintenance, which makes the wind energy production expensive.  To reduce the cost, 

time for maintenance and weight on top of the tower, the gearbox will need to be 

eliminated.  Traditional wind power generation systems do not allow for the connection 

of wind turbines in a central power generation unit.  Each wind turbine requires it’s on 

power generator.  By replacing the gearbox with a hydraulic transmission system (HTS), 

a central generation unit can be used to harvest the wind energy and send it to the electric 

grid from multiple wind turbines.  This reduces the number of power converters as well 

as the number of power generators needed.  Reducing the amount of power electronics is 

important because the cost of the power electronics are expensive and the efficiency of 

the power that a small induction generator can harvest from the prime mover is less than 

what a large central synchronous machine can provide.  Heavy equipment can be 

removed from the towers reducing weight and increasing the efficiency of the towers.   

 

The end goal of this research is to hydraulically connect wind turbines to a central 

generation unit that controls the flow of high pressure fluid. 

 

 

 Experimental Setup 6.2

To emulate wind power and velocity variations, a transformer (Figure 6.1) is 

connected to an electric motor whose shaft is coupled to a hydraulic pump.  Each electric 
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motor and hydraulic pump combination makes up a wind turbine.  Wind turbine A 

consists of hydraulic pump A and a split phase AC motor (Figure 6.2). Split phase AC 

motors provide a greater starting torque and when powered both the running and the 

starting windings draw about four to five times their normal full load current.  The heat 

loss in these windings is up to 25 times higher than normal.  To prevent overheating of 

the windings the starting period must be instantaneous.   

  

 

 

Figure 6.1  Transformers used to vary wind velocity
 

 

Wind turbine B consists of hydraulic pump B and a direct current permanent magnet 

motor (Figure 6.3). As the transformer transfers electric power through magnetic 

induction from one winding to another winding by varying magnetic field produced by 

alternating current, the velocity measured as the shaft of each hydraulic pump can be 

varied.  Wind turbine A varies from 350 RPM to 415 RPM while Wind Turbine B varies 

from 200 RPM to 650 RPM.   
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Figure 6.2  AC Motor connected coupled to shaft of Pump A
 

 

 

 

Figure 6.3  DC Motor coupled to the shaft of Pump B and Motor A
 

 

Hydraulic pumps A and B are then connected to check valves to ensure that the 

movement of fluid is sent in the correct direction toward the hydraulic motor.  Flexible 

piping is used as connections with a number of fittings that include tees and elbows.  A 

pressure relief valve is added to the system to ensure over pressuring. Fluid is diverted 

between Motor A and Motor B using an electronically adjustable proportional flow 

control valve.  With this valve and the use of a PI controller flow can be sent to either 

Motor A or Motor B or split between both motors.  For this research, hydraulic fluid was 

transferred through two system configurations.  Figure 6.4 illustrates both of these.  

Following the red arrows shows the fluid flow for a single turbine wind power transfer 
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system while the arrows in yellow show the fluid flow for a double wind turbine wind 

power transfer system. 

 

 

Figure 6.4  Hydraulic Test Bed
 

 

Sensors were strategically placed in the system to measure the velocity at the shaft of 

each pump and motor, the pressure at each pump and motor and the flow passing through 

each pump and motor.  This data was collected as signals and sent to DSPACE to be 

converted into values with units of flow (GPM), velocity (RPM), and pressure (PSI) 

where they were recorded in a spreadsheet.  
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Figure 6.5  DSPACE 

 

Through this research it was discovered that there was a discrepancy in the manufacture’s 

rated pump and motor displacement and the displacement calculated from the measured 

flow and measured velocity.   For Pump A and Pump B the manufacture’s displacement 

is 0.517 

3in
rev  while the manufacture’s rated displacement for Motor A and Motor B is 

0.097

3in
rev  .  When flow is traveling from one pump to one motor the calculated 

displacement for the pump is 0.466 

3in
rev and the calculated displacement for the motor 

is 0.111

3in
rev .  The displacements for the motor are close in value but there is a large 

difference in the displacements of the pump (Table 6.1).  
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Table 6.1  Calculated Displacement 

 

 

When selecting a hydraulic fluid its compressibility factor and viscosity are greatly 

important.  Compressibility is measured by the amount of volume reduction due to 

pressure expressed by bulk modulus.  The compressibility increases with pressure and 

temperature and has significant effects on high pressure fluid systems.  Viscosity is 

considered the most important characteristic of a hydraulic fluid.  It plays a significant 

impact on the operation of a hydraulic system.  If the viscosity is too high, friction, 

pressure drop, power consumption, and heat generation increases.  If the viscosity is to 

low, increased internal leakage may result under high operating temperatures.  Some of 

the primary properties of a quality hydraulic fluid include oxidation stability, rust 

prevention, foam resistance, water separation, and antiwear properties.  Many of these are 

achieved through the use of additives. 
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7. EXPERIMENTAL RESULTS AND DISCUSSION 

 Experimental Procedure 7.1

The efficiency enhancement was experimentally measured through a laboratory test 

bed. Two experiments were conducted to demonstrate the efficiency enhancement in the 

hydraulic wind power transfer system. In experiment 1, a single-wind turbine generated 

high-pressure flow to transfer the energy from wind turbine to a generator. In the second 

experiment, a second wind-driven hydraulic pump was added to the system and the 

energy was measured at the hydraulic motor output shaft for experiment 2.  The voltage 

provided by the transformer simulates the wind captured by the wind turbine and is 

translated into velocity measured in revolutions per minute (RPM) at the shaft of the 

pump.  The transformer can provide a range of velocities from 350 to 415 RPM for Pump 

A and 200 RPM to 700 RPM for Pump B.  As the voltage produced by the transformer is 

increased or decreased, the pressure and torque created at the shaft generates the flow of 

hydraulic fluid through a closed loop hydraulic power system.  The sensors connected to 

each pump and motor collect system pressure as well as flows of the hydraulic fluid 

flowing through each pump and motor, and the velocity at the shaft of each pump and 

motor.   

 

During the experiment it was observed that: 1) The pump ramp speed created a ramp 

response at the motor, 2) It was determined that the flow rate sensor used at the motor 

could not detect any flow rate for pump velocities below 115 rpm, and 3) The accuracy of 

the flow readings diminished at velocities lower than 200 rpm. Therefore, experiments 

were conducted at pump speeds higher than 200 rpm.  
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 One Wind Turbine/One Central Generation Unit 7.2

 

 

7.2.1 Velocity Applied to the Shaft of the Pump and Motors 

Experiment 1: Single-Wind Turbine. In Experiment 1, one pump provided 

hydraulic fluid to one motor in the setup show in Figure 7.1. Figure 7.2 illustrates the 

velocity profiles of the pump and motor. A ramp velocity was applied at the input shaft of 

a hydraulic pump so that the system power transfer and velocity responses at the 

hydraulic motor could be observed. The input velocity ranged from 200 RPM to 650 

RPM for the duration of 15 seconds. 

 

 

Figure 7.1  Experimental Setup (One Wind Turbine) 

 

 



71 

  

Figure 7.2  Experimental velocity measurement in a single-wind  

turbine hydraulic power transfer setup 

 

 

The velocity seen at the shaft of the hydraulic pump will determine the flow of the 

hydraulic fluid in the system as well as the overall system pressure.  Velocity also 

directly affects the torque and horse power applied to the pump shaft.   

 

 

7.2.2 Overall System Flow Rate and System Pressure 

With a ramp increase in the velocity applied to the input shaft of the hydraulic pump, 

the pump generated a linearly proportional flow (Figure 7.3). The flow rate for the 

hydraulic pump spanned from 0.45 GPM to 1.45 GPM, while the motor flow rate ranged 

from 0.34 GPM to 1.21 GPM.  As the hydraulic fluid travels through the hydraulic pump 

to the motor, losses occur.  As the flow increases there is a greater gap that appears 

between the flow of the pump and the flow of the motor.  These losses are due to the 

leakage that takes place in the pump and motor, and the friction in the fittings and 

flexible piping. 
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Figure 7.3  Experimental flow measurement in a single-wind turbine hydraulic power 

transfer setup 

 

The pressure in the gearless wind power transfer system was recorded at two 

locations for the single turbine experiment.  These locations include Wind Turbine B and 

Motor A.  As the velocity at the shaft of the hydraulic pump increased from 200 RPM to 

650 RPM, the pressure increased as well as seen in Figure 7.4.  Figure 7.4 illustrates how 

the relationship between the velocity of Wind Turbine B and the overall system pressure 

is linear.  Figure 7.5 illustrates the relationship between the fluid flow of the system and 

the overall system pressure. Again the relationship is linear.  From Figures 7.4 and 7.5, it 

can be observed that Motor A recorded a slightly higher pressure than Wind Turbine B.  

This is due to the Direct Current (DC) Permanent Magnet Motor coupled to the shaft of 

the motor.  It has a higher rated horsepower (HP) of ¾ HP than the DC Permanent 

Magnet Motor, which only has a rated HP of ½, connected to the shaft of the hydraulic 

pump.  A higher HP requires a larger force to move the shaft which in turns creates more 

pressure at that location.  The overall system pressure range is 260 PSI to 587 PSI.   
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Figure 7.4  Experimental pressure measurement in a single-wind turbine hydraulic power 

transfer setup (Pressure vs Velocity) 

 

 

 

Figure 7.5  Experimental pressure measurement in a single-wind turbine hydraulic power 

transfer setup (Pressure vs Flow) 
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7.2.3 Horse Power and Efficiency of System 

Figure 7.6 illustrates the horsepower of the single-wind turbine in hydraulic power 

transmission system. The system can generate and transfer around 0.6 HP. The figure 

illustrates a linear increase of power generated and transmitted through hydraulic system 

from 0.1 HP at 200 RPM to around 0.47 HP at 650 RPM. 

 

 

Figure 7.6  Experimental horsepower measurement in a single-wind turbine hydraulic 

power transfer setup. 

 

Figure 7.7 illustrates the efficiency of the power transfer system when single-wind 

turbine was used. The pressure and flow rate were used to determine the horsepower 

generated by the pump and transferred to the motor. The efficiency of the system was 

then calculated from these values. At 200 RPM the efficiency of the system was 74%. As 

the velocity of the wind turbine was gradually increased to 650 RPM, the efficiency 

increases to its maximum value of 83%. The recorded system efficiency and the averaged 

efficiency are shown in Figure 7.8. The efficiency of power transfer system increases as 

the speed increases. For the single turbine hydraulic wind power system that eliminated 
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the gearbox, variable wind speed cannot be regulated which consequently results in lower 

overall system efficiency.   

   

 

 

Figure 7.7  Experimental overall efficiency measurement in a single-wind turbine 

hydraulic power transfer setup. 

 

 

 Multiple Wind Turbines/One Central Generation Unit 7.3

 

 

7.3.1 Velocity Applied to the Shaft of the Pump and Motors 

To make the system operation economic and highly efficient, there will be need for 

more wind turbines to pump high-pressure fluid to the system. That way the efficiency of 

overall power-transfer system is increased. The second experiment is designed to 

demonstrate and experimentally prove that as more wind-turbines are connected to the 

system, the overall efficiency is increased and this can be obtained at lower pump speeds. 

Experimental setup and flow directions of double-wind turbines are shown in Figure 7.8.  
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Figure 7.8  Experimental setup of double-wind turbine configuration 

 

 

Experiment 2: Double-Wind Turbine Configuration. During this experiment, the 

flows of two wind-driven hydraulic pumps were integrated and directed to one hydraulic 

motor. The speed of one pump (pump A) was held constant with an average velocity of 

389.04 RPM, while velocity of pump B varied from 185 RPM to 560 RPM in 15 seconds. 

With an additional pump to this experiment, the shaft velocity of the hydraulic motor 

jumped at a much higher value of 2069 RPM versus the 800 RPM in single turbine 

experiment, and reached a maximum velocity of 3333 RPM as shown in Figure 7.9.   
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Figure 7.9  Experimental velocity measurement in a double-wind  

turbine hydraulic power transfer setup. 

 

 

7.3.2 System Flow Rate and Overall System Pressure 

The flows of wind turbines A and B, and their combination passing motor A are 

illustrated in Figure 7.10. As the pump speed increased, the flows of wind turbine B and 

motor A increased linearly. As motor B spun at higher velocity, the output pressure of 

their point of common coupling (PCC) increased. Therefore, motor A could pump less 

fluid at a constant speed. This effect has shown on Figure 7.10 with a slight decline in 

flow generation of wind turbine A. Wind turbines A and B provided a combined flow of 

1.00 GPM to 1.76 GPM as the velocity of motor B increase from 200 to 550 RPM. The 

hydraulic motor’s flow sensor measured 0.99 GPM to 1.60 GPM for the same range of 

speed.  
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Figure 7.10  Experimental flow measurement in a double-wind turbine hydraulic power 

transfer setup. 

 

Experiment 2 measured the pressure of the system at Wind Turbine A, Wind Turbine 

B, and Motor A. The relationship between velocity and pressure for the multi-turbine 

experiment is presented in Figure 7.11.  The pressure for Wind Turbine A and Motor A 

are close in value while the pressure of Wind Turbine B is lower.  Similar to Experiment 

1, Motor A is attached to a DC Permanent Magnet Motor that has a higher rated 

horsepower of ¾ HP.  Wind Turbine A is connected to a split phase AC motor that 

requires high resistance to operate.  High resistance requires more driving force.  In the 

Flow versus Pressure plot (Figure 7.12), Wind Turbine A produces a steady flow of about 

0.64 GPM while the pressure increases from 393 PSI to 596 PSI.  Motor A flow is a 

combination of the flow of Wind Turbine A and B and produces a pressure similar to that 

of Wind Turbine A.  Because the system is closed loop, the pressure seen at all of the 

components increase collectively. 
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Figure 7.11  Experimental pressure measurement in a multi-wind turbine hydraulic power 

transfer setup (Pressure vs Velocity) 

 

 
Figure 7.12  Experimental pressure measurement in a multi-wind turbine hydraulic power 

transfer setup (Pressure vs Flow) 
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7.3.3 Horse Power and Efficiency of System 

The power generated by two integrated wind turbines and the power generated from 

the hydraulic motor are shown in Figure 7.13.  As the figure illustrates, the output power 

increased as the speed of the wind turbine increased. Motor A required more power to 

keep up the flow generation. As the velocity of motor B increase, the output pressure of 

PCC increased, which received more power from wind turbine. The energy of wind 

turbines is used to increase the system pressure and circulate the fluid in the system.  

 

 

 

 

Figure 7.13  Experimental horsepower measurement in a double-wind turbine hydraulic 

power transfer setup  
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Figure 7.14  Experimental overall efficiency measurement in a double-wind turbine 

hydraulic power transfer setup. 

 

The energy transfer efficiency of integrated wind turbines into one central energy 

generation unit is shown in Figure 7.14. As the figure illustrates, the overall efficiency of 

the double-wind turbine system started at efficiency of 86% at 185 RPM, and increased 

as the wind turbine velocity increased reaching a maximum of 90.7% at around 510 

RPM. The single-wind turbine hydraulic power transfer could only reach maximum of 

83.31% at 650 rpm. With an average velocity of 389.04 RPM being produced by wind 

turbine A, and wind turbine B starting with an rpm of 185, the overall system efficiency 

reached 89.83% while the overall efficiency of single turbine hydraulic wind power 

transfer reached 78%.  These experiments demonstrate two important observations: 1) 

The maximum efficiency of double-wind turbine system reached 90.7% at a lower speed. 

2) At low rotational speeds the efficiency of double-wind turbine system increased by 

17%. 
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 Results and Discussion 7.4

A comparison of system speed dependent efficiencies in a single turbine and double 

turbine system is shown in Figure 7.15. 

 

 

Figure 7.15  Experimental system efficiency measurement comparison  

of single-wind turbine and double-wind turbine hydraulic power transfer setups 
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Since the system will perform less work, there is also opportunity to integrate energy 

storage with the energy not being used to operate the system.   

 

 

Figure 7.16  Efficiency profile of single-wind turbineconfiguration comparing the 

efficiency of the following-Mathematical Model, and Experiment 

 

 

 

Figure 7.17  Efficiency profile of double-wind turbine configuration comparing the 

efficiency of the following-Mathematical Model, and Experiment 
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To determine how the efficiency of the experimental setup compared to the 

SimHydraulics and Mathematical Models, Figure 7.16 is provided for the single-wind 

turbine configuration and Figure 7.17 is provided for the double-wind turbine 

configuration.  It can be observed that there is small variation between the two 

models/setups for the overall efficiency of each hydraulic system configuration.  It can 

also be observed that the efficiency outputted by the experimental setup is closer in value 

to the mathematical model for each configuration as well.  Figure 7.18 illustrates how the 

addition of one turbine can increase the efficiency in both the mathematical model as well 

as in the experiment.   

 

 

Figure 7.18  Efficiency profile of both single-wind turbine and double-wind turbine 

configuration 
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8. CONCLUSION AND RECOMMENDATIONS 

 Conclusions 8.1

The focus of this research was to determine the efficiency of a gearless wind power 

transfer system and to prove that a multi-turbine gearless wind power system was more 

efficient than a single turbine system.  To accomplish this, a single turbine system was 

designed, simulated, fabricated and constructed.  Sensors provided key measurements 

such as velocity (RPM), pressure (PSI) and flow (GPM) to calculate the power 

transferred from the shaft of the pump to the shaft of the motor.  Afterwards, another 

wind turbine was added making the system a multi-turbine system.  Again the power 

transferred from the shaft of two pumps to the shaft of one motor was calculated.  The 

efficiencies of both systems were observed.  The multi-turbine system did provide higher 

efficiency and delivered more of the power created at the shaft of the hydraulic pumps to 

the shaft of the motor.   

 

Using SimHydraulics, a Matlab/Simulink toolbox, a single wind turbine wind energy 

power transfer system was designed. The system was also modeled using mathematical 

equations. These systems were compared to validate the mathematical model needed to 

later create controls.  A 0.517 
3in

rev  
hydraulic pump was affixed to a 0.097 

3in
rev

hydraulic motor to transfer high pressure hydraulic fluid through the system.  A pressure 

relieve valve protected the system against overpressure.  As the velocity the pump was 

increased, and fluid was pushed through the motor, the velocity at the shaft of the motor 

was observed.  It was also important to measure the overall system pressure as well as the 

flow moving through key hydraulic components.  It was verified that for a single-wind 

turbine system, the mathematical model behaved as the model built using SimHydraulics.
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The overall efficiency of the system paralleled that of the efficiency of a standard 

hydraulic pump. 

 

One additional hydraulic pump was added to the model built in SimHydraulics as 

well as the mathematical model making the system a double-wind turbine system.  Two 

fixed displacement pumps with displacements of 0.517 
3in

rev
 transferred hydraulic fluid 

to the main motor A with a displacement of 0.097
3in

rev
 . Wind Turbine A was held at a 

constant velocity while the velocity of Wind Turbine B varied drastically to measure the 

effect of rotational speed on power transfer efficiency.   Since the velocity of Wind 

Turbine A was held constant, the flow created was also constant.  The flow of Motor A 

was a combination of the flow of Wind Turbine A and B. It was noted that there was a 

slight difference in the flows measured from the SimHydraulic model and the 

mathematical model due to the leakage factor that is set as an affixed number in the math 

model but varies from the system operating conditions in SimHydraulics.  The system’s 

overall power transfer efficiencies obtained from mathematical model and SimHydraulics 

deviated slightly because of changes in parameter calculation and slight dynamic 

differences.  The double-wind turbine system provided higher efficiency than a single 

turbine system proving that wind turbines working in parallel would increase the overall 

system efficiency. 

 

After validating the mathematical model with simulations, the wind power transfer 

system was constructed.  Testing began on the test and two experiments were performed.  

Experiment 1 was done on the single turbine configuration (one hydraulic pump and one 

hydraulic motor).  A ramp velocity was applied at the input shaft of a hydraulic pump for 

a given time period so that the system power transfer and velocity responses at the 

hydraulic motor could be observed.  The velocity seen at the shaft of the hydraulic pump 

determined the linearly proportional flow of the hydraulic fluid in the system as well as 

the overall system pressure.  It was monitored that as the hydraulic fluid traveled through 

the system losses occurred showing up as a decrease in the flow seen at the motor.  These 
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losses were caused by the leakage that takes place in the pump and motor, and the friction 

in the fittings and flexible piping.  

 

The pressure in the gearless wind power transfer system was recorded at two 

locations in Experiment 1, Wind Turbine B and Motor A.  As the velocity at the shaft of 

the hydraulic pump increased, the pressure increased as well.  In the provided pressure 

profiles (Chapter 7) it was recorded that the relationship between pressure and flow, and 

pressure and wind turbine velocity is linear.  Motor A recorded a slightly higher pressure 

than Wind Turbine B due to the Direct Current (DC) Permanent Magnet Motor a higher 

rated horsepower coupled to the shaft of the motor.  The pressure and flow rate were used 

to determine the horsepower generated by the pump and transferred to the motor. The 

efficiency of the system was then calculated from these values.  As the velocity of the 

wind turbine was gradually increased, the efficiency also increased.  For the single 

turbine hydraulic wind power system that eliminated the gearbox, variable wind speed 

cannot be regulated which consequently results in lower overall system efficiency. 

 

To validate that the addition of another wind turbine would increase the efficiency of 

the system Experiment 2 was performed. It is important to make this system economical 

and to increase efficiency at lower operational velocities.  During this experiment, the 

flows of two wind-driven hydraulic pumps were integrated and directed to one hydraulic 

motor. The speed of one Wind Turbine (A) was held constant providing a constant flow 

while velocity of Wind Turbine B varied for a given time period.  As the pump speed 

increased, the flows of Wind Turbine B and Motor A increased linearly. As Wind 

Turbine B spun at a higher velocity, the output pressure of their point of common 

coupling (PCC) increased allowing Motor A to pump less fluid at a constant speed. In 

Experiment 2 the pressure of the system at Wind Turbine A, Wind Turbine B, and Motor 

A was measured.  The pressure for Wind Turbine A and Motor A are close in value while 

the pressure of Wind Turbine B is lower.  Similar to Experiment 1, Motor A is attached 

to a DC Permanent Magnet Motor that has a higher rated horsepower of ¾ HP.  Wind 
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Turbine A is connected to a split phase AC motor that requires high resistance requiring 

more driving force to operate.  

 

The output power increased as the speed of the wind turbine increased. Motor A 

required more power to keep up the flow generation. As the velocity of Wind Turbine B 

increased, the output pressure of PCC increased, which received more power from the 

wind turbine. The energy of the wind turbines were used to increase the system pressure 

and circulate the fluid in the system.  The overall efficiency of the double-wind turbine 

system proved to be more efficient than a single wind system and at a lower velocity.  

This is strong proof that the variable speed gearbox used in a tradition wind turbine 

drivetrain can be eliminated.   

 

 

 Recommendations 8.2

For further research on the transfer of gearless wind power, the addition of a third 

wind turbine to this system should be implemented. With the addition of the third wind 

turbine, it can be determined how many wind turbines can be connected to a central 

generation unit before efficiency saturation will be attained.   

 

To provide a better range of velocities to wind turbine A, a variable speed drive can 

be utilized.  A variable speed drive is a device that regulates the speed and rotational 

force, or torque output of an electric motor.  In the current setup, the wind turbine A is 

connected to an AC motor that only allows a velocity range of 350 RPM to 415 RPM to 

be applied to the shaft of the hydraulic motor.  This does not create much variation and 

places limits on the real wind characteristics trying to be achieved. 

 

 

 Future Work 8.3

Energy Storage:  To provide energy storage to this system, a hydraulic accumulator 

can be integrated.  This device is a pressure storage reservoir in which a non-
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compressible hydraulic fluid is held under pressure by an external source, compressed 

gas [7].  Compressed gas accumulators can provide the system with a lightweight energy 

storage option, the ability to accept both high frequencies and high rates of 

charging/discharging [22]. The main function of the accumulator will be to store energy 

during low demand periods and to respond immediately to temporary demand.  An 

accumulator can also maintain system pressure for periods of slight leakage, aid the 

hydraulic pump in delivering power to the system and absorb pressure interruptions by 

smoothing out pulsations.  The stored potential energy in the accumulator acts as a quick 

secondary source of fluid power capable of doing useful work as required by the gearless 

energy transfer system.   

 

Speed (Frequency) Control:  The fluctuation of frequency can be minimized or even 

eliminated through the use of frequency (speed) droop control.  Frequency droop control 

is used to match generation to load to achieve the desired system frequency.  Speed droop 

is the decline in speed or frequency of a prime mover in proportion to the load that is 

applied to it.  As the load is increased, the speed or frequency droops.  When introducing 

wind generated electricity into an existing electric system, difficulties can arise.  It is 

important to preserve the balance between generated and demanded power to operate and 

control electric power systems [37, 38].  The amount and location of wind generation, 

wind turbine technology, and the size and characteristics of the electricity system all play 

an important role [25].  System inertia, having the greatest affect, determines the system 

frequency sensitivity to supply demand imbalances [25, 39].  It will be investigated how 

several wind speeds and loading conditions will affect the droop characteristics of the 

hydraulic energy transfer system. 
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APPENDIX:  TECHNICAL DATA 

 

 

 
Figure A.1  Data sheet for hydraulic pump [48]
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Figure A.1  Continued 
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Figure A.2  Data sheet for pressure relief valve [47] 
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Figure A.3  Data sheet for check valve [50] 
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Figure A.3  Continued 
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Figure A.3  Continued 
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Figure A.4  Data sheet for pressure compensated electronically controlled flow control 

valve [2] 
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Figure A.4  Continued 
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Figure A.4  Continued 
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Figure A.4  Continued 
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Figure A.5  Data sheet for flow sensor [44] 
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Figure A.6  Data sheet for speed sensor [45] 
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Figure A.6 Continued 
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Figure A.7  Data sheet for pressure sensor [46] 
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