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ABSTRACT 
 
 
 

Wassall, Cynthia D. Ph.D., Purdue University, December 2012.   Reactive Oxygen 
Species’ Role in Endothelial Dysfunction by Electron Paramagnetic Resonance.  
Major Professor: Marvin D. Kemple. 
 
 

The endothelium is a single layer of cells lining the arteries and is involved in 

many physiological reactions which are responsible for vascular tone.  Free radicals are 

important participants in these chemical reactions in the endothelium.  Here we quantify 

free radicals, ex vivo, in biological tissue with continuous wave electron paramagnetic 

resonance (EPR).  In all of the experiments in this thesis, we use a novel EPR spin 

trapping technique that has been developed for tissue segments.  EPR spin trapping is 

often considered the ‘gold standard’ in reactive oxygen species (ROS) detection because 

of its sensitivity and non-invasive nature.  In all experiments, tissue was placed in 

physiological saline solution with 190-mM PBN (N-tert-butyl-α-phenylnitrone), 10% by 

volume dimethyl-sulphoxide (DMSO) for cryopreservation, and incubated in the dark for 

between 30 minutes up to 2 hours at 37°C while gently being stirred.  Tissue and 

supernatant were then loaded into a syringe and frozen at -80°C until EPR analysis.  In 

our experiments, the EPR spectra were normalized with respect to tissue volume. 

Conducting experiments at liquid nitrogen temperature leads to some 

experimental advantages.  The freezing of the spin adducts renders them stable over a 

longer period, which allows ample time to analyze tissue samples for ROS.  The 



xx 
 

dielectric constant of ice is greatly reduced over its liquid counterpart; this property of 

water enables larger sample volumes to be inserted into the EPR cavity without 

overloading it and leads to enhanced signal detection.  Due to Maxwell-Boltzmann 

statistics, the population difference goes up as the temperature goes down, so this 

phenomenon enhances the signal intensity as well.  

With the ‘gold standard’ assertion in mind, we investigated whether slicing tissue 

to assay ROS that is commonly used in fluorescence experiments will show more free 

radical generation than tissue of a similar volume that remains unsliced.  Sliced tissue 

exhibited a 76% increase in ROS generation; this implies that higher ROS concentrations 

in sliced tissue indicate extraneous ROS generation not associated with the ROS stimulus 

of interest.  

 We also investigated the role of ROS in chronic flow overload (CFO).  Elevation 

of shear stress that increases production of vascular ROS has not been well investigated.  

We hypothesize that CFO increases ROS production mediated in part by NADPH 

oxidase, which leads to endothelial dysfunction.  ROS production increased threefold in 

response to CFO. The endothelium dependent vasorelaxation was compromised in the 

CFO group. Treatment with apocynin significantly reduced ROS production in the vessel 

wall, preserved endothelial function, and inhibited expressions of p22/p47phox and 

NOX2/NOX4.  The present data implicate NADPH oxidase produced ROS and eNOS 

uncoupling in endothelial dysfunction at 1 wk of CFO. 

In further work, a swine right ventricular hypertrophy (RVH) model induced by 

pulmonary artery (PA) banding was used to study right coronary artery (RCA) 

endothelial function and ROS level.  Endothelial function was compromised in RCA of 
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RVH as attributed to insufficient endothelial nitric oxide synthase cofactor 

tetrahydrobiopterin.  In conclusion, stretch due to outward remodeling of RCA during 

RVH (at constant wall shear stress), similar to vessel stretch in hypertension, appears to 

induce ROS elevation, endothelial dysfunction, and an increase in basal tone. 

Finally, although hypertension-induced vascular stiffness and dysfunction are 

well established in patients and animal models, we hypothesize that stretch or distension 

due to hypertension and outward expansion is the cause of endothelial dysfunction 

mediated by angiotensin II type 1 (AT1) receptor in coronary arteries.  The expression 

and activation of AT1 receptor and the production of ROS were up regulated and 

endothelial function deteriorated in the RCA.  The acute inhibition of AT1 receptor and 

NADPH oxidase partially restored the endothelial function.  Stretch or distension 

activates the AT1 receptor which mediates ROS production; this collectively leads to 

endothelial dysfunction in coronary arteries. 
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CHAPTER 1: REACTIVE OXYGEN SPECIES IN THE ENDOTHELIUM 
 

Reactive oxygen species (ROS) play important roles in biological systems.  Many 

ROS possess an unpaired electron which causes them to be highly reactive in collisions 

or interactions with other molecules.  Such species are referred to as free radicals.  

Superoxide anion, hydroxyl radical, nitric oxide (NO) and lipid radicals such as peroxyl 

and methyl radicals, are some examples of these molecules (Figure 1.1).  Some ROS do 

not possess unpaired electrons but are oxidizing agents nonetheless; two important 

examples of these types of molecules are peroxynitrite (NOO-) and hydrogen peroxide 

(H2O2).  In general ROS are highly reactive and are essential elements in many 

physiological processes. 

 Oxygen free radicals as well as other reactive species are continually generated in 

vivo as a consequence of energy metabolism [1].  Although these free radicals have 

extremely short lifetimes, they are capable of extensive cellular damage.  In particular, 

ROS cause a variety of harmful effects such as lipid peroxidation, DNA modification, 

protein oxidation, and cell proliferation (cancer) [2, 3].  The endothelium, a thin layer of 

cells lining blood and lymphatic vessels, is particularly susceptible to free radical 

damage. 

In contrast, another reactive species, NO, has an ameliorative effect on endothelial 

function in biological systems and was identified as the endothelium-derived, vascular 

relaxing factor [4].  NO is the primary determining factor both in blood vessel tone and in 
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the ability for blood to form clots when it comes into contact with materials 

(thromogenicity).  NO also plays a role in the regulation of many physiological functions 

such as immune response and neurotransmission [5, 6].  Although there are three nitric 

oxidase synthases that produce NO from L-arginine in physiological, catalytic reactions, 

NO is produced in the endothelium by the enzyme, endothelial nitric oxide synthase 

(eNOS); eNOS takes an electron from the electron donor NADPH oxidase (nicotinamide 

adenine dinucleotide phosphate-oxidase), and NADP+ is a coenzyme in this reaction 

(Figure 1.3).  Since NADPH oxidase also produces ROS, it is believed to be a major 

cause for development of atherosclerosis in arteries.  In order for the enzyme to transfer 

an electron to L-arginine to produce NO, eNOS requires the presence of 

tetrahydrobiopterin (BH4) [7]. 

Loss of NO bioactivity in the vessel wall alters anticoagulant and anti-

inflammatory properties of the endothelium, impairing modulation of vascular growth 

and remodeling, a dynamic process of structural alteration that involves changes in 

cellular processes inside the vascular matrix [8].  Excessive production of ROS leads to 

oxidative stress, which can attenuate endothelium-dependent vasodilation by inactivating 

NO [9].  These types of biological dysfunction are intimately associated with disease and 

aging.     

 

Structure of the Endothelium in Arteries 

 

The arterial vessel wall is composed of three layers: the intima, the media and the 

adventitia (Figure 1.2). The innermost and thinnest layer, the intima, contains a single-
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celled thickness of endothelial cells. These cells are surrounded, moving outward toward 

the vessel’s outer wall, by connective tissue. The second layer, the media, contains 

connective tissue and vascular smooth muscle, which controls the vessel diameter and 

vascular tone. The outermost layer, the adventitia, entirely consists of connective tissue, 

nerves and capillaries.  In general, the vascular endothelium is composed of a layer of flat 

cells that line closed internal spaces such as the inside of blood vessels and internal 

organs.  A section of an artery wall shows the endothelial cells align longitudinally. 

Vascular smooth muscle cells align circumferentially and form the outer layers.  When 

circumferential stretching of the vessel wall occurs, the underlying pressure acts normal 

to the vessel wall. Shear stress aligns parallel to the vessel wall and acts longitudinally 

with respect to blood flow direction. 

In this thesis, all experiments employ a pig model because of its similar 

physiology to humans in size and function.  Pigs are omnivorous; they have a 

cardiovascular system similar to humans and are prone to develop the same 

cardiovascular diseases as humans. 

   

The Relationship Between ROS and Endothelial Dysfunction 

 

Superoxides are formed through diverse enzymatic pathways involving such 

molecules as NADPH oxidases, mitochondrial oxidases, cytochrome P-450 enzymes, 

uncoupled NO synthases and lipoxygenases.  When generation of ROS overwhelms 

antioxidant defenses in the endothelium, a physiological situation is commonly described 
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as oxidative stress arises.  Oxidative stress is believed to be a key contributor to a variety 

of pathophysiological conditions such as atherosclerosis, hypertension and diabetes.  

The renin-angiotensin system regulates pressure and fluid balance in blood 

vessels.  In response to low blood volume, the kidneys release renin into the circulatory 

system.  Renin converts angiotensinogen that is released from the liver to angiotensin I.  

In turn, angiotensin I is converted to angiotensin II through a reaction with an enzyme 

found in the lungs.  Angiotensin II is a powerful vasoconstrictor that causes blood 

pressure to increase.   

 In cardiovascular diseases (CVD) such as hypertension, the balance between NO, 

an important free radical because of its vasodilation properties, and ROS is disturbed.  An 

increase in superoxide causes an increase in production of peroxynitrite via a reaction 

with NO, leading to less bioavailability of NO.  Inactivation of NO by superoxide 

increases endothelial dysfunction in patients with CVD [10].  Several animal studies of 

vascular disease have gleaned evidence that indicates increased superoxide production is 

responsible for a major proportion of an NO deficit.  Oxidative metabolism is central to 

the biological function and health, so biological situations of high oxygen stress are of 

critical interest to cardiovascular medicine.  Generation of free radicals by inflammatory 

cells acts as a significant microbiocidal agent and also behaves as a messenger in several 

mechanisms involved in the inflammatory response.   

ROS signaling mechanisms allow cells to survive exposure to increased levels of 

oxidative stress; however, when damage to cell structure becomes severe, apoptosis 

occurs.  Intracellular oscillation of oxidant levels, redox signaling [11, 12], is associated 

with preservation of the rate of cell proliferation [13].  NO also plays a pivotal role in the 
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regulation of many physiological functions such as immune response and 

neurotransmission [5, 6].  Loss of NO bioactivity in the vessel wall alters anticoagulant 

and anti-inflammatory properties of the endothelium, impairing modulation of vascular 

growth and remodeling, a dynamic process of structural alteration that involves changes 

in cellular processes inside the vascular matrix [8].  Excessive production of ROS leads 

to oxidative stress, which can attenuate endothelium-dependent vasodilation by 

inactivating NO [9]  (Figure 1.4).  These types of biological dysfunction are intimately 

associated with CVD and other diseases. 

Superoxides are generated through several pathways involving mitochondrial 

oxidases, xanthine oxidases, uncoupled NO synthases, cytochrome P-450 enzymes, 

NADPH oxidases, and lipoxygenases.  In particular, NADPH oxidases are produced in 

response to mechanical stress, hormones and cytokines.  NADPH oxidases are a family 

of complex enzymes identified as the major ROS source in a number of recent animal 

studies of CVD [14-18].  Shear stress activates the renin-angiotensin system, which 

enhances vascular production of ROS [19].  There exists an enlarging body of evidence 

that suggests oxidative stress plays a crucial role in the development and maintenance of 

various forms of genetic and acquired hypertension.  So developing and exploiting 

methods for detecting ROS is extremely important in order to follow and to identify the 

roles of ROS in physiological processes. 

Both ROS and NO are compounds which contain an unpaired electron. These free 

radicals are highly reactive when they come in contact with other molecules as noted 

above.  EPR (electron paramagnetic resonance) spectroscopy is considered the most 

reliable method of observing free radical species by employing spin traps that stabilize 
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the radicals, thus allowing ex vivo identification of the radicals and measurement of their 

concentrations. The EPR method provides precise measurement of ROS and NO 

concentrations, even at levels as low as micromolar at room temperature and one order of 

magnitude smaller at liquid nitrogen temperature, through chemical reactions with spin 

traps that render free radicals stable long enough for quantification [20].  The primary 

subject of this thesis is the application of EPR spin trapping methodology to the detection 

of ROS of biological importance. 
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Figures 

 

 

 

 

 

 

 

 

Figure 1.1: (A) superoxide and (B) nitric oxide are two important free radicals in the 

endothelium. 
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Figure 1.2:  An artery cross section with the intima as the innermost layer, which contains 

the endothelium, as the innermost layer of cells, the media as the next layer out, and the 

adventitia as the outmost layer.  Blood travels through the luman in the central portion of 

the artery.  
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L-arginine + 3/2 NADPH + H
+
 + 2O2 → 

citrulline + nitric oxide +3/2 NADP
+
 

 

Figure 1.3: The chemical reaction that produces nitric oxide in the endothelium catalyzed 

by eNOS. 
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Figure 1.4:  Schematic (X. Lu and G. Kassab) of the relation between ROS sources and 

endothelial dysfunction.  Solid line, generation; dashed line, restoration; dotted line, 

scavenger. eNOS, endothelial nitric oxide synthase; BH4, tetrahydrobiopterin. 
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CHAPTER 2:  SPIN TRAPPING WITH CONTINUOUS WAVE EPR 
 

Spin Trapping 

 

 Many molecules have been developed over the years to react with free radicals to 

“trap” their magnetic moments (spin); i.e. to lengthen the lifetime of the radicals to allow 

their detection. With most of the compounds, known as spin traps, experimental pitfalls 

exist inherent in their application such as a lack of solubility in aqueous solutions, a 

tendency for the trap to oxidize, and rapid decay of the spin adduct into a EPR silent 

species.  A spin adduct is the compound that results after a spin trapping agent chemically 

reacts with a free radical, and it is comprised of the spin trap with the incorporated free 

radical.  Although spin traps are more stable than the radical that they capture, the traps 

are still somewhat reactive since they possess unpaired electrons.  Biologically relevant 

free radicals have short half-lives as noted, which makes accurate measurement of 

concentrations challenging. N-tert-butyl-α-phenylnitrone (PBN) and N-methyl-D-

glucamine dithiocarbamate (MGD) form relatively stable spin adducts after trapping ROS 

and NO respectively; these two spins traps are employed in this study.  NO is typically 

quantified by employing the Griess reaction which is sensitive to only some of the 

breakdown products of NO.  Directly capturing NO through a spin trapping technique is, 

in general, a more desirable method because EPR can detect NO directly in the extra- and 
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intra-cellular environment.  NO in tissues and cells as well as in physiological fluids (e. 

g., blood) can be trapped and therefore assayed. 

PBN has a very stable spin adduct with a lifetime at room temperature of 

approximately 24 hours (Figure 2.3) and much longer at liquid nitrogen temperature.  

PBN traps superoxide and other lipid-derived radicals in whole blood and tissue (Fig. 

2.2).  PBN is lipid soluble, readily penetrating cell membranes, and can also cross the 

blood-brain barrier.  PBN is utilized to measure oxidative stress directly.  PBN spin 

adducts detected by EPR, gleaned from whole blood and tissue, are typically a secondary 

species resulting from free radical attack on cell membranes and, therefore, reflective of 

overall ROS levels [1-4]. 

MGD forms a stable spin adduct after capturing NO (Figure 2.5).  Two MGD 

molecules combine with Fe2+ to form a spin trap with a high affinity for trapping NO.  

The molecule, MGD, readily traps NO and is soluble in aqueous solutions.  However 

MGD is unable to cross the cell membrane [5-7], and must be shielded from oxygen prior 

to trapping to avoid oxidation to an EPR silent form.   

In Figures 2.3 and 2.6, room temperature spectra show sharply defined peaks 

because the anisotropic parts of the Zeeman and Hyperfine tensors average to zero.  The 

tensors behave as second order spherical harmonics.  This phenomenon occurs because 

the sample is in solution and there is free tumbling of molecules in this solution.  All 

experiments in this thesis are conducted at liquid nitrogen temperature where the 

anisotropic parts of the above mentioned tensions do not average to zero.  A powder 

pattern occurs with inhomogeneous broadening of the EPR spectrum.   
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Basic EPR Theory 

 

The spectroscopic technique of continuous wave EPR is defined as the absorption 

of microwave radiation by molecules or ions that possess unpaired electrons and are 

therefore paramagnetic.   In the presence of an applied magnetic field, the electron spin 

states become nondegenerate, as a result of the Zeeman interaction (Figure 2.1).  In 

addition, there often is an interaction present between the spin magnetic moment of the 

unpaired electron and the magnetic moment of a neighboring nucleus, which is called the 

hyperfine interaction leading to a further splitting of the energy levels.  In our 

experiments, there is a hyperfine interaction between the unpaired electron and a nitrogen 

nucleus that possesses a magnetic moment. Since the nuclear spin of 14N, the dominate 

isotope of nitrogen, is 1, a three-line EPR spectrum is produced characteristic of the 

multiplicity relation 

 2I + 1 = 3. [1] 

In some traps there also may be nearby hydrogen nuclei influencing the spectrum.  

In particular, the dominant hydrogen nucleus, a proton, has a spin of ½.  In PBN there is 

one H-nucleus with a substantial hyperfine interaction which splits each of the three 

energy levels into two and results in a triplet of doublets in the EPR spectrum (Figure 

2.3).  The selection rules for this system are ∆ SZ =   1 and ∆ IZ  = 0, where z specifies 

the direction of the applied magnetic field, B [8, 9]. 
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The energy difference between the two spin states is defined as  

ΔE = hv = gβB, [2]  

where g is the spectroscopic splitting factor, β is the Bohr magneton, 
m

e

2


, m is the mass  

of an electron, and ν is the resonant frequency.  In the steady state approximation, the 

population difference of the occupied states is 

  n = N1 – N2 , [3] 

where N1  state with electron is the number of molecules in the spin down, and  N2 is the 

number of molecules with electron spin up.  This system can be described by Maxwell-

Boltzmann statistics, since it is in thermodynamic equilibrium and the total number of 

spins,        

 N = N1 + N2 [4]  

in the sample is constant.   Therefore an expression can be written in this form,    

                                                               
kTe



1

2

N

N
                                       [5]  

Eliminating N1 and N2 from equations 3, 4, and 5
 
results in the expression, 

 

n = N tanh 





kT

h

2


,  [6] 

where h is Plank’s constant and k is Boltzmann’s constant.  

The net magnetization in the direction of the magnetic field is defined as, 

                                                                 M◦ = n m


,  [7]  

where the magnetic moment of one electronic spin is m


.  Since M◦ is proportional to n, 

the signal intensity is proportional to the total number of spins in the system, N.  
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In continuous wave EPR, the microwave frequency is held constant while the 

magnetic field is swept through a range of approximately 100 Gauss; the signal recorded 

is displayed as the 1st derivative of the absorption of microwave energy by the sample as 

depicted in Figure 2.1.  To determine the absolute concentration of a sample, a double 

integration is performed, and the resulting value is compared to the double integration of 

a precisely known standard.  Alternatively, the concentration is calculated from the 

spectral line width and intensity, and then compared with the spectral line width and 

intensity of a standard. 
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Figures 
 
 
 
 
 

 
 
 
 
 
Figure 2.1:  Schematic of electron paramagnetic resonance that occurs when a 

paramagnetic sample is in the presence of an external magnetic field.   The magnetic field 

splits its electronic spin states. Microwave irradiation causes energy absorption by the 

sample which results in a transition to a higher energy state.   The EPR spectrometer 

shows the 1st derivative of the absorption spectrum. 
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Figure 2.2:  The chemical reaction of PBN and lipid-derived radical results in capture of 

the radical by PBN.  This product of the reaction is called the PBN spin adduct. 

 

 

 

 

 

C

N+ O-

PBN

+ X
.

C

CH3
H3C

H3C

H

Lipid derived
radical

C

H

X

N
O

C
CH3

H3C
CH3

PBN spin adduct



23 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2.3:  A first derivative representative spectrum of superoxide that is trapped by 

PBN at room temperature.   Superoxide was produced in the hypoxanthine/xanthine 

model system. 
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Figure 2.4:  Diagram depicting the transitions of the PBN spin adduct.   
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Figure 2.5:  The chemical reaction of the MGD spin trap and nitric oxide. The MGD spin 

adduct is the product of the reaction.  
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Figure 2.6: The first derivative spectrum of the MGD spin adduct of nitric oxide 

produced by a slow release NO source (PAPA-NONOate) in aqueous solution, AN = 12.6 

and line width = 3.7 G. 

3210 3220 3230 3240 3250 3260 3270 3280 3290

-8.0x104

-6.0x104

-4.0x104

-2.0x104

0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

In
te

n
si

ty
 (

A
rb

it
ra

ry
 U

n
it

s)

M agnetic Field (G auss)



27 
 

 
 
 
 
 

CHAPTER 3: EPR METHOD FOR EX VIVO DETECTION OF REACTIVE OXYGEN 

SPECIES IN CRYOPRESERVED TISSUE 

 

In biology and medicine, the detection of free radicals that are involved in various 

important processes such as intercellular signaling, immune response, and the progression 

of disease is of immense interest.  Oxygen free radicals as well as other reactive species 

are continually generated in vivo as a consequence of energy metabolism [1].  Although 

these free radicals have an extremely short lifetime, they are capable of extensive 

biological damage if the physiological oxidative balance is disturbed.  In particular, 

increase in reactive oxygen species (ROS) can cause a variety of harmful effects such as 

lipid peroxidation, DNA modification, protein oxidation, and cell proliferation [2, 3].  

Excessive production of ROS leads to oxidative stress, which can attenuate endothelium-

dependent vasodilation by inactivating nitric oxide [4, 5].  These types of biological 

dysfunction are intimately associated with disease and aging.  

Early electron paramagnetic resonance (EPR) techniques for measurement of free 

radicals in cells and tissues involved either freezing and drying of biological samples 

(lyophilization) to remove water or using aqueous samples in flat or tissue cells [6].  

Lyophilization of biological material increases the amount of sample that can be placed 

in the microwave cavity.  Since the EPR signal intensity is proportional to the number of 

unpaired electron spins in the sample, an increase in sample size will lead generally to a 
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larger signal.  Removal of water and nutrients, however, leads to cell distress and then 

subsequent immune response causes additional free radical generation. Both methods 

eliminate the problem of non-resonant absorption of microwaves and allow sample size 

to be increased, but both methods are not ideal because they invariably lead to inaccurate 

free radical measurements.  The objective of this study is to demonstrate the advantages 

of our EPR method of assaying ROS over other frequently employed ROS assays used in 

biology and medicine. 

Spin trapping in conjunction with EPR spectroscopy is a widely used technique 

for measurement of short-lived free radical species of biological interest because of its 

high sensitivity and specificity [7, 8].  Spin traps chemically react with and stabilize free 

radicals, thus allowing ex vivo concentration measurements that are unambiguous.  This 

method provides precise measurement of ROS concentrations, even at levels as low as 

micromolar at room temperature and one order of magnitude lower at liquid nitrogen 

temperature (77K) [9].   

 

Materials and Methods 

 

Experimental Procedures 

 

The experiments were conducted on five healthy, 3 to 4 month-old Duroc swine 

weighing 32 kg ± 2 kg (range 30–35 kg).  In each experiment, the heart was removed, and 

the coronary arteries were excised.  All experiments were performed in accordance with 

national and local ethical guidelines, including the Institute of Laboratory Animal 
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Research Guide, Public Health Service policy, Animal Welfare Act and an approved 

Indiana University School of Medicine IACUC protocol. 

Immediately after dissection of the coronary arteries, two similar-sized coronary 

vessels were videotaped from the side (approximately 5 mm in length) and cross views 

under a stereo microscope.  The volume of each segment was calculated based on the 

product of cross-sectional area and axial length.  One segment was then divided into 10 

sections but kept as one sample while the other segment remained intact.  This is done to 

investigate whether slicing tissue produces more ROS.  EPR spectra were normalized 

with respect to tissue volume. 

  To elucidate ROS detection by PBN, the arterial segments were treated as 

follows: Porcine arteries were harvested then incubated in the dark with HEPES 

physiological saline solution, 10% dimethyl sulphoxide (DMSO), and 190-mM PBN 

(Sigma, USA) for 120 min at 37°C while being stirred gently.  Subsequently, the tissue 

was inserted into a 1-ml tuberculin syringe along with the supernatant and stored at -80°C 

until EPR analysis was performed.  

 

EPR Spectroscopy, Settings and Data Analysis 

 

All EPR measurements were conducted with a Bruker (Billerica, MA, USA) ESP 

300 X-band EPR spectrometer equipped with a TE102 cavity and a 500-ml finger dewar 

(Wilmad, NJ, USA).  The tip of the plastic tuberculin syringe that contained the sample 

was cut off, and the icicle was quickly pushed out with the plunger and placed in a dewar 
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containing liquid nitrogen.  To overcome EPR noise due to bubbling of nitrogen gas, the 

sample was weighed down with a glass rod.  The rod remained outside the EPR cavity to 

eliminate any extraneous signal at g ≈ 2 and rested on the top of the cylindrical icicle 

which in turn protruded slightly outside the cavity. The volume of icicle inserted in the 

EPR cavity was carefully adjusted by moving the dewar vertically to the same position 

for each sample (Figure 3.1).  The cryopreserved tissue as well as the supernatant 

remained frozen at 77K throughout the analysis. The microwave cavity was re-tuned after 

each scan since maintaining the cavity on resonance is difficult at liquid nitrogen 

temperature.  ROS concentrations were determined with 2,2,6,6-tetramethylpiperidine 1-

oxyl, TEMPO, solution (0.1-μM, Sigma, USA) used as a concentration standard. 

Parameters for experiments were as follows: 9.4-GHz microwave frequency, 2.52-mW 

incident microwave power, 100-kHz field modulation, 4.0-G modulation amplitude, 

1×105 receiver gain, 5.24-s time constant, ~3350-G center magnetic field, and 100-G 

magnetic field sweep width.  Four scans were taken and analyzed with Bruker WINEPR 

software (Version 2.11).  The concentration of ROS was calculated based on the signal 

intensity and peak-to-peak derivative line-width (Figure 3.2).  All EPR parameters and 

conditions were applied to both standard and experimental samples.   

 

Results and Discussion 

 

Comparison of two typical first-derivative spectra from the two data sets in Figure 

3.3 shows that the dashed trace, Sliced Tissue (ST), reflects a larger ROS concentration.  

Both the signal intensity and the linewidth are greater than with the solid trace, Whole 
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Tissue (WT).  The whole coronary arterial tissue segment (solid trace) and the sliced 

coronary arterial tissue (dashed trace) spectra were normalized with respect to tissue 

volume.  

The additional ROS production in the ST group as compared to the WT group 

(Figure 3.4) is believed to be primarily due to the extra cellular trauma caused by further 

slicing of tissue.  The ST group had a ROS concentration value of 173.64±16.10 

nanomolar (black column) and the WT group had a ROS concentration value of 

98.53±15.12 nanomolar (gray diagonal line column), with a sample size of N = 5 pigs.     

EPR spin trapping has often been cited as the gold standard for measurement of 

ROS concentrations in biological samples [8, 10-13].  With this assertion in mind, we 

have compared two sets of coronary arterial tissue samples.  The first data set contains 

artery segments with each individual segment divided into ten pieces to mimic typical 

ROS assay requirements [7, 14, 15]. The second data set consists of whole coronary 

segments (no further slicing).  This second data set likely represents ROS measurement 

that is more reflective of the in vivo environment of arterial tissue.  Figure 3.4 

demonstrates that minimally perturbing arterial tissue (whole segment) reduces 

extraneous ROS generation by nearly 50%.  Since the coronary arteries were harvested 

from young, healthy animals without any coronary artery disease; it is plausible that ROS 

generation in both cases is primarily due to tissue dissection.  The WT group effectively 

represents basal levels of ROS in un-stimulated coronary arteries. 

Although absorption of microwaves by an aqueous sample at room temperature 

limits the size of the sample; this method can accommodate as large as 20-mm3 tissue 

volume into our standard, rectangular, X-band EPR cavity at liquid nitrogen temperature.  
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In our experiments the tissue volumes were in a range of values between 2 mm3 and 5 

mm3, and the EPR spectra were normalized with respect to tissue volume. 

In biological studies, either the tissue or the supernatant is often evaluated alone 

for free radical content, or an organic extraction of EPR spin adducts is applied to whole 

blood serum, cells or tissue [3, 16, 17].  In evaluating ROS concentrations in the 

supernatant, an inevitable pitfall is that some of the spin adducts are contained inside the 

tissue and cells and therefore go unmeasured.  In evaluating tissue only, typically the 

tissue is homogenized [18, 19] or thinly sliced [20], which will cause additional free 

radical generation that compromises the integrity of the experiment as noted above.  

Employing an organic extraction of spin adducts from whole blood, cells and tissue is an 

improvement over evaluating either supernatant or tissue alone.  This is not ideal, 

however, since it is likely that some spin adduct will remain trapped inside the tissue or 

solubilized in aqueous media; i.e., only the organic layer is analyzed for free radical 

content.  Furthermore, centrifugation and the addition of an organic solvent may cause 

extraneous free radical generation as the biological sample becomes necrotic.  Although 

frozen blood serum has been widely used in EPR liquid nitrogen experiments to 

determine the concentration of nitric oxide that is bound to the intrinsic spin trap, 

hemoglobin [10, 14, 18, 19, 21, 22], frozen tissue experiments [23, 24]  have not been as 

successful, in part, due to the problem of EPR noise as a result of bubbling of nitrogen 

gas in the dewar that contains the sample.  Our method employed in this study and in 

previous ones [15, 25] places the cryopreserved tissue in a quasi-live state into the EPR 

cavity along with the supernatant, allowing more precise EPR concentration 

measurements [18]. 
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Fluorescent staining methods of ROS detection in tissue are ubiquitously 

employed in medicine and require freezing the sample and finely slicing of tissue to 

image ROS [15].  This staining method is popular both in terms of cost and ease of use.  

Fluorometric assays are also commonly used as ROS assays in homogenized tissue [26].  

The chemiluminescence method of ROS detection utilizes small pieces of sliced tissue 

that are immersed in physiological saline; the experiment is run at physiological 

temperature, which is improvement in experimental protocol since the tissue is in a quasi-

live state during data acquisition [27].   

Although spin traps are more stable than the radical that they capture, these 

chemical species still remain reactive since they possess unpaired electrons.  Many 

biologically relevant free radicals have short half-lives, which makes accurate 

measurement of ROS concentrations challenging.  N-tert-butyl-α-phenylnitrone (PBN) 

forms relatively stable alkoxyl-radical spin-adducts that result from the oxidation of 

lipids.  The spin-adducts’ stability is enhanced at liquid nitrogen temperature.  PBN is 

also lipid soluble and cell membrane permeable, which makes PBN an appropriate choice 

as a spin trapping agent in tissue.  PBN spin adducts detected by EPR are believed to be 

lipid hydroperoxides that are secondary species resulting from free radical attack on cell 

membranes, and thus the presence of the spin-adducts is reflective of ROS levels [1, 3, 

17, 28]. 

Ex vivo tissue experiments conducted at liquid nitrogen temperature have distinct 

advantages over experiments conducted at room or physiological temperature. Adduct, 

and by inference ROS concentrations on the order of tens of nanomolars can be gleaned 

from frozen samples.  At liquid nitrogen temperature, the dielectric constant of the frozen 



34 
 

aqueous sample is reduced from its value at room temperature and in the liquid 

counterpart.  This phenomenon allows a larger volume of sample to be placed in the EPR 

cavity without degrading the cavity Q so much as to render a signal undetectable.  As a 

result, roughly one order of magnitude smaller concentrations of spin adducts can be 

detected from arterial samples at liquid nitrogen temperature versus room temperature.  

This technique places frozen tissue and supernatant directly into the EPR cavity for ROS 

detection. 

In addition to the ability to place  unfragmented or unfractioned tissue samples 

into the EPR cavity for ROS detection, conduction of the experiment with the samples at 

liquid nitrogen temperature has further advantages such as larger sample size (vide infra), 

extension of free radical stability, and cryopreservation of tissue sample.  An upper limit 

on the size of aqueous sample that can be placed into an EPR cavity at room temperature 

leads to two possibilities for sample content.  Either the supernatant alone is sampled or 

the tissue is minced or homogenized [21, 25].  Homogenization of tissue triggers the 

release of free radicals and causes cell necrosis.  Since tissue contains approximately 70% 

water, increasing the tissue sample size can be achieved by freezing it.  The dielectric 

constant of ice is greatly reduced relative to its liquid counterpart, which decreases the 

loading of the microwave cavity for an icy sample as compared with an aqueous one of 

the same volume.  Therefore more frozen sample volume can be placed in the EPR cavity 

without overload, which can lead to disappearance of the cavity resonance to disappear.  

Although we used tissue volumes of approximately 4mm3 in our experiments, tissue 

volumes could be increased by an order of magnitude.  This would result in an 

improvement in the signal to noise ratio for a given concentration of spins.  Utilizing 
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larger tissue samples is desirable because at liquid nitrogen temperature there exists a 

small underlining g ≈ 2 signal due to the glass finger dewar that holds the sample in the 

EPR cavity [10].  As Figure 3.4 implies, larger tissue size and fewer tissue excises 

reduces contributions to the measured ROS from sources that are not relevant to the 

physiological processes being studied.  In addition, smaller concentrations of spin 

adducts can be detected at liquid nitrogen temperature relative to room temperature. 

Since the signal intensity is proportional to the number of unpaired electron spins in the 

microwave cavity, a larger sample volume leads to increased signal intensity. With 

typical spectrometer setups, concentrations in the micromolar range can be measured at 

room temperature, whereas at liquid nitrogen temperature, one order of magnitude 

smaller sample concentrations can be detected. Furthermore, at room temperature PBN 

spin adducts are relatively stable for twenty-four hours but gradually become EPR silent 

after a few days.  Although spin traps are more stable than the free radical that they trap, 

they still possess an unpaired electron and are reactive as noted above.  The freezing of 

the spin adducts renders them stable over a longer period, which allows ample time to 

analyze tissue samples for ROS.  Due to Maxwell-Boltzmann statistics, the population 

difference goes up as the temperature goes down, so this phenomenon enhances the 

signal intensity as well.  In EPR, a frozen sample does lead to inhomogeneous broadening 

of the spectrum because the effective motional narrowing that occurs in a liquid sample, 

no longer occurs, and one detects a powder pattern.  The inhomogeneous broadening 

factor is manageable because the principal values of the g-tensor of typical spin adducts 

are nearly equal and hyperfine interactions are not so large as to negate the advantages of 

using lower temperatures. 
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It is common practice to include final sample concentrations of chemical 

ingredients in the experimental protocol section of reports of spin trapping experiments 

rather than stock solution concentrations, which can lead to difficulty in reproducibility.  

Since PBN is a lipid soluble chemical compound, it needs to be dissolved in an organic 

solvent prior to adding it to the final tissue/supernatant sample.  Although omission of the 

use of a small amount of organic solvent may be considered unimportant given that the 

overall sample volume is large compared with that of the solvent, this information is 

critical for experimental reproducibility.  DMSO was the organic solvent employed in 

this work for two reasons.  Firstly, DMSO is a polar aprotic solvent that readily dissolves 

into aqueous solutions as well as lipid solutions.  The spin trap can traverse both the lipid 

portion as well as the aqueous portion of the tissue sample.  Secondly, 10% DMSO 

cryopreserves the tissue by eliminating ice formation inside tissue cells during freezing 

which can cause extraneous ROS generation [29, 30].  It has been reported that DMSO 

can trap hydroxyl radical [13].  In these experiments, the ability of DMSO to trap 

hydroxyl radical is not a significant problem because overall ROS concentration is being 

measured. 

In conclusion, it is important to limit extraneous ROS generation that is not due to 

the ROS stimulus of interest. Use of more than one method to detect ROS in an 

investigative study is important.  Although no ROS assay method is ideal, using EPR in 

conjunction with a non-invasive probe such as PBN to assay ROS in whole tissue before 

freezing may create an approximation to in vivo conditions and should be included as one 

of the multiple methods to quantify ROS in biological studies. 
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Figure 3.1:  A diagram of the vertical dimensions of the icicle (tissue and supernatant) 

that is submerged in liquid nitrogen with respect to the neck of the dewar and the top of 

the EPR microwave cavity.  
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Figure 3.2:    A representative first-derivative spectrum of the PBN spin adduct at liquid 

nitrogen temperature in pig arterial tissue.  The concentration of ROS is determined from 

the signal intensity (distance between the vertical arrows, A) and the line width (distance 

along the horizontal arrow, W).  Concentration = 3W2A; this equation was derived from a 

Lorenzian line function. 
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Figure 3.3:  The graph compares two typical first-derivative spectra between Sliced 

Tissue (ST), dashed trace, and Whole Tissue (WT), solid trace.   
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Figure 3.4:   Comparison between the Sliced Tissue (ST) group and the Whole Tissue 

(WT) group.  ROS generation was significantly higher in the ST group with respect to the 

WT group (two-way ANOVA, P ˂ 0.05).  Values are means ± standard error. 
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CHAPTER 4: REACTIVE OXYGEN SPECIES CAUSE ENDOTHELIAL 

DYSFUNCTION IN CHRONIC FLOW OVERLOAD 

 

 Flow overload (FO) is defined as an increase in blood flow rate in blood vessels 

over its normal physiological level.  FO manifests during exercise, pregnancy or due to 

diseases of the circulatory system such as cardiac hypertrophy [1], arteriovenous fistula 

[2], or contralateral stenosis.  Blood flow rate must be carefully regulated by the body 

since flow-induced shear stress on the endothelium induces structural homeostasis in the 

blood vessel wall.  In response to FO in the endothelium, rigorous vasodilation of the 

blood vessel by nitric oxide (NO), prostacyclin (PGI2), and endothelium-derived 

hyperpolarizing factor (EDHF) occurs [3-5].  An increase in reactive oxygen species 

(ROS) has been documented in FO in the three following cases: normal conduit arteries 

of rabbits [6], carotid arteries of mice [7] and coronary resistant arteries of humans [8]. 

 There is an enlarging body of scientific evidence that ROS are involved in many 

physiological processes some of which are pathological in nature [9].  In particular, 

superoxide, a volatile ROS, has been recognized as a signaling molecule that elicits 

specific cellular responses in the vasculature.  Reactions to superoxide signaling include 

activating matrix metalloproteinases (MMPs) [10], vascular remodeling, vascular smooth 

muscle cell (VSMC) hypertrophy, and cellular apoptosis.  Superoxide production 

sometimes leads to the formation of hydrogen peroxide, which is believed to regulate 
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potassium ion channels [8].  In a study, superoxide was shown to dilate cerebral arterioles 

by opening calcium-activated potassium channels; hydrogen peroxide and peroxynitrite, a 

byproduct of endothelial NO synthase (eNOS) uncoupling, were also shown to reversibly 

dilate cerebral arterioles by activation of ATP-sensitive potassium channels [11].  

Xanthine oxidase, NADPH oxidase, mitochondria and uncoupled eNOS are sources of 

superoxide in the endothelium [12-15]. 

 In response to chemical and physical stimuli, NADPH oxidase has been 

recognized as a major source of ROS in blood vessels [14, 16-19]. It is well established in 

the literature that increases in ROS production in diseases such as hypertension, diabetes, 

hypercholesterolemia, and atherosclerosis lead to endothelial dysfunction [16, 20-23]. 

 Little is known about the effect of chronic flow overload (CFO) on endothelial 

function of elastic (carotid) arteries of large animals, although CFO induced increase in 

ROS production has been established in various mammalian small arteries [7, 10, 24].  

Therefore, we hypothesize that the ROS increase is deleterious to endothelial function in 

CFO, and that the source of ROS is primarily NADPH oxidase. To investigate our 

hypotheses, we take an intact porcine carotid artery that was exposed to CFO for 1 wk by 

contralateral ligation.  ROS were detected with the spin trap N-tert-butyl--phenylnitrone 

(PBN) by electron paramagnetic resonance (EPR).  The expressions of eNOS and 

NADPH oxidase were measured.  Endothelial function was examined through 

endothelium-dependent relaxation in response to acetylcholine (ACh).  Uncoupled eNOS 

in CFO was found with acute administration of eNOS cofactor tetrahydrobiopterin (BH4).  

One additional group of swine was orally fed apocynin (4-hydroxy-3-methoxy-

acetophenone) to ascertain the effect of NADPH oxidase in the vessel wall.  The 
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experimental results support our hypotheses and show that CFO causes endothelial 

dysfunction in conduit vessels. 

 

Materials and Methods 

 

Twelve male Duroc swine weighing 34±4 kg (range 30–39 kg) were randomly 

divided into two groups. In group I, the right carotid artery was exposed to CFO for 1 wk 

by ligation of the contralateral carotid artery.  In group II (CFO+A), the right carotid 

artery was exposed to CFO for 1 wk while animals were orally fed apocynin at the dose 

of 60 mg·kg-1·day-1 from the postoperative first day to the termination.  The left carotid 

artery served as a control for each group and was harvested at the time of ligation. 

  

Animal Preparation 

 

Surgical anesthesia was induced with ketamine (20 mg/kg im) and atropine (0.04 

mg/kg im) and maintained with isofluorane (1–2%).  Blood gas values were measured, 

and ventilation was adjusted to maintain normal values of PO2 and PCO2.  In preliminary 

experiments, we measured the flow rates and external diameters to confirm that the left 

and right common carotid arteries are equivalent to ensure that one can serve as control 

for the other. Furthermore, the flow rates and external diameter of the right carotid artery 

were immediately measured after the left carotid artery was excised to quantify the 

immediate FO.   
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Subsequent to a left cervicotomy, the left common carotid artery was exposed 

gently to avoid vasomotion by dissection, and the in vivo external diameter was measured 

with the aid of a stereo microscope.  The vessel was further dissected to place a flow 

probe (TS420 Transonic System). After data collection, the artery was ligated by suture 

and excised (length of 3 cm); the right carotid artery was not exposed to any surgical 

trauma. This measurement was taken on day 0 to avoid interference to the experimental 

vessel. The incision was closed, and the animal was recovered. The animals in group II 

were fed apocynin (60 mg·day-1) orally.  After 1 wk and following a right cervicotomy, 

the vessel segment was excised. The excised vessels from control and experimental 

groups were immediately stored at 4°C in HEPES physiological saline solution (HEPES-

PSS, pH 7.4, with 142-mM NaCl, 4.7-mM KCl, 2.7-mM sodium HEPES, 3-mM HEPES 

acid, 1.17-mM MgSO4, 2.79-mM CaCl, 5.5-mM glucose) and divided into segments 

after dissection of adjacent tissue.  HEPES and HEPES salt were purchased from Sigma, 

whereas other chemicals were purchased from Fisher Scientific. 

The endothelium-dependent vasorelaxation was performed with an isovolumic 

myograph. The vessels were pre-contracted to an approximate transluminal pressure 

(170±20 mmHg) with acetylcholine at submaximal dose (10-8 mol/L to 10-6 mol/L), and 

thereafter the endothelium-dependent relaxation was induced with a series of doses of 

bradykinin (10-10 mol/L to 10-5 mol/L). The endothelium-independent vasorelaxation in 

response to sodium nitroprusside (10-10 mol/L to 10-5 mol/L) was measured to verify the 

responsiveness of vascular smooth muscle to nitric oxide. 

All experiments were performed in accordance with national and local ethical 

guidelines, including the Institute of Laboratory Animal Research (ILAR) Guide, Public 
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Health Service policies, Animal Welfare Act, and an approved Indiana University School 

of Medicine IACUC protocol. 

 

Vasoactivity 

 

 An isovolumic myograph was employed to ascertain the vasoactivity of the artery 

[25].  Cannulating the carotid vessel on connectors that was fixed in a bath containing 

HEPES-PSS and adjusting the in situ length with a digital caliper (resolution of 0.1mm) 

while preloading it at physiological pressure of 80 mmHg, the vessel was submerged and 

incubated in a bath at 37 ̊ C for forty minutes.  Contraction or relaxation of the vessel was 

chemically induced with both ends closed.  The diameter of the carotid artery remained 

approximately constant during the vasoactivity process.  The pressure and external 

diameter were measured with a pressure transducer (Mikro-Tip SPR-524, Millar 

Instruments) and a dimensional tracer (DiamTrak 3 +, Australia; 10-μm resolution), 

respectively. 

 All arterial segments were precontracted (increase in pressure) to an approximate 

transluminal pressure (170±20 mmHg) with phenylephrine (10-8 M to 10-6 M), and 

thereafter endothelium-dependent relaxation (decrease in pressure) was assessed with a 

series of doses of acetylcholine (Ach, 10-9 M to 10-6 M). The effect of eNOS uncoupling 

on endothelium-dependent relaxation was detected by incubation of the vessel segments 

in CFO with L-arginine (10-5 M) and eNOS cofactor BH4 (10-5 M) for 40 min. The 

circumferential tension of the vessel at every dose was calculated by Laplace’s law, 

tension = pressure  radius. The % decrease in tension was calculated by the equation: 
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%Tension = (Td  Ti)/(Tmax  Ti) 100. where, Td, Ti, and Tmax are the tension at every 

dose (Td), physiological level (Ti), and maximum tension (Tmax) at submaximal 

concentration of phenylephrine, respectively. Non-receptor-dependent contraction to 

potassium (KCl, 60 mM) was used to verify identical contractility of VSMC in CFO. 

Endothelium-independent vasorelaxation to sodium nitroprusside (SNP, 10-5 M) was 

measured to verify the sensitivity of VSMC in response to NO. 

 

Electron Paramagnetic Resonance 

 

Immediately after the vessel was divided, the vessel ring for electron 

paramagnetic resonance (EPR) was videotaped from the side (5 mm in length) and cross-

views under stereo microscope.  The volume of the segment was calculated based on the 

product of cross-sectional area and axial length.  After measurement by EPR as described 

below, ROS generation was expressed as mole per unit of volume.  ROS concentration in 

tissue samples was determined from the EPR spectra obtained by incubating the tissue 

samples with the spin-trapping agent N-tert-butyl-phenylnitrone (PBN; Sigma) at 190 

mM in HEPES-PSS for 30 min at 37°C in the dark. A ring incubated with 4-Hydroxy-

TEMPO (a superoxide dismutase mimic) served as the control for ROS measurement. 

The tissue was subsequently inserted into a syringe along with the supernatant, 

immediately frozen in liquid nitrogen, and stored at -80°C until EPR analysis was 

performed. To avoid ROS produced during freezing and thawing of samples, the sample 

was quickly removed while in its frozen state from the syringe and placed in a Dewar 

containing liquid nitrogen.  The Dewar was then inserted into the microwave cavity of 
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the EPR spectrometer. The sample remained at liquid nitrogen temperature throughout 

the EPR analysis (1, 21).  The EPR equipment and settings were as follows. A Bruker 

ESP X-band spectrometer equipped with a TE102 cavity was utilized to detect signals. 

Parameters for the spectra were 9.4-GHz microwave frequency, 25.2-mW microwave 

power, 4.0-G modulation amplitude, 1 x 105 receiver gain, 5.24-s time constant, 3,330-G 

center magnetic field, and 100-G magnetic field sweep width. All experiments were 

completed at liquid nitrogen temperature.  Four EPR scans were taken per tissue sample 

and analyzed with Bruker WINEPR software (version 2.11) based on the spectral 

intensity and line width. ROS concentrations were determined with 2,2,6,6-

tetramethylpiperidine 1-oxyl, TEMPO, solution (0.1 M, Sigma) used as a concentration 

standard. All EPR parameters and conditions were applied to both standard and 

experimental samples. 

 

Protein Expression 

 

The segment for Western blotting was homogenized in a lysis buffer and then 

incubated on ice for 1 h. The sample was centrifuged at 1,000 g for 15 min at 1°C, and 

the supernatant was drawn off.  The total value of protein was measured by a BCA kit 

(Bio-Rad).  Equal amounts of protein (25 µg) were loaded, electrophoresed in 10% SDS-

PAGE gel, and transferred onto a ployvinylidene difluoride membrane. After blocking 

the sample for 2 h in 8% dried milk in TBS-Tween buffer, the membrane was incubated 

overnight at 4°C with specific primary antibody with either anti-eNOS (1:1,000 dilution 

in blocking buffer, BD transduction laboratory), anti-p22phox (1:1,000, Santa Cruz 
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Biotech), anti-p47phox (1:500, Santa Cruz Biotech), anti-NOX2 (1:250, Santa Cruz 

Biotech), or anti-NOX4 (1:250, Santa Cruz Biotech). The membrane was then rinsed and 

incubated with horseradish peroxidase-conjugated secondary antibody (Santa Cruz 

Biotech) for 2 h (eNOS: goat anti-mouse 1:3,000 dilution in blocking buffer; p22phox 

and p47phox: goat anti-rabbit 1:5,000, NOX2 and NOX4: bovine anti-goat 1:5,000). The 

specific protein was detected by enhanced chemiluminescence (ECL; Amersham) and 

evaluated by densitometry (Sigma Scan).  All samples from each group were 

simultaneously probed with anti--actin, a mouse monoclonal antibody (primary antibody 

1:1,000 dilution in blocking buffer, Santa Cruz Biotech), to correct for sample loading. 

 

Statistical Analysis 

 

All data given in the text and figures are expressed as means SD. Student’s t-test 

(two-tailed distribution, two-sample unequal variance) and Duncan’s test following 

ANOVA were used to detect differences between groups. For all analyses, P ˂ 0.05 was 

used to indicate statistical significance. 

 

Results 

 

 There was a significant increase in blood flow in carotid arteries in CFO and 

CFO+A after contralateral ligation (189.2 ± 25.3, 369.6 ± 61.9, and 382.3 ± 62.5 ml/min 

in the control, CFO, and CFO+A groups, respectively; P ˂ 0.001). The flow rate in the 

apocynin treatment group was not significantly different than the untreated group. Figure 
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1 represents a typical tracing of a control and a carotid artery exposed to CFO. The mean 

and peak of the blood flow doubled in CFO (Figure 4.1A). After normalization of 

pulsatile blood flow with mean flow rate, the two curves with respect to their mean 

values largely overlapped (Figure 4.1B), which suggests that the oscillatory components 

of pulsatile blood flow were not significantly changed in the CFO model.   

The outer diameter of the vessel significantly increased by 8.6% (4.60 ± 0.41 to 

4.98 ± 0.46 mm) after 1 wk of exposure to CFO (P ˂ 0.05) and did not change 

significantly after treatment with apocynin (4.98 ± 0.46 to 5.06 ± 0.48 mm). We did not 

observe a significant change of arterial wall thickness in the CFO or the CFO+A group 

compared with the control group (data not shown). The systemic blood pressure 

measured at the femoral artery did not change after either surgical ligation of the carotid 

artery or after treatment with apocynin compared with the pressure before ligation (88 ± 

12 vs. 86 ± 11 mmHg). The wall shear stress (WSS; WSS ~ QD-3, where Q and D 

represent flow rate and inner diameter, respectively) was found to remain elevated by ~ 

50% after 1 wk of the CFO and CFO+A groups. 

 

Endothelial Function 

 

Endothelial function was assessed by monitoring the decrease in tension brought 

on by the addition of acetylcholine (ACh) (Figure 4.2); i.e. by measuring the 

effectiveness of the endothelial relaxation.  The dose curves suggested that endothelial 

function was compromised in the CFO group (P ˂ 0.05) but was retained with the 

treatment of apocynin.  This result implied that endothelial dysfunction in CFO was 
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related to ROS upregulation.  Furthermore, we found that the endothelial dysfunction of 

the vessels in CFO was completely reserved after acute incubation with BH4 and L-

arginine, which suggests that eNOS uncoupling may play a role in CFO. The 

endothelium-independent vasorelaxation in response to SNP did not show differences in 

groups, which implied that the VSMC did not develop resistance to nitric oxide (103.5 ± 

15.5, 102.6 ± 17.2, and 103.6 ± 21.1% for control, CFO, and CFO + A, respectively).  

The potassium-induced contraction, which is not receptor-dependent, did not reveal 

differences of VSMC contractility (tension) in the three groups (49.6 ± 6.98, 51.3 ± 7.66, 

and 51.1 ± 7.96 mN/mm for control, CFO, and CFO + A, respectively). 

 

ROS Generation 

 

The EPR measurements are presented in Figures 4.3 and 4.4. ROS generation 

significantly increased in the CFO group. Apocynin treatment restored ROS generation to 

the control value.  Since PBN is lipophilic and forms stable lipid-derived, spin adducts 

(radical bound to spin trap), it provides reliable overall indication of ROS concentration 

measurements in biological tissue under physiological conditions without lipid radical 

adduct extraction that may involve artifacts such as failure to retrieve all of the adducts 

from the biological sample and additional ROS generation during centrifugation.  Since 

PBN is indeed able to trap NO in vascular tissue, we verified that NO was not 

significantly produced in our experimental preparation with DAF-2DA (NO probe) and 

L-NAME (an eNOS inhibitor). 
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Expression of eNOS and NADPH Oxidase 

 

The expression of eNOS was significantly upregulated in the CFO group and 

unaffected by apocynin treatment (Figure 4.5).  The subunits p22phox and p47phox are 

well known to be expressed ubiquitously in endothelial and VSMC. The protein 

expression of cytosolic assembling subunits of NADPH oxidase (p22phox and p47phox) 

were significantly elevated in carotid segments exposed to CFO but not in CFO+A 

(Figure 4.5).  NOX2 and NOX4 (NADPH oxidase 2 and 4) were found to be upregulated 

in CFO and CFO+A. 

 

Discussion 

 

The major findings are that chronic shear stress elevation of ~50% increases ROS 

production mediated by NADPH oxidase and induces endothelial dysfunction in swine 

carotid artery.  Recent observations suggest that NADPH oxidase is directly involved in 

superoxide production in mouse carotid arteries where the flow was increased by a factor 

of three to five by construction of an arteriovenous fistula.  The present study 

demonstrates a similar finding in conduit artery of the porcine model in response to a 

more modest increase in WSS. Moreover, we show for the first time endothelial 

dysfunction as a consequence of increased oxidative stress in conduit artery where eNOS 

uncoupling may play a role during CFO.   

The porcine carotid artery was exposed to approximately twice the physiological 

flow rate for 1 wk in this study.  Although the change of flow rate was relatively small 
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compared with a typical arteriovenous fistula (over fivefold increase in flow rate), the 

objective was to study a model with minimal disturbance since surgery elicits 

inflammatory response and consequent oxidative stress.  The diameter enlargement of the 

artery was accordingly small (8.6%). Such a change in flow and diameter in a conduit 

artery may occur under physiological conditions, such as in exercise.  Interestingly, ROS 

generation increased by onefold in response to the relatively small changes in flow or 

WSS (56% increase).  Although mechanical stimulations, including oscillatory WSS and 

cyclic stretch, have been shown to increase ROS production in the vasculature; this is the 

first report of increased ROS generation in response to CFO in a conduit vessel of a large 

animal.   

The diameter increase during CFO is attributed to a physiological response to 

restore the homeostatic shear stress on the endothelium. It is well known that acute 

vasodilatation is stimulated by WSS elevation.  Following acute vasodilatation, chronic 

remodeling occurs and further increases the diameter.  Interestingly, the complete 

restoration of WSS requires a relatively long period in an arteriovenous fistula; e.g., over 

4 wk in carotid arteries of rabbits [10], over 3 wk in the carotid arteries of mice [7], and 6 

mo in the carotid arteries of dogs [26].  In the present study, the WSS was not restored 

and remained elevated after 1 wk. In fact, a conduit artery possesses the capacity to 

acutely increase its diameter up to 15% in response to a 10- to 20-fold increase in flow 

[1].  Even in the 1-wk study, the diameter may enlarge by 15–20% in response to a three- 

to fivefold increase in flow rate.  Hence, acute diameter enlargement in response to CFO 

depends on the magnitude of WSS and the subsequent remodeling duration since the 

restoration of WSS may be very long.  Since vasodilatation increases vascular stretch, 
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which can activate NADPH oxidase in blood vessel wall [27], the stretch may play a role 

in CFO. The elevated stretch results from diameter increase (flow-induced vasodilatation) 

and vascular wall softening due to NO-induced vascular tone reduction.  Both effects 

increase the magnitude of stretch at pulsatile blood pressure.   

The expansive remodeling of the blood vessel wall in response to an increase in 

flow rate has been previously viewed as a physiological adaptation to restore the WSS [1, 

23].  Here, we show that the remodeling response leads to compromised endothelial 

function (over a 1-wk period). The endothelium-dependent vasodilation in the present 

study (Figure 4.2) is significantly decreased in response to a modest flow increase in a 

relatively short period.  In resistance arteries, Pourageaud et al. observed that CFO 

increased the endothelium-dependent vasodilation to ACh, and flow-induced vasodilation 

was slightly but not statistically attenuated.  In diabetic rats, CFO results in significant 

endothelial dysfunction in mesenteric arteries.  The mechanism involved in the different 

endothelial responses in large conduit arteries and small resistance arteries to CFO is 

unclear.  It may be that resistance arteries are exposed to more significant variations of 

blood flow under physiological conditions due to lateral-contralateral adjustment of 

microcirculation and adapt to larger variation of blood flow compared with large conduit 

arteries. 

NADPH oxidase (NOX) has been recognized as a major source of superoxide in 

the vasculature in response to mechanical stimulation [14, 18].  It is known that p22phox 

is an important trans-membrane protein that combines with NOX to assemble NADPH 

oxidase complex and is known to be upregulated by WSS [28].  The p47phox, as 

cytosolic subunit of NADPH oxidase, may also affect the activity of NOX. NOX4 is a 
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p22phox-dependent enzyme [29] and does not require cytosolic proteins (p47phox, 

p67phox) for its activity [30, 31]. 

Apocynin is an inhibitor of NADPH oxidase under in vivo condition where H2O2 

and myeloperoxidase are present and is suggested to inhibit the translocation of 

cytoplasmic subunits.   It is also possible that treatment by apocynin in this study shifted 

the balance of oxidative stress in vascular tissue through nonspecific antioxidant effects. 

Since the expression of NOX isoforms may be located in endothelial and VSMC, we 

cannot separate the effect of WSS on endothelium and circumferential stretch acting 

throughout the vessel wall on NOX isoforms. The elucidation of the role of NOX in 

endothelial and VSMC during CFO requires further study.   

A fundamental question involves the mechanism by which elevated WSS sensed 

by the endothelium transmits its effect on more remote regions of the wall.  A possible 

mechanism may be similar to hypertension via the NADPH oxidase pathway. The 

common factor in CFO and hypertension is the increase in circumferential stretch and 

stress.  Hypertension increases circumferential stress and strain by an increase in blood 

pressure, whereas flow-induced vasodilation increases vessel stretch similarly through an 

increase in diameter.  The circumferential stress or strain, mediated by 

mechanotransduction in CFO, may activate NADPH oxidase and elicit ROS generation. 

In summary, ROS production increases in porcine carotid arteries in response to a 

onefold increase in the blood flow rate, which leads to endothelial dysfunction.  NOX2 

and NOX4 oxidase and p22phox and p47phox are upregulated in CFO, and NADPH 

oxidase is likely involved in the increase in oxidative stress.  The chronic use of apocynin 

prevents the elevation of ROS levels, even though NOX2 and NOX4 are upregulated, and 
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preserves endothelial function. The mechanisms by which apocynin prevents the 

upregulation of p22phox and p47phox but not NOX2 and 4 remain unclear.  Although the 

process of CFO-induced remodeling to restore WSS has previously been thought of as a 

physiological response, the present data suggest that CFO mediated by ROS causes 

endothelial dysfunction, which may result from eNOS uncoupling in the first week of 

outward vascular remodeling. 
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Representative waveform of blood flow in the carotid artery at rest (basal) 

and flow overload (CFO).  (A) real time recordings. (B) tracing normalized by the mean 

flow rate.  The normalized chronic flow overload trace approximately overlays the 

normalized baseline trace.  
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Figure 4.2:  Endothelium-dependent vasorelaxation of carotid arteries.  Initially the 

arteries were contracted to the same approximate tension with phenylephrine (PE) and 

dose-responsive vasorelaxation was induced by acetylcholine (ACh).  C, control group; 

CFO, chronic flow overload group; CFO + A, chronic flow overload with administration 

of apocynin; CFO + BH4, acute incubation with tetrahydrobiopterin (BH4) in carotid 

arterial segment in CFO.  *Significant difference between groups (P ˂ 0.05; ANOVA 

followed by Duncan’s test for multiple groups). 
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Figure 4.3:  The three, first derivative spectra of the PBN spin adduct are as follows: the 

dashed trace is the CFO case, the solid trace is C (control) case and the dotted trace is 

CFO + A (chronic flow overload with administration of apocynin). 

 

 

 

-1500

-1000

-500

0

500

1000

1500

3320 3330 3340 3350 3360 3370

In
te

ns
it

y 
(A

rb
it

ra
ry

 U
ni

ts
).

 

Magnetic Field (Guass)



70 
 

 

 

 

 

 

Figure 4.4: Concentration of ROS in n = 12 pigs due by EPR.  The CFO case has the 

largest concentration of ROS, (4.35 nmolar).  C and CFO + A groups are both low with 

the control group having the lowest concentration of ROS (2.9 nmolar).   
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Figure 4.5:  The proteins expression evaluated with Western blot.  (A) Western Blotting 

bands. The molecular weight was confirmed as eNOS: 120 kD, p22phox: 22 kD, 

p47phox: 47 kD, NOX2: 91 kD, and NOX4: 55 kD.  (B) Ratios of total pixels of the 

bands were measured by use of imaging software. C: Control group. CFO: Chronic flow-

overload group. CFO+A: Chronic flow-overload group treated with apocynin. * P<0.05 

in comparison between control and CFO or CFO+A. † P<0.05 in comparison between 

CFO and CFO+A.  
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CHAPTER 5: ELEVATED OXIDATIVE STRESS AND ENDOTHELIAL 

DYSFUNCTION IN RIGHT CORONARY ARTERY OF RIGHT VENTRICULAR 

HYPERTROPHY 

 

Right ventricular hypertrophy (RVH) results in significant remodeling of right 

coronary artery (RCA) [1-7].   The morphometric data of RCA main trunk, arterioles, and 

capillaries in RVH suggest outward remodeling in main trunk and increase in numbers of 

resistance and capillary vessels [1].  A hemodynamic analysis showed RCA 

compensatory adaption during RVH to restore the perfusion at the arteriolar and capillary 

levels and increase blood flow in the main trunk [2], in proportion to increase in right 

ventricle (RV) mass [1].  The effect of RVH on RCA endothelial function, however, 

remains unclear.   

Endothelial function plays an important role in vascular pathophysiology and is a 

biomarker/mediator of cardiovascular risk factors [1, 3-6].  Endothelial dysfunction has 

also been shown to be a predictor of adverse outcomes in patients with coronary artery 

disease [1, 7].   NO is well known as endothelium-dependent vasodilator and is believed 

to play an atheroprotective role.  ROS are free radicals found in all vascular cells that are 

involved in remodeling in both physiological and pathological conditions [3, 4, 8-11].  

ROS can inactivate NO and decrease NO bioavailability in blood vessels that may 

compromise endothelium-dependent vasorelaxation [3, 12-14].   Recent studies suggest 
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that an imbalance between superoxide and NO levels, rather than the individual levels, 

may have harmful consequences on the endothelium [3, 6, 12].   Numerous observations 

suggest that ROS are involved in vascular remodeling in response to mechanical 

stimulations, including stretch [6, 12, 15].  The RCA in RVH experiences outward 

remodeling (increase in diameter) and axial elongation [1].  It is unknown whether ROS, 

endothelial function, and vascular tone change during RCA remodeling in RVH.  Our 

hypothesis is that elevated ROS, endothelial dysfunction, and increased tone accompany 

RCA remodeling in RVH.  Uncoupled endothelial NO synthase (eNOS) due to 

insufficient tetrahydrobiopterin (BH4) may also contribute to endothelial dysfunction.  

We used digital subtraction angiography (DSA) to quantify RCA remodeling 

longitudinally based on quantitative angiographic images in swine.  The ex vivo 

endothelium-dependent vasorelaxation in response to vasodilator was measured to 

evaluate endothelial function. ROS production was confirmed by electron paramagnetic 

resonance (EPR) spectroscopy.  The expression of NADPH oxidase was also measured to 

underscore the role of ROS production in a circumferentially stretched RCA at constant 

wall shear stress (WSS). 

 

Materials and Methods 

 

The experiments were conducted on seven 3-to 4-mo-old Yorkshire pigs, and five 

age and weight matched animals served as a sham group.  A thoracotomy was performed 

along the fourth intercostal space.  The chest cavity was exposed to provide access to the 

pulmonary artery (PA), as well as the RCA. A glycerin-filled silicone occlude was fitted 
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around the PA, and the filling tube was exteriorized to allow for cuff occlusion at a later 

time. A transonic flow probe (TD420, Transonic) was acutely placed on the proximal 

RCA, and flow rate was recorded. Once the probe was removed at the conclusion of 

coronary flow measurements, the chest was closed, and the animal was allowed to 

recover for 1 wk.   

The degree of RVH, and the related increase in coronary blood flow, was imposed 

by the pressure gradient across the PA. A 7-Fr Swan-Ganz catheter was inserted through 

the jugular sheath and guided into the RV.  The PA was banded upon inflation of the 

silicone occluder.  The banding was set, and the occluder was locked when the desired 

systolic RV pressure was reached.  The pressure increase ranged from 35% to 50% of 

baseline.  The pressure gradient across the PA was monitored throughout the duration of 

the study.  The sham group was treated identically, except the occluder was not inflated.    

The RCA was imaged before and immediately after banding and again on 

scheduled days for the duration of the study.  A period of 4 wk after onset of occlusion 

was deemed sufficient to observe most of the remodeling in RVH [1, 16-19].  At the end 

of 4 wk, the animal was anesthetized, and the heart was exposed similar to prior surgery.  

The transonic flow probe was placed in the same previous RCA region to record coronary 

flow rate, and the animal was euthanized.  The heart was excised and immediately stored 

in 4°C HEPES physiological saline solution (HEPES-PSS, noted above).  The RCA was 

carefully excised.  

All experiments were performed in accordance with national and local ethical 

guidelines, including the Institute of Laboratory Animal Research (ILAR) Guide, Public 
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Health Service policies, Animal Welfare Act, and an approved Indiana University School 

of Medicine IACUC protocol. 

A thoracotomy was performed along the fourth intercostal space.  The chest 

cavity was exposed to provide access to the pulmonary artery (PA), as well as the RCA. 

A glycerin-filled silicone occlude was fitted around the PA, and the filling tube was 

exteriorized to allow for cuff occlusion at a later time.  A transonic flow probe (TD420, 

Transonic) was placed on the proximal RCA, and flow rate was recorded.  Once the 

probe was removed at the conclusion of coronary flow measurements, the chest was 

closed, and the animal was allowed to recover for 1 wk.  The degree of RVH, and the 

related increase in coronary blood flow, was imposed by the pressure gradient across the 

PA. A 7-Fr Swan-Ganz catheter was inserted through the jugular sheath and guided into 

the RV.  The PA was banded upon inflation of the silicone occluder. The banding was 

set, and the occluder was locked when the desired systolic RV pressure was reached. The 

pressure increase ranged from 35% to 50% of baseline.  The pressure gradient across the 

PA was monitored throughout the duration of the study.  The sham group was treated 

identically, except the occluder was not inflated. 

The RCA was imaged before and immediately after banding and again on 

scheduled days for the duration of the study. A period of 4 wk after onset of occlusion 

was deemed sufficient to observe most of the remodeling in RVH.  At the end of 4 wk, 

the animal was anesthetized, and the heart was exposed similar to prior surgery.  The 

transonic flow probe was placed in the same previous RCA region to record coronary 

flow rate, and the animal was euthanized.  The heart was excised and immediately stored 

in 4°C HEPES physiological saline solution (HEPES-PSS) (in mmol/l: 142 NaCl, 4.7 
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KCl, 2.7 sodium HEPES, 3 HEPES acid, 1.17 MgSO4, 2.79 CaCl, 5.5 glucose). The RCA 

was excised carefully and used for various measurements. The degree of hypertrophy was 

assessed by measuring RV-to-left ventricle (LV) mass ratio (RV/LV). 

 

EPR Spectroscopy 

 

The vascular segment for EPR was videotaped from the side (~4 mm in length) 

and cross-sectional views were obtained under a stereo microscope.  The volume of the 

segment was calculated based on the product of cross-sectional area and axial length.  

The ROS generation was expressed as moles per unit of volume.  A measure of the ROS 

concentration in the tissue samples was determined from EPR spectra obtained by 

incubating the tissue samples with the spin trapping agent N-tert-butyl-α-phenylnitrone 

190 mM in HEPES-PSS for 30 min at 37°C in the dark.  A Bruker ESP X-band 

spectrometer equipped with a TE102 cavity was utilized to detect signals (frequency: 9.4 

GHz, power: 25.2 mW).   All experiments were done at liquid nitrogen temperature.  

ROS concentrations were determined with 2,2,6,6-tetramethylpiperidine 1-oxyl solution 

(0.1 μmol/l) used as a concentration standard.   All EPR parameters and conditions 

applied to both standard and experimental samples. 

 

NOXs and eNOS 

 

Briefly, the protein extracts (~25 µg) from arterial tissues were fractionated on 

10% SDS-PAGE gel, transferred onto polyvinylidene difluoride membrane, and probed 
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with the following primary antibodies: anti-NOX1 (1:250, Santa Cruz Biotechnology), 

anti-NOX2 (1:250, Santa Cruz Biotechnology), anti-NOX4 (1:250, Santa Cruz 

Biotechnology), anti-p47phox (1:500, Santa Cruz Biotechnology), or anti-eNOS (1:1,000 

dilution in blocking buffer, BD Transduction Laboratory).   Blots were incubated with 

horseradish peroxidase-conjugated secondary antibody.  The signal was detected by 

enhanced chemiluminescence (Amersham) and evaluated by densitometry (Sigma Scan). 

β-Actin was used for normalization. 

 

Ex Vivo Endothelium-dependent Relaxation 

 

An isovolumic myograph recently developed by Kassab’s  group was employed 

to evaluate the endothelial function of RCA [20], which maintains physiological loading 

similar to a pressure myograph, but measures tension with the high sensitivity of a wire 

myograph.   Briefly, the RCA was cannulated on both ends in a physiological bath with 

HEPES-PSS and stretched to in situ length.  The pressure and external diameter were 

measured with pressure transducer (Mikro-Tip SPR-524, Millar Instruments) and digital 

diameter tracking (DiamTrak v3+, Australia), respectively.  The internal diameter was 

computed using the incompressibility assumption of vessel wall. The circumferential 

tension (product of pressure and internal radius) of the vessel was calculated. 

The vessel segment was precontracted to an approximate pressure by 

acetylcholine at submaximal concentration (10-7 mol/l -10-5 mol/l), which resulted in a 

somewhat different concentration of acetylcholine for each segment.  In general, the 

concentration was ~80% higher in sham than in RVH vessels. The precontracted RCA 
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was relaxed by bradykinin at a series of doses from 10-12 mol/l to 10-7 mol/l.  The 

endothelium-dependent vasodilatation was expressed as percent decrease in tension, 

which is calculated by the equation: %Tension = (Td - Ti)/(Tmax - Ti)  100. The tension 

at every dose (Td), physiological level (Ti), and sub-maximum tension (Tmax) by 

vasoconstrictor (acetylcholine) are shown. In additional experiments, the vessel segments 

were incubated with either BH4 (10-7 mol/l) and L-arginine (10-7 mol/l) or apocynin (10-6 

mol/l) for 40 min, and the endothelium-dependent relaxation of RCA was measured. The 

endothelium-independent vasorelaxation to sodium nitroprusside (dose-response 

relaxation: 10-10 mol/l -10-5 mol/l) served as reference. 

 

Statistical Analysis 

 

The data are expressed as means ± SD, unless otherwise stated. The correlation of 

ROS production, NOX, and endothelium-dependent relaxation were analyzed using a 

linear least squares fit.  Variance analysis (ANOVA) was used with time- and dose-

dependent comparisons (Bonferroni). Student’s t-test was used to detect differences 

between pairwise groups. For all analyses, a P 0.05 level was used to indicate statistical 

significance. 

 

Results 

 

The body weight and systemic blood pressure of PA banded animals were not 

significantly changed compared with the sham group.  RV systolic pressure in the PA 



79 
 

banding group was significantly higher than that in the sham group (Table 5.1). The 

RV/LV was defined as the ratio of the RV free wall mass to LV plus septal wall mass. In 

the PA banding group, RV/LV was over three times that of the sham group, which 

indicated significant RV hypertrophy during PA banding (Table 5.1).   

The blood flow in RCA based on measurement of Transonic probe significantly 

increased in the PA banding group compared with the sham group (Table 5.1). The flow 

rate measured by Transonic Doppler (Figure 5.1) shows a similar waveform pattern with 

a mean value of 23.8 ± 4.3 ml/min in sham control and 44.3 ± 7.3 ml/min after 4 wk of 

PA banding (Figure 5.1A).  When the phasic flow curves were normalized relative to the 

respective mean values of flow rate, the waveforms appears similar, which suggests that 

only the mean value changed and not the oscillatory component (Figure 5.1B).  

Angiographic DSA was used weekly to longitudinally quantify RCA blood flow and 

luminal diameter, and the typical images are shown in Figure 5.2A.  The RCA 

experienced a small step increase in blood flow with the onset of PA banding and a 

gradual increase in blood flow over time (Figure 5.2B).  The gradual chronic increase in 

blood flow was accompanied by an increase in RCA diameter.  The RCA diameter cubed 

in Figure 5.2B shows a close proportion to blood flow.  Since WSS is proportional to the 

ratio of blood flow to diameter cubed, the WSS was essentially unchanged throughout the 

experimental duration.  The total increase in blood flow after 4 wk was 1.82 times the 

sham control using DSA measurement, which was not statistically different from the 

Transonic measurement (1.87 times).  Furthermore, we determined the WSS at onset of 

banding and after 4-wk banding with Transonic measurement to be 11.0 ± 0.9 and 10.4 ± 

0.8 dyn/cm2, respectively (P = 0.37). 
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The oxidative stress in arterial tissue was measured by EPR spin trapping.  The 

typical tracing curves of spin trapped ROS are presented in Figure 5.3.  ROS species 

concentration measured using the spin trap indicates an increase in ROS after 4 wk of PA 

banding (Figure 5.4).  We further evaluated the expression of subunits of NOX: NOX1, 

NOX2, NOX4, and p47phox (Figure 5.5) to identify the sources of ROS.  NOX oxidase 

is the major source of superoxide, and p47phox is essential to NOX oxidase function. The 

upregulation of enzyme expression increased the generation of superoxide and elevated 

oxidative stress in the tissue.  Although the expression of eNOS was attenuated after 4 wk 

of PA banding, the difference was not statistically significant (Figure 5.5).  Endothelial 

function was evaluated in this study by ex vivo acetylcholine precontractile endothelium-

dependent vasorelaxation in response to bradykinin. The endothelium-dependent 

relaxation was compromised after 4 wk of PA banding (Figure 5.6A) compared with the 

sham group (two-way ANOVA, P 0.05). 

The supplement of BH4 and L-arginine restored the endothelial function in the PA 

banding group (Figure 5.6A), which suggests insufficient eNOS cofactors in the PA 

banding model.  Administration of apocynin did not restore the endothelial function 

(Figure 5.6), which implies that ROS may affect endothelial function through oxidization 

of eNOS cofactor (BH4).  NO donor (sodium nitroprusside) induced endothelium-

independent vasorelaxation showed that vascular smooth muscle relaxation in response to 

NO was unchanged (Figure 5.6B).   
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Discussion 

 

This is the first study to show a compromised endothelial function in RCA during 

RVH as verified in an ex vivo isovolumic myograph [20].  Our findings suggest that the 

RCA endothelial dysfunction stems from eNOS uncoupling.  The angiographic analysis 

of in vivo volume ratio suggests an increase in the basal tone of RCA during RVH.  The 

increase in ROS production was also observed in the RCA of RVH.  Although increased 

ROS production in hypertension and coronary artery disease has been well documented 

[3-5], [14, 21] as has the predilection for vasospasm in hypertension and LV hypertrophy 

[9, 22, 23]; this is the first study to suggest increased ROS production and compromised 

endothelial function in response to a gradual increase in blood flow under constant WSS 

conditions.   

We observed a chronic increase of blood flow in the RCA in PA banding-induced 

RVH. Despite the increase in RV pressure, the systemic blood pressure in RCA was 

unchanged, indicating that coronary hypertension was not a factor in this study.  The 

progression of RVH was monitored in the same pig longitudinally using angiography, 

which allowed each animal to serve as its own control.  To our knowledge, this is the first 

porcine longitudinal model that reflects remodeling of a coronary artery at different time 

points in the same animal.  In this model, the increase in diameter cubed of RCA is 

proportional to the increase in blood flow, which is proportional to the increase in 

myocardial mass of RV, since RVH progresses slowly under the pressure overload. 

Therefore, WSS remained constant during increases in both diameter and blood flow in 
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RCA during RVH.  The constant WSS is also underscored by the unchanged expression 

of eNOS in contrast to increase of eNOS with elevated WSS [24]. 

 In addition to WSS, other hemodynamic factors, especially the circumferential 

and axial distension on blood vessel, may be the stimuli for the biochemical, molecular, 

and functional responses of blood vessel [15].  DSA measurement in this study clearly 

showed the progression of RCA expansion (Figure 5.2), which is consistent with our 

previous observation; i.e., diameter increase and axial elongation simultaneously take 

place in the RCA during RVH [1].  The axial elongation of RCA may result from 

dimensional remodeling (e.g., enlargement) of RV during RVH [1].  It is well established 

that stretch activated integrin, ion channels, and G protein-coupled receptors mediate 

cellular signaling and function in blood vessels.  Endothelial dysfunction and increase in 

ROS production in this study are indeed similar to the pathological responses of blood 

vessels in hypertension that also entails stretch.  An increase in ROS production is 

involved in changes of vaso-reactivity [25], endothelial dysfunction [6, 8], and vascular 

remodeling [3, 13].  ROS may reduce NO bioavailability by reaction with NO and, 

therefore, compromise endothelium-dependent vasorelaxation [3, 11].   

An increased volume ratio indicates significant geometric remodeling of RCA 

during RVH (Figure 2C). With administration of vasodilators (nitroglycerin in the present 

study), the basal vascular tone can be estimated as the differences of volume ratio with 

and without the vasodilator.  The analysis of in vivo volume ratio suggests a progression 

of elevated basal tone in the RCA during RVH (Figure 2C), which may predispose the 

vessel to vasospasm.  The data from ex vivo vaso-reactivity (SNP-induced 

vasorelaxation) using isovolumic myograph suggest that vascular smooth muscle of RCA 
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is the same in sham and RVH groups (Figure 5.6).  Therefore, we conclude that the 

increased basal tone is likely from endothelial dysfunction, i.e., eNOS uncoupling.   

The upregulation of oxidative stress (Figures 5.3, 5.4 and 5.5) also may 

compromise endothelial function by oxidizing BH4 (an eNOS cofactor) to form 

uncoupled eNOS, which produces ROS instead of NO.  As an important cofactor of 

eNOS, BH4 plays a critical role in endothelial function [26].  In the present study, the 

result shows that BH4 can reverse the endothelial dysfunction of RCA by ex vivo 

administration of BH4 (Figure 5.6A), which suggests eNOS uncoupling. But ex vivo 

administration of apocynin (an antioxidant and inhibitor of NOX) did not restore the 

endothelial function (Figure 5.6A).  This implies that the deficiency of BH4 in the RCA is 

not acute oxidization of ROS and needs further study.   

In blood vessel, NOX, xanthine oxidase, mitochondria, and eNOS uncoupling are 

recognized as the sources of ROS.  Among them, NOX has been identified as a major 

source of superoxide in blood vessels in response to pathological stimulation 

(hypertension, hypercholesterolemia, and diabetes) and mechanical stimulation [4, 10, 

11].  In this study, we examined the expression of NOX in RCA using Western blot and 

chemiluminescence analysis.  The upregulation of expression of NOX underscores its 

role in RCA remodeling during RVH.  The result of the addition of BH4 in ex vivo studies 

implies that eNOS uncoupling is one of the sources of ROS in the RCA during RVH.  

The administration of inhibitors of various oxidases and in vivo manipulation of BH4 

requires additional study.   

The interaction of ROS between RCA and RV during RVH is likely to be small, 

since our measurement of ROS in RV tissue showed a relatively small increase (8%) 
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during RVH compared with the changes in the vessel tissue.  In this model, we 

established stretch rather than WSS as the major stimulus. Accordingly, we chose DSA 

rather than conventional implantable probe-based or Doppler wire methods based on 

several reasons.  The video densitometry-based DSA is independent of geometry or 

velocity profile and is less invasive to the vessel.  Ultrasonic flow wire provides flow 

velocity as opposed to volumetric flow rate.  The flow rate can be calculated if the 

velocity is measured from the centerline, which is often not the case.  The flow rate 

calculation also requires the assumption of laminar flow (a condition that is not 

necessarily true in RCA) and an accurate area measurement.   DSA was selected over a 

transonic flow probe in this study, since implantation of a flow probe around the RCA 

presented a technical challenge; i.e., access to the RCA is difficult from a left lateral 

thoracotomy.  Even when surgical implantation of the flow probe was successful, as was 

the case in several test animals, the implant may induce an inflammatory response in the 

RCA, which contributes strong oxidative stress.  Additionally, the flow probe itself may 

cause a focal stenosis when vessel growth is retarded by the flow probe.  Microsphere 

techniques were not used to measure flow or its profile, because they require withdrawal 

of blood per measurement. Furthermore, any degradation of microspheres lodged in the 

capillary bed within the 1-mo measurement period would underestimate flow.  Finally, 

the change in heart weight makes the normalization of flow (perfusion) inaccurate.  The 

DSA technique has been validated in vivo against an ultrasonic flow probe with a 

discrepancy of 4% [27]. 
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Conclusion 

 

 We confirmed that WSS remains constant in this model of RVH and implicated 

stretch as the major stimulus.   ROS production and NOX content increased significantly 

in this RCA model of RVH.  Endothelial function of RCA was compromised after 4 wk 

of RVH, and eNOS uncoupling was implicated in the endothelial dysfunction.   In vivo 

analysis suggests an increased basal tone in the RCA during RVH and, therefore, 

increases the potential risk of vasospasm. 
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Table 

 

 

 

 

Table 5.1:  Hemodynamic and physiological parameters 

 

 PA banding  Sham 
 Day 0 Day 28  Day 0 Day 28 
Body weight (kg) 41.2  3.3 49.8  4.7  40.7  3.8 53.6  6.2 
RV/LV ratio (g/g) N/A 0.73  0.11    N/A 0.21  0.06 
Systemic pressure (mmHg) 68  8 64  6  69  8 70  11 
RV pressure (mmHg) 37  7 52  11  36  7 38  9 
RCA blood flow (ml/min) 23.8  4.3 44.3  7.2  22.7  4.6 25.9  5.1 

 

Values are means ±SD. PA, pulmonary artery; RV/LV, weight ratio of right to left 

ventricles; RV, right ventricle; RCA, right coronary artery; N/A, not applicable. *P  

0.05, significant difference vs. sham group. 

Notes: RV: right ventricle; LV: left ventricle; RV/LV: weight ratio of right to left 

ventricles; RCA: right coronary artery. 
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Figures 

 

 

 

 

Figure 5.1:  The Transonic flow tracing curves of blood flow in right coronary artery 

(RCA) at day 0 and day 28 (4 wk) of right ventricular (RV) hypertrophy (RVH).  (A) 

real-time recordings at day 0 and 4 wk of RVH. (B) flow curves were normalized by the 

mean flow rate. 
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Figure 5.2:  (A) The video densitometric images of RCA were from the same pig to show 

the progress (day 0, day 7, and day 28) of RCA remodeling after PA banding.  All images 

are taken at the same magnification.  Scale length is 5 mm.  (B) The flow and inner 

diameter were measurements based on DSA and WSS was calculated based on the ratio 

of flow to diameter cubed. Normalized flow (Q/Q0), diameter cubed ([D/D0]
3), and WSS 

(WSS/WSS0) were defined as the ratio at a given day relative to day 0. Both Q/Q0 and 

[D/D0]
3 increased gradually with time (one way ANOVA, P < 0.05). The increase is 

exponential thereafter as shown through the best-fit line.  WSS/WSS0 showed no 

significant change with time (one way ANOVA, P > 0.05).  Data are expressed as mean  

SEM. 
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Figure 5.3: Typical EPR spectra of the PBN spin adduct for a RCA segment.  ROS 

production measured with EPR normalized by volume of vessel tissue. 
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Figure 5.4:  Reactive oxygen species (ROS) production measured with EPR normalized 

by volume of vessel tissue. 
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Figure 5.5:  Expression of the proteins of p47phox, NADPH oxidase (NOX4, NOX2, 

NOX1), and endothelial nitric oxide synthase (eNOS).  (A) Western blotting bands of the 

proteins.  (B) the semi-quantification of the proteins content normalized by β-actin 

content. Values are means ±SD, *statistical difference (P		   0.05). 
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Figure 5.6:  (A) endothelial function represented by endothelium-dependent 

vasorelaxation in response to bradykinin (BK; precontracted with acetylcholine 10-7 mol/l 

-10-6 mol/l). The endothelial function of RCA in PA banding (PA) was significantly 

dysfunctional compared with SM (two-way ANOVA, *P  0.05).  Vessel segments in 

PA banding incubated with tetrahydrobiopterin (PA+BH4) for 40 min showed restoration 

of endothelium-dependent vasorelaxation. Apocynin (PA+Apo) did not improve 

endothelium-dependent vasorelaxation of vessel segment in PA banding.  (B) 

endothelium-independent vasorelaxation in response to sodium nitroprusside (SNP; 

precontracted with acetylcholine 10-7 mol/l -10-6 mol/l) (two-way ANOVA, P  0.05). 

Values are means  ±SD. 
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CHAPTER 6: ROLE OF STRETCH ON ENDOTHELIAL DYSFUNCTION AND 

ACTIVATION OF ANGIOTENSIN II TYPE 1 RECEPTOR IN CORONARY ARTERY 

 

The mechanical stretch induced by hypertension or blood flow overload is 

recognized as a signal that elicits mechanotransduction and vascular remodeling in blood 

vessels. Stretch deforms endothelial and vascular smooth muscle cells and activates the 

signaling pathway in the cells which trigger functional and structural remodeling [1-5].  

The detailed mechanisms of the activation remain unclear in various cellular signaling 

systems, e.g., the rennin-angiotensin system which is well-known to play an important 

role in hypertension [5-7]. 

The AT1 receptor has been shown to mediate most of the physiological and 

pathological actions of Angiotensin II (Ang II) in vascular cells [6].  Ang II which binds 

to the AT1 receptor has been thought to play a critical role in hypertension [8].  The 

inhibition of AT1 receptors has been shown to have pharmaceutical benefit for 

cardiovascular diseases such as hypertension [9].  Pretreatment with AT1 receptor 

blockers significantly attenuates the mechanical stretch-induced hypertrophy and the 

activation of myocytes [5, 10]. 

Ang II binds to AT1 receptor and activates the cytosolic subunits of NADPH 

oxidase (p47phox, p67phox) and thereafter NADPH oxidase recruits NAD(P)H as an 

electron donor to catalyze the trans-membrane transfer of electrons to oxygen to form 
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superoxide [11, 12].  It has been observed in cultured cells that the AT1 receptor 

signaling cascade may be activated by mechanical stimulation through integrin which is a 

well-established mechano-sensor that bridges the extracellular matrix to the cytoskeleton 

[12-14].  The AT1 receptor cascade activated by integrin was suggested to be mediated 

by cytosolic Ang II [12].  It is also reported that mechanical stress can activate AT1 

receptors without the involvement of Ang II but the mechanism remains unclear [10, 15]. 

Endothelial dysfunction is a salient feature of hypertension, atherosclerosis, and 

heart failure [16-18].  A decline in bioavailability of nitric oxide (NO) is an important 

cause of endothelial dysfunction. In hypertension, activation of NADPH oxidase 

increases production of ROS which suppresses NO bioavailability by rapid quenching of 

NO [1, 16, 17, 19-21].  Activation of the AT1 receptor causes endothelial dysfunction by 

reduction of NO bioavailability due to an increase in ROS production.  Although the 

roles of AT1 receptor and the Angiotensin system in hypertension have been extensively 

studied, it remains unclear whether the AT1 receptor plays a role in non-hypertensive 

distension, e.g., outward remodeling of blood vessels.  

The signaling pathway of distension-induced endothelial dysfunction is not 

completely understood. The distension of a blood vessel may trigger multiple cellular 

signaling pathways in the vessel wall (see Figure 6.1).  Here, we hypothesize that the 

distension activates AT1 receptors in coronary arteries and in turn the NADPH oxidase 

system which causes ROS-mediated endothelial dysfunction.  Chronic in vivo and acute 

ex vivo experiments were used to test these hypotheses.  In the former, the RCA of swine 

was exposed to chronic distension through a flow-overload model that maintains constant 

wall shear stress.  In the latter, ex vivo RCA segments were distended acutely to 
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determine the AT1 receptor activation response, ROS production, and endothelial 

function.  An external cuff was used to validate the role of distension or circumferential 

stretch in the activation of AT1 receptor in acute ex vivo over-inflation. 

 

Materials and Methods 

 

Animals 

 

Six male Duroc swine weighing 34 kg ± 4 kg (range 30–39 kg) were used to 

induce right ventricle (RV) hypertension and subsequent RV hypertrophy by pulmonary 

artery (PA) banding and an additional six animals (shams) served as controls.  Eighteen 

normal male Duroc swine weighing 38 kg ± 6 kg (range 31–47 kg) were used in acute ex 

vivo stimulation.  The animal experiments were performed in accordance with the 

guidelines of Institute of Laboratory Animal Research Guide, Public Health Service 

Policy, Animal Welfare Act, and an approved Indiana University School of Medicine 

IACUC protocol.  

 

Right Ventricle Hypertrophy 

 

A thoracotomy was performed along the fourth intercostal space.  The chest 

cavity was exposed to provide access to the pulmonary artery (PA).  A glycerin filled 

silicone occluder was fitted around the PA, and the filling tube was exteriorized to allow 

for cuff occlusion and PA stenosis at a later time.  One week after recovery, the animal 
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was anesthetized again and the silicone occluder was inflated and locked when the 

desired systolic RV pressure was reached (35 – 50% above baseline).  In the shams, the 

silicone occluder was not inflated.  The RCA was X-ray imaged before and immediately 

after banding and again on the terminal day of the study.  The angiographic blood flow 

rate and RCA lumen diameter were obtained to determine the wall shear stress as WSS = 

μQ/πD3, where μ is the viscosity of blood, Q is blood flow rate, and D is the inner 

diameter of blood vessel.  

 

Heart and Coronary Artery Harvest 

 

On the termination day, surgical anesthesia was induced with ketamine (20 mg/kg 

im) and atropine (0.04 mg/kg im) and maintained with isofluorane (1–2%).  A 

thoracotomy was performed and the heart was exposed.  The heart was excised and 

immediately stored in 4°C HEPES physiological saline solution (HEPES-PSS) (in 

mmole/l: 142 NaCl, 4.7 KCl, 2.7 Sodium HEPES, 3 HEPES acid, 1.17 MgSO4, 2.79 

CaCl, 5.5 Glucose).  The main trunks of the right coronary artery (RCA) and the left 

anterior descending coronary artery (LAD) were excised carefully.  The RCAs from PA 

banding or sham controls were directly evaluated with various measurements, whereas 

the RCA segments harvested from the acute pigs were first exposed to ex vivo 

stimulations and then evaluated for various endpoints.  The LAD served as a control for 

the RCA in the same heart since the LAD artery essentially remained at normal 

hemodynamic state during PA banding.  
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Ex Vivo Stimulations 

  

The RCA was cannulated with connectors and secured with 6-0 suture twice to 

avoid any leakage. The vessel was warmed up to 37°C slowly (20 – 25 min) and 

equilibrated for 40 minutes at a transmural pressure of 15 mmHg and in situ length before 

stimulation.  After establishment of the base line, the RCA segments in the PA banding 

group were incubated with either AT1 receptor inhibitor (Losartan, 10 μM) for 30 

minutes, or the inhibitor of NADPH oxidase (gp91-ds-TAT, 1 M) for 40 minutes, 

respectively.  The RCA segments in the acute inflation group were stimulated for 1 hour 

by either 180 mmHg inflation pressure, 180 mmHg inflation pressure with cuff-

restriction, 180 mmHg with pre-incubation of Losartan (10 μM) for 30 minutes, or 180 

mmHg with pre-incubation of gp91-ds-TAT (1 μM) for 40 minutes.  A 100 mmHg 

(physiological pressure of RCA) inflation pressure served as control.  The external cuff is 

a plastic porous tube that was opened and externally applied to the vessel, where the inner 

diameter of the tube was precisely made to equal to the outer diameter of the vessel at 

100 mmHg of inflation pressure.  The activations of AT1 receptor and endothelium of the 

segments were verified and the data were discarded if the activations did not meet the 

following criteria: maximal incremental tension < 40% and maximal endothelium-

dependent relaxation < 90%. 
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AT1 Receptor Activation 

 

 The activation of the AT1 receptor was verified with Ang II-induced 

vasoconstrictions in a series of doses from 10-11 mol/l to 10-6 mol/l.  The contraction of 

the vessel wall against the luminal fluid increases the intraluminal pressure at isovolumic 

conditions.  The pressure and the external diameter were measured with a pressure 

transducer (Mikro-Tip SPR-524, Millar Instruments, USA) and a dimensional tracer 

(DiamTrak 3+, Australia), respectively.  Potassium chloride (KCl, 60 mM) was used to 

verify the receptor-independent vasoconstriction of vessel segments.  The contractile 

tension (T) was calculated according to Laplace’s equation (T = p·r/2) from the luminal 

pressure (p) and radius (r).  

 

Vasoreactivity 

  

Endothelium-dependent vasorelaxation was monitored with an isovolumic 

myograph. The vessels were pre-contracted to an approximate transluminal pressure (170 

± 20 mmHg) with acetylcholine at submaximal dose (10-8 mol/l to 10-6 mol/l), and 

thereafter the endothelium-dependent relaxation was induced with a series of doses of 

bradykinin (10-10 mol/l to 10-5 mol/l).  The endothelium-independent vasorelaxation in 

response to sodium nitroprusside (10-10 mol/l to 10-5 mol/l) were measured to verify the 

responsiveness of vascular smooth muscle in response to nitric oxide.  
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ROS Detection by Electron Paramagnetic Resonance (EPR) 

 

A measure of ROS concentration in tissue samples was determined from the EPR 

spectra obtained by incubating the tissue samples with the spin trapping agent N-tert-

butyl-α-phenylnitrone (PBN, Sigma, USA) at 190 mM in HEPES-PSS for 30-min at 

37°C in the dark. A ring incubated with 4-Hydroxy-TEMPO (a superoxide dismutase 

mimic) served as a control of ROS measurement.  The tissue was subsequently inserted 

into a syringe along with the supernatant, immediately frozen in liquid nitrogen, and 

stored at -80°C until EPR analysis was performed.  To avoid ROS produced during 

freezing and thawing samples, the sample was quickly removed while in its frozen state 

from the syringe and placed in a dewar containing liquid nitrogen. The dewar was then 

inserted into the microwave cavity of the EPR spectrometer. The sample remained at 

liquid nitrogen temperature throughout the EPR analysis [22, 23].  ROS generation was 

expressed as mole per unit volume of tissue.  

The EPR equipment and settings were as follows: A Bruker ESP X-band 

spectrometer equipped with a TE102 cavity was utilized to detect signals.  Parameters for 

the spectra were: 9.4-GHz microwave frequency, 25.2-mW microwave power, 4.0-G 

modulation amplitude, 1×105 receiver gain, 5.24-s time constant, 3330-G center 

magnetic field, and 100-G magnetic field sweep width.  All experiments were run at 

liquid nitrogen temperature.  

Four EPR scans were taken per tissue sample and analyzed with Bruker WINEPR 

software (Version 2.11) based on the spectral intensity and linewidth. ROS 

concentrations were determined with 2,2,6,6-tetramethylpiperidine 1-oxyl, TEMPO, 
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solution (0.1 μM, Sigma, USA) used as a concentration standard.  All EPR parameters 

and conditions were applied to both standard and experimental samples.  

 

Statistics 

 

 The data were presented as mean ± SD and significant differences between two 

data points were determined by Student’s t-test.  Significant differences between the 

dose-response relationships between groups were determined by use of Analysis Of 

Variance (ANOVA) between groups.  A probability of P < 0.05 was considered to be 

indicative of a statistically significant difference. 

 

Results 

 

Chronic Right Ventricular Hypertrophy 

 

The PA banding caused an increase in RV pressure from 377 to 529 mmHg.  RV 

pressure did not change in sham animals (367 versus 356 mmHg).  The systemic blood 

pressure remained nearly constant in the PA banding animals and the shams. In PA 

banding, the blood flow increased in the RCA after the four-week period and the 

diameter of the RCA increased accordingly such that the wall shear stress (WSS) was not 

significantly changed.  It went from 11.009 dynes/cm2 at baseline to 11.408 dynes/cm2 at 

termination (Figure 6.2).  The blood flow and diameter of the RCA in the shams did not 
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change (data not shown). The blood flow remained unchanged in the LAD during PA 

Banding since the left ventricle (LV) is normotensive.  

In PA banding, the RCA significantly augmented the contractile responsiveness 

of the vessel to Ang II in comparison with the LAD in the same heart and the RCA in the 

sham (Figure 3A).  Acute application of losartan, an inhibitor of AT1 receptor, blocked 

the contractile responsiveness of the RCA and LAD to Ang II, which verified the role of 

AT1 receptor in contraction. The Western Blotting analysis indicated that the expression 

of AT1 receptor in the RCA was upregulated during PA Banding but not in the LAD 

(Figure 6.3B).  

Endothelium-dependent relaxation was attenuated in the RCA but not the LAD 

during PA Banding (Figure 6.3) in comparison with the shams. The acute inhibition of 

AT1 receptor with losartan restored the endothelial function of RCA in PA banding.  

Since the angiotensin system may activate NADPH oxidase which augments the 

production of ROS, we investigated the effects of an inhibitor of NAPDH oxidase; i.e., 

gp91-dis-TAT. The acute inhibition of NADPH oxidase did not completely restore 

endothelium-dependent relaxation in the RCA exposed to PA banding.  The results are 

based on EPR (Figure 6.3B). The acute inhibition of AT1 receptor and NADPH oxidase 

reduced the production of ROS in the RCA wall exposed to PA banding (Figure 6.3B).  

 

Ex Vivo Stimulation 

 

After exposure to ex vivo distension at 180 mmHg for 1 hour, the RCA showed an 

elevation in contractile responsiveness to Ang II (Figure 6.5).  This observation combined 
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with the inhibition of AT1 receptor, implies that the angiotensin system is activated by 

the 180 mmHg inflation.  When an external cuff was applied to the vessel segment to 

restrain the distension, a pressure of 180 mmHg did not increase the contractile 

responsiveness to Ang II in comparison with physiologic pressure of 100 mmHg (Figure 

6.5). The endothelium-dependent relaxations are shown in Figure 6.4.  An inflation of 

180 mmHg pressure attenuated the endothelium-dependent relaxation.  The inhibition of 

AT1 receptor and the use of external cuff maintained the endothelial function at hyper-

distension. The inhibition of NADPH oxidase did not completely restore endothelium-

dependent relaxation. The production of ROS significantly increased when the vessel 

segment was inflated to 180 mmHg (Figure 6.5). The inhibition of AT1 receptor, 

NADPH oxidase, and circumferential stretch (external cuff) reduced the production of 

ROS to lower level than physiologic pressure of 100 mmHg.  

 

Discussion 

  

In the present study, we found that the expression and activation of AT1 receptor 

was upregulated  in the RCA exposed to chronic in vivo distension by PA banding and 

acute ex vivo distension (over inflation), which is a typical stimulus-response in cellular 

signal pathways (Figure 6.1). AT1 receptor is implicated in the production of ROS 

induced by distension.  The inhibition of the distension by an external cuff, AT1 receptor, 

and ROS provide evidence that distension plays a major role in activation of AT1 

receptor and endothelial dysfunction in the vascular wall.  
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The PA banding causes RV hypertension and secondarily hypertrophy. In this 

model, the RCA is not exposed to high blood pressure but a gradual increase in blood 

flow due to increase in RV mass.  The diameter of RCA increased progressively, i.e., the 

RCA was gradually circumferentially stretched while maintaining a constant WSS. 

Although laminar WSS is considered as a stimulator of endothelial NO, the effect of 

WSS was not significant in this model since the WSS on the endothelial surface of RCA 

did not change significantly during the duration of PA banding. The major mechanical 

stimulus in this model is the gradual increase in circumferential stretch of the vessel wall. 

The circumferential stretch accompanies vascular relaxation but is different than the 

vascular stretch accompanied by higher vascular tone in hypertension.  The similarity of 

this model and hypertension lies in the observation that both stretches can activate 

vascular mechanotransduction, cellular signaling pathway, and remodeling.  Although the 

role of angiotensin system is intensively investigated in hypertension, the effect of the 

circumferential stretch on the local angiotensin system is not completely understood.  The 

experimental observation from vascular smooth muscle cells exposed to cyclic stretch 

suggests that the AT1 receptor may be activated in the mechanotransduction of vascular 

smooth muscle cells.  The present study provides evidence that distension of blood vessel 

wall by either pressure or dilatation can activate the AT1 receptor and elicits endothelial 

dysfunction (Figures 6.3, 6.4, and 6.5). We used an external cuff to inhibit the 

circumferential stretch during increase in inflation pressure. We found that the cuff 

prevents the increase in response of AT1 receptor to Ang II by an increase in inflation 

pressure (Figure 6.5). Although the mechanism of the AT1 receptor activated by 

distension remains unclear, the integrin (trans-membrane proteins) may play a role which 
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mediates the deformation of extracellular matrices due to distention and intracellular 

signaling pathway [24].  The signaling pathway needs to be further explored.  

 Activation of the rennin-angiotensin system is involved in endothelial synthesis 

(eNOS) in cardiovascular diseases [22-27].  Up-regulation of AT1 receptor or increase in 

activation of the AT1 receptor may inhibit the activation of eNOS or NO production [28, 

29].  Most physiological and pathological actions of Ang II in vascular cells are mediated 

by the AT1 receptor [6].  Inhibition of the AT1 receptor blocks the Ang II-induced 

signaling pathway in cells.  Losartan is an Ang II receptor antagonist drug used mainly to 

treat hypertension.  The application of losartan in our ex vivo studies restores the 

endothelial function in acute over inflation (Figure 6.5), which implicates the AT1 

receptor in the distension-induced endothelial dysfunction.  The acute inhibition of AT1 

receptor did not completely restore the endothelial function in the RCA exposed to PA 

banding for 4 weeks.  There may be other signaling pathway involved in the distension-

induced remodeling, such as ROS, protein kinase C (PKC), and others. 

 Mechanical forces are stimulators of ROS [30, 31].  Activation of NADPH 

oxidase is one of the signaling components downstream of the activated angiotensin 

system [4].  The production of ROS tightly couples with vascular remodeling, endothelial 

dysfunction, atherogenesis, etc.  Here, we inhibited NADPH oxidase with a peptide 

inhibitor gp91-ds-TAT which is a specific inhibitor of NADPH oxidase.  This inhibitor 

attenuated the distension-induced AT1 receptor-mediated product of ROS in over-

inflation or distension.  This inhibitor did not completely eliminate the effect of 

distension in PA banding on the production of ROS in the RCA (Figure 6.5).  The 

chronic distension may activate not only AT1 receptor but also other signaling pathways 
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(Figure 6.1).  Activation of the angiotensin system has several downstream signaling 

pathways [6, 8].  The production of ROS tightly couples with vascular remodeling, 

endothelial dysfunction, and atherogenesis.  Here, we inhibited NADPH oxidase with a 

peptide inhibitor gp91-ds-TAT which is a specific inhibitor of NADPH oxidase.  This 

inhibitor attenuated the distension-induced AT1 receptor-mediated product of ROS in 

over-inflation or distension (Figure 6.5).  This inhibitor did not completely eliminate the 

effect of distension in PA banding on the production of ROS in the RCA (Figure 6.5). 

Activation of angiotensin system has several downstream signaling pathways.   

 This chapter contains unpublished data.  The Kassab group was responsible for 

the Western Blot and endothelium-dependent vasorelaxation data. 

 

 

 

 

 

 

 

 

 

 

 

 

 



110 
 

References 

 

[1] Ungvari, Z.; Csiszar, A.; Huang, A.; Kaminski, P. M.; Wolin, M. S.; Koller, A. 

High pressure induces superoxide production in isolated arteries via protein kinase C-

dependent activation of NAD(P)H oxidase. Circulation 108:1253-1258; 2003. 

[2] Griendling, K. K.; Sorescu, D.; Ushio-Fukai, M. NAD(P)H oxidase: role in 

cardiovascular biology and disease. Circ Res 86:494-501; 2000. 

[3] White, F. C.; Nakatani, Y.; Nimmo, L.; Bloor, C. M. Compensatory angiogenesis 

during progressive right ventricular hypertrophy. Am J Cardiovasc Pathol 4:51-68; 1992. 

[4] Kai, H.; Mori, T.; Tokuda, K.; Takayama, N.; Tahara, N.; Takemiya, K.; Kudo, 

H.; Sugi, Y.; Fukui, D.; Yasukawa, H.; Kuwahara, F.; Imaizumi, T. Pressure overload-

induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis 

through angiotensin II. Hypertens Res 29:711-718; 2006. 

[5] Yamazaki, T.; Komuro, I.; Kudoh, S.; Zou, Y.; Shiojima, I.; Mizuno, T.; Takano, 

H.; Hiroi, Y.; Ueki, K.; Tobe, K.; et al. Angiotensin II partly mediates mechanical stress-

induced cardiac hypertrophy. Circ Res 77:258-265; 1995. 

[6] Higuchi, S.; Ohtsu, H.; Suzuki, H.; Shirai, H.; Frank, G. D.; Eguchi, S. 

Angiotensin II signal transduction through the AT1 receptor: novel insights into 

mechanisms and pathophysiology. Clin Sci (Lond) 112:417-428; 2007. 

[7] Griendling, K. K.; Harrison, D. G. Dual role of reactive oxygen species in 

vascular growth. Circ Res 85:562-563; 1999. 

[8] Berk, B. C.; Corson, M. A. Angiotensin II signal transduction in vascular smooth 

muscle: role of tyrosine kinases. Circ Res 80:607-616; 1997. 



111 
 

[9] Griendling, K. K.; Lassegue, B.; Alexander, R. W. Angiotensin receptors and 

their therapeutic implications. Annu Rev Pharmacol Toxicol 36:281-306; 1996. 

[10] Zou, Y.; Akazawa, H.; Qin, Y.; Sano, M.; Takano, H.; Minamino, T.; Makita, N.; 

Iwanaga, K.; Zhu, W.; Kudoh, S.; Toko, H.; Tamura, K.; Kihara, M.; Nagai, T.; 

Fukamizu, A.; Umemura, S.; Iiri, T.; Fujita, T.; Komuro, I. Mechanical stress activates 

angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 

6:499-506; 2004. 

[11] Nakashima, H.; Suzuki, H.; Ohtsu, H.; Chao, J. Y.; Utsunomiya, H.; Frank, G. D.; 

Eguchi, S. Angiotensin II regulates vascular and endothelial dysfunction: recent topics of 

Angiotensin II type-1 receptor signaling in the vasculature. Curr Vasc Pharmacol 4:67-

78; 2006. 

[12] Browe, D. M.; Baumgarten, C. M. Angiotensin II (AT1) receptors and NADPH 

oxidase regulate Cl- current elicited by beta1 integrin stretch in rabbit ventricular 

myocytes. J Gen Physiol 124:273-287; 2004. 

[13] Ross, R. S.; Borg, T. K. Integrins and the myocardium. Circ Res 88:1112-1119; 

2001. 

[14] Wang, N.; Butler, J. P.; Ingber, D. E. Mechanotransduction across the cell surface 

and through the cytoskeleton. Science 260:1124-1127; 1993. 

[15] Hunyady, L.; Turu, G. The role of the AT1 angiotensin receptor in cardiac 

hypertrophy: angiotensin II receptor or stretch sensor? Trends Endocrinol Metab 15:405-

408; 2004. 

[16] Touyz, R. M.; Schiffrin, E. L. Reactive oxygen species in vascular biology: 

implications in hypertension. Histochem Cell Biol 122:339-352; 2004. 



112 
 

[17] Taniyama, Y.; Griendling, K. K. Reactive oxygen species in the vasculature: 

molecular and cellular mechanisms. Hypertension 42:1075-1081; 2003. 

[18] Cai, H.; Harrison, D. G. Endothelial dysfunction in cardiovascular diseases: the 

role of oxidant stress. Circ Res 87:840-844; 2000. 

[19] Oeckler, R. A.; Kaminski, P. M.; Wolin, M. S. Stretch enhances contraction of 

bovine coronary arteries via an NAD(P)H oxidase-mediated activation of the 

extracellular signal-regulated kinase mitogen-activated protein kinase cascade. Circ Res 

92:23-31; 2003. 

[20] Fukui, T.; Ishizaka, N.; Rajagopalan, S.; Laursen, J. B.; Capers, Q. t.; Taylor, W. 

R.; Harrison, D. G.; de Leon, H.; Wilcox, J. N.; Griendling, K. K. p22phox mRNA 

expression and NADPH oxidase activity are increased in aortas from hypertensive rats. 

Circ Res 80:45-51; 1997. 

[21] Kataoka, H.; Otsuka, F.; Ogura, T.; Yamauchi, T.; Kishida, M.; Takahashi, M.; 

Mimura, Y.; Makino, H. The role of nitric oxide and the renin-angiotensin system in salt-

restricted Dahl rats. Am J Hypertens 14:276-285; 2001. 

[22] Bailey, D. M.; Davies, B.; Young, I. S.; Jackson, M. J.; Davison, G. W.; Isaacson, 

R.; Richardson, R. S. EPR spectroscopic detection of free radical outflow from an 

isolated muscle bed in exercising humans. J Appl Physiol 94:1714-1718; 2003. 

[23] Kozlov, A. V.; Szalay, L.; Umar, F.; Fink, B.; Kropik, K.; Nohl, H.; Redl, H.; 

Bahrami, S. Epr analysis reveals three tissues responding to endotoxin by increased 

formation of reactive oxygen and nitrogen species. Free Radic Biol Med 34:1555-1562; 

2003. 



113 
 

[24] Lee, J.; Kim, S.; Oh, Y.; Ryu, S. Y.; Kim, S. W. Upregulation of vascular renin-

angiotensin and endothelin systems in rats inhibited of nitric oxide synthesis. Pharmacol 

Res 46:383-387; 2002. 

[25] Molloi, S.; Kassab, G. S.; Zhou, Y. Quantification of coronary artery lumen 

volume by digital angiography: in vivo validation. Circulation 104:2351-2357; 2001. 

[26] Molloi, S.; Zhou, Y.; Kassab, G. S. Regional volumetric coronary blood flow 

measurement by digital angiography: in vivo validation. Acad Radiol 11:757-766; 2004. 

[27] Xu, H.; Fink, G. D.; Galligan, J. J. Tempol lowers blood pressure and sympathetic 

nerve activity but not vascular O2- in DOCA-salt rats. Hypertension 43:329-334; 2004. 

[28] Itoh, T.; Kajikuri, J.; Tada, T.; Suzuki, Y.; Mabuchi, Y. Angiotensin II-induced 

modulation of endothelium-dependent relaxation in rabbit mesenteric resistance arteries. 

J Physiol 548:893-906; 2003. 

[29] Harada, S.; Nakata, T.; Oguni, A.; Kido, H.; Hatta, T.; Fukuyama, R.; Fushiki, S.; 

Sasaki, S.; Takeda, K. Contrasting effects of angiotensin type 1 and 2 receptors on nitric 

oxide release under pressure. Hypertens Res 25:779-786; 2002. 

[30] Oelze, M.; Warnholtz, A.; Faulhaber, J.; Wenzel, P.; Kleschyov, A. L.; Coldewey, 

M.; Hink, U.; Pongs, O.; Fleming, I.; Wassmann, S.; Meinertz, T.; Ehmke, H.; Daiber, 

A.; Munzel, T. NADPH oxidase accounts for enhanced superoxide production and 

impaired endothelium-dependent smooth muscle relaxation in BKbeta1-/- mice. 

Arterioscler Thromb Vasc Biol 26:1753-1759; 2006. 

[31] Howard, A. B.; Alexander, R. W.; Nerem, R. M.; Griendling, K. K.; Taylor, W. 

R. Cyclic strain induces an oxidative stress in endothelial cells. Am J Physiol 272:C421-

427; 1997. 



114 
 

Figures 

 

 

 

 

 

 

Figure 6.1:  A schematic of stretch-induced cellular signaling pathway. Dual solid lines 

indicate pathways that were verified in the present study. Solid lines indicate established 

pathways.  Dashed lines indicate uncertain pathways. 
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Figure 6.2:  The evaluations of AT1 receptor activation in RCA exposed to PA banding 

and LAD as a control (unpublished data, X. Lu and G. Kassab). (A) The vascular 

contractile responsiveness to Ang II. The vascular contraction significantly increased in 

the RCA but not LAD. Losartan, an inhibitor of AT1 receptor, eliminated the vascular 

contractile responsiveness to Ang II. *: P < 0.05 two-way ANOVA analysis in 

comparison with control RCA.  (B) The blots (top) and percent change (bottom) of 

protein expression of AT1 receptor in RCA and LAD tissue. *: P<0.05 Student t-test.  



116 
 

 

Figure 6.3:  The endothelial function evaluated by endothelium-dependent vasorelaxation 

(unpublished data, X. Lu and G. Kassab), and the production of ROS measured by EPR 

(unpublished data). (A) The endothelial function. gp91: gp91-ds-TAT which is an 

inhibitor of NADPH oxidase. Los: losartan. Acute treatment of the inhibitors did not 

completely restore endothelium-dependent relaxation. *: P < 0.05 two way ANOVA 

analysis in comparison with control. (B) The production of ROS measured. with EPR. *: 

P < 0.05 Student’s t-test in comparison with control. #: P < 0.05 Student’s t-test in 

comparison with PAB. 
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Figure 6.4:  The effects of acute inflation (180 mmHg) on vascular reactivity to 

determine the role of stretch on Ang II induced contraction and endothelium-dependent 

relaxation (unpublished data, X. Lu and G. Kassab). (A) The vascular contractile 

responsiveness to Ang II.   (B) The endothelium-dependent vasorelaxation. The 

endothelium-dependent relaxation was significantly weakened after 180 mmHg inflation. 

100 mmHg: physiologic pressure. 180 mmHg: ex vivo inflation with 180 mmHg. 

180+cuff: cuffed RCA was inflated at 180 mmHg. 180+Los: RCA incubated with 

losartan was inflated at 180 mmHg. 180+gp91: RCA incubated with gp91-ds-tat was 

inflated at 180 mmHg. *: P <0 .05 two-way ANOVA analysis in comparison with 

control.  
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Figure 6.5: The effects of ex vivo stimulation (180 mmHg) on the production of ROS of 

vessel segments, and EPR evaluation (unpublished data).  100 mmHg: physiologic 

pressure. 180 mmHg: ex vivo inflation at 180 mmHg. 180+cuff: cuffed RCA was inflated 

with 180 mmHg. 180+Los: RCA incubated with losartan was inflated at 180 mmHg. 

180+gp91: RCA incubated with gp91-ds-TAT was inflated at 180 mmHg. *: P < 0.05 

student t-test in comparison with control. #: P < 0.05 student t-test in comparison with 

PAB. 
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CHAPTER 7: SUMMARY AND FUTURE RESEARCH 

 

The endothelium, a thin layer of cells lining blood and lymphatic vessels, is 

particularly susceptible to free radical damage and is involved in many physiological 

reactions which are responsible for vascular tone.  Free radical reactions involving 

superoxide and nitric oxide that are imbalanced in favor of superoxide lead to endothelial 

dysfunction through a process called eNOS uncoupling.  Although these free radicals 

have extremely short lifetimes, they are capable of extensive cellular damage.  In 

particular, ROS cause a variety of harmful effects such as lipid peroxidation, DNA 

modification, protein oxidation, and cell proliferation (cancer).  In this thesis we have 

quantified free radicals, ex vivo, in biological tissue with continuous wave electron 

paramagnetic resonance (EPR) to determine the role that ROS play in endothelial 

dysfunction.   

We have shown that conducting experiments at liquid nitrogen temperature leads 

to some experimental advantages.   Freezing of the spin adducts renders them stable over 

a longer period, which allows ample time to analyze tissue samples for ROS.  The 

dielectric constant of ice is greatly reduced over its liquid counterpart; this property of 

water enables larger sample volumes to be inserted into the EPR cavity without 

overloading it and leads to enhanced signal detection.  Due to Maxwell-Boltzmann 
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statistics, the population difference goes up as the temperature goes down, so this 

phenomenon enhances the signal intensity as well.  

We have found that it is important to limit extraneous ROS generation that is not 

due to the ROS stimulus of interest. Use of more than one method to detect ROS in an 

investigative study is important.  Although no ROS assay method is ideal, using EPR in 

conjunction with a non-invasive probe such as PBN to assay ROS in whole tissue before 

freezing may create an approximation to in vivo conditions and should be included as one 

of the multiple methods to quantify ROS in biological studies. 

In addition, we have demonstrated that ROS production increases in porcine 

carotid arteries in response to a onefold increase in the blood flow rate, which leads to 

endothelial dysfunction.  NOX2 and NOX4 oxidase and p22phox and p47phox are 

upregulated in CFO, and NADPH oxidase is likely involved in the increase in oxidative 

stress.  The chronic use of apocynin prevents the elevation of ROS levels, even though 

NOX2 and NOX4 are upregulated, and  preserves endothelial function.  The mechanisms 

by which apocynin prevents the upregulation of p22phox and p47phox but not NOX2 and 

NOX4 remain unclear.  Although the process of CFO-induced remodeling to restore 

WSS has previously been thought of as a physiological response, the present data suggest 

that CFO mediated by ROS causes endothelial dysfunction, which may result from eNOS 

uncoupling in the first week of outward vascular remodeling. 

We confirmed that WSS remains constant in this model of RVH and implicated 

stretch as the major stimulus.   ROS production and NOX content increased significantly 

in this RCA model of RVH.  Endothelial function of RCA was compromised after 4 wk 

of RVH, and eNOS uncoupling was implicated in the endothelial dysfunction.   In vivo 
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analysis suggests an increased basal tone in the RCA during RVH and, therefore, 

increases the potential risk of vasospasm. 

The study in Chapter 6 provides evidence that distension of the blood vessel wall 

by either pressure or dilatation can activate the AT1 receptor and elicits endothelial 

dysfunction.  The signaling pathway needs to be further explored. The expression and 

activation of AT1 receptor and the production of ROS were upregulated and endothelial 

function deteriorated in the RCA. The acute inhibition of AT1 receptor and NADPH 

oxidase partially restored the endothelial function. The endothelial dysfunction and 

activation of AT1 receptor was also realized with acute hyper-inflation (180mmHg) of 

normal RCA. An external cuff inhibited the increase in activation of AT1 receptor and 

preserved endothelial function.  In conclusion, we observed that stretch or distension 

activates the AT1 receptor which mediates ROS production which collectively leads to 

endothelial dysfunction in coronary arteries. 

Our novel EPR spin trapping method can be applied to any tissue or cells.  The 

spin trap, PBN, acts as a non-invasive probe of either tissue or cells, since it is non-toxic 

and cell permeable.  In future, we plan to culture human aortic endothelial cells (HAECs) 

and incubate them with ω-3 fatty acids.  We will elicit lipid peroxidation with an azo 

compound that delivers free radicals at a constant and temperature dependent rate; this 

free radical generator will mimic free radical attack of the cell membrane, since the free 

radicals are in the aqueous media outside of the cells.  We want to investigate whether 

HAECs that are enhanced with ω-3 fatty acids are more or less susceptible to oxidation. 
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