
Graduate School ETD Form 9 
(Revised 12/07)       

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

This is to certify that the thesis/dissertation prepared 

By  

Entitled

For the degree of   

Is approved by the final examining committee: 

       
                                              Chair 

       

       

       

To the best of my knowledge and as understood by the student in the Research Integrity and 
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of 
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.  

      

Approved by Major Professor(s): ____________________________________

                                                      ____________________________________ 

Approved by:   
     Head of the Graduate Program     Date 

Maryam Naghsh Nilchi

ELECTRIC UTILITY PLANNING METHODS FOR THE DESIGN OF ONE SHOT STABILITY
CONTROLS

Master of Science in Electrical and Computer Engineering

Steven Rovnyak

Yaobin Chen

Eliza Du

Steven Rovnyak

Yaobin Chen 11/15/2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/46957567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Graduate School Form 20 

(Revised 9/10)  

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Research Integrity and Copyright Disclaimer 

Title of Thesis/Dissertation: 

For the degree of       Choose your degree                    

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University 

Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this 

thesis/dissertation have been properly quoted and attributed. 

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the 

United States’ copyright law and that I have received written permission from the copyright owners for 

my use of their work, which is beyond the scope of the law.  I agree to indemnify and save harmless 

Purdue University from any and all claims that may be asserted or that may arise from any copyright 

violation. 

______________________________________ 
Printed Name and Signature of Candidate 

______________________________________ 
Date (month/day/year) 

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

ELECTRIC UTILITY PLANNING METHODS FOR THE DESIGN OF ONE
SHOT STABILITY CONTROLS

Master of Science in Electrical and Computer Engineering

Maryam Naghsh Nilchi

11/15/2012



ELECTRIC UTILITY PLANNING METHODS FOR THE DESIGN OF ONE

SHOT STABILITY CONTROLS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Maryam Naghsh Nilchi

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

December 2012

Purdue University

Indianapolis, Indiana



ii

ACKNOWLEDGMENTS

This thesis would not have been possible without the guidance and assistance of

several individuals who in one way or another contributed their valuable help in the

preparation and completion of this study.

First and foremost, my greatest appreciation to my research advisor, Dr. Steven

M. Rovnyak, whose genuineness and encouragement I will never forget. I will always

be thankful for his excellent guidance, patience, and support in the completion of this

research work. One simply could not wish for a better or friendlier supervisor.

I would also like to express gratitude to my advisory committee members, Dr.

Yaobin Chen, and Dr. Eliza Y. Du for their time and support during the completion

of this thesis.

I wish to express my sincere appreciation to Dr. Brian King who provided me

with brilliant guidance during the completion of this degree. He encouraged me to

take my further steps and played a great role in the financial aspect of my graduate

study.

I would like to thank Sherrie Tucker for her kindness in formatting this thesis and

for keeping me in mind for every upcoming opportunity in the ECE Department.

I would also like to extend my gratefulness to Valerie Lim Diemer and other ECE

faculty members who assisted me in different aspects to move my master’s study

forward.

I would like to acknowledge the numerous individuals who have affected my edu-

cational experience at IUPUI, including but not limited to my dear lab partner Diana

C. Vasquez and other graduate students. In my daily work I have been blessed with a

friendly and cheerful group of fellow students and without them, this research could

not be achieved at such a level.



iii

Finally, I would like to thank my husband Shahriar whose personal support and

unlimited patience at all times helped me make this research through calmly to the

end.

Last but not least, I would like to thank my parents who have given me their

indisputable support throughout, as always, for which my meager expression of ap-

preciations likewise does not suffice.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Tools of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 About This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 PROPOSED METHOD FOR INSTABILITY THRESHOLD IDENTIFICA-
TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Histogram Method . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The Plotting Method . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 INDICES USED IN DATA CLASSIFICATION . . . . . . . . . . . . . . 16

3.1 ISGA, an Index of Previous Researches . . . . . . . . . . . . . . . . 16

3.2 Calculation of ISBA Index . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Gradient of the ISBA . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Rate of Change of Bus Angles . . . . . . . . . . . . . . . . . . . . . 20

4 DECISION TREES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Rattle Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 DT Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 ONE SHOT CONTROL WITH RESPONSE BASED DECISION TREE 25



v

Page

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Application of One shot Control . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Location and Time of Control . . . . . . . . . . . . . . . . . 26

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 PROPOSED METHOD USING THREE DECISION TREES . . . . . . 30

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 DT1: Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 DT2: Instability Prediction . . . . . . . . . . . . . . . . . . . . . . 32

6.4 DT3: Control Selection . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.5 Comparison Between 1DT, 2DT, and 3DT Methods . . . . . . . . . 36

7 ROLE OF CONTROL APPLICATION IN STEADY-STATE ANALYSIS 40

8 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . 43

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

APPENDIX: MATLAB CODE FOR POWER SYSTEM SIMULATIONS . . 47



vi

LIST OF TABLES

Table Page

5.1 Results of response based DT method with application of control case 1
to 385 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Results of response based DT method with application of control case 2
to 385 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Results of the 2DTs method tested on 385 cases . . . . . . . . . . . . . 34

6.2 Different combinations of complexity cost and loss matrix used in devel-
opment of the control selection rules . . . . . . . . . . . . . . . . . . . 35

6.3 Results of the 3DTs method tested on 385 cases . . . . . . . . . . . . . 37



vii

LIST OF FIGURES

Figure Page

1.1 Rotor angle stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Transmission lines retained in the 176-bus model of the WECC [1]. . . 7

1.3 Three decision tree system . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Maximum GA difference for 385 simulations. . . . . . . . . . . . . . . 10

2.2 Maximum GA difference for 385 simulations. . . . . . . . . . . . . . . 11

2.3 Histogram of maximum GA differences for 6 seconds of mostly stable sim-
ulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Close view of histogram of maximum GA differences for mostly stable
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Close view of distribution of maximum GA differences for the first 5 sec-
onds of mostly stable simulations. . . . . . . . . . . . . . . . . . . . . 14

2.6 Maximum GA difference for all 6 seconds of mostly stable simulations vs.
the threshold for determining the mostly stable simulations. . . . . . . 14

2.7 Maximum GA difference for 5 seconds of mostly stable simulations vs. the
threshold for determining the mostly stable simulations. . . . . . . . . 15

3.1 Discontinuity of Bus Angles . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Reconstructed Bus Angles . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 SBA and ISBA for the Trajectories in Figure 3.2 . . . . . . . . . . . . . 19

3.4 ISBA and Gradient of ISBA . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Training data from 480 simulations in ISBA-GradISBA space . . . . . 22

4.2 DT Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Timing of control application for 30 unstable cases . . . . . . . . . . . 27

5.2 Number of cases stabilized with control applied at different times . . . 28

6.1 Rules for event detection DT . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Comparison of the results of the 1DT, 2DTs, and 3DTs method tested
with 385 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



viii

Figure Page

6.3 Comparison between the results of this thesis, tested on 385 cases, with
the approximated 2DT results in [13], tested on 480 cases . . . . . . . . 39

7.1 Post event equilibrium in stable cases of the 385 cases set . . . . . . . . 41

7.2 Post event equilibrium in stable cases of the 385 cases set . . . . . . . . 41

7.3 Post event equilibrium in stable cases of the 385 cases set . . . . . . . . 42



ix

LIST OF ABBREVIATIONS

BA Bus Angle

COA Center Of Angle

DSA Dynamic Security Assessment

DT Decision Tree

EMS Energy Management System

FP False Positive

FN False Negative

GA Generator Angle

HVDC High Voltage Direct Current

ISBA Integral Square Bus Angle

ISGA Integral Square Generator Angle

MISO Midwest Independent System Operators

NERC North American Electric Reliability Corporation

PMU Phasor Measurement Units

PSAT PowerFlow and Short circuit Assessment Tool

Rattle R Analytical Tool To Learn Easily

SBA Squared Bus Angles

SCADA Supervisory Control and Data Acquisition

TN True Negative

TP True Positive

TPL Transmission Planning

TSAT Transient Security Assessment Tool

WAMS Wide Area Measurement Systems

WECC Western Electric Coordinating Council



x

ABSTRACT

Naghsh Nilchi, Maryam. M.S.E.C.E., Purdue University, December 2012. Electric
Utility Planning Methods for the Design of One Shot Stability Controls. Major
Professor: Steven M. Rovnyak.

Reliability of the wide-area power system is becoming a greater concern as the

power grid is growing. Delivering electric power from the most economical source

through fewest and shortest transmission lines to customers frequently increases the

stress on the system and prevents it from maintaining its stability. Events like loss

of transmission equipment and phase to ground faults can force the system to cross

its stability limits by causing the generators to lose their synchronism. Therefore, a

helpful solution is detection of these dynamic events and prediction of instability.

Decision Trees (DTs) were used as a pattern recognition tool in this thesis. Based

on training data, DT generated rules for detecting event, predicting loss of synchro-

nism, and selecting stabilizing control. To evaluate the accuracy of these rules, they

were applied to testing data sets.

To train DTs of this thesis, direct system measurements like generator rotor angles

and bus voltage angles as well as calculated indices such as the rate of change of bus

angles, the Integral Square Bus Angle (ISBA) and the gradient of ISBA were used.

The initial method of this thesis included a response based DT only for instability

prediction. In this method, time and location of the events were unknown and the one

shot control was applied when the instability was predicted. The control applied was

in the form of fast power changes on four different buses. Further, an event detection

DT was combined with the instability prediction such that the data samples of each

case was checked with event detection DT rules. In cases that an event was detected,

control was applied upon prediction of instability.
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Later in the research, it was investigated that different control cases could behave

differently in terms of the number of cases they stabilize. Therefore, a third DT was

trained to select between two different control cases to improve the effectiveness of

the methodology.

It was learned through internship at Midwest Independent Transmission Operators

(MISO) that post-event steady-state analysis is necessary for better understanding

the effect of the faults on the power system. Hence, this study was included in this

research.
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1. INTRODUCTION

1.1 Problem Statement

The increasing dependence of our daily lives on consistent supply of electricity

makes the reliability of the power system extremely vital. Reliability is mainly com-

posed of two parts: Adequacy and Security. Adequacy is the capability of the power

grid to serve the electrical load and all their customers requirements at all-time along

with considering the planned and reasonable outages. Security is the capability of the

system to tolerate the sudden contingencies and loss of transmission equipment [16].

Steady-state and transient stability analysis are major components of system security.

Steady state stability of the system is referred to a situation in which, after a small

contingency, the system can reach a steady state condition close to its pre-contingency

operating situation. Whereas, the transient stability of the system is referred to a

condition in which the system can reach any acceptable steady state situation and

maintain its synchronism after a large disturbance [16].

The power stability problem became more important when remote hydraulic sta-

tions started serving loads through long distance transmission lines. The blackouts

of Northern parts of the US which happened in 1965 and 1967 highlighted the impor-

tance of effective modeling and planning in the power industry [16]. As the wide area

power system is growing smarter and the use of system measurement units is increas-

ing, monitoring and supervision of the grid behavior is becoming easier. Wide Area

Measurement Systems (WAMS) on the system allow to retrieve (nearly) real-time

data from the system and analyze its dynamic behavior. This is done by detecting

events and constraints, predicting loss of synchronism and taking on time accurate

actions to bring the system back into its stable situation. The purpose and condi-

tions of fault detection and location for protective relaying are different from dynamic



2

event detection and location. Fault detection for protective relaying is typically done

with local measurements to isolate a faulted element. System-wide event detection

is more likely implemented using measurements with more focus on investigation,

restoration and control [3]. During my internship at MISO, I learned that although

the dynamic events and the transient instabilities in the power system are rare on an

everyday basis, their analysis engage more complex non-linear models and techniques

which involve the steady-state condition that the system reached following the tran-

sient [16]. Dynamic events are of significant importance and if they happen, their

following consequences can be severe.

In general, there are two categories of dynamic stability issues in the power system.

One category is stated as the rotor angle stability and is affected by the generator

rotor angles and power angles relationship [16]. This type of instability is the major

focus of this thesis. The other type of dynamic stability issue, stated as the Voltage

Stability, occurs without loss of synchronism and could happen if a bus in the sys-

tem experiences voltage collapse. The concern of the system at such situation is to

maintain the voltage of all the buses within an acceptable range after experiencing

disturbances [16].

In this research, the bus voltage angles, which are retrieved from the existing

Phasor Measurement Units (PMUs), along with the generator rotor angles are used

to analyze the overall system behavior. Monitoring six seconds of simulation with

more than 720 sample points, it is observed that some of the generator angles start to

diverge and lose their synchronism as they move toward the second half of simulation

where this forces the system to go unstable. Figure 1.1 represents examples of two

cases. The first case shows a generator which remains synchronous after experiencing

a fault where the second case represents a situation where the system loses its rotor

angle stability after undergoing a fault.

To prevent the system from going unstable, response based control method is

used which continuously monitors the retrieved real-time data and applies one shot

controls when a loss of synchronism is predicted in the system.
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Fig. 1.1. Rotor angle stability

A one shot control includes fast power changes on four buses which are similar to

500 MW fast power increases on two HVDC interties and reduces angle differences in

the AC network [1].

According to [2], one shot control is an arrangement that applies control utmost

once during an event using the measurements prior to the control. When the decision

is made and the control is operated, one shot does not use any measurements until it

is reset.
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1.2 Previous Work

Application of response based one shot controls for maintaining the stability and

synchronism of WAMS have been the main focus of previous researches in this area.

Pattern recognition tools such as Decision Trees (DTs) were employed to develop

rules from training data sets using different system variables/indices. In [1], initial

classification of stable and unstable cases was done with a 300-degree threshold for

the maximum generator angle difference. This provided the target value of 0 for

Unstable cases and target value of 1 for Stable cases. In [1]it is shown that a larger

number of cases could be stabilized when a target value was assigned to every input

output pair.

Various indices implemented by different researchers for data classification include:

voltage angle of one bus and rate of voltage angle change of another bus [1], Integral

Square Generator Angle (ISGA) [4], wavelet detail coefficients [5], apparent resistance

[2], [7], a performance index of weighed sum squared error between the simulated

behavior and the ideal trajectory of generator angles [6], and indices proposed for

Dynamic Security Assessment (DSA) [8], [9].

These previous approaches were all predicting instability without knowing the

time and location of the faults. Finding a way to detect dynamic event first and

then check for instability after the event occurrence may increase the accuracy of the

outcome. This was done in [8] employing the variance of generator rotor frequencies

in a sliding window frame as the index.

1.3 Tools of This Thesis

Following tools were used interactively to achieve the objectives of this thesis:

a) Transient Security Assessment Tool (TSAT) is a software tool established by

Powertech Labs Inc., for transient analysis of power systems. Its main technology is

a nonlinear time-domain simulation engine which has the ability to produce precise

responses to various types of contingencies happening in large interconnected power
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systems. It has a set of security assessment modules hard coded in it that implement

complete analysis for the dynamic behavior of the system according to NERCs TPL

standards [12]. This tool was used for transient stability analysis of our 176-buses

model of Western Electric Coordinating Council (WECC) power grid. Details of this

model are presented in section 1.4.

b) PowerFlow and Short circuit Assessment Tool (PSAT) is another software tool

by Powertech Labs Inc., used in power system studies. It is a graphical program

for creating powerflow models [20]; An important capability of PSAT is to perform

steady state system analysis needed in system planning studies [20]. After event

Steady state powerflow, also known as thermal loading, of the transmission lines is

the main analysis that PSAT was used for in this thesis.

c) MATLAB which is an advanced technical computing language and collaborative

environment for data analysis and numerical computation [14] was used to call TSAT

to do specified simulations, retrieve particular parts of the simulation results from

TSAT, calculate the desired indices for preparing and documenting training data for

our DT tool and ; and analyze the results of the study. MATLAB allowed us to

increase the speed of our calculations and computations by automating the process

of running hundreds of simulations.

d) The R Analytical Tool To Learn Easily (Rattle) is a pattern recognition and

data mining toolbox that brings multiple R packages together and has significantly

improved the process of complicated data analysis by using statistical methods; Rattle

is a user friendly interface where no initial knowledge of R is needed to get started [11].

In this thesis, Rattle was mainly used to find thresholds for event detection, instability

prediction, and control selection. Chapter 4 presents more details about background

of DT method and the characteristics involved.
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1.4 About This Thesis

Main objectives of this thesis are: 1.Understand the previous work of Rovnyak

et al. in improving the reliability of the power system through instability prediction

and application of response based one shot control; 2. Expand their work by finding

new indices that can be observed in nearly real-time and employ them in the DT

methodology to find triggering threshold; 3. Develop dynamic event detection and

control selection methods and use them in combination with the instability prediction

method; 4. Find the best time to apply control; all with the purpose of improving

the accuracy of one shot control approach.

The power system used in this thesis was a 176-bus model of the Western Electric

Coordinating Council power system where17 buses had PMUs, 71 were load buses,

and 29 were generator buses. A simplified equivalent of the system is shown in Fig-

ure 1.2. Present technology feeds wide-area synchronized phasor measurements into

SCADA and EMS systems at a level of 60 cycles per second [3]. Simulations of

six seconds were done with the rate of 60 cycles per second and 2 steps per cycle;

providing us with about 120 sample points in each second. Rotor angles of 29 gener-

ator buses and bus voltage angles of 17 load buses monitored by the PMUs were the

measurements that were retrieved from TSAT and used in this thesis.

Two sets of contingency files were used in this thesis. The first set included a total

of 385 cases where faults with different lengths happened on 40 lines of the model.

160 cases out of 385 were solo event cases of either a single phase to ground or three

phase short circuit faults; the other 225 cases were multiple event cases where a single

phase fault on one line was followed by a three phase fault on another line. 263 cases

remained stable after fault and instability happened in 122 cases. The second set

included 480 cases of three phase faults starting somewhere between 29th and 40th

cycle of the simulation; all ending at the 40th cycle, giving 12 different scenarios for

each of the 40 lines. This set included 250 stable and 230 unstable cases.
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Fig. 1.2. Transmission lines retained in the 176-bus model of the WECC [1].

Simulating the event cases, an initial classification between stable and unstable

cases was done where a case is counted unstable when loss of synchronism happened

in one generator. A measure for this was when the maximum difference between

angles of every two generators exceeds 300 degrees. Details of how this threshold

was selected are provided in Chapter 2. After this initial classification, the data was

fed into three DTs for dynamic event detection, instability prediction and control

selection. An overall view of this approach is shown as a flowchart in Figure 1.3.

During my internship at Midwest Independent Transmission Operators (MISO),

I learned not only about how the power grid is operated in high voltage levels, but
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also I got involved with the transmission planning concerns. I learned that steady-

state analysis is a great concern, because if the steady-state situation after a dynamic

event recovery is not monitored, voltage violations and power over loads could lead

into cascading contingencies that would put the reliability of the grid in danger. To

have this considered in this thesis, the power flow of three main transmission lines

during their after fault steady state were monitored and the results are later presented

in this report.

Fig. 1.3. Three decision tree system
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2. PROPOSED METHOD FOR INSTABILITY

THRESHOLD IDENTIFICATION

2.1 Background

This section describes some approaches that can be used to define thresholds for

initial classification of truly stable and unstable cases using the maximum difference

between generator angles (GAs).

According to [15], finding a threshold from simulation data can be difficult knowing

that there exist some events that experience loss of synchronism right around the end

of our six seconds simulation time frame. This occurrence along with a method to

work this out are illustrated for a maximum GA index. Figure 2.1 shows the maximum

GA difference in a six seconds window for 385 simulations on the 176-bus model. It

is possible to classify every simulation that exceeds the threshold as unstable by

selecting a large enough threshold value around 360 degrees whereas the purpose of

this chapter is to explain the method for defining a lower threshold value that can

help the instability to be detected earlier in the simulation, [15]. Figure 2.1 shows

that the maximum angle difference for simulations that keep their synchronism and

do not go beyond the 360 degree limit is about 340 degrees. There exists only one

simulation that the maximum GA difference touches 340 degrees at the very end of

the six-second simulation period. Figure 2.1 expresses that this simulation is about

to lose its synchronism, but the 360 degree threshold categorizes it as stable which is

a mistake, [15].

A lower threshold value could be defined if simulations like this were properly

classified as unstable. Similar cases with loss of synchronism toward the end of the

simulation period are very possible and their misclassification would lead into further

constraints.
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Fig. 2.1. Maximum GA difference for 385 simulations.

The purpose is to find a way to define a more precise threshold for classification

of stable and unstable cases while the exact threshold is not known beforehand.

The method presented in this chapter includes distinguishing the problem happening

in simulations which begin to lose synchronism toward the end of the simulation.

One solution could be to extend the simulation for a longer time period that loss of

synchronism would never happen at the end. An example of this is shown in Figure

2.2 where a smiulation is done for 10 seconds. Possible issues with this solution are

that it is time consuming and not very feasible. Although it rarely happens that a

simulation loses synchronism after 10 or 20 seconds, there exists a possibility for it to

take place in large data sets. Small intentional adjustments to a borderline instability

can generate such cases.
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Fig. 2.2. Maximum GA difference for 385 simulations.

2.2 The Histogram Method

The technique suggested here includes selecting a conservative evaluation of in-

stability like 360 degrees as a first step to produce a data set of only truly stable

simulations [15]. The next step includes ignoring parts of data that stayed within

the 360 degree limit during the last few seconds of the simulations, [15]. To have

this better visualized here, the subset of simulations with a maximum GA difference

of smaller than 500 degrees during the first six seconds were selected as the set of

mostly stable simulations. This measure might be suitable for a power system with

transmission lines extended over a large geographical area with large power flows from

one end to the other. Figure 2.3 shows the histogram of the maximum GA difference

from every time step of six second simulations of the mostly stable cases, [15]. An

enlarged view of this histogram is shown in Figure 2.4. Figure 2.4 does not clearly
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Fig. 2.3. Histogram of maximum GA differences for 6 seconds of
mostly stable simulations.

express where in the array of 300 to 360 degrees the instability threshold should be

identified. Observing the maximum GA differences of the mostly stable simulations

only in the first 5 seconds of each simulation (removing the last second of data from

each simulation) can reduce the uncertainty as shown in Figure 2.5. Explicitly, it is

still checked that whether the maximum GA difference in the set of mostly stable

simulations surpasses 500 degrees in the first 6 seconds. Yet, only the maximum GA

differences during the first five seconds of these simulations are shown in Figure 2.5.

Figure 2.5 justifies that the instability threshold is closer to 300 degrees than to 360

degrees, [15].

2.3 The Plotting Method

Another way to justify the results found above is by plotting the maximum GA

difference of the mostly stable simulations using varying thresholds [15]. As shown
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Fig. 2.4. Close view of histogram of maximum GA differences for
mostly stable simulations.

in Figure 2.6, the threshold for maximum GA difference used to outline the set of

mostly stable simulations differed from 100 to 500 degrees in 25 degree intervals.

Those simulations with maximum GA difference smaller than the threshold during

the first 6 seconds were counted toward the mostly stable simulations. The vertical

axis in Figure 2.6 displays the maximum GA difference among these sets of mostly

stable simulations through the first 6 seconds. Similar to Figure 2.4, Figure 2.6 is

not clear on where exactly the instability threshold would lie between 300 and 360

degrees. Figure 2.7 presents the same approach as Figure 2.6 does but the maximum

GA difference was only shown during the first 5 seconds of mostly stable simulations.

The method in both Figures, 2.6 and 2.7, was to check whether the maximum GA

differences during the first 6 seconds surpassed the threshold on the horizontal axis.

The difference is that after the set of mostly stable simulations was determined, in

order to find the value on the vertical axis in Figure 2.7, the last second of simulation

data was ignored, [15]. Figure 2.7 justifies that a threshold of about 310 degrees
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Fig. 2.5. Close view of distribution of maximum GA differences for
the first 5 seconds of mostly stable simulations.

Fig. 2.6. Maximum GA difference for all 6 seconds of mostly sta-
ble simulations vs. the threshold for determining the mostly stable
simulations.
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is reasonable to classify the truly stable simulations from the unstable simulations.

The same procedure could be practical to other further calculated angle stability

indices such as the ISBA and ISGA. Details on how these two indices are calculated

are presented in chapter 3. Implementing the new indices, the threshold of 360 or

even 500 degrees for maximum GA difference will be used to define the set of mostly

stable simulations during the first 6 seconds. Then, the maximum ISBA during the

first 5 seconds of those simulations will be the threshold for the ISBA used for angle

instability prediction [15].

Fig. 2.7. Maximum GA difference for 5 seconds of mostly stable sim-
ulations vs. the threshold for determining the mostly stable simula-
tions.
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3. INDICES USED IN DATA CLASSIFICATION

Aside from the individual generator angles and bus voltage angles obtained from the

system measurements, the following indices are calculated and implemented in event

detection, instability prediction, and control selection decision making procedures of

this thesis.

3.1 ISGA, an Index of Previous Researches

Using system measurements, many different indices have been calculated by re-

searchers to help with the transient stability analysis of power system. Time domain

solutions are only capable of providing yes or no output to the transient stability anal-

ysis while they could be combined with indices like energy functions [4]. The Integral

Square Generator Angle (ISGA), calculated as Equation (3.1), is a coherency based

index used for evaluating the severity of the stable/unstable events [4]. Coherency

based means that the index indicates the level of coherency [15]. ISGA is a measure

for total generator angle differences in transient and steady-state situations [4].

ISGA =

T∫
0

∑
i

Mi(δi(t) − δcoa(t))
2dt. (3.1)

Where Mi stands for the machine inertia, δi(t) shows generator angles as a func-

tion of time, and δcoa(t) is the Center of Angle (COA) calculated as Equation (3.2).

Generators farther from the COA are penalized more by the ISGA [4].

δcoa(t) =

∑
iMiδi(t)∑

iMi

. (3.2)

Further in previous researches, ISGA is normalized by simulationlength. Generators

disconnected from the system were not included in calculation of COA and ISGA.
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Similar to the ISGA index, the Integral Square Bus Angle (ISBA) index is calcu-

lated in this research.

3.2 Calculation of ISBA Index

Bus voltage angles from synchronized PMUs are used in calculation of ISBA.

Using the phase angle differences, ISBA is used to express the overall stress on the

system [15] and is a good measure for instability prediction and loss of synchronism

control design. ISBA was selected over ISGA because in real-time, direct measurment

of the generator rotor angles is not possible where as the bus voltage angles are

easilymonitored by existing phasor measurement units.

The bus voltage angles are discontinuous by nature and this issue should be re-

solved before calculating the ISBA. Unlike the GAs, the BAs do not go beyond the

-180 to 180 degrees range [15]. As shown in Figure 3.1, if a BA exceeds either +180

or -180 degrees, it wraps around to the opposite side causing a 360 degrees difference.

To resolve this problem and help the BAs remain continuous, the bus angles should

be unwrapped. The first step to reconstruct the bus angles is to add or subtract 360

degrees from the bus angle after each discontinuity. To find the points of disconti-

nuity, each two consecutive bus angle sample points are compared; if the difference

exceeds a preselected threshold, 360 degrees is subtracted from each and every angle

measurement after the point of discontinuity. Similarly, if the difference is smaller

than the negative amount of the selected threshold, 360 degrees is added to later

measurements [13].

To select an appropriate threshold for reconstructing the bus angles, the method

of trial and error was used. As the bus angles wrap around ±180, the difference of

two consecutive bus measurements will never exceed 360 degrees. This makes the

thresholds of 360 degrees or larger to be in effective. Therefore, threshold of 330 is

used in this thesis to find the points of discontinuity. Then, the discontinuity was

resolved by adding or subtracting 360 degrees to the measurements of that time step
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Fig. 3.1. Discontinuity of Bus Angles

and the measurements after that point. No change was made to the data points

where the bus angles were changing with consecutive difference less than 330 degrees.

Figure 3.2 shows the restructured form of the trajectories shown in Figure 3.1.

Fig. 3.2. Reconstructed Bus Angles
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Having the discontinuity issue resolved, the calculation of ISBA can be performed.

First,the Squared Bus Angles Index (SBA) is calculated as Equation (3.3) [15].

SBA =
∑
i

Mi(θi(t) − θcoa(t))
2, (3.3)

where

θcoa(t) =

∑
iMiθi(t)∑

iMi

. (3.4)

θi(t) represents the reconstructed BAs as a function of time, θcoa(t) is the COA, and

Mi is chosen as the weight assigned to each bus. In this thesis, each bus is assigned an

equal weight of one. Instead of calculating the integral of SBA over a sliding window,

ISBA is calculated using a low pass filter with a transfer function G(s) = 6/(s + 6).

The corner frequency of this filter is 1Hz or 6 Radians/Sec [15]. Figure 3.3 shows the

SBA and ISBA of the trajectories of Figure 3.2.

Fig. 3.3. SBA and ISBA for the Trajectories in Figure 3.2
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3.3 Gradient of the ISBA

Gradient of the ISBA was calculated as another index in this research. This was

done by obtaining the point to point difference between the available data points.

Because a lowpass filter was used in calculation of ISBA from SBA, gradient of ISBA

did not equal SBA [13]. Figure 3.4 compares ISBA and its gradient.

Fig. 3.4. ISBA and Gradient of ISBA

3.4 Rate of Change of Bus Angles

Frequency of bus voltages, also known as rate of change of BAs, represents another

index in this research. This was calculated by obtaining the point to point difference

of bus angles divided by the difference between two consecutive time steps. The bus

voltage frequencies along with other measurements and calculated indices were used

toward achieving the objectives of this thesis.
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4. DECISION TREES

4.1 Overview

Decision Tree (DT) is a learn by sample pattern recognition tool that provides

solutions to classification problems with small number of output classes, such as

stable/unstable in this thesis [6], [18]. DTs are built off-line from training data

sets where each data point consists of an input vector along with a target value

which shows the true classification of that sample [18]. The target value is either

0 or 1 representing the class each data belongs to. Figure 4.1 shows a training

data example from 480 trajectories in ISBA-GradISBA plane where a target value is

assigned for every time sample. The unstable cases, with maximum generator angle

difference larger than 300 degrees, are represented by blue “x” and the stable cases,

with maximum generator angle difference smaller than 300 degrees, are represented

by red “0”.

Using the training data, the DT follows a statistical method to find classification

thresholds. These thresholds, presented in terms of if-then rules, are later tested on

on-line unseen data points and the prediction is compared to the true classes [6], [18].

The main advantage of DTs over other pattern recognition tools is its processing

time. Another advantage is that with a large number of predictor variables available,

a small subset is usually enough for the DT to make the classification and this means

that there is much lower chance of facing missing data issue [6].

Figure 4.2 shows a sample DT as a flowchart with rules. Each testing sample

point starts at the top node and proceeds down on the tree until it reaches a terminal

node. The title of the tree shows the name of the file that contains the training data.

The first top node shows that if the GradISBA is greater than or equal 0.12, the left

branch is chosen where the data point is predicted to be unstable, 0 in this thesis. The
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Fig. 4.1. Training data from 480 simulations in ISBA-GradISBA space

top left branch also tells that 69693 training data points fell into the category of that

terminal node where 98.7 percent of those points had the correct target value of 0.

This percentage represents the precision of the data classification. If the GradISBA

of that data point is smaller than 0.12, it chooses the right branch and follows the

tree rules until it gets classified at a terminal node.

4.2 Rattle Parameters

There are two parameters in the DT tool, Rattle, that need to be adjusted to

modify the output: the complexity cost and the loss matrix.

The complexity cost is a number between 0 and 1 with increments of 0.0001 and

is used to adjust the size of the tree. Large complexity cost leads to a simple DT

with few nodes whereas a small complexity cost leads to a more complex DT with too
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Fig. 4.2. DT Example

many levels and branches. Although selecting the complexity cost too high provides

simpler output rules which are less explicit to the training data, it might ignore some

important nodes and branches.

The loss matrix is a comparative misclassification cost which is used to make

either of the stable or unstable nodes almost pure [1]. Four outcome classes involved

in the loss matrix are True Negative (TN), False Negative (FN), False Positive (FP),

and True Positive (TP). In this thesis, 1 represents stable and is considered as the

positive class. Knowing that, TN is when a 0 is correctly classified as 0, the FN is

when a 1 is misclassified as 0. FP is when a 0 is misclassified as 1, and the TP is

when a 1 is correctly classified as 1. The loss matrix is entered into Rattle in the
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order of TN, FN, FP, TP like 0,20,1,0. This does not assign any weight to the TN

and TP, but penalizes the FN 20 times more than the FP.

4.3 DT Data

DTs of this thesis were mostly trained with the set of 480 cases. For each of

these cases, the TSAT simulation provided GAs and BAs for each time step, 120 per

second; then bus frequencies, ISBAs, and the gradient of the ISBAs were calculated.

A target value was also assigned to each time sample such that if the case was stable,

every sample was assigned a target value of 1; the reverse was done for unstable

cases. All of this data was stored in an output spreadsheet and imported into Rattle

as the training data. Then, the DT parameters were adjusted. The DT rules were

then tested on the set of 385 cases to detect event, predict instability, and select the

appropriate control case.
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5. ONE SHOT CONTROL WITH RESPONSE BASED

DECISION TREE

5.1 Overview

The response based DT method is used as a part of this thesis to predict loss of

synchronism. In this method time and location of the events are not detected and one

shot stabilizing control of fast power changes are applied only based on the prediction

of instability.

Training for this DT started with 6 seconds of simulation on the 480 cases set

where the initial classification was done using the 300 degrees threshold for maximum

generator angle difference explained in chapter 2. Then, ISBA and its gradient were

calculated and used along with V6A, the BA of the bus INTERMT 345, and V9ADot,

the bus frequency of the bus MONTANA 500, as the training predictors for the

DT [1]. The target value associated with each time sample was 0 for unstable data

points and 1 for stable ones. Implementing the training data into Rattle, five different

combinations of complexity cost and loss matrix were selected to create 5 sets of DT

rules for instability prediction. These rules were each tested on the 385 cases set

where each time sample was compared with the rules and a prediction target value

was assigned to it. The first data point, for which a 0 was predicted as the output

value, was the point where the instability was predicted on the system.

5.2 Application of One shot Control

In TSAT simulations, Add Admittance command (±500 MW) was used as an

effective alternative for fast power changes. Add Admittance with positive power

change increases the power demand whereas, Add Admittance with negative power



26

change acts similar to the Shed Load command [6]. [6] Also explains that one shot

fast power changes are stronger than ramped power changes and cause more cases to

be stabilized.

5.2.1 Location and Time of Control

In this thesis, two different control sets are used where each involves fast power

changes on four different buses. To create these control cases, five load buses were

selected in the northern part of WECC for positive power changes and five load buses

were selected in the southern part of WECC for negative power changes. With 10

selected load buses, 100 different control sets were created by selecting two buses out

of the five selected northern buses and two buses out of the five selected southern

buses. Using a trial and error method, these control sets were tested on 230 unstable

cases of the 480 cases set; two controls with the largest number of stabilized cases,

out of 230, were selected for the purposes of this thesis.

Other than the selection of buses for one shot controls, the timing of control

application has significant importance in preventing the system from losing stability.

The control should be applied as soon as the instability is predicted. As a delay

exists for information to be transferred over the grid, 6 cycles after the prediction of

instability is the earliest time that control can be applied.

Figure 5.1 shows the timing of controls applied by DT to a set of 30 unstable

cases, each included a single phase to ground fault followed by a three phase fault.

The figure illustrates that for 63 percent of the cases, controls were applied early in

the simulation. The same 30 cases were tested with controls applied with different

delays. Figure 5.2 states that when the control was applied after the fault clearing

time, all 30 cases were stabilized. The number of stabilized cases decreased as the

application of control was postponed up to a point where no case was stabilized with

control applied at second 3 of the simulation.
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Fig. 5.1. Timing of control application for 30 unstable cases

5.3 Results

Tables below represent the results of one shot controls using response based DTs

tested on 385 cases set. As explained in section 5.1, the DT tree rules were generated

with the training data and 5 different combinations of loss matrix and complexity

costs. Table 5.1 shows the result when control case 1 was applied and Table 5.2

represents the results of application of control case 2.

Utilizing indices like ISBA and its gradient as input to the single DT method, show

to be effective and demonstrate improvement when comparing results with previous

research. But, because the control was applied into too many cases, this method

was not found economical as there is a significant cost allocated with each control

application.
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Fig. 5.2. Number of cases stabilized with control applied at different times

Table 5.1
Results of response based DT method with application of control case
1 to 385 cases

Loss Matrix Complexity Cost Number of Controls

Applied

Number of Cases

Stabilized

No Loss Matrix 0.01 271 39

No Loss Matrix 0.04 256 39

0,10,1,0 0.01 195 34

0,30,1,0 0.02 191 31

0,40,1,0 0.01 130 16
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Table 5.2
Results of response based DT method with application of control case
2 to 385 cases

Loss Matrix Complexity Cost Number of Controls

Applied

Number of Cases

Stabilized

No Loss Matrix 0.01 271 32

No Loss Matrix 0.04 256 28

0,10,1,0 0.01 195 24

0,30,1,0 0.02 191 20

0,40,1,0 0.01 130 2
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6. PROPOSED METHOD USING THREE DECISION

TREES

6.1 Overview

Predicting instability without knowing the time and location of event is not the

best approach for preventing the power system from loss of synchronism. Therefore,

an event detection method using decision trees was developed and combined with an

instability prediction method similar to the one discussed in the previous chapter. In

this combination, event detection was done for all the cases in a set, but instability

prediction was done only for the cases which an event was detected. A third set of

decision tree rules was then developed to select one of the control cases of chapter

5. When an event was detected and instability was predicted for a case, the selected

one shot control was then applied.

6.2 DT1: Event Detection

In this section a set of decision tree rules were developed to detect the time of

the events in the system prior to any check for instability. To train this decision

tree, a set of 284 cases were created. Each case included a single event of fast power

change of either 200 MW, 500 MW, 200 MVAR, or 500 MVAR at the 40th cycle

at each of the 71 load buses in the power system model. The purpose of creating

these cases was to find an event detection threshold that would detect most of the

500 MW/MVAR power changes and not too many of the 200 MW/MVAR ones. If

a threshold was found that would detect all the 500 MW/MVAR events, it would be

capable of detecting all the larger events that might lead into instability. Therefore,

simulations with length of 6 seconds were done on each of these cases and the variables
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V6A, V9ADot, ISBA, and gradient of ISBA were recorded for training. As the 200

MW/MVAR power changes would not affect the stability of the system, it was treated

as a no event. On the other hand, the 500 MW/MVAR power changes would cause

some changes in the system, but might not make the system unstable, so these cases

were treated as events. To develop the event detection rules, the training data was

imported into Rattle with a loss matrix of 0,20,1,0 and a complexity cost of 0.02;

the resulted rules are shown in Figure 6.1. Because the training of the instability

Fig. 6.1. Rules for event detection DT

prediction and control selection decision tress were planned to be done with the set

of 480 cases, the event detection rules were tested on the 480 cases set. The variables

of each time sample were compared with the event detection rules and were classified

as event or no event. The first time that a data sample was classified as event was

the time that the start of event was detected for that case. The resulted thresholds

detected 441 events which included events of all 230 unstable cases of the 480 cases

set. This was an on target result for training of the other two decision trees.
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6.3 DT2: Instability Prediction

As mentioned in the previous section, for training the instability prediction de-

cision tree, simulations were done on the set of 480 cases.The procedure consisted

of an initial classification for every case using the method of chapter 2 where cases

with maximum generator angle difference of larger than 300 degrees were classified

as unstable and vise-versa. Then, for each case, variables and calculated indices of

every time sample were compared with the event detection rules. When an event was

detected for the case, a delay of 4 time cycles (8 time sample points) were allowed for

the event to be over and then training data was collected for 5 sample points. The

4 cycles delay was selected on a trial and error basis with respect to the time events

were detected by the first DT and the length of the events in the cases. With this

delay, for most of the cases, the collected 5 sample points fell after the 40th cycle of

the simulation which was the end of the first event in all simulated cases. The target

value used with this collected post event data was according the initial classification

done in the simulations, target value of 1 for stable cases and target value of 0 for

unstable cases.

Instability prediction rules were then developed by importing the training infor-

mation into Rattle. Details about the complexity cost and loss matrix associated

with DT rules are presented in Table 6.1.

Testing was performed on the 385 cases set such that, for cases with a detected

event, 4 time cycles of wait time were allowed for the event to be over similar to the

training process. After the delay, 5 sample points of test data were each compared

with the instability prediction rules and were classified into two groups of predicted

stable and predicted unstable. Similar to what explained previously, the first time that

a data sample was classified as predicted unstable was the time that the instability was

predicted for that case. A one shot control was applied 6 cycles after the prediction

of instability; this was the earliest time a control could be applied because there was

a delay of 6 cycles for the information to be transferred over the grid.
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Testing on 385 cases set was done once with application of control case1 and once

with control case2. The instability prediction DT was the one that decided on the

number of controls applied. The approach of this research up to this point, where

event detection method was combined with instability prediction for application of

one shot control, is referred to as the 2DTs method in the rest of this report. Table

6.1 represents the results of the 2DTs method.

6.4 DT3: Control Selection

After the 2DTs method was established, the results showed that the cases that

were stabilized by each of the two control cases were not all in common between the

two of them. For instance, line 1) of table 6-1 shows that control case 1 stabilized

27 cases and control case 2 stabilized 19 cases, but details of the results showed that

not all of the 19 cases were included in the 27 cases, meaning that the overall number

of cases stabilized with these two controls was more than 27 cases. This highlighted

a potential chance that if, instead of applying only one of the control cases to every

case, a selection of these two controls was used, the number of stabilized cases could

improve. Therefore, a third set of decision tree rules were developed so that every

case with a detected event could choose between control 1 and control 2 to apply it

when instability was predicted.

Training of this DT, with the 480 cases set, was very similar to training of the in-

stability prediction DT except for the target values. In terms of training data points,

after detection of event, 4 cycles were allowed for the event to be over and then, 5

sample points were collected. In terms of the target value, the purpose was to specifi-

cally project what cases were stabilized with each of the controls. Therefore, training

of the target value was done for each control case independently. For control case 1,

the target value was assigned 1 only when a case was unstable without application

of any control and was stabilized with application of control 1; otherwise the target

value was 0. Similarly, for control case 2, the target value was assigned 1 only when
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a case was unstable without application of any control and was stabilized with ap-

plication of control 2. Two training sets of data were created, one for each control

case, and their rules were developed independently with Rattle. The rules for control

case 1 along with the rules for control case 2 were all used together as the third DT

for control selection. Table 6.2 shows different combinations of complexity cost and

loss matrix used in development of the rules. The control selection DT was tested

Table 6.2
Different combinations of complexity cost and loss matrix used in
development of the control selection rules

Combination Loss Matrix Complexity

a) 0,5,1,0 0.04

b) 0,10,1,0 0.08

c) 0,20,1,0 0.1

on the 385 cases set in a chronological order with the event detection and stability

prediction DTs. During the test, after the detection of an event and a wait time of 8

sample points, 5 sample points of data were compared with the DT rules of control

case 1. For each sample point, according to the rules, an output value of zero or one

was assigned, and then the number of ones was counted out of five. The same process

was done for control case 2 by comparing the five sample points of data with its rules.

The control case that had 3 or more ones out of five was selected to be applied to the

case, if both had at least 3 ones out of five, the control case with maximum number

of ones was selected. Simultaneous with checking the 5 sample points with control

selection rules, the same points were compared with the instability prediction rules

and in case instability was predicted for that simulation, the selected control was

applied 6 cycles after the prediction of instability.
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With the 3DTs method, the overall approach for every case can be summarized

as shown in Figure 1.3. Table 6.3 represents detailed results of the 3DTs method.

6.5 Comparison Between 1DT, 2DT, and 3DT Methods

As explained previously in this report, the goal of this thesis was to find a method

that would reduce the number of controls applied and increase the number of cases

stabilized. Figure 6.2 compares the test results of 1DT, 2DTs, and 3DTs methods on

385 cases set. Comparing the 1DT method, only instability prediction, with the 2DTs

Fig. 6.2. Comparison of the results of the 1DT, 2DTs, and 3DTs
method tested with 385 cases

method, event detection plus instability prediction, the improvements are significant.

In the 1DT method, the control was very trigger happy while only, in average, 13% of
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the controls applied leaded to stabilized cases. On the other hand, the 2DTs method

increased the average ratio of number of stabilized cases to number of controls applied

by 7%. This meant that not only lower number of controls was applied, but even more

cases were stabilized in relation with the number of controls applied.

Comparison of the 2DTs method with the 3DTs method, in which one of the two

control cases was selected, showed even more improvement. Figure 6.2 shows that the

number of controls applied in these two methods was the same; this is because the

instability prediction DT is the one that decides on control application and this DT

stayed the same between these two methods. But, the figure also shows that number

of stabilized cases was increased with the 3DT method. The overall comparison shows

that in the 1 DT method, 13% of the controls applied ended up stabilizing the cases,

where this number was increased to 20% with the 2DTs method while the 3DTs

method improved this number to 24%.

In this thesis, as mentioned before, calculated indices of ISBA and GradISBA

were involved in event detection, instability prediction, and control selection processes

where as in [13], a Curve Fitting Error(CFE) index was calculated and involved in its

2DT method. Figure 6.3 compares the results of this thesis, tested on 385 cases set,

with an approximation of the results of the 2DT method developed in [13] and tested

on 480 cases set. The figure shows that in [13], in average, only 9% of the number

of controls applied resulted in stabilized cases while the 2DT method of this thesis

showed that 20% of its applied controls helped stabilizing cases. Another difference

between the results of this thesis and results of [13] is that the control case used in [13]

included fast power changes on four DC buses of the model while in this thesis, new

control cases were developed which resulted in improved results.
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Fig. 6.3. Comparison between the results of this thesis, tested on 385
cases, with the approximated 2DT results in [13], tested on 480 cases
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7. ROLE OF CONTROL APPLICATION IN

STEADY-STATE ANALYSIS

During the internship at MISO the importance of the after-the fact steady-state

analysis was studied [21].In steady-state condition, it is assumed that all the events

and disturbances are over and the system has settled [22]. The purpose of the steady-

state analysis is to study the impact of the events and the control application on

transmission system facilities under steady-state conditions. This analysis is primarily

done with powerflow analysis.

Therefore, for the power system model of this research, steady-state powerflows

were compared with and without control. For the comparison to be realistic, sim-

ulations with length of 12 seconds were done to allow the system to settle. These

simulations were mainly done on the cases that experienced an event but did not

cause the system to lose its stability. In these cases, the system did not lose its

synchronism either without or with control.

With comparison of the steady-state conditions of these cases, the effect of the

control application was distinguished. When an event happened on the system, even

when it did not cause the system to lose stability, the system settled at a higher

steady-state powerflow without application of control. Whereas with control applica-

tion, the same case experienced lower steady-state powerflow. This effect is shown in

Figures 7.1 to 7.3 where the average “with control steady-state powerflow” and av-

erage “without control steady-state powerflow” on three different transmission lines

were recorded for stable cases of the 385 cases set. The figures show the average pow-

erflow between seconds 10 and 12 of the simulation. The figures represent the fact

that for each case, the post event steady-state powerflow is lowered with application

of control.
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Fig. 7.1. Post event equilibrium in stable cases of the 385 cases set

Fig. 7.2. Post event equilibrium in stable cases of the 385 cases set
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Fig. 7.3. Post event equilibrium in stable cases of the 385 cases set
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8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Maintaining the power system reliability is dependent on the accurate event de-

tection and instability prediction along with application of best possible control. In

this research, the ISBA index was presented as a measurement for overall stress of

the system. This index and indices similar to this were found to be more reliable

than raw system measurements. Also, an event detection method was developed

that detects most of the significant events on the system and does not detect small

changes. This method was combined with the stability prediction method in a way

that when an event was detected, the stability check DT started checking data points

to predict any upcoming instability. A third DT was also developed for selecting a

control case between two available control cases. It was shown that the combination

of event detection with instability prediction and control selection, the 3DT method,

performed better in maintaining the reliability of the power system compared with

the 1DT method which only involved instability prediction with no event detection

or control selection.

8.2 Future Work

Finding a method for detecting the time of an event was a real improvement to

this research. One step further is to find a way to detect not only the time of an event,

but also its location of occurrence. Knowing the location of the event can be helpful

in selection of the control case. Multiple control cases can be developed for different

geographical locations so that in case of event, the control case closest to the event

location could be selected as opposed to selecting general control cases regardless of
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where the event has happened. This idea also includes the fact that creating more

control cases of fast power changes, line power flow changes, and tripping generators

may also help improving the results and accuracy of the method. Another recommen-

dation is to try variables and indices other than the ones used in this thesis and see

how they might help improving the accuracy of event detection, instability prediction

and control selection. Detecting the end of an event can be helpful in optimizing the

timing of the control application, whereas in this research an average of wait time is

allowed for the event to be over.
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APPENDIX: MATLAB CODE FOR POWER SYSTEM

SIMULATIONS

clear all

clc

delete(’C:\Document\Course06\TSAT\WSCC29\Test\swifilebeforecontrol.txt.save’);

delete(’C:\Document\Course06\TSAT\WSCC29\Test\swifileaftercontrol.txt.save’);

delete(’C:\Document\Course06\TSAT\WSCC29\Test\destabilized.txt’)

delete(’C:\Document\Course06\TSAT\WSCC29\Test\Wtrainbeforecontrol.csv’);

delete(’C:\Document\Course06\TSAT\WSCC29\Test\Wtrainaftercontrol.csv’);

Fnamea=’DESCR’;

Fnameb=’NOMOR’;

% Control Case 1

confile1= ’/DISCONNECT GENERATOR

;CANAD G120.0;1 / ’;

confile2= ’ADD ADMITTANCE

;CA230 230 500.0 200.0 MVA /’;

confile3= ’ADD ADMITTANCE

;MONTANA 500 500.0 200.0 MVA /’;

confile4= ’ADD ADMITTANCE

;RINALDI 230 -500.0 -200.0 MVA /’ ;

confile5= ’ADD ADMITTANCE

;SYLMARLA 230 -500.0 -200.0 MVA /’ ;

% Control Case 2

confile6= ’ADD ADMITTANCE

;CELILO 230 500.0 200.0 MVA /’;

confile7= ’ADD ADMITTANCE

;CRAIG 345 500.0 200.0 MVA /’;

confile8= ’ADD ADMITTANCE

;ADELANTO 500 -500.0 -200.0 MVA /’ ;

confile9= ’ADD ADMITTANCE

;SYLMARLA 230 -500.0 -200.0 MVA /’ ;

% Counter for cases after control

itotUnst=0; % counts number of cases which stayed unstable

itotLose=0; % counts number of cases which lost stability

itotStab=0; % counts number of cases which remained stable

itotSave=0; % counts number of cases which were stabilized

addangles=0;
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counter=0;

% initial matrix for required simulation variables/calculated indices for

% training of event detection(284cases) and

% instability prediction rules(480cases)

X1=[0 0 0 0 0];

X2=[0];

% initial matrix for required simulation variables/calculated indices for

%training of control selection rules(480cases)

X3=[0 0 0 0 0];

SS_Nocontrol=[0 0 0];

% initial matrix for steady state powerflow without control

SS_Withcontrol=[0 0 0];

% initial matrix for steady state powerflow with control

% read the file containing cases and finding the number of lines

swifile = textread(’swifilelarge385.txt’,’%s’,’delimiter’,’\n’,’whitespace’,’’);

nline=length(swifile);

nevent=0; % counter for number of cases in the file

%find start and end of each case in swifile

for iline=1:nline;

record = swifile(iline);

record=char(record);

h=findstr(record,Fnamea);

if h==1

flag1=iline;

nevent=nevent+1;

swistart(nevent)=iline;

end

k=findstr(record,Fnameb);

if k==1

flag2=iline;

swistop(nevent)=iline;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% RUN THE EVENT WITH NO CONTROL

for ievent=1:nevent

ievent

%Write the fault2.swi file

fid=fopen(’fault2.swi’,’w+’);

for p=swistart(ievent):swistop(ievent)

swi=cell2mat(swifile(p));

fprintf(fid,’%s\r\n’,swi);

end

fclose(fid);
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clear freq

clear deltat

% time delay because of TSAT liscense limitations

t = timer(’TimerFcn’,@(x,y)disp(’Hello World!’),’StartDelay’,10);

start(t);

wait(t);

% calling TSAT to do the simulation

!C:\dsa_powertools_5_net\tsat\bin\tsat_batch.exe

C:\Document\Course06\TSAT\WSCC29\WECC29.tsa

!C:\dsa_powertools_5_net\tsat\bin\sim2txt WECC29.bin -quan=gen_relang -all >

C:\Document\Course06\TSAT\WSCC29\WECC29GA.txt

!C:\dsa_powertools_5_net\tsat\bin\sim2txt WECC29.bin -quan=bus_va -all >

C:\Document\Course06\TSAT\WSCC29\WECC29BA.txt

!C:\dsa_powertools_5_net\tsat\bin\sim2txt WECC29.bin -quan=line_p -all >

C:\Document\Course06\TSAT\WSCC29\WECC29PF.txt

%%%%%%calculate maximum generator angle difference and write the results file

BaseFile = ’WECC29GA’;

% Developed function to read the generator angle data

R = get_data(BaseFile);

% Transform your cell array into an ordinary matrix

A = R{1};

for i = 2 : 30

A = [A R{i}];

end

% Find the maximum generator angle difference in the simulated case

B=size(A);

C=zeros(B(1,1),1);

for M=(1:B(1,1))

mx=max(A(M,:));

mn=min(A(M,:));

diff=abs(mx-mn);

C(M,1)=diff;

M=M+1;

end

maxdiff=max(C);

% the case is stable if the maximum generator angle difference is

% smaller than 300 deg.

if maxdiff<300

flag=1;

istab(ievent)=1;

end

% the case is unstable if the maximum generator angle difference is

% larger than 300 deg.

if maxdiff>300
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flag=0 ;

istab(ievent)=0;

end

%%%%%calculate successive bus angle differences and freq

%%%%%(set velocity for first sample to be zero)

BaseFile = ’WECC29BA’;

%Use the developed function to read bus voltage angle data

R = get_data2(BaseFile);

%Transform the cell array into an ordinary matrix

D = R{1};

for i = 2 : 18

D = [D R{i}];

end

E=size(D);

nrec=E(1,1);

bus_angles=D;

clear BaseFile R

BaseFile = ’WECC29PF’;

%Use the developed function to read line powerflow data (% this was

%used for 12 secs long simulations to find the steady state powerflow)

R = get_data3(BaseFile);

%Transform the cell array into an ordinary matrix

PF = R{1};

for i = 2 : 4

PF = [PF R{i}];

end

% To unwrap the BAs

% If current - previous ~ 360 then addangles = addangles - 360

% newbus_angles(irec,ind1) equals sum

% bus_angles(irec,ind1) + addangles(irec,ind1)

for ind1=(2:18)%col

newbus_angles(1,ind1)=bus_angles(1,ind1);

addangles(1,ind1)=0;

for irec=(2:nrec)%row

diff=bus_angles(irec,ind1)-bus_angles(irec-1,ind1);

addangles(irec,ind1)=addangles(irec-1,ind1);

if diff<=-330

addangles(irec,ind1)=addangles(irec-1,ind1)+360;

end

if diff>=330

addangles(irec,ind1)=addangles(irec-1,ind1)-360;

end

diff=bus_angles(irec,ind1)+addangles(irec,ind1);

newbus_angles(irec,ind1)=diff;
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end

end

% Make one bus be the reference angle (17th bus was selected)

% (the first column of data was time and the BA data started from column2)

for irec=(1:nrec)%rows

coa(irec)=0;

for ind1=(2:18)%columns

diff=newbus_angles(irec,ind1)-newbus_angles(irec,18);

newbus_angles(irec,ind1)=diff;

coa(irec)=coa(irec)+newbus_angles(irec,ind1)/17;

% calculating the center of angle

end

end

% calculate the sga which is really sba

% calculate the isga which is really isba

sga(1)=32;

isga(1)=sga(1);

for irec=(2:nrec)%rows

sga(irec)=0;

for ind1=(2:18)%columns

diff=newbus_angles(irec,ind1)-coa(irec);

sga(irec)=sga(irec)+diff*diff/17;

end

sga(irec)=sqrt(sga(irec));

sga(1)=sga(2);

isga(1)=sga(1);

isga(irec)=isga(irec-1)+(1/120)*6*(sga(irec-1)-isga(irec-1));

end

gradisga=gradient(isga);

% to calculate frequency (set velocity for first sample to be zero)

t=bus_angles(:,1);

newbus_angles(:,1)=t;

freq=zeros(E(1,1),E(1,2));

for irec=(2:nrec)

for ind1=(2:18)

% finding the BA difference b/w two consecutive points

diff=newbus_angles(irec,ind1)-newbus_angles(irec-1,ind1);

% to avoid division by zero

deltat1=(t(irec)-t(irec-1));

deltat2=(0.1*(t(9)-t(1)));

deltat=max(deltat1,deltat2);

f=diff/deltat;

freq(irec,ind1)=f;
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end

end

freq(:,1)=t;

%(set velocity for first sample to be zero)

freq(1,:)=zeros(1,18);

Fname5=’.csv’;

[r c]=find(freq(:,2:end)>=1);

evdet=min(r);

%V6A and V9Adot, bus voltage angle of the 6th bus and the bus frequency

%of the 9th bus (the first column of data is time)

V6A=newbus_angles(:,7);

V9Adot=freq(:,10);

y=size(V6A);

if flag==0;

istabb=zeros(y(1,1),1); %assigning target value to each sample point.

end

if flag==1;

istabb=ones(y(1,1),1); %assigning target value to each sample point.

end

iEVE(ievent)=0;

% matrix that stores the start of the event for each case

icontrol(ievent)=0;

% matrix that stores the sample point of instability prediction for each case

iCNTRL(ievent)=0;

% matrix that stores the sample point that one of the control cases were selected

%for each case

cntrl(ievent)=0;

% matrix that stores which control case was selected for each case

maxxx(ievent)=0;

% this matrix is later used in the selection of control case

% (stores the number of ones over five for the control case with larger number,

% for each case)

% RULES FOR EVENT DETECTION

ipredEVE=zeros(y(1,1),1);

% comparing the variables and indices with the rules and classifying as

% "event" or "no event"

for irec=(1:nrec)

if gradisga(irec)>=-0.01899 && isga(irec)<35.81

if gradisga(irec)<0.02631

ipredEVE(irec)=1;

end

end

if gradisga(irec)<0.02631 && gradisga(irec)<-0.01899

if isga(irec)<32.11 && isga(irec)<35.81
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ipredEVE(irec)=1;

end

end

if (ipredEVE(irec)==0 && iEVE(ievent)==0)

iEVE(ievent)=irec;

end

end

% X1 is the matrix that stores the without control variables and indices

% This matrix is later saved to a file as the training data for

% instability prediction

% Data for each new simulation is appended to this matrix

X1=[X1;istabb(iEVE(ievent)+16:iEVE(ievent)+20) V6A(iEVE(ievent)+16:iEVE(ievent)+20)

V9Adot(iEVE(ievent)+16:iEVE(ievent)+20) isga(iEVE(ievent)+16:iEVE(ievent)+20)’

gradisga(iEVE(ievent)+16:iEVE(ievent)+20)’ ];

% for training of the event detection DT the X1 used is as the next line

% X1=[X1;istabb V6A V9Adot isga’ gradisga’ ];

% creating a file to save X1 at the end of the code

Fname9=’C:\Document\Course06\TSAT\WSCC29\Test\Wtrainbeforecontrol’;

Fname10=[Fname9 Fname5];

% %%% RULES FOR INSTABILITY PREDICTION

ipred=zeros(y(1,1),1);

% Different instability prediction rule sets (1 to 5)

%created with various combinations of loss matrix and complexity cost

% One rule set was used at a time

% The chech for instability was done only if an event was detected

if iEVE(ievent)>0

% there is a wait time of 4 cylces, 8 sample points, after the event

% detection. Then 5 sample points of data are compared with the

% rules

for irec=(iEVE(ievent)+16:iEVE(ievent)+20)

%1)

if V9Adot(irec)<3.694 && gradisga(irec)<0.08214

if V6A(irec)>=58.44

ipred(irec)=1;

end

end

if gradisga(irec)<0.08214 && V6A(irec)<38.49

if V9Adot(irec)<25.48

ipred(irec)=1;

end

end

% %2)

% if gradisga(irec)< 0.08333 && V6A(irec)>=38.49
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% if V9Adot(irec)<3.694 && V9Adot(irec)>=-14.05

% ipred(irec)=1;

% end

% end

% if gradisga(irec)<0.08333 && V9Adot(irec)<25.48

% if V6A(irec)<38.49

% ipred(irec)=1;

% end

% end

% if gradisga(irec)<0.08333 && V9Adot(irec)<25.48

% if V6A(irec)<38.49 && isga(irec)>=33.66

% if V9Adot(irec)>=3.694

% ipred(irec)=1;

% end

% end

% end

% if V9Adot(irec)>=25.48 && gradisga(irec)<0.0261

% ipred(irec)=1;

% end

%3

% if gradisga(irec)<0.08333

% ipred(irec)=1;

% end

% if gradisga(irec)>=0.08333 && V9Adot(irec)<54.97

% if V6A(irec)<38.59

% ipred(irec)=1;

% end

% end

%4

% if gradisga(irec)<0.08214 && V9Adot(irec)<25.48

% if V6A(irec)<38.49

% ipred(irec)=1;

% end

% end

% if V9Adot(irec)<25.48 && V6A(irec)>=58.44

% if gradisga(irec)<0.08214

% ipred(irec)=1;

% end

% end

%5

% if V9Adot(irec)<25.48 && gradisga(irec)<0.08214

% ipred(irec)=1;

% end

if (ipred(irec)==0 && icontrol(ievent)==0)
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icontrol(ievent)=irec;

end

end

end

% if an instability is predicted for a stable case its steady state

% powerflow is recorded. (b/w 10th and 12th secs)

% This data will then be compared with the steady state powerflow with control

if icontrol(ievent)>0 && istab(ievent)==1

r1=1200;

r2=find(PF(:,1)==max(PF(:,1)));

SS_Nocontrol=[SS_Nocontrol;mean(PF((r1:r2),2)),mean(PF((r1:r2),3)),

mean(PF((r1:r2),4))];

end

% RULES FOR CONTROL SELECTION

% 3 different rule sets were created for various loss matrix and

% complexity cost. Rule sets a, b, and c. One rule set at a time

if icontrol(ievent)>0

% This is done only for cases with event detected and instability

% predicted here to save the time of simulation, but in real time,

% for every case with detected event a control should be selected so

% that incase the instability is predicted, we know which control to

% apply without any further delay

ipredCNTRL6=zeros(y(1,1),1);

ipredCNTRL98=zeros(y(1,1),1);

i6=zeros(1,nrec);

i98=zeros(1,nrec);

% after the event detection and 8 smaple points of wait time, 5

% sample points were compared with the control selection rules

for irec=(iEVE(ievent)+16:iEVE(ievent)+20)

i6_a=0;

i98_a=0;

% a)

if V9Adot(irec)>=16.15 && V6A(irec)>=32.31

if V9Adot(irec)<85.66

ipredCNTRL6(irec)=1;

% each sample point is assignd a 0 or one

i6_a(1)=(sum(ipredCNTRL6((irec-5):irec)))/5;

% ratio of ones over 5 is calculated

end

end

i6(irec)=max(i6_a); % maximum ratio for control case 1 is found

if isga(irec)<32.45 && V9Adot(irec)<49.08

if gradisga(irec)>=-0.0006506 && gradisga(irec)<0.04761

ipredCNTRL98(irec)=1;
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i98_a(1)=(sum(ipredCNTRL98((irec-5):irec)))/5;

end

end

if gradisga(irec)>=-0.0006506 && gradisga(irec)<0.04761

if V9Adot(irec)<-10.28 && isga(irec)>=32.45

ipredCNTRL98(irec)=1;

i98_a(2)=(sum(ipredCNTRL98((irec-5):irec)))/5;

end

end

if gradisga(irec)<0.04761 && V9Adot(irec)<49.08

ipredCNTRL98(irec)=1;

i98_a(3)=(sum(ipredCNTRL98((irec-5):irec)))/5;

end

i98(irec)=max(i98_a);% maximum ratio for control case 2 is found

%b

% if V9Adot(irec)>=16.15

% ipredCNTRL6(irec)=1;

% i6_a(1)=(sum(ipredCNTRL6((irec-5):irec)))/5;

% end

% i6(irec)=max(i6_a);

% if V9Adot(irec)<49.08 && gradisga(irec)>=-0.0006506

% ipredCNTRL98(irec)=1;

% i98_a(1)=(sum(ipredCNTRL98((irec-5):irec)))/5;

% end

% i98(irec)=max(i98_a);

%c

% if V9Adot(irec)>=16.15

% ipredCNTRL6(irec)=1;

% i6_a(1)=(sum(ipredCNTRL6((irec-5):irec)))/5;

% end

% if V9Adot(irec)<16.15 && gradisga(irec)>=0.04508

% ipredCNTRL6(irec)=1;

% i6_a(2)=(sum(ipredCNTRL6((irec-5):irec)))/5;

% end

% i6(irec)=max(i6_a);

% if V9Adot(irec)<49.08 && gradisga(irec)>=-0.0006506

% ipredCNTRL98(irec)=1;

% i98_a(1)=(sum(ipredCNTRL98((irec-5):irec)))/5;

% end

% i98(irec)=max(i98_a);

[maxmag cntrlcase]=max([i6(irec) i98(irec)]);

% maximum ratio b/w two control cases is found

% the point that the maximum calculated ratio is larger than 0.6

% meaning that at least 3 out of five points were assigned
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% one,is the point that one control case is selected based on

if (maxmag>=0.6 && iCNTRL(ievent)==0)

iCNTRL(ievent)=irec;

cntrl(ievent)=cntrlcase;

maxxx(ievent)=maxmag;

end

clear i6_a i98_a

end

% if for a case with detected instability, all five sample points

% are compared and no control was selcted,then control case 1 is

% automatically selected

if iCNTRL(ievent)==0

counter=counter+1;

cntrl(ievent)=1;

iCNTRL(ievent)=icontrol(ievent);

end

end

delete(’WECC29BA.txt’)

delete(’WECC29GA.txt’)

delete(’WECC29PF.txt’)

clear istabb V6A V9Adot isga gradisga varV6A varV9Adot

clear bus_angles newbus_angles freq t D PF i6 i98

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% RUN THE EVENT WITH CONTROL

%write the fault2.swi with control

fid=fopen(’fault2.swi’,’w+’);

for p=swistart(ievent):swistop(ievent)-1

swi1=cell2mat(swifile(p));

fprintf(fid,’%s\r\n’,swi1);

end

% if instability predicted, control lines added to swifile

if icontrol(ievent)>0

ncyc=6+icontrol(ievent)/2;

% 6 cylce is the time needed for the information to transfer

fprintf(fid,’AT TIME %4.0f CYCLES / \r\n’,ncyc);

%fprintf(fid,’AT TIME 120 CYCLES / \r\n’);

if cntrl(ievent)==1

fprintf(fid,’%s\r\n’,confile1);

fprintf(fid,’%s\r\n’,confile2);

fprintf(fid,’%s\r\n’,confile3);

fprintf(fid,’%s\r\n’,confile4);

fprintf(fid,’%s\r\n’,confile5);

end
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if cntrl(ievent)==2

fprintf(fid,’%s\r\n’,confile6);

fprintf(fid,’%s\r\n’,confile7);

fprintf(fid,’%s\r\n’,confile8);

fprintf(fid,’%s\r\n’,confile9);

end

end

q=swistop(ievent);

swi2=cell2mat(swifile(q));

fprintf(fid,’%s\r\n’,swi2);

fclose(fid);

clear freq

clear deltat

%time delay because of TSAT liscense limitations

t = timer(’TimerFcn’,@(x,y)disp(’Hello World!’),’StartDelay’,15);

start(t);

wait(t);

% Calling TSAT to do the simulation

!C:\dsa_powertools_5_net\tsat\bin\tsat_batch.exe

C:\Document\Course06\TSAT\WSCC29\WECC29.tsa

!C:\dsa_powertools_5_net\tsat\bin\sim2txt WECC29.bin -quan=gen_relang -all >

C:\Document\Course06\TSAT\WSCC29\WECC29GA.txt

!C:\dsa_powertools_5_net\tsat\bin\sim2txt WECC29.bin -quan=bus_va -all >

C:\Document\Course06\TSAT\WSCC29\WECC29BA.txt

!C:\dsa_powertools_5_net\tsat\bin\sim2txt WECC29.bin -quan=line_p -all >

C:\Document\Course06\TSAT\WSCC29\WECC29PF.txt

%calculate maximum generator angle difference and write the results file

BaseFile = ’WECC29GA’;

%Use the developed function to read generator angle data

R = get_data(BaseFile);

%Transform your cell array into an ordinary matrix

A = R{1};

for i = 2 : 30

A = [A R{i}];

end

% Find the maximum generator angle difference in the simulated case

B=size(A);

C=zeros(B(1,1),1);

for M=(1:B(1,1))

mx=max(A(M,:));

mn=min(A(M,:));

diff=abs(mx-mn);

C(M,1)=diff;

M=M+1;
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end

maxdiff=max(C);

% the case is stable with control if the maximum generator angle

% difference is smaller than 300 deg.

if maxdiff<300

flag=1;

istab(ievent)=1;

end

% the case is unstable with control if the maximum generator angle

% difference is larger than 300 deg.

if maxdiff>300

flag=0 ;

istab(ievent)=0;

end

%%%%%calculate successive bus angle differences and freq

%%%%%(set velocity for first sample to be zero)

BaseFile = ’WECC29BA’;

% Use the developed function to read bus voltage angle data

R = get_data2(BaseFile);

% Transform the cell array into an ordinary matrix

D = R{1};

for i = 2 : 18

D = [D R{i}];

end

E=size(D);

nrec=E(1,1);

bus_angles=D;

clear BaseFile R

BaseFile = ’WECC29PF’;

%Use the developed function to read line powerflow data (% this was

%used for 12 secs long simulations to find the steady state powerflow)

R = get_data3(BaseFile);

%Transform the cell array into an ordinary matrix

PF = R{1};

for i = 2 : 4

PF = [PF R{i}];

end

if icontrol(ievent)>0

if (istab(ievent)==1 && istabnew(ievent)==1)

rr1=1200;

rr2=find(PF(:,1)==max(PF(:,1)));

SS_Withcontrol=[SS_Withcontrol;mean(PF((rr1:rr2),2)),mean(PF((rr1:rr2),3)),

mean(PF((rr1:rr2),4))];
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end

end

% to unwrap the BAs

% If current - previous ~ 360 then addangles = addangles - 360

% newbus_angles(irec,ind1) equals sum

% bus_angles(irec,ind1) + addangles(irec,ind1)

for ind1=(2:18)%col

newbus_angles(1,ind1)=bus_angles(1,ind1);

addangles(1,ind1)=0;

for irec=(2:nrec)%row

diff=bus_angles(irec,ind1)-bus_angles(irec-1,ind1);

addangles(irec,ind1)=addangles(irec-1,ind1);

if diff<=-330

addangles(irec,ind1)=addangles(irec-1,ind1)+360;

end

if diff>=330

addangles(irec,ind1)=addangles(irec-1,ind1)-360;

end

diff=bus_angles(irec,ind1)+addangles(irec,ind1);

newbus_angles(irec,ind1)=diff;

end

end

% Make one bus be the reference angle (17th bus was selected)

% (the first column of data was time and the BA data started from column2)

for irec=(1:nrec)%rows

coa(irec)=0;

for ind1=(2:18)%columns

diff=newbus_angles(irec,ind1)-newbus_angles(irec,18);

newbus_angles(irec,ind1)=diff;

coa(irec)=coa(irec)+newbus_angles(irec,ind1)/17;

end

end

% calculate the sga which is really sba

% calculate the isga which is really isba

sga(1)=32;

isga(1)=sga(1);

for irec=(2:nrec)%rows

sga(irec)=0;

for ind1=(2:18)%columns

diff=newbus_angles(irec,ind1)-coa(irec);

sga(irec)=sga(irec)+diff*diff/17;

end

sga(irec)=sqrt(sga(irec));
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sga(1)=sga(2);

isga(1)=sga(1);

isga(irec)=isga(irec-1)+(1/120)*6*(sga(irec-1)-isga(irec-1));

end

gradisga=gradient(isga);

% to calculate frequency (set velocity for first sample to be zero)

t=bus_angles(:,1);

newbus_angles(:,1)=t;

freq=zeros(E(1,1),E(1,2));

for irec=(2:nrec)

for ind1=(2:18)

% finding the BA difference b/w two consecutive points

diff=newbus_angles(irec,ind1)-newbus_angles(irec-1,ind1);

% to avoid division by zero

deltat1=(t(irec)-t(irec-1));

deltat2=(0.1*(t(9)-t(1)));

deltat=max(deltat1,deltat2);

f=diff/deltat;

freq(irec,ind1)=f;

end

end

freq(:,1)=t;

freq(1,:)=zeros(1,18);

Fname5=’.csv’;

%V6A and V9Adot, bus voltage angle of the 6th bus and the bus frequency

%of the 9th bus (the first column of data is time)

V6A=newbus_angles(:,7);

V9Adot=freq(:,10);

y=size(V6A);

if flag==0;

istabb=zeros(y(1,1),1);%assigning target value to each sample point.

end

if flag==1;

istabb=ones(y(1,1),1);%assigning target value to each sample point.

end

newtarget=zeros(y(1,1),1);

% if a case was unstable without control and was stabilized with

% application of one of the control cases,

%we want the target value tobe one for that and zero at all other time

if (istab(ievent)==0 && istabnew(ievent)==1)

newtarget=ones(y(1,1),1);

end

if iEVE(ievent)>0

X2=[X2;newtarget(iEVE(ievent)+16:iEVE(ievent)+20)];



62

% X2 is the matrix that stores the newtarget value

% This matrix is later saved to a file along with a part of X1 as the

% training data for control selection DT

% Data for each new simulation is appended to this matrix

Fname11=’C:\Document\Course06\TSAT\WSCC29\Test\WtrainControl98’;

Fname12=[Fname11 Fname5];

end

%counts cases stabilized with control

if (istab(ievent)==0 && istabnew(ievent)==1)

itotSave=itotSave+1;

end

%counts cases lost stability with control

if (istab(ievent)==1 && istabnew(ievent)==0)

itotLose=itotLose+1;

end

%counts cases remained stable with control

if (istab(ievent)==1 && istabnew(ievent)==1)

itotStab=itotStab+1;

end

%counts cases remained unstable with control

if (istab(ievent)==0 && istabnew(ievent)==0)

itotUnst=itotUnst+1;

end

clear bus_angles newbus_angles freq

delete(’WECC29BA.txt’)

delete(’WECC29GA.txt’)

delete(’WECC29PF.txt’)

clear istabb V6A V9Adot gradisga A isga PF

end

%Writes the results to a file

fid4=fopen(’C:\Document\Course06\TSAT\WSCC29\Test\destabilized.txt’,’a+’);

fprintf(fid4,’EVENTS STABILIZED %4.0f\r\n’,itotSave)

fprintf(fid4,’EVENTS DESTABILIZED %4.0f\r\n’,itotLose)

fprintf(fid4,’EVENTS KEEP STABLE %4.0f\r\n’,itotStab)

fprintf(fid4,’EVENTS KEEP UNSTABLE %4.0f\r\n’,itotUnst)

fclose(fid4);

% writes X1 to a file

fid2=fopen(Fname10,’w+’);

fprintf(fid2,’{istabb},{V6A},{V9Adot},{isga},{gradisga},{varV6A},{varV9Adot}\n’);

dlmwrite(Fname10,X1,’-append’)

fclose(fid2);

% X3 is the same as X1 for instability prediction except for its target

% value

X3=[X2 X1(:,2:5)];
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fid6=fopen(Fname12,’w+’);

fprintf(fid6,’{newtarget},{V6A},{V9Adot},{isga},{gradisga}\n’);

dlmwrite(Fname12,X3,’-append’)

fclose(fid6);

%%%%%%%%%%%%%%%%

%END OF THE CODE

%%%%%%%%%%%%%%%%

%This section of the code is for the method of chapter 2

% clear all

% clc

% close all

% Fnamea=’DESCR’;

% Fnameb=’NOMOR’;

% X1=[0 0 0];

% %maxGA=zeros(1000,390);

% swifile = textread(’swifilelarge385.txt’,’%s’,’delimiter’,’\n’,’whitespace’,’’);

% nline=length(swifile);

% nevent=0;

% %find event locations in swifile

% for iline=1:nline;

% record = swifile(iline);

% record=char(record);

% h=findstr(record,Fnamea);

% if h==1

% flag1=iline;

% nevent=nevent+1;

% swistart(nevent)=iline;

% end

% k=findstr(record,Fnameb);

% if k==1

% flag2=iline;

% swistop(nevent)=iline;

% end

% end

% YY=zeros(nevent,1);

% s=zeros(605,385);

% %%% RUN THE EVENT WITH NO CONTROL

% for ievent=1:nevent

% ievent

% fid=fopen(’fault2.swi’,’w+’);

% p=swistart(ievent);
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% swi=cell2mat(swifile(p));

% fprintf(fid,’%s\r\n’,swi);

% fprintf(fid,’SIMULATION 6.0 SECONDS/ \r\n’)

% for p=swistart(ievent)+2:swistop(ievent)

% swi=cell2mat(swifile(p));

% fprintf(fid,’%s\r\n’,swi);

% end

% fclose(fid);

% clear freq

% clear deltat

% t = timer(’TimerFcn’,@(x,y)disp(’Hello World!’),’StartDelay’,10);

% start(t);

% wait(t);

% !C:\dsa_powertools_5_net\tsat\bin\tsat_batch.exe

% C:\Document\Course06\TSAT\WSCC29\WECC29.tsa

% !C:\dsa_powertools_5_net\tsat\bin\sim2txt WECC29.bin -quan=gen_relang -all >

% C:\Document\Course06\TSAT\WSCC29\WECC29GA.txt

% !C:\dsa_powertools_5_net\tsat\bin\sim2txt WECC29.bin -quan=bus_va -all >

% C:\Document\Course06\TSAT\WSCC29\WECC29BA.txt

%

% %%%%%%calculate maximum generator angle difference

% BaseFile = ’WECC29GA’;

% % Use the developed function to read data

% R = get_data(BaseFile);

% % Transform your cell array into an ordinary matrix

% A = R{1};

% for i = 2 : 30

% A = [A R{i}];

% end

% B=size(A);

% C=zeros(B(1,1),1);

% for M=(1:B(1,1))

% mx=max(A(M,:));

% mn=min(A(M,:));

% diff(M)=abs(mx-mn);

% C(M,1)=diff(M);

% %M=M+1;

% end

% t=A(:,1);

% % plot(t,diff)

% % plot(t,A);

% % ylim([150 550])

% % axis manual

% % hold on
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% % figure

% % maxGA(1:length(C),ievent)=C;

% maxdiff=max(C);

% if maxdiff<=500

% flag=1;

% istab(ievent)=1;

% S1=find(A(:,1)==5);

% s(1:S1,ievent)=C(1:S1);

% maxdiff1=max(C(1:S1));

% YY(ievent)=maxdiff1;

% end

% if maxdiff>500

% flag=0 ;

% istab(ievent)=0;

% end

% if maxdiff<=500

% %%%%%%calculate successive bus angle differences and freq

% %%%%%%(set velocity for first sample to be zero)

% BaseFile = ’WECC29BA’;

% % Use the developed function to read data

% R = get_data2(BaseFile);

% % Transform the cell array into an ordinary matrix

% D = R{1};

% for i = 2 : 18

% D = [D R{i}];

% end

% E=size(D);

% nrec=E(1,1);

% bus_angles=D;

% %If current - previous ~ 360 then addangles = addangles - 360

% % newbus_angles(irec,ind1) equals sum

% % bus_angles(irec,ind1) + addangles(irec,ind1)

% for ind1=(2:18)%col

% newbus_angles(1,ind1)=bus_angles(1,ind1);

% addangles(1,ind1)=0;

% for irec=(2:nrec)%row

% diff=bus_angles(irec,ind1)-bus_angles(irec-1,ind1);

% addangles(irec,ind1)=addangles(irec-1,ind1);

% if diff<=-330

% addangles(irec,ind1)=addangles(irec-1,ind1)+360;

% end

% if diff>=330

% addangles(irec,ind1)=addangles(irec-1,ind1)-360;

% end
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% diff=bus_angles(irec,ind1)+addangles(irec,ind1);

% newbus_angles(irec,ind1)=diff;

% end

% end

% % Make one bus be the reference angle

% for irec=(1:nrec)%rows

% coa(irec)=0;

% for ind1=(2:18)%columns

% diff=newbus_angles(irec,ind1)-newbus_angles(irec,18);

% newbus_angles(irec,ind1)=diff;

% coa(irec)=coa(irec)+newbus_angles(irec,ind1)/17;

% end

% end

% %calculate the isga which is really isba

% sga(1)=32;

% isga(1)=sga(1);

% for irec=(2:nrec)%rows

% sga(irec)=0;

% for ind1=(2:18)%columns

% diff=newbus_angles(irec,ind1)-coa(irec);

% sga(irec)=sga(irec)+diff*diff/17;

% end

% sga(irec)=sqrt(sga(irec));

% sga(1)=sga(2);

% isga(1)=sga(1);

% isga(irec)=isga(irec-1)+(1/120)*6*(sga(irec-1)-isga(irec-1));

% end

% % t=D(:,1);

% % plot(t,isga)

% % ylim([150 550])

% % axis manual

% % hold on

% % S2=find(D(:,1)==10);

% % maxisga1=max(isga(1:S2));

% % ZZ(ievent)=maxisga1;

% clear t isga

% end

% delete(’WECC29BA.txt’)

% delete(’WECC29GA.txt’)

% clear istab istabb V6A V9Adot diff

% clear bus_angles newbus_angles freq t A D B R E

% end

% title(’isba’)

% figure
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% %%%%%%%%% To find the GA threshold of all%%%%%%%%%%%%

% Yth=100:25:500;

% for mm=1:length(Yth)

% YYY(mm)=max(YY(YY<Yth(mm)));

% end

% line(Yth,YYY);

% title(’GAthreshold’)

% figure

% for nn=(2:length(YYY))

% if YYY(nn)==YYY(nn-1)

% GAThreshold1=YYY(nn);

% end

% end

% %GAThreshold1

% %or using the tabulate

% Table=tabulate(YYY);

% TT=find(Table(:,2)==max(Table(:,2)));

% GAThreshold2=Table(TT,1);

% Fname19=’C:\Document\Course06\TSAT\WSCC29\Test\maxdiff_6s_6s’;

% Fname20=[Fname19 Fname5];

% fid20=fopen(Fname20,’w+’);

% fprintf(fid20,’{maxdiff in 6s}\n’);

% dlmwrite(Fname20,YY,’-append’)

% fclose(fid20);

% %%%%%%%%%%%%%%%%%%%%%to find the isba threshold

% Zth=35:5:100;

% for mm=1:length(Zth)

% ZZZ(mm)=max(ZZ(ZZ<Zth(mm)));

% end

% line(Zth,ZZZ);

% title(’isbathreshold’)

% for nn=(2:length(ZZZ))

% if ZZZ(nn)==ZZZ(nn-1)

% isbaThreshold1=ZZZ(nn);

% end

% end

% %isbaThreshold1

% %or using the tabulate

% TableZ=tabulate(ZZZ);

% TTZ=find(TableZ(:,2)==max(TableZ(:,2)));

% isbaThreshold2=TableZ(TTZ,1);

% Fname21=’C:\Document\Course06\TSAT\WSCC29\Test\isba_8s_6s’;

% Fname22=[Fname21 Fname5];

% fid21=fopen(Fname22,’w+’);
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% fprintf(fid21,’{maxisba in 6s}\n’);

% dlmwrite(Fname22,ZZ,’-append’)

% fclose(fid21);

% %%%%%%%%%%%%%

% clear YYY

% %Histogram

% Yhist=100:10:500;

% z=0;

% for ievent=1:nevent

% for mm=1:length(Yhist)

% YYY(ievent,mm)=length(find(s(:,ievent)<=Yhist(mm)))-z;

% z=sum(YYY(ievent,:)’);

% end

% z=0;

% end

% j=[Yhist’ (sum(YYY))’];

% bar(j(2:end,1),j(2:end,2))

% title(’Histogram’)

% set(gca,’FontSize’,12);

% ylabel(’NUMBER OF POINTS’)

% xlabel(’GA’)
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