
 
 

 

 

 
  

mTORC1 CONTRIBUTES TO ER STRESS INDUCED CELL DEATH 
 
 
 

 

 

 

Justin Thomas Babcock 
 

 

 

 

 

 

 

 

 

 

Submitted to the faculty of the University Graduate School 
in partial fulfillment of the requirements 

for the degree 
Doctor of Philosophy 

in the Department of Biochemistry and Molecular Biology 
Indiana University 

 
December 2012 



ii 
 

 
 
 

Accepted by the Faculty of Indiana University, in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy. 

 
 
 
 
 

                                                         
      Lawrence A. Quilliam, Ph.D., Chair 

 
Doctoral Committee 

 
                                                         

     Simon J. Atkinson, Ph.D. 
 

October 25, 2012 
 

                                                         
           Harikrishna Nakshatri, Ph.D. 

 
 

                                                         
            Ronald C. Wek, Ph.D. 

 
  



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

© 2012 

Justin Thomas Babcock 

ALL RIGHTS RESERVED 



iv 
 

DEDICATION 

I dedicate this dissertation to my parents Tom and Phyllis Babcock, and Hoa Nguyen. 

Without their love and support I would never have reached this point.  



v 
 

ACKNOWLEDGMENTS 

I would like to thank my mentor Dr. Lawrence Quilliam for his continual support and 

motivation during my dissertation work. The scientific and organizational skills I have learned 

from Lawrence made it possible for me to complete this work. I would also like to thank all the 

members of the Quilliam lab that I have worked with in my time here: Dr. Sirisha Asuri, Dr. 

Jingliang Yan, Hoa Nguyen, and Yujun He.   

I would like to thank my committee members Dr. Simon Atkinson, Dr. Harikrishna 

Nakshatri, and Dr. Ronald Wek for their guidance during my dissertation work. Many thanks to 

Dr. Clark Wells for microscope usage and lots of advice. I would also like to thank members of 

the Wek lab including Souvik Dey, Reddy Palam, Tom Baird, and Brian Teske for help with 

regents and advice. I would also like to thank the faculty and staff of the Department of 

Biochemistry and Molecular Biology, in particular Sandy McClain, Sheila Reynolds, Melissa 

Pearcy, Jack Arthur, Patty Dilworth, Jamie Schroeder, and Darlene Lambert. Thank you to Dr. 

Ann Roman and Dr. Harikrishna Nakshatri of the Cancer Biology Training Program (CBPT) for 

advice and my DeVault Gift Estate predoctoral fellowship. Lastly, I would like to thank the LAM 

foundation for funding my project and making science toward understanding and curing 

lymphangioleiomyomatosis possible.   

I would also like to thank my Mom, Dad, my sister Allison, and all my family and 

friends. Finally, I would like to thank my girlfriend and my best friend, Hoa, who has been a 

continual source of support and encouragement during my dissertation work. 



vi 
 

ABSTRACT 

Justin Thomas Babcock 

 

mTORC1 CONTRIBUTES TO ER STRESS INDUCED CELL DEATH 

 

Patients with the genetic disorder tuberous sclerosis complex (TSC) suffer from 

neoplastic growths in multiple organ systems. These growths are the result of inactivating 

mutations in either the TSC1 or TSC2 tumor suppressor genes, which negatively regulate the 

activity of mammalian target of rapamycin complex 1(mTORC1). There is currently no cure for 

this disease; however, my research has found that cells harboring TSC2-inactivating mutations 

derived from a rat model of TSC are sensitive to apoptosis induced by the clinically approved 

proteasome inhibitor, bortezomib, in a manner dependent on their high levels of mTORC1 

activation. We see that bortezomib induces the unfolded protein response (UPR) in our cell model 

of TSC, resulting in cell death via apoptosis. The UPR is induced by accumulation of unfolded 

protein in the endoplasmic reticulum (ER) which activates the three branches of this pathway: 

Activating transcription factor 6 (ATF6) cleavage, phosphorylation of eukaryotic initiation factor 

2α (eIF2α), and the splicing of X-box binding protein1 (XBP1) mRNA. Phosphorylation of eIF2α 

leads to global inhibition of protein synthesis, preventing more unfolded protein from 

accumulating in the ER. This phosphorylation also induces the transcription and translation of 

ATF4 and CCAAT-enhancer binding protein homologous protein (CHOP). Blocking mTORC1 

activity in these cells using the mTORC1 inhibitor, rapamycin, prevented the expression of ATF4 

and CHOP at both the mRNA and protein level during bortezomib treatment. Rapamycin 

treatment also reduced apoptosis induced by bortezomib; however, it did not affect bortezomib-

induced eIF2α phosphorylation or ATF6 cleavage. These data indicate that rapamycin can repress 

the induction of UPR-dependent apoptosis by suppressing the transcription of ATF4 and CHOP 

mRNAs. In addition to these findings, we find that a TSC2-null angiomyolipoma cell line forms 
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vacuoles when treated with the proteasome inhibitor MG-132. We found these vacuoles to be 

derived from the ER and that rapamycin blocked their formation. Rapamycin also enhanced 

expansion of the ER during MG-132 stress and restored its degradation by autophagy. Taken 

together these findings suggest that bortezomib might be used to treat neoplastic growths 

associated with TSC. However, they also caution against combining specific cell death inducing 

agents with rapamycin during chemotherapy.       

 

Lawrence A. Quilliam, Ph.D., Chair 
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CHAPTER 1. INTRODUCTION  
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1.1 Introduction to Tuberous Sclerosis Complex and Lymphangioleiomyomatosis (LAM) 

 Two diseases are associated with loss-of-function mutations to the TSC1 or TSC2 tumor 

suppressor genes: tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM). 

TSC is an autosomal dominant genetic disorder present in approximately 7 to 12 of every 100,000 

live births (1). Patients suffering from TSC experience neoplastic growths in multiple organs 

systems including the brain which may result in mental retardation, autism, and seizers. TSC 

patients present with drastically different degrees of disease penetrance (1). Some patients suffer 

from life threating symptoms including renal disease, brain tumors, and bronchopneumonia while 

others experience only minor skin growths (1). Patients suffering from TSC may also suffer from 

a rare cystic lung disease known as LAM which may also occur sporadically in the general 

population (2). Currently, there is not a treatment or cure that effectively manages TSC or LAM; 

although, many strategies are being explored, including inhibitors specific to mTOR kinase or 

drugs targeting pathways that cells with high mTORC1 activity may rely on to survive (2).          

   

1.2 mTOR complex-1 vs. mTOR complex-2 (mTORC1 vs. mTORC2) 

 As shown in figure 1-1, mTOR exists in two distinct functional complexes: The 

rapamycin-sensitive mTOR complex 1 (mTORC1), and mTOR complex 2 (mTORC2) which is 

insensitive to the direct effects of this drug. mTORC1 and mTORC2 differ in their composition 

and substrate specificity (3). The mTORC1 complex is made up of mTOR, PRAS40 (40 kDa 

proline-rich AKT substrate), DEPTOR, mLST8 (mammalian lethal with Sec13 protein 8), and 

Raptor (regulatory-associated protein of mTOR). PRAS40 is an inhibitory protein that blocks 

mTORC1 from binding substrates (4). This is overcome by Akt-mediated phosphorylation of 

PRAS40 at threonine 246 (5, 6). The most characterized substrates of mTORC1 are initiation 

factor 4E-binding protein (4E-BP) and p70-S6 kinase (S6K) (3).  

 The mTORC2 complex is made up of mTOR, mLST8, Rictor (rapamycin-insensitive 

companion of mTOR), Protor-1 (protein observed with Rictor-1), and mSIN1 (mammalian stress-
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activated protein kinase interacting protein 1) (3). Although mLST8 appears to bind both mTOR 

complexes, it is only essential for the stability of mTORC2 (7). Regulation of mTORC2 is less 

characterized than that of mTORC1; however, mTORC2 activity seems to be stimulated by 

growth factors via the PI3 kinase pathway. Known mTORC2 substrates include Akt, SGK and all 

conventional forms of protein kinase C (8-10).   

 The activities of mTORC1 and mTORC2 appear to be interconnected at some level, 

however, the complexity of this connection is only just beginning to be understood. Recently, 

mTORC1 was shown to phosphorylate Grb10 leading to its stabilization and inhibition of PI3 

kinase activation through a mechanism that has yet to be characterized in detail. This inhibition of 

PI3 kinase reduced mTORC2’s phosphorylation of Akt during stimulation with insulin or IGF 

(11, 12). Rapamycin treatment has been shown to relieve this inhibition leading to mTORC2 

activation in multiple cancer cell lines (13). Despite this major breakthrough in the understanding 

of this feedback loop, many questions remain. For example, mTORC1 has been shown to inhibit 

both PDGF and EGF receptor signaling but Grb10 has not been shown to have an effect on these 

signaling pathways.  

 The effects mTORC2 has on mTORC1 are less understood. mTORC2 is one of two 

kinases required for the complete activation of Akt, an upstream regulator of mTORC1. However, 

both shRNA and genetic knockout of the mTORC2 component Rictor fail to reduce the activity 

of mTORC1 or several other well-characterized Akt substrates (7). Recently, a link in the 

regulation of the two complexes was established when the DEP-domain-containing mTOR-

interacting protein (DEPTOR) was identified. DEPTOR binds both mTOR complexes, and 

shRNA-targeted knockdown of DEPTOR activated both mTORC1 and mTORC2 suggesting that 

it is an inhibitor of both complexes (14). However, inhibition of mTORC1 by DEPTOR 

overexpression unexpectedly activated mTORC2 by removing mTORC1’s negative feedback 

loop on mTORC2 (14). Adding to this complex interplay, both complexes decrease DEPTOR 

transcription and enhance its degradation (14). Therefore, it is possible for DEPTOR to inhibit 
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both mTORC1 and mTORC2 or activate mTORC2 while inhibiting mTORC1. This is determined 

by DEPTOR’s expression level, which is controlled by both complexes. 

 

1.3 Tuberin and Harmartin 

 The most characterized upstream negative regulators of mTORC1 are the tuberous 

sclerosis complex (TSC) 1 and 2 gene products, hamartin and tuberin, respectively. Indeed, many 

of the environmental signals that regulate mTOR activity are funneled through this complex. 

Mutations resulting in the loss of expression of either TSC1 or TSC2 cause hyperactivation of 

mTORC1 and severe inhibition of mTORC2 (15-21). Hamartin binds to tuberin and stabilizes its 

expression; therefore, loss of hamartin expression is functionally equivalent to loss of tuberin 

(22). Tuberin serves as a GTPase activating protein or GAP that inhibits the small GTPases 

Rheb1 and Rheb2 (Ras homologs enriched in brain) (23-26). Like other Ras proteins, Rhebs exist 

in two functional conformations: a GTP bound active state and a GDP bound inactive state. 

Rhebs bind to and activate mTORC1 only in their GTP bound state. Tuberin binds to active GTP-

loaded Rheb and catalyzes GTP hydrolysis and the resulting transition to the inactive state.   

In addition to suppressing Rheb-mediated mTORC1 activation, the hamartin-tuberin 

complex may play a distinct role in regulating mTORC2: It has been shown that the TS complex 

associates with and is required for the activity of mTORC2 (27, 28). This activity is independent 

of tuberin’s GAP activity towards Rheb and unique to the mTORC2 complex due to an 

interaction with the mTORC2-specific subunit, Rictor (27, 28).  

 The harmartin-tuberin complex is regulated both positively and negatively by multiple 

protein kinases and is therefore a major node of regulation of the mTOR pathway. Growth factor 

activation of the PI 3-kinase and MAP kinase pathways has been shown to relieve tuberin’s 

inhibition of Rheb activation of mTORC1, via Akt and Erk phosphorylation of tuberin, 

respectively (17, 29, 30). Additionally, IKKβ has been shown to phosphorylate hamartin 

following TNFα treatment leading to increased mTORC1 activation (31). In contrast, 
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phosphorylation of tuberin by AMP-activated protein kinase (AMPK) increases its Rheb GAP 

activity leading to mTORC1 inhibition (32, 33). This phosphorylation event acts dominantly over 

Akt or Erk. AMPK activation of tuberin is further enhanced by GSK3 (34).  

 

 



6 
 

 

Figure 1-1. The mTOR kinase participates in two complexes with distinct composition, 
substrates, and upstream regulation 
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1.4 Regulation via ubiquitination and acetylation 

In addition to regulation by phosphorylation, both the mTOR and TSC complexes are 

post-translationally modified by ubiquitination. The major ubiquitin ligase that targets mTOR for 

degradation via the 26S proteasome is the tumor suppressor, FBXW7/CDC4 (35). Loss of 

FBXW7 has been reported in breast cancer samples but typically not from patients that also lack 

PTEN suggesting that these genes both work to suppress mTOR-dependent growth and survival 

(35). Several other ubiquitin ligases have been found to target the hamartin-tuberin complex for 

degradation. Protein associated with Myc (PAM) and the FBW5-DDB1-Cul4-Roc1 complex 

oppose hamartin’s stabilization of tuberin (36, 37). Additionally, following infection with high-

risk human papilloma virus, the HPV16 E6 protein couples the E6AP ubiquitin ligase to tuberin 

(38). This targets it for degradation and results in mTORC1 activation. Tuberin degradation is 

also regulated by the arrest-defective protein 1 (ARD1) which promotes the stabilization of 

tuberin protein by acetylation (39). Like FBXW7, ARD1 expression appears to be lost in multiple 

types of cancer including those of breast, lung, pancreas, and ovaries (39).    

 

1.5 Amino acid, glucose, and oxygen control of mTORC1 

 In addition to control by growth factor signaling or protein degradation, mTORC1 

activity is regulated by the availability of glucose and amino acids through mechanisms that have 

only recently come to light. One of the major nutrient-mediated inputs to mTORC1 is via the 

class III phosphatidyl inositol (PI) 3-kinase hVPS34. It has been shown that addition of amino 

acids to starved cells stimulates the release of intracellular calcium leading to activation of 

hVPS34 through calmodulin binding (40). The activation of hVPS34 leads to the activation of 

Rheb and the stimulation of mTORC1. Previous studies have shown that hVPS34 is required for 

the production of PI3P-rich vesicles that may be required for Rheb signaling to mTOR (41, 42). 

Interestingly, the mTORC1 complex has recently been shown to interact with the Rag family of 
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GTPases that recruit mTORC1 to Rab7/Rheb containing lysosomal vesicles in the presence of 

amino acids (43, 44).  

There are four Rag GTPases: A, B, C, and D. Rag A and B are most similar to yeast 

GTR1p; whereas, Rag C and D are most similar to yeast GTR2p. Rag A or Rag B can participate 

in a dimer with Rag C or Rag D (45). Of these dimers, those containing Rag D behave uniquely 

in a manner that allows them to be regulated by Leucine-tRNA synthase (LRS). Rag A-C or B-C 

dimers when loaded with GTP activate mTORC1; however, dimers containing Rag D bound to 

GTP act as a dominant negative and block stimulation of mTORC1 by amino acids. In the 

presence of leucine, LRS acts as a GAP for Rag D causing it to switch from its inhibitory GTP 

bound state to a non-inhibitory GDP bound state that allows the other Rag protein in the Rag 

dimer to switch to an active GTP bound form (46). The active Rag GTPases target mTORC1 to 

vesicles containing the mTORC1 activator GTPase Rheb through a complex termed “the 

regulator” that contains the MAPK scaffold MP1, p14 and p18 (encoded by the MAPKSP1, 

ROBLD3, and c11orf59 genes) (47). The Rag GTPases were shown to directly bind mTORC1 

but did not stimulate the phosphorylation of S6K in vitro indicating that these GTPases function 

to bring mTORC1 to Rheb for activation rather than directly stimulate mTORC1 themselves (43).  

 The mechanisms by which glucose regulates mTORC1 are less clear. The most 

characterized mechanism centers around AMPK-mediated phosphorylation of TSC2. AMPK is 

directly controlled by cellular AMP concentration, which is increased in the absence of glucose 

due to decline of ATP. Many studies have shown that AMPK directly phosphorylates TSC2 and 

enhances its Rheb GAP activity (32, 33). This results in decreased Rheb stimulation of mTORC1. 

Additionally, AMPK can directly phosphorylate the raptor subunit of mTORC1 and this event has 

also been shown to be inhibitory (48). So what about AMPK-independent mechanisms? Under 

low glucose conditions, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) has been shown to 

bind Rheb and prevent it from stimulating mTORC1 activity (49). This inhibition occurs in 

TSC2-null cells silenced for AMPK expression, indicating that GAPDH directly affects Rheb’s 
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ability to stimulate mTORC1 (49). George Thomas’ lab has also produced an alternative 

explanation regarding the TSC2/AMPK-independent inhibition of mTORC1 during nutrient 

starvation. They find that metformin blocks the ability of mTORC1 to relocate during amino acid 

stimulation, and the mTORC1 inhibition resulting from metformin treatment can be reversed by 

overexpressing an activated mutant of Rag B (50). These results suggest glucose depletion may 

be signaling to mTORC1 through a mechanism similar to amino acids.    

 Oxygen concentration can also control mTORC1 signaling and occurs through both 

direct and indirect mechanisms. Under hypoxic conditions, the promyelocytic leukemia (PML) 

tumor suppressor has been shown to bind and sequester mTORC1 to the nucleus, preventing its 

activation (51). The TSC1/2 interacting protein REDD1 is upregulated by HIF1α in the absence 

of oxygen whereupon binding to the TSC1/2 complex results in activation of TSC2’s Rheb-GAP 

activity and the inhibition of mTORC1 (52). In addition to REDD1 control of the tuberin-

hamartin complex, the hypoxia-inducible Bcl family member BNIP3 binds directly to Rheb and 

inhibits its ability to activate mTORC1 (53). 

 

1.6 mTORC1 integration of growth and metabolism to control protein synthesis  

 As shown in figure 1-2, mTORC1 regulates protein synthesis directly and indirectly 

through its regulation of S6K and 4E-BP. The rate-limiting step in protein synthesis is 

translational initiation. In this process the small ribosomal subunit is recruited to the 5’-end of 

mRNA and scans for the start codon where the complete ribosome assembles and translation 

begins. For this recruitment to occur, the eukaryotic initiation factor 4F (eIF4F) complex must 

assemble on the 5’-cap of mRNA (54). This complex is made up of eIF4E, eIF4G, and eIF4A 

(54). The assembly of the 5’-mRNA cap is regulated by mTORC1 through its most characterized 

substrates, 4E-binding protein (4E-BP) and S6 kinase (S6K). Hypophosphorylated 4E-BP binds 

to eIF4E and antagonizes formation of the mRNA capping complex by preventing eIF4G and 

eIF4A from binding to eIF4E. When mTORC1 hyperphosphorylated 4E-BP, it dissociates from 
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eIF4E, the capping complex assembles, and translation of cap-dependent mRNAs is increased 

(54).  

 Activation of S6K by mTORC1 additionally increases mRNA translation through several 

mechanisms. These include cap-dependent translation, elongation, and ribosome biogenesis. S6K 

accomplishes this through its regulation of SKAR, PDCD4, eIF4B, eEF2K, and ribosomal protein 

S6. SKAR binds to newly-made mRNA in the exon-junction complex where it recruits activated 

S6K to drive translation of these new transcripts (55, 56). PDCD4 is a tumor suppressor that 

binds to the mRNA capping complex helicase eIF4A preventing it from removing secondary 

structures that hamper efficient translation (57, 58). When phosphorylated by S6K it is targeted 

for degradation and eIF4A becomes activated (57, 58). In addition to blocking PDCD4 inhibition, 

S6K also increases the activity of eIF4A by activating eIF4B (54). S6K also inhibits the activity 

of eIF2K, a stress-regulated kinase that phosphorylates and inhibits eEF2 (59). Thus S6K action 

enables more rapid peptide elongation. Although ribosomal protein S6 is a well-characterized 

substrate of S6K that is frequently used as a readout for S6K activity, no clear roll in the growth 

of cells has been establish for the phosphorylation of this substrate (54).  
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Figure 1-2. Cap-dependent translation tightly controls translational initiation 
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1.7 Autophagy 

Macroautophagy, a process whereby intracellular proteins and organelles are degraded in 

double-membrane vacuolar structures known as autophagosomes, is potently inhibited by 

mTORC1 activity as shown in figure 1-3. This seems logical since under conditions of nutrient 

excess and active protein synthesis there is no need to recycle macromolecules. However, 

inhibiting mTORC1 by amino acid depletion, hypoxia, or other nutritional stresses as outlined 

earlier induces macroautophagy.  

 The first point where mTORC1 controls macroautophagy is through the regulation of a 

protein complex consisting of ULK1 (unc-51-like kinase), ATG13 (autophagy-related gene 13), 

and FIP200 (focal adhesion kinase family-interacting protein of 200 kDa). mTORC1 blocks 

macroautophagy by directly phosphorylating and inhibiting ULK1 and ATG13 (60-62). 

Interestingly, AMPK has recently been shown to also phosphorylate the ULK1/ATG13 complex 

to induce autophagy directly (63-65). The fact that both mTORC1 and AMPK can control the 

same signaling process to initiate autophagy suggests there are possible different agonists for 

each kinase (e.g. amino acids verses glucose starvation). The second point where mTORC1 

affects macroautophagy is through inhibition of the VPS34-beclin complex. Although the 

mechanism behind this latter inhibition is unclear, it prevents an elevation of PI3P levels that is 

required to generate autophagosomes (41). A complex series of events follows these two 

regulatory steps, reviewed in Dikic et al , subsequently leads to the incorporation of LC3 into the 

autophagosome membrane (41). Ubiquitinated proteins that are to be degraded within 

autophagosomes are then coupled to this LC3 by p62SQSTM1 (41).  

 This process and its regulation by mTORC1 have been implicated in both cell death and 

cell survival. Mice lacking beclin1 have increased incidence of lymphomas, lung and liver tumors 

indicating that macroautophagy may play a role in cell death and tumor surveillance (66). 

However, neurons lacking ATG7 (an E1 ubiquitin ligase required for LC3 incorporation into 

autophagosomes) accumulate toxic protein aggregates and acquire damaged mitochondria that 
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ultimately lead to cell death indicating that macroautophagy is required for basic survival of this 

cell type (67). Adding to this paradox, macroautophagy has been shown to be required for both 

healthy and cancer cells alike to survive nutrient depletion and hypoxia (68). While certain 

chemotherapeutic treatments such as the proteasome inhibitor, bortezomib (PS341/Velcade) seem 

to require macroautophagy to induce cell death (69). These facts highlight the dualities and 

complexities of macroautophagy we are just beginning to understand.   
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Figure 1-3. mTORC1 and the ER participate in the regulation of autophagosome formation 
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1.8 Lipid synthesis  

 Cellular lipids are used to make membranes, activate or inhibit certain biological 

processes, and to store energy. Due to the many important processes these molecules participate 

in, their synthesis is a complex and highly regulated process. Both mTORC1 and mTORC2 play 

major roles in the control lipid biogenesis by influencing the expression of key transcription 

factors such as SREBP-1, PPARγ, C/EBP1-δ, and C/EBP1-α.  

 mTORC1 is required for insulin-induced fatty acid synthesis and controls SREBP1-

mediated transcription of target genes, such as fatty acid synthase and acetyl-coA carboxylase 

(70-72). The activation of this transcriptional program favors the synthesis of triglycerides, 

leading to the synthesis of PPARγ ligands. This is just one of several mechanisms whereby 

mTORC1 increases PPARγ activity. For example, mTORC1 additionally increases cap-dependent 

translation of C/EBP-1δ and C/EBP-1α, triggering a transcriptional cascade that results in 

increased PPARγ expression (73). Outside of the control of transcription factors, mTORC1, and 

possibly mTORC2, has also been shown to phosphorylate Lipin1 with unknown consequences 

(74). Lipin1 is a lipid phosphatase that converts phosphatidic acid into diacylgycerol that may 

then be incorporated into trigycerides, which may lead to the synthesis of more PPARγ ligands, or 

it can be converted into phospholipids that are essential for membrane synthesis. PPARγ 

activation has been shown to play a role in fatty acid storage and glucose metabolism (75). 

   

1.9 Mitochondrial metabolism and biogenesis  

 Control of mitochondrial number and activity is essential to cellular homeostasis and both 

are influenced by mTORC1. Inhibition of mTORC1 activity in skeletal muscle and cultured 

fibroblasts decreases expression of the mitochondrial transcriptional regulators PGC-1α, 

estrogen-related receptor alpha and nuclear respiratory factors, resulting in a decrease in 

mitochondrial gene expression and oxygen consumption (76). The transcription factor YY1 also 
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associates with mTORC1 and PGC-1α. Knockdown of YY1 caused a significant decrease in 

mitochondrial gene expression and in respiration, and YY1 was required for rapamycin-

dependent repression of those genes (76). 

  

1.10 Cell cycle 

 mTORC1 is a major regulator of the G1/S cell cycle checkpoint. This checkpoint allows 

cells to be held in G1 phase in the presence of stresses, such as amino acid depletion or hypoxia, 

that inhibit mTORC1. This arrest mechanism prevents cells from entering into the cell cycle 

when nutrient and other conditions are not apt for cell division similarly to the way p53 prevents 

cell division until DNA damage has been repaired. The major points where mTORC1 affects 

these processes are by controlling the expression of cyclin D1 and localization of p27(Kip). 

 Cyclin D1 mRNA is a cap-dependent transcript whose translation and possible nuclear 

export may be regulated by mTORC1 antagonism of 4EBP binding to eIF4E (77). Cyclin D1 

binds to CDK2 in a kinase complex that phosphorylates substrates required for exit from G1 

phase. In addition to the cap-dependent regulation of transcripts required to exit S phase, 

mTORC1 regulates the cytoplasmic localization of p27, a protein inhibitor of the CDK2-cyclin D 

complex. mTORC1-mediated mislocalization of p27 to the cytoplasm prevents the inhibition of 

the cyclin kinase complex. Cell lacking TSC2 that consequently have elevated mTORC1 activity 

also have higher levels of CDK2-Cyclin D1 activity and cytoplasmic localization of p27 (78). 

The reason behind this relocalization of p27 is likely twofold: Cells lacking TSC2 have increased 

AMPK-mediated phosphorylation of p27 at T170 (78). This phosphorylation is in the nuclear 

localization signal of p27 and results in its cytoplasmic accumulation and stabilization. In 

addition to AMPK-mediated phosphorylation of p27, mTORC1 has been shown to promote SGK-

mediated phosphorylation of p27 at T157 (79). Phosphorylation of both sites has a similar 

outcome. The regulation of p27 localization is important because cytoplasmic p27 may be an 

indicator of poor prognosis in certain types of cancer, including those of breast and prostate (80, 
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81). In the clinic, rapamycin has been shown to decrease the cytoplasmic localization of p27 

during prostate cancer treatment, indicating that mTORC1 inhibition may be combined with other 

treatments to improve the therapeutic response in this patient group (82). 

 

1.11 mTORC1 and mTORC2 in cancer 

 Research on the two mTOR complexes has highlighted their roles in control of cellular 

growth, metabolism, and survival. It has also revealed that regulation of these complexes is lost or 

compromised in multiple types of cancer. Underscoring this fact, loss of multiple tumor 

suppressors such as NF1, PTEN, LKB1, TSC1, and TSC2 results in the downstream activation of 

mTORC1 (83). In the case of the tumor suppressor lipid phosphatase PTEN, both mTOR 

complexes are activated and it has been shown in a PTEN-heterozygous mouse model of prostate 

cancer that mTORC2 is required for the development of cancer (84). It was the importance of 

these pathways to the growth of cancer and the availability of a potent selective inhibitor that 

initiated interest in using analogs of the mTORC1 inhibitor rapamycin in chemotherapy. 

 Although rapamycin has had limited success in the treatment of many cancers, the 

rapamycin analog CCI-779 (temsirolimus) has been approved for treatment of renal clear cell 

carcinoma (RCC) where its effects are due to inhibition of HIF-1α, a proangiogenic transcription 

factor downstream of mTORC1 (85). 

 

1.12 Directly targeting mTOR kinase activity  

 The failure of rapamycin and rapalogs to potently inhibit the growth of other tumors in 

the clinic has been disappointing. However, research has shed light on why they may be failing. 

Firstly, rapamycin does not inhibit the mTORC2 complex whose activity is required for the 

growth of several types of cancer. Secondly, these compounds are allosteric inhibitors of 

mTORC1that fail to completely block its regulation of cell cycle, autophagy inhibition, and 
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protein synthesis (86, 87). Lastly, mTORC1 inhibition often results in feedback activation of 

mTORC2 as well as other upstream growth and survival signals (88).  

  These problems have been addressed by a new class of compounds that directly compete 

for the binding of ATP to mTOR’s catalytic domain. These drugs which include PP242, Torin1, 

and WYE-354 were shown to block cell cycle, induce autophagy, and potently reduce translation 

in cell lines where rapamycin had little to no effect (86, 89, 90). Since these compounds were also 

effective on Rictor-null cells, the failure of rapamycin to block tumor growth is likely due to its 

incomplete inhibition of mTORC1 rather than inability to affect mTORC2 (86). 

 An additional class of compounds has been identified that will antagonize mTOR 

complexes as well as PI3-kinase signaling. mTOR is a member of the PI kinase-related kinase 

(PIKK) family and off-target effects of anti-PI3 kinase drugs have been shown to directly inhibit 

mTOR activity as well as other PIKK family members such as ATM and ATR. The latest 

generation of these drugs includes GDC-0941 and NVP-BEZ235 (91). These dual mTOR/PI3 

kinase inhibitors show great promise due not only to their ability to block growth and survival 

signals from mTOR but to quash the feedback activation loops associated with mTOR inhibition 

by rapamycin. GDC-0941 has entered phase I while NVP-BEZ235 has begun phase II clinical 

testing for breast cancer treatment (91).  

   

1.13 Targeting Rheb 

 Apart from antagonizing mTORC1 using rapalogs or ATP-competitive inhibitors, other 

strategies have been proposed with varying degrees of success. Many of these focus on blocking 

the ability of the small GTPase Rheb to activate mTORC1. Like many other small GTPases, 

Rheb1 and 2 are post-translationally modified by three enzymes: an isoprenyl transferase, Ras 

converting enzyme 1 (RCE1), and isoprenylcysteine carboxyl methyl transferase (ICMT) (92, 

93). These enzymes reside on the endoplasmic reticulum and modify Ras-family proteins by 

adding a farnesyl or geranylgeranyl moiety to a cysteine located 4 residues from the C terminus, 
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removing the amino acids C-terminal to the isoprenylated cysteine, and then methylating the new 

carboxy-terminus of the Ras protein, respectively. These modifications are important to many Ras 

family members for proper localization. Loss of these signals impairs or completely blocks their 

ability to activate downstream effectors.   

 A class of drugs, known as farnesyl transferase inhibitors (FTIs), has been designed to 

inhibit the farnesylation and subsequent C-terminal modifications of Ras proteins. These drugs 

have the ability to block the farnesylation of Rheb, cause its mislocalization, and reduce or block 

its ability to activate mTORC1. This effect has been shown by many groups using overexpressed 

Rheb (24, 94-96). In studies not covered in this thesis we found that it took higher concentrations 

of FTI to block glioma cell growth than was required to inhibit the farnesylation of endogenous 

Rheb. However, inhibiting the ability of endogenous Rheb to activate mTORC1 using FTIs seems 

to be cell line specific (97). Despite the incongruencies in blocking Rheb-mediated activation of 

mTORC1, FTIs do inhibit the growth of specific cancer cells and sensitize them to other drug 

treatments in a Rheb-dependent manner (94, 95, 97). These compounds have been most effective 

in treating hematological malignancies, such as acute or chronic myeloid leukemias, 

myelodysplastic syndrome, and multiple myeloma (98). Interestingly, Rheb expression has been 

shown to be upregulated at the mRNA level in Burkitts' lymphoma and FTI treatment is very 

effective in a Rheb overexpression mouse model of lymphoma (95).  

 In addition to FTIs, HMG-CoA reductase inhibitors (statins) are also currently being 

explored as inhibitors of Rheb and other Ras family members. These inhibitors block the rate-

limiting step of the mevalonate synthesis pathway leading to depletion of the isprenyl 

pyrophosphates used to post-translationally modify Rheb and other proteins. In this way, statins 

differ from FTIs because they will inhibit all isoprenylation whereas FTIs are specific for 

farnesylation. Statins have been tested for their effects on Rheb/mTORC1 in both cell culture and 

mouse models with differing results (99-101). In TSC2-null cells where Rheb is the primary 

driver for mTORC1 activity, treatment with statins was able to block Rheb farnesylation and 
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inhibit mTORC1 (99). These drug treatments also blocked signaling from RhoA (99). However in 

mouse models of TSC, statins as a single-agent failed to inhibit the mTORC1 pathway or the 

growth of tumors despite potently affecting the synthesis of cholesterol and the isoprenylation of 

Ras-family proteins in healthy tissue (100, 101).  

 

1.14 Genotoxic stress 

 Even though mTORC1 is a strong promoter of growth and survival, it has been shown by 

several groups to sensitize cells to specific types of stress (20, 33, 102-104). Based on these 

observations, it has been proposed that these stresses can be used to eliminate cancer cells with 

high mTORC1 activity while leaving the healthy tissue with low mTORC1 activity relatively 

unharmed. These new and exciting ideas are currently being developed by several groups who 

have shown that mTORC1 activation sensitizes the cell to genotoxic stress, nutrient depletion, 

and endoplasmic reticulum (ER) stress (20, 33, 102, 105).  

  Some of the most effective cancer treatments used today rely heavily on DNA damage-

induced cell death. Many factors affect the sensitivity of cells to DNA damaging agents and it has 

been frequently shown that mTORC1 activation is one of those factors. As discussed earlier, 

when mTORC1 is active it inhibits the activation of mTORC2 leading to reduced Akt activity. 

Akt is a major contributor to cell survival through the NFκB pathway and anti-apoptotic 

pathways (106). When healthy cells with low mTORC1 activity are treated with DNA damaging 

agents, the Akt/NFκB pathway keeps the cell from entering apoptosis (20). However, these 

pathways are inhibited by mTORC1 so DNA damaging agents potently induce apoptosis (20).  

 In addition to its effects on NFκB, mTORC1 also increases the translation of the p53 

tumor suppressor, both in cell culture and patient samples. p53 is the cells major coordinator for 

genotoxic stress, and its activation leads to cell cycle arrest or apoptosis (105). Interestingly, p21, 

a major player in p53 mediated cell cycle arrest and senescence, requires mTORC1 activation to 
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carry out these activities. When p21 expression is induced in rapamycin treated or serum starved 

cells with low mTORC1 activity, it induces quiescence instead of senescence and the cells 

maintain their ability to grow (107). These findings may indicate that rapamycin or other 

compounds that inhibit mTORC1 directly or indirectly may antagonize DNA damaging agents in 

the clinic. It is also possible that by reducing translation, more ATP is available for DNA 

synthesis.  

 

1.15 Nutrient depletion  

 In healthy tissue, mTORC1’s response to amino acids and glucose is tightly controlled. 

The sensitivity to these stimuli allows healthy cells to coordinate their growth with available 

nutrients. However, these controls are lost in cancer leading to growth regardless of nutrient 

access. This growth in the absence of nutrients puts excess stress on the cell, that if severe, can 

induce apoptosis. For example, it has been shown that TSC2-null fibroblasts are much more 

sensitive to glucose starvation than wild-type fibroblast (32, 33). These findings indicate that, 2-

deoxy-glucose (2-DG), a glucose mimetic that blocks the uptake of glucose by inhibiting 

hexokinase, would be able to treat tumors that have unregulated mTORC1 signaling. 

 Even though the mTORC1’s response to glucose is lost in many cancer cells, the 

response to amino acids remains intact. This may allow for mTORC1 inhibition by amino acid 

depletion in cancer patients. It has been shown by injecting the bacterial enzyme, asparaginase, 

into mice that both asparagine and glutamine can be depleted from the blood leading to mTORC1 

inhibition and reduced growth of TSC2-null cysts (104, 108). Interestingly, this amino acid 

depletion can also activate the GCN2 eIF2α kinase leading to activation of the proapoptotic 

transcription factor CHOP (108). This type of amino acid depletion treatment may be combined 

with additional drugs to enhance the cell death that is initiated by nutrient depletion.  
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1.16 Endoplasmic Reticulum Stress 

 The unfolded protein response (UPR) is activated when the cell’s protein folding and 

secretory machinery, that is located in the endoplasmic reticulum (ER), becomes overwhelmed by 

misfolded protein as shown in figure 1-4. This stress response consists of three parallel pathways: 

inositol requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), and the protein 

kinase like-ER kinase (PERK). The UPR enhances the cells ability to adapt to ER stress; however 

in cases of prolonged or severe stress, the UPR will induce cell death through apoptosis or 

autophagy (109). The UPR pathways help the cell adapt to anabolic stress in several ways. 

Firstly, activation of the PERK branch leads to the phosphorylation of eIF2α. This mechanism of 

inhibiting global protein synthesis is conserved from yeast to mammals (110). While the decrease 

in protein synthesis reduces the overall burden on the ER, phosphorylation of eIF2α also induces 

the translation of the ATF4 transcription factor. The other 2 branches of the UPR trigger the 

transcription of additional stress response genes. ATF6 translocates from the ER to the Golgi 

where it becomes activated by cleavage. Meanwhile, IRE1 facilitates the splicing of XBP1 (X-

box protein 1) mRNA in the cytoplasm to an actively translated form using its endoribonuclease 

activity. This splicing requires tRNA ligase. ATF4, ATF6 and XBP1 help overcome the UPR by 

increasing the expression of ER resident chaperones, protein disulfide isomerase, and enzymes 

that regulate both lipid and amino acid metabolism. However, these same transcription factors 

also induce the expression of a proapoptotic transcription factor CHOP following prolonged 

stress, leading to cell death (109). 

 Interestingly, it has been shown that loss of either the TSC1 or TSC2 genes results in 

activation of the UPR in cultured MEFs, neurons, mice with TSC2-loss-induced cysts as well as 

in TSC patients (102, 111). It is currently believed that the loss of these genes leads to high levels 

of mTORC1-induced translation and that this puts an excessive burden on the ER folding 

machinery. The activation of mTORC1 sensitizes these cells to the ER stressing agents 
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thapsigargin and tunicamycin and it is anticipated that other ER stressors could selectively 

promote the demise of cancer cells exhibiting high mTOR activity (102, 111). It is also 

noteworthy that glucose starvation is an inducer of ER stress through loss of N-linked protein 

glycosylation. This fact may explain the heightened sensitivity of TSC1 and 2 null cells to 

glucose deprivation.  

 In addition to the adaptive response of the UPR, the endoplasmic reticulum also uses a 

proteasomal degradation pathway to ubiquitinate and degrade proteins that cannot be correctly 

folded. This pathway known as ER-associated degradation (ERAD) can be inhibited by 

proteasome inhibitors such as MG-132 and bortezomib. When cells are treated with these 

inhibitors, unfolded proteins accumulate in the endoplasmic reticulum and hyper-activate the 

UPR. It has been shown that TSC2-null MEFs and cancer cell lines overexpressing Rheb1 have 

increased sensitivity to proteasome inhibitors; however, this study linked drug-sensitivity to 

failure to target ubiquitinated proteins to the aggresome (103). 
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Figure 1-4. The Unfolded Protein Response 
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1.17 mTORC1 control of c-MYC  

mTORC1’s control of the c-MYC transcription factor is a well-established phenomenon 

that likely explains how mTORC1 indirectly orchestrates so many different genes and processes. 

mTORC1 controls the amount of c-MYC protein in the cell through a complex regulation of 

translation which is not completely understood (112-114). The c-MYC oncogene controls 

between 10-15% of genes which operate in diverse cellular processes (115, 116). These processes 

include growth and metabolism as well as senescence and apoptosis (117). While the mechanisms 

c-MYC uses to drive tumor growth have been well studied and characterized, its ability to 

suppress tumor growth or cooperate with certain anticancer drugs have been the intense focus of 

recent study and may be a possible way to induce apoptosis in cells with high mTORC1 activity.  

c-MYC sensitizes cells to apoptosis induced by activation of the Fas death receptor, 

serum deprivation, hypoxia, glucose starvation, and cytotoxic drugs indicating that c-MYC is a 

general factor that induces apoptosis (116, 118, 119). Although the exact mechanism by which c-

MYC induces apoptosis is unknown at least three pathways may contribute to this mechanism of 

cell death. First, c-MYC induces expression of the tumor suppressor protein Arf which prevents 

MDM2 from targeting p53 for degradation (116, 118, 119). Expression of Arf allows p53 to 

induce the transcription of proapoptotic genes like BAX and PUMA as well as mediators of cell 

cycle arrest such as p21 and p27. However, c-MYC represses expression of p21 through 

interaction with Miz-1 which overrides p53-induced cell cycle arrest (120, 121). This ability to 

override p53 induced cell cycle arrest may explain why c-MYC, unlike other oncogenes such as 

K-RAS, has both apoptotic and progrowth activities. Second, c-MYC has been shown to bind to 

and activate the transcription of the NOXA oncogene which promotes apoptosis (122). Finally, c-

MYC represses expression of the anti-apoptotic members of the BCL-2 family that prevent 

cytochrome c release from the mitochondria (123). c-MYC’s participation in apoptosis has been 

shown to be a major barrier in its ability to drive tumor development. Mouse models of Myc-

induced tumor development have found that for c-MYC to potently drive tumor development 
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inactivating mutations to p53, Arf, Bax and Bim or overexpression of anti-apoptotic genes such 

as Bcl-2 and Bcl-XL must be present(123-126). Further, c-MYC mutants that are deficient for 

stimulating apoptosis, but retain the ability to stimulate progrowth genes, accelerates 

lymphomagenesis without the need for complementary mutations in apoptosis-regulatory genes 

(127).  

    

1.18 Summary    

 Studying the mechanism of action of rapamycin has allowed researchers to decipher how 

cells coordinate transcription, ribosome biogenesis, translation initiation, and autophagy in both 

yeast and mammals in response to wide-ranging stimuli (oxygen, growth factors, amino acids, 

and intracellular energy supply). In humans these processes are integrated through the 

serine/threonine protein kinase, mammalian target of rapamycin (mTOR). Improper activation of 

mTOR in cancer, diabetes, and aging suggested that rapamycin may be useful in the treatment of 

multiple diseases. However, recent evidence suggests that there might be more advantageous 

methods of blocking mTOR activation. These include targeting the Rheb GTPases, amino acid 

signals to mTOR, cellular stresses generated by mTOR activation, or directly inhibiting the 

kinase activity of mTOR. 
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CHAPTER 2. MATERIALS AND METHODS 
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2.1 Elt3 Cell culture 

 Elt3 cells were a gift from Cheryl Walker (MD Anderson). All experiments were 

performed on cells between passages 40-50 that were maintained in DF-8 media as described by 

Walker and Ginsler (128). Cells were plated at 70% confluence. The following day, DF-8 media 

was replaced with serum-free DMEM (Lonza) containing DMSO vehicle control or 50 nM 

rapamycin (Calbiochem). 24 hours later, bortezomib (LC laboratories) was added to each plate to 

a final concentration of 20 nM. In experiments using c-MYC inhibitor II (EMD Millipore), cells 

were starved of serum overnight and treated with 5µM c-MYC inhibitor II 2 hours prior to 

treatment with 20 nM bortezomib. Experiments also used 10mM 2-DG and 1µM thapsigargin 

when described.  

    

2.2 621-101 Cell culture 

 621-101 cells were a gift from Lisa Henske (Harvard). All experiments were performed 

on cells between passages 14-30 that were maintained in DF-8 media as described by Walker and 

Ginsler (128). Cells were plated at 70% confluence. The following day, DF-8 media was replaced 

with serum-free DMEM (Lonza) containing DMSO vehicle control or 50 nM rapamycin 

(Calbiochem). 24 hours later, MG-132 (LC laboratories) was added to each plate to a final 

concentration of 1µM. In experiments using 10 µM spautin-1 (Cayman-are you sure), 10µM 

bhloroquine (Sigma), or 10mM 3-methyl adenine (Sigma), cells were treated 2 hours prior to 

treatment with MG-132. In experiments using 10 µM of the JNK inhibitor SP60012 

(Calbiochem), cells were treated for 24 hours similar to rapamycin.    

 

2.3 Nuclear lysates 

 Nuclear lysates were collected in experiments where the levels of ATF4 or CHOP 

proteins were measured in order to increase the detectability of these nuclear proteins. 60 mm 

plates of Elt3 cells were washed with ice-cold PBS. Cells were then harvested into 1 mL of 10 
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mM HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl, and 0.25% IGEPAL. Cells were incubated 

with rotation at 4°C, for 10 min. Nuclei were then pelleted at 3,000 rpm in an accuSpin Micro 

17R microcentrifuge (Fisher Scientific) at 4°C, 10 min. The supernatant was discarded and the 

pellet was resuspended in high detergent lysis solution (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 

2 mM EDTA, 1% TX-100, and 1% SDS). Nuclear lysates were incubated for 10 minutes on ice 

and pelleted for 10 minutes at 13,300 rpm, 4°C. Supernatants were transferred to ice-cold tubes 

and frozen in liquid nitrogen for later analysis. 

  

2.4 Western blotting and antibodies 

 For experiments where ATF4 and CHOP proteins were not measured, whole cell lysates 

were prepared using high detergent lysis solution with protease and phosphatase inhibitors. Cell 

lysates were normalized by protein concentration using a Bradford assay (Bio-Rad) and analyzed 

using 10 or 15% SDS-PAGE gels. Proteins separated in these gels were transferred to PVDF-FL 

membranes (Millipore). Membranes were blocked in 5% non-fat dry milk and probed with 

primary antibodies. Antibodies specific to LC3(#3868), cleaved caspase-3 (#9661), Lamin A/C 

(#4777), and c-MYC (#5606) were obtained from Cell Signaling Technologies. Antibodies 

specific to p62 (sc-28359), U1snRNP70 (sc-9571), ATF4 (sc-200), CHOP (sc-7351), and β-actin 

(sc-47778) were obtained from Santa Cruz Biotechnology. Western blots were visualized by X-

ray film using SuperSignal West Femto Maximum Sensitivity substrate (Thermo Scientific) or 

scanned using an Odyssey LiCOR machine.  

  

2.5 qRT-PCR 

 RNA was isolated from cells using TRIzol (Invitrogen) according to the manufacturer’s 

protocol. First-strand cDNA synthesis was performed using M-MuLV reverse transcriptase (New 

England Biolabs) and qRT-PCR detection of transcripts was performed using the Light Cycler 
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480 (Roche) and the Roche Universal Probes Library according to the manufacturers’ protocols. 

Primer sequences and probe numbers are located in Appendix 1. 

 

2.6 Trypan blue cell viability assays 

 After bortezomib treatment, cells were washed with ice-cold PBS and trypsinized for 5 

minutes at 37°C. The media from the plate, PBS wash, and trypsinized cells were pooled into a 

15 mL conical tube and cells were pelleted for 5 min at 1,000 rpm in a Beckman GS-15R 

centrifuge at 4°C. The supernatant was discarded and cells resuspended in a 1:1 solution of 

PBS:0.4% Trypan blue (Sigma-Aldrich). The number of live and dead cells was counted by using 

a hemocytometer (Reichert). Clumps of cells where individual cells could not be accurately 

counted were excluded from these counts.  

 

2.7 Chromatin immunoprecipitation 

 Chromatin immunoprecipitation was performed on 107 Elt3 cells that had been treated for 

4 hr with 20 nM bortezomib using the SimpleChIP Chromatin IP kit (Cell Signaling #9003) 

according to the manufacturer’s specifications. PCR detection of immunoprecipitated DNA 

fragments was performed using Maxima Hot Start 2x PCR master mix (Fermentas). Primer 

sequences are located in Appendix 1. 

 

 2.8 Cloning and lentiviral production    

 The c-MYC lentiviral expression plasmid was generated by the addition of 5’-BamHI and 

3’-NotI sites to human c-MYC cDNA by PCR. This DNA fragment was then cloned into the 

same sites of the pCDH1-CMV-MCS-EF1-Hygro expression vector (System Bioscience). 

pCSCGW-GFP-mCherry-ER and pCSCGW-GFP-mCherry-LC3 were cloned as follows. The 

KDEL endoplasmic reticulum retention signal was added during PCR amplification of RFP using 
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the forward primer TAGCTACCGGTTCTAGAGCCTCCTCCGAGGACGTCATC and the 

reverse primer AGCTACTCGAGTCACAGCTCGTCCTTCGAAGCTTGGGCGCCGGTGGA. 

This fragment was then digested with AgeI and XhoI and ligated into the pCSCGW lentiviral 

vector backbone. The ER targeting signal from calreticulin was then added to this newly created 

plasmid by digesting with AgeI and XbaI and ligating to the annealed oligonucleotides 

CCGGTATGCTGCTATCCGTGCCGTTGCTGCTCGGCCTCCTCGGCCTGGCCGTCGCCAT

CGATT and 

CTAGAATCGATGGCGACGGCCAGGCCGAGGAGGCCGAGCAGCAACGGCACGGATAG

CAGCATA. LC3 was subcloned from pEGFP-LC3 was subcloned using AgeI and XhoI into the 

pCSCGW plasmid. mCherry was PCRed and inserted into the NheI and AgeI sites of these 

plasmids. All lentiviral plasmids were co-transfected using calcium phosphate into 293T cells 

with pCMV-VSV-G (Addgene #8454), pRSV-REV (Addgene #12253), and pMDLg/pRRE 

(Addgene #12251). Two days post-transfection the viral supernatant was filtered using a 0.45 µm 

syringe filter and stored at -80°C until needed. Empty vector or the pCDH1-c-MYC plasmid were 

co-transfected into 293T cells, along with with pCMV-VSV-G (Addgene #8454), pRSV-REV 

(Addgene #12253), and pMDLg/pRRE (Addgene #12251) plasmids following calcium phosphate 

precipitation. Two days post-transfection the viral supernatant was filtered (0.45 µm) and stored 

at -80°C until needed. 

  

2.9 Generation of c-MYC and empty vector stable cell lines 

 Elt3 stable cell lines were generated by plating the cells into media containing lentivirus 

and 5 µg/mL polybrene. An additional plate was set up on the first day that was not infected. This 

plate served as a control for complete drug selection. On the day following infection cells were 

selected using 300 µg/mL hygromycin B. This selection was continued by refreshing the media 

and selection drug every 2 days until cells on the uninfected control plate were completely killed. 
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2.10 Imaging and measuring ER volume 

 Cells were plated into 35mm plates containing glass cover slips. Each plate contained 100 

µl of mCherry-ER lentivirus supernatant and DF-8 media. The next day the media on these plates 

was replaced with serum-free media and drug treatments were done as describe in each 

experiment. The third day more drug treatments were done pertinent to the experiment and slides 

were washed with cold PBS 3 times while still in the plates. Cells were then fixed in 4% 

paraformaldehyde (PFA) in PBS pH 7.4 for 15 minutes. Plates were washed 3 times with PBS pH 

7.4 to remove PFA. Each plate was soaked in a solution of 5µg/mL AF488-wheat germ agglutinin 

(WGA) in PBS pH7.4 overnight in the cold room. WGA only labels the plasma membrane 

because these cells have not been permeabilized with detergent. Excess WGA was washed away 

using 3 PBS pH 7.4 washes. Cover slips were removed and mounted using hard set mounting 

media with DAPI (VECTRASHIELD H-1500). Fluorescence images were acquired on a Zeiss 

468 AxioObserverZ1 microscope, and ER and plasma membrane area were measured using 

AxioVision software.  

 

2.11 Florescent live cell imaging    

Cells were plated into 35 mm MatTek dishes with glass bottoms. Each plate contained 

100μl of lentivirus in DF-8 media. Cells were allowed to adhere overnight before the media was 

changed to serum-free DMEM containing the drug treatments described in each experiment. The 

following day these cells were treated again with a stress drug without changing the media. 

Fluorescence images were acquired on a Zeiss 468 AxioObserverZ1 microscope. 

 

2.12 shRNA sequences and 293T shRNA knockdowns 

 shRNA sequences are cloned into the AgeI and EcoRI sites of the pLKO.1 vector. These 

sequences can be found in Appendix 2. shRNA lentiviruses were created as described in section 
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2-8. 293T cells were then infected with the viral supernatant and then selected with 2µg/mL 

puromycin. Once completely selected, cells were replated as needed for the experiments.   

 

2.13 Luciferase Assays  

 2.5-kb of the rat ATF4 promoter were amplified from the Elt3 genomic DNA. This 2.5-

kb fragment was cloned into the pGL3-basic plasmid into the NheI and XhoI sites. The E-boxes 

located at -855 and -141 of the ATF4 promoter were deleted using the primer overlap method. 0.5 

µg of luciferase reporter and 0.5 µg of c-MYC or empty vector plasmid were transfected into 

293T cells. Cells were lysed and measured 48 hours later according to the Promega luciferase 

assay system protocol.  

 

2.14 Statistical Analysis  

 Bar graphs represent the mean measurement of 3 or 4 experiments with error bars 

representing the standard deviation from this mean. P-values were calculated using the T-test 

function in Microsoft Excel. 
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CHAPTER 3. mTORC1 ENHANCES BORTEZOMIB-INDUCED DEATH IN TSC-NULL 

CELLS BY A C-MYC-DEPENDENT INDUCTION  

OF THE UNFOLDED PROTEIN RESPONSE 
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3.1 Introduction 

Bortezomib is a potent inhibitor of the 26S proteasome. Its early promise as a treatment 

for relapsed/refractory multiple myeloma prompted the United States Food and Drug 

Administration (US FDA) to grant the drug accelerated approval (129). Subsequently there has 

been significant interest in the use of bortezomib as a treatment for other forms of cancer and 

clinical trials are underway using the drug as a single agent or in combination with several 

additional compounds.   

 Despite positive results in the treatment of multiple myeloma, the mechanism of action of 

bortezomib remains unclear due to the pleiotropic effects of proteasome inhibition. Recent work 

by multiple labs has found a convergence of two signaling pathways that contribute to apoptosis 

induced by the UPR and may influence bortezomib induced cell death (102, 111, 130). The first 

pathway involves the activation of the mammalian target of rapamycin complex-1 (mTORC1) 

that increases protein synthesis in response to the small GTPase Rheb (Ras homologue enriched 

in brain). The activity of Rheb is in turn controlled by a complex of the TSC1 and TSC2 tumor 

suppressor gene products, designated hamartin and tuberin, respectively. Tuberin acts as a 

GTPase activating protein (GAP), which switches Rheb from an active GTP-bound state to an 

inactive GDP-bound form (23, 24, 26, 131). Meanwhile hamartin stabilizes tuberin to prevent its 

degradation (22). Inactivating mutations in either TSC1 or TSC2 are found in the genetic disorder 

tuberous sclerosis complex (TSC) and the rare cystic lung disease lymphangioleiomyomatosis 

(LAM) (1). Mutation of TSC1 or TSC2 in these diseases also results in the development of 

neoplasms that are characterized by activation of mTORC1 and high levels of protein synthesis 

(1). 

 The second pathway that converges with the TSC2/mTORC1 pathway to sensitize cells 

to bortezomib-induced death is the unfolded protein response (UPR). The UPR is activated when 

unfolded proteins accumulate in the endoplasmic reticulum (ER) causing an excessive burden on 

the protein folding and secretory machinery of cells (132, 133). Bortezomib and other proteasome 
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inhibitors can activate the UPR by inhibiting the cells ability to degrade unfolded protein via the 

ER-associated degradation (ERAD) pathway (134, 135). Therefore, unfolded proteins can build 

up in the ER and activate all three branches of the UPR: inositol-requiring enzyme-1 (IRE-1), 

activating transcription factor-6 (ATF6), and protein kinase-like ER kinase (PERK) (132, 133). 

Activation of these 3 branches allows the cell to adapt to the unfolded protein stress by arresting 

global protein synthesis, preferentially translating prosurvival transcription factors, and inducing 

the expression of proteins that facilitate the folding, processing, and trafficking of secretory 

proteins. However, if unfolded protein stress is severe or prolonged, the cell will undergo 

apoptosis through PERK-dependent translation of the transcription factors ATF4 and 

CCAAT/enhancer-binding protein homologous protein (CHOP) (136, 137). 

 PERK is a member of the eIF2α kinase family. By phosphorylating eIF2α at serine 51, 

PERK causes a global arrest of mRNA translation but enables the preferential translation of 

specific stress responsive mRNAs that contain complex 5’UTRs (138, 139). These mRNAs, 

including ATF4 and CHOP, are also transcribed more effectively during PERK-activation (140, 

141). ATF4 and CHOP are essential for unfolded protein-induced death and knockout MEFs 

lacking either of these transcription factors are more resistant to drugs that induce the UPR (140, 

142). Therefore, signaling pathways that alter ATF4 and CHOP expression may provide the key 

to understanding bortezomib sensitivity. 

 TSC1 or TSC2 knockout MEFs have been reported to experience increased sensitivity to 

the chemical stressors, thapsigargin and tunicamycin, that activate the UPR (102). This increased 

sensitivity was attributed to a significant increase in the basal levels of UPR markers in TSC1- or 

TSC2-null MEFs compared to their wild-type counter parts. These markers included 

phosphorylated PERK, CHOP mRNA, and GRP78 mRNA that encodes an ER molecular 

chaperone (102). Expression of these stress markers, as well as UPR-induced apoptosis could be 

decreased by treating these knockout MEFs with the mTORC1 inhibitor rapamycin (102). 4-

phenylbutyrate, a chemical suggested to improve protein folding also decreased basal levels of 
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UPR components and UPR-induced apoptosis in TSC-null MEFs (102). These results strongly 

support the hypothesis that mTORC1 activity predisposes a cell to apoptosis by inducers of the 

UPR, such as bortezomib. However, the mechanism(s) of mTORC1 action in this process is not 

well understood.  

  To address how mTORC1 activity sensitizes cells to bortezomib-induced ER stress and 

apoptosis we studied these events in the TSC2-null Elt3 cell line. Bortezomib promoted both the 

UPR and UPR-induced apoptosis, responses that were suppressed by the mTORC1 inhibitor, 

rapamycin. Both the mRNA and protein expression of ATF4 and CHOP were increased upon 

exposing Elt3 cells to bortezomib. This suggested that mTORC1 may regulate the expression of a 

transcription factor, such as c-MYC, that is required for the induction of these two genes. In 

support of this notion, rapamycin treatment decreased c-MYC protein expression in Elt3 cells. c-

MYC was also shown to bind both the ATF4 and CHOP promoters during bortezomib treatment. 

Exogenous expression of c-MYC overcame the suppressive effects of rapamycin. These findings 

are consistent with mTORC1 functioning in conjunction with bortezomib to induce cell death by 

driving c-MYC expression, which in turn upregulates ATF4 and CHOP to drive apoptosis.  

 

3.2 Bortezomib induced cell death is reduced by rapamycin and by inhibition of the unfolded 

protein response 

 It was previously reported that 24 hour pretreatment with the mTORC1 inhibitor 

rapamycin decreased the ability of UPR inducers, such as thapsigargin and tunicamycin, to 

induce the death of TSC2-/- MEFs (102). This suggested that ER stress is only lethal in the 

presence of high mTORC1 activity and that this might be taken advantage of in the elimination of 

TSC1/2-null lesions. We began our study by confirming that Elt3 cells, a TSC2-null rat 

leiomyoma cell line, respond similarly to the proteasome inhibitor and UPR inducer, bortezomib. 

Elt3 cells were pretreated with 50 nM rapamycin for 24 hours and then exposed to 20 nM 

bortezomib for 8, 12, or 24 hours. Bortezomib treatment induced apoptosis of Elt3 cells as shown 
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by an increase in cleaved caspase-3 at 24 hours (Figure 3-1a). However, cells pretreated with 

rapamycin showed significantly less caspase activity or overall cell death. In support of the notion 

that caspase-3 cleavage accompanies apoptosis, Elt3 cells at the same 24 hour time point showed 

reduced viability as determined by trypan blue staining: bortezomib lowered the viability of Elt3 

cells to 43% while it only modestly decreased the survival of the rapamycin pretreated cell from 

84% to 76% (Figure 3-1b). Bortezomib treatment caused cells to round and lose adherence 

whereas rapamycin pretreated cells remained mostly flat and attached (Figure 3-1c).  
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Figure 3-1. Elt3 cells undergo rapamycin-sensitive apoptosis when treated with bortezomib 

 (A) Elt3 cells were pretreated with 50 nM rapamycin or vehicle control for 24 hours 

before being exposed to 20 nM bortezomib for an additional 8, 12, or 24 hours. Lysates were 

prepared after these drug treatments and analyzed by Western blot using an antibody selective for 

cleaved caspase-3 or β-actin. (B) Trypan blue staining of Elt3 cells exposed to bortezomib for 24 

hours in the presence or absence of rapamycin pretreatment. (C) Phase contrast microscopy of the 

Elt3 cells treated with rapamycin and bortezomib, as indicated. (*P<0.05) 
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3.3 Early UPR markers are induced by bortezomib but unaffected by rapamycin in Elt3 cells  

 In its earliest stages, ER stress leads increased PERK-dependent phosphorylation of 

eIF2α at serine 51, cleavage of ATF6 to its active form, and IRE1 splicing of XBP1 mRNA. This 

splicing facilitates translation of XBP1 mRNA by causing a reading frame shift. Phosphorylation 

of eIF2α not only attenuates global translation but also promotes the transcription and translation 

of the proapoptotic transcription factors ATF4 and CHOP (132, 133). Both of these transcription 

factors have been linked to proteasome inhibitor-induced apoptosis, and both factors likely 

contributed to the cell death that was observed in figure 1 (141, 142).  

 We found that eIF2α phosphorylation was increased at 4 and 6 hours following 

bortezomib treatment. However, there was no statistically significant effect of rapamycin 

pretreatment on eIF2α phosphorylation at any time point tested. Likewise, there was no 

observable difference in the accumulation of the cleaved (active) fragment of ATF6 in the 

nucleus after bortezomib treatment (Figure 3-2). However, there was a significant elevation in the 

amount of cleaved ATF6 in cell pretreated with rapamycin alone. We are currently unsure of the 

role this elevation in ATF6 activation may play in rapamycin-induced resistance to bortezomib 

induced cell death. Phosphorylation of the mTORC1 substrate, S6 kinase (S6K), was completely 

inhibited by rapamycin in these experiments indicating that drug treatment had effectively 

blocked mTORC1. The lack of effect of rapamycin pretreatment on bortezomib-induced eIF2α 

phosphorylation and activated ATF6 suggested that activation of mTORC1 in these cells does not 

greatly impact the level of unfolded protein to further exacerbate ER stress and PERK 

phosphorylation of eIF2α when combined with proteasome inhibition.  
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Figure 3-2. Early UPR markers are induced by bortezomib but unaffected by rapamycin in 

Elt3 cells  

 Elt3 cells were pretreated with 50nM rapamycin for 24 hours before being exposed to 

20nM bortezomib for the amount of time shown in the figure. (A) Whole cell lysates were 

prepared and probed using the antibodies list above. (B) Nuclear lysates were prepared and 

probed for the nuclear cleaved fragment of ATF6. (P<0.05) 
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3.4 ATF4 and CHOP protein and mRNA levels are induced by bortezomib in a rapamycin-

dependent manner 

Coincident with elevated eIF2α phosphorylation, the expression of both ATF4 and 

CHOP was induced following 4 or 6 hours bortezomib exposure (Figure 3-3b). However, in 

contrast to eIF2α phosphorylation, rapamycin reduced expression of the ATF4 and CHOP 

proteins. Further investigation determined that the induction of both ATF4 and CHOP mRNAs by 

bortezomib was also suppressed by rapamycin pretreatment (Figure 3-3c and d). These data 

indicate that while proximal events of the UPR are not mTORC1-dependent, the downstream pro-

apoptotic signals emanating from the ATF4/CHOP portion of this pathway are inhibited at the 

level of transcription by rapamycin pretreatment. 
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Figure 3-3. Rapamycin prevents induction of downstream UPR markers at the mRNA level 

 Elt3 cells were pretreated with 50 nM rapamycin or vehicle control for 24 hours before 

being exposed to 20 nM bortezomib for 2, 4 or 6 hours. (A) Nuclear lysates were prepared from 

Elt3 cells pretreated with rapamycin, followed by exposure to bortezomib. Equal amounts of the 

nuclear proteins were then subjected to SDS-PAGE, and ATF4, CHOP and U1snRNP70 were 

measured by Western blot. Relative levels of ATF4 and CHOP proteins in each treatment group 

are presented as histograms in the right side of the panel. (B and C) qRT-PCR measurement of 

ATF4 and CHOP mRNA levels in Elt3 cells pretreated with rapamycin (24 hr) followed by 

exposure to bortezomib for up to 6 hr, as indicated. (*P<0.05) 
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3.5 Bortezomib-induced expression of ATF4 and CHOP requires new mRNA and protein 

synthesis 

 The ability of rapamycin to inhibit ATF4 and CHOP protein expression, combined with 

the reduced mRNA expression of these genes following drug pretreatment, suggested that 

rapamycin may deplete cells of a transcription factor that is required for bortezomib to induce 

ATF4 and CHOP expression. Alternatively, during bortezomib treatment, the increase in ATF4 

and CHOP expression may be caused by their inability to be degraded by the proteasome. If 

rapamycin pretreatment decreased the synthesis of these proteins, it could result in reduced 

accumulation in the presence of proteasome inhibitor. In order to determine if the increase in 

ATF4 and CHOP protein levels is the result of stress-induced synthesis (transcription and/or 

translation), or the result of protein accumulation due to inhibition of the proteasome, we 

conducted experiments using the RNA polymerase inhibitor actinomycin D and the protein 

synthesis inhibitor cycloheximide. We found that simultaneously treating Elt3 cells with 

bortezomib and actinomycin blocked ATF4 and CHOP protein expression (Figure 3-4a). This 

result suggested that bortezomib requires new mRNA synthesis in order to induce expression of 

either transcription factor. Cycloheximide similarly suppressed bortezomib-induced accumulation 

of ATF4 and CHOP proteins, indicating that new protein synthesis is also required and that the 

observed increase in protein expression is not merely the result of its accumulation due to 

proteasome inhibition (Figure 3-4c). As a control, we also measured the phosphorylation of eIF2α 

and cleavage of ATF6 during actinomycin or cycloheximide treatment time courses. Neither 

actinomycin nor cycloheximide prevented bortezomib from inducing the phosphorylation of 

eIF2α (Figure 3-4 b and d). We also observe that ATF6 cleavage was somewhat enhanced by 

actinomycin treatment (Figure 3-4b). Cycloheximide treatment did prevent ATF6 cleavage which 

is consistent with the report by Teske et al. where it is reported that ATF6 cleavage requires new 

protein synthesis and is completely inhibited by cycloheximide (Figure 3-4d) (143). These control 

experiments confirm that our observed block of ATF4 and CHOP expression during actinomycin 
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and cycloheximide treatment is not merely a result of relieving ER stress by decreasing the load 

on the ER’s protein folding machinery.  
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Figure 3-4. Increased levels of ATF4 and CHOP proteins in response to bortezomib 

treatment require the synthesis of new mRNA and protein 

 (A) Elt3 cells were treated with 20 nM bortezomib for 2, 4, 6 hours in the presence or 

absence of 5 µg/mL actinomycin D. ATF4, CHOP and lamin A/C levels in cell lysates were 

determined by Western blot. (B) Elt3 cells were treated as in part A of this figure. 

Phosphorylation of eIF2α, total eIF2α, the cleaved fragment of ATF6, and β-actin in cell lysates 

were determined by western blot.(C) Elt3 cells were treated with 20 nM bortezomib at 2, 4, 6 

hours in the presence or absence of 100 µg/mL cycloheximide. Protein levels were measured as 

in part A of this figure. (D) Elt3 cells were treated as in C of this figure. Protein levels were 

measured as in part B of this figure.  
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3.6 c-MYC is upregulated by ER stressing agents at the transcriptional level in Elt3 cells 

 The above findings indicated that rapamycin inhibits induction of ATF4 and CHOP 

expression by blocking the synthesis of ATF4 and CHOP mRNA but does not alter upstream 

PERK activation. This selective targeting of downstream UPR components could be the result of 

expressing and/or activating a transcription factor(s) in response to elevated mTORC1 signaling, 

by exposure to bortezomib, or a combination of both stimuli. The oncogenic transcription factor 

c-MYC is a strong candidate for this link between mTORC1 and bortezomib: c-MYC is 

translationally upregulated by mTORC1 activation and down-regulated by rapamycin treatment 

(144, 145). Additionally, c-MYC is a short-lived protein whose expression is increased rapidly 

during proteasome inhibition, and c-MYC has been shown to contribute to bortezomib-induced 

death of cultured melanoma cell lines (122, 146, 147). Finally, the ATF4 gene promoter contains 

E-box consensus binding sites for basic helix-loop-helix transcription factors such as MYC 

(Figure 3-7a).   

 We found that treating Elt3 cells with bortezomib for 2, 4, or 6 hours increased c-MYC 

protein expression. Consistent with its potential role as mediator of mTORC1-induced ATF4 and 

CHOP expression, c-MYC induction by bortezomib was dampened by pretreatment with 

rapamycin (Figure 3-5a). Interestingly, while we additionally observed increased levels of c-

MYC transcripts in response to bortezomib treatment, this upregulation was insensitive to 

rapamycin pretreatment (Figure 3-5b). This is consistent with rapamycin specifically inhibiting 

only the translation of c-MYC into protein. Two other ER stress-inducing drugs, 2-deoxyglucose 

and thapsigargin, also increased the expression of both c-MYC mRNA and protein (Figure 3-5c 

and d). In order to examine the effect of rapamycin on c-MYC activity, we measured mRNA 

levels of the stress induced c-MYC transcriptional target NOXA. In these studies, we also 

evaluated the effectiveness of the small molecule, c-MYC inhibitor II, which was originally 

reported to inhibit c-MYC activity in Rat1a fibroblasts (148). In order to measure c-MYC 

transcriptional activity, we measured the transcript levels of NOXA which is directly regulated by 
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c-MYC binding to its promoter (122). We found that both rapamycin and the c-MYC inhibitor 

block the induction of NOXA after bortezomib treatment. Additionally, we show that knockdown 

of eIF4E, a necessary component for mTORC1 control of translation, reduces c-MYC protein 

levels in 293T cells (Figure 3-6a). This same eIF4E shRNA also blocked ATF4 induction in 293T 

cells by bortezomib (Figure 3-6b). These findings collectively suggest that ER stress, caused by 

bortezomib or other ER stressing-inducing agents, promoted the transcription of c-MYC, 

resulting in upregulation of c-MYC levels/activity. Rapamycin is able to block the translation of 

c-MYC under the conditions we studied, thereby inhibiting transcription of the c-MYC target, 

NOXA.  
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Figure 3-5. Bortezomib and other ER stressors induce expression and activity of c-MYC in 

a rapamycin-sensitive manner  

 Elt3 cells were pretreated with 50 nM rapamycin or vehicle control for 24 hours before 

exposure to 20 nM bortezomib for 2, 4 or 6 hr, as indicated. (A) Lysates were then prepared and 

the levels of c-MYC and lamin A/C measured by Western blot. (B) c-MYC mRNA levels were 

measured under the same conditions as part A of this figure. (C-D) 10 mM 2-DG, 1 µM 

thapsigargin, and 20 nM bortezomib were all used to induce ER stress for 6 hours. c-MYC 

protein and mRNA levels were measured. (E) Bortezomib treatment induces expression of the c-
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MYC transcriptional target NOXA. Rapamycin and Myc inhibitor II blocked induction of 

NOXA. 
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Figure 3-6. eIF4E knockdown reduces c-MYC and ATF4 expression 

 (A) 293T cells were transduced and selected for expression of either sh_Scramble or 

sh_eIF4E. Nuclear and cytosolic fractions were then prepared from these cells. Western blots of 

these lysates show reduced c-MYC expression after eIF4E deletion. (B) 293T cells were prepared 

as in part A of this figure. These cells were then treated for 4 hours with 20 nM bortezomib. 
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Nuclear and cytosolic fractions were prepared and probed to detect changes to ATF4 expression 

resulting from eIF4E knockdown. (P<0.05)    
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3.7 Rapamycin inhibits bortezomib-induced c-MYC expression and binding to the ATF4 gene 

promoter     

To determine if c-MYC plays a direct role in the transcription of ATF4 we performed 

chromatin immunoprecipitation (ChIP) assays on the ATF4 promoter. ChIP revealed binding of 

c-MYC to the canonical E-box (CACGTG) at -855 of the ATF4 promoter following 4 hours of 

bortezomib treatment (Figure 3-7a). We also found that deleting the E-box at -855 but not the 

similar sequence at -141 of the ATF4 promoter blocks the induction of luciferase during c-MYC 

overexpression in 293T cells (Figure 3-7b). It is not clear why loss of the -141 E-box positively 

impacted gene expression. These results indicate that c-MYC binds the ATF4 promoter during 

bortezomib treatment and may play a role in its transcriptional upregulation. Bortezomib 

treatment also upregulates c-MYC expression in this cell line in a rapamycin-sensitive manner. 

These findings support the idea that c-MYC is a transcription factor that is induced by mTORC1 

and bortezomib that directly activates transcription of the ATF4 genes during the UPR. Although 

these studies were done on rat cells which have a different ATF4 promoter than human cells, 

there is an E-box found in the ATF4 promoter in human cells which may be regulated by c-MYC. 

Further, c-MYC has been shown to drive the expression of ATF4 in a human cell model (149).   
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Figure 3-7. c-MYC binds to and stimulates the ATF4 promoter   

 (A) Elt3 cells were treated with 20 nM bortezomib for 4 hours. The cells were then fixed 

and analyzed by ChIP for c-MYC binding to the E-boxes at positions -855 and -141 of the rat 

ATF4 promoter. Graphs represent the mean ± standard deviation of 3 independent ChIP 

experiments. (B) 2.5kb of the region 5’ of the rat ATF4 gene were cloned upstream of the 
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luciferase gene. The E-boxes located at -141 and -855 were mutated to prevent c-MYC binding 

and activation of luciferase transcription. These reporters were then transfected into 293T cells 

with empty vector or c-MYC. (P<0.05)    
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3.8 c-MYC overexpression rescues rapamycin-mediated suppression of bortezomib-induced 

ATF4 and CHOP expression  

 Taken together, the above results suggest that rapamycin prevents the induction of ATF4 

and CHOP, and the accompanying apoptosis, in response to bortezomib treatment by decreasing 

the expression levels of c-MYC. This decrease in c-MYC expression would reduce its binding to 

the ATF4 gene promoter, thus lowering its transcription. Consequently rapamycin protects the 

cell from bortezomib-induced apoptosis due to a reduction in the expression of each of these 

transcription factors. To test this model, we used a lentiviral expression system to restore the c-

MYC protein expression that had been lost as a resulted of rapamycin treatment. We also used 

Myc inhibitor II to block c-MYC activity to demonstrate the requirement for c-MYC activity in 

the bortezomib induction of ATF4 and CHOP.   

Elt3 cells were transduced with lentiviruses carrying either empty vector or c-MYC 

sequences. Cells transduced with empty vector showed a similar lowering of bortezomib-induced 

c-MYC, ATF4 and CHOP expression upon rapamycin pretreatment (Figure 3-8a, compare lanes 

3 and 4) as had been observed in uninfected cells in previous experiments. Meanwhile, c-MYC 

transduced cells showed high c-MYC expression basally, after 6 hours of bortezomib treatment, 

and even following pretreatment with rapamycin (Figure 3-8a, lanes 5-8) Additionally, cells 

expressing exogenous c-MYC showed induction of ATF4 and CHOP when treated with 

bortezomib alone or following rapamycin pretreatment (Figure 3-8a, lanes 7 and 8). We also 

show that blocking c-MYC activity using Myc inhibitor II blocks the induction of ATF4 and 

CHOP protein by bortezomib (Figure 3-8b). c-MYC overexpression did not induce eIF2α 

phosphorylation or enhance eIF2α phosphorylation after bortezomib treatment (Figure 3-8c). 

Similarly, shRNA knock down of c-MYC in 293T cells is able to block induction of ATF4 by 

bortezomib treatment without blocking induction of eIF2α phosphorylation (Figure 3-9). This 

result suggests that c-MYC is not causing stress or enhancing the stress caused by bortezomib. 

These results as a whole suggest that the ability of rapamycin to suppress ATF4 and CHOP 
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expression is dependent on its downregulation of c-MYC. These findings also support the notion 

that c-MYC plays a central role in the induction of the ATF4 and CHOP mRNAs during 

bortezomib treatment.  
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Figure 3-8. Overexpression of c-MYC rescued bortezomib-induced ATF4 and CHOP 

expression following pretreatment with rapamycin 

A lentivirus was used to stably express c-MYC in Elt3 cells. (A) Vector and c-MYC 

expressing cells were then pretreated with vehicle control or 50 nM rapamycin (24 hr) prior to 

treatment with bortezomib for 6 hours. (A) Nuclear lysates were prepared and levels of ATF4, 
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CHOP, and Lamin A/C were measured by Western blot. (B) Elt3 cells were pretreated with Myc 

inhibitor II 2 hours before being treated with bortezomib for 6 hours. Western blots were 

executed as in part A of this figure (C) ELT3 cells overexpressing c-MYC were treated with 

bortezomib for 6 hours. Whole cell lysates were probed for the phosphorylation of eIF2α , total 

eIF2α, c-MYC, and β-actin. (D-E) Under the same conditions, ATF4 and CHOP mRNAs were 

measured by qRT-PCR. (*P<0.05) 
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Figure 3-9. c-MYC knockdown blocks bortezomib-induced induction of ATF4  

 293T cells were puromycin selected to express sh_Scramble, sh_c-MYC #1, or sh_c-

MYC #2. Cells were then replated and treated with 20nM bortezomib for 4 hours. Lysates were 

fractionated to better visualize ATF4 and c-MYC. Western blots were performed for 

phosphorylated eIF2α, total eIF2α, β-actin, ATF4, c-MYC, and U1snRNP70. (*P<0.05) 
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3.9 c-MYC overexpression rescues rapamycin-mediated suppression of bortezomib-induced Elt3 

cell apoptosis 

Next we used the lentiviral c-MYC overexpression system to test if c-MYC rescue of 

ATF4 and CHOP expression in the presence of rapamycin is sufficient to restore bortezomib-

induced apoptosis. Elt3 cells transduced with empty vector virus showed caspase-3 cleavage after 

24 hours of exposure to bortezomib that was dramatically reduced by rapamycin pretreatment 

(Figure 3-10a), similarly to that reported in figure 3-1. Importantly, cells transduced with c-MYC-

expressing virus showed caspase-3 cleavage after 24 hours of bortezomib treatment with or 

without rapamycin pretreatment, indicating that restoring c-MYC expression is sufficient to 

restore bortezomib induced apoptosis (Figure 3-10a). A similar outcome was seen on cell 

viability as measured by trypan blue staining: Cells transduced with only empty vector showed a 

57% decrease in cell viability after bortezomib treatment that was significantly inhibited by 

rapamycin pretreatment (Figure 3-10b). By comparison, c-MYC transduced cells showed a 

similar decrease in cell viability that could not be rescued by pretreating cells with the mTORC1 

inhibitor (Figure 3-10b). This decrease in cell viability was also readily apparent by microscopy 

where c-MYC overexpressing cells showed a rounded non-adherent morphology after bortezomib 

treatment, with or without rapamycin (Figure 3-10c). In contrast, the vector transduced cells 

remained flat and adherent when pretreated with rapamycin prior to exposure to bortezomib.  

 As anticipated, blocking the activity of c-MYC using c-MYC inhibitor II resulted in 

reduced ATF4 and CHOP expression after bortezomib treatment. Caspase-3 activation was also 

reduced following 24 hours of bortezomib treatment for those cells treated with the c-MYC 

inhibitor II (Figure 3-10d). These results indicate that in this cell line c-MYC expression 

contributes to cell death and induction of ATF4 and CHOP during bortezomib treatment.  
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Figure 3-10. Overexpression of c-MYC restores bortezomib-induced apoptosis 

Elt3 cells over-expressing c-MYC, or containing empty vector were subjected to 24 hr 

treatment with 20 nM bortezomib with or without an additional 24 hr rapamycin pretreatment. 

(A) Cleaved caspase-3 and β-actin were detected in cell lysates by Western blotting. The levels of 

cleaved caspase-3 are shown in a histogram to the right of this panel. (B) Trypan blue staining 

was carried out to measure the survival of Elt3 ells overexpressing c-MYC versus cells containing 
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the empty lentivirus vector alone, upon exposure to bortezomib. (C) Photographs of the two cell 

lines after 24 hours of bortezomib exposure in the presence or absence of rapamycin 

pretreatment. (D) Elt3 cells were pretreated with Myc Inhibitor II 2 hours prior to being treated 

with bortezomib for 24 hours. Cleaved caspase-3 and β-actin were detected in cell lysates by 

Western blotting. Levels of cleavage caspase-3 are shown in the histogram to the right of these 

western blots.   
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3.10 Discussion 

This study demonstrates the feasibility of using a clinically approved drug to induce the 

death of cells that have elevated mTORC1 activity due to the loss of TSC2. It also demonstrates, 

for the first time, that mTORC1 can regulate the UPR at the level of ATF4 and CHOP 

transcription factors by promoting increased transcription of these genes. This is achieved, at least 

in part, by the translation of c-MYC that regulates the transcription of ATF4 as shown in figure 3-

11. In concert with bortezomib treatment, which elevates ER stress and induces the expression of 

c-MYC, high mTOR activity contributes to cell death in a manner that can be prevented by 

rapamycin pretreatment. These data not only suggest a means of eradicating cells exhibiting high 

mTOR activity but may also help explain why myeloma cells with elevated c-MYC levels are 

more sensitive to bortezomib/Velcade. 
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Figure 3-11. mTORC1/c-MYC play a role in inducing the ER stress response 
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Our study was able to make these contributions to our understanding of how mTORC1 

affects the UPR thanks to a key difference in the Elt3 cell line compared to the MEF cells used in 

previous studies. The key difference between these cell lines that allowed this advance was the 

fact that Elt3 cells treated with bortezomib and rapamycin shown no statically significant 

difference in the phosphorylation of eIF2α compared to cells treated with bortezomib alone; 

however, this same rapamycin treatment blocked the induction of the downstream ATF4 and 

CHOP transcription factors. This key difference allowed us to focus on possible direct effects of 

mTORC1 on signaling processes downstream of eIF2α phosphorylation which led us to explore 

possible contributions from the mTORC1 translational target c-MYC. While our results 

demonstrate direct control of ATF4 expression by mTORC1, the effect of mTORC1 driven 

protein synthesis may play a major role in causing ER stress in some situations and may be the 

prevailing effect in other cell lines. 

Three previous studies have reported increased ER stress-induced apoptosis following the 

knockout of TSC1 or 2 (102, 111, 130). Two of these studies by the laboratories of Hotamisligil 

and Sahin show that rapamycin reduces this ER stress induced apoptosis; whereas, the study by 

Guan lab shows no effect of rapamycin on ER stress induced apoptosis. Our current study not 

only confirms aspects of the Hotamisligil observations but contributes additional mechanistic 

insight into how mTORC1 contributes to ER stress and cell death. The two studies using MEFs 

reported increased PERK and eIF2α phosphorylation upon TSC1 or 2 loss while a third study of 

TSC-null rodent neurons focused on the induction of CHOP expression and did not measure 

eIF2a phosphorylation (102, 111, 130). Since eIF2α phosphorylation was not affected by 

rapamycin treatment in the current study prior to the addition of bortezomib, it allowed us to 

unmask layers of UPR regulation by mTORC1 distal to eIF2α phosphorylation. At this time we 

have not established why the Elt3 cells have an attenuated response compared to MEFs. 

However, this is likely related to other genetic differences between cell lines. For example, Elt3 

cells retain wild type p53 whereas the TSC-null MEFs required deletion of p53 for survival or 
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may have lower basal MYC expression (19). It should also be pointed out that the two MEF 

studies also conflict both in whether TSC loss impacts downstream ATF4 and CHOP activation 

(102, 130). Thus there are likely to be mechanistic differences based on both cell type and 

metabolic state. 

Our studies findings are also similar to other studies which have found that specific 

stresses result in a truncated response to eIF2α phosphorylation where ATF4 and CHOP are not 

expressed. It has been observed that treatment of macrophages with lipopolysaccharide (LPS) or 

MEF cells with ultra violet (UV) light stimulate the phosphorylation of eIF2α without the 

induction of ATF4 and CHOP (140, 150). Additionally, it was shown that stimulation of eIF2α 

phosphorylation without inducing ATF4 or CHOP expression was a protective mechanism 

against UV induced cell death (140). This mechanism is consistent with our data which shows 

that rapamycin protects Elt3 cells from apoptosis by blocking ATF4 and CHOP expression but 

does not affect the phosphorylation of eIF2α.    

Our studies also confirm previous reports concerning c-MYC and the unfolded protein 

response. Cavener lab shows that c-MYC is induced by the ER stressing agents thapsigargin and 

DTT in MEFs at the mRNA level (151). Our data shows that c-MYC is induced by thapsigargin, 

2-DG, and bortezomib at the mRNA in our rat model. Wei and Ren laboratories show that c-

MYC binds to the human ATF4 gene in ChIP on ChIP experiments (152, 153). Similarly, we find 

that c-MYC binds to and simulates the rat ATF4 promoter at the -855 position. Despite the poor 

conservation of the 5’ promoter region from rats to mice to humans, all three species have at least 

two c-MYC binding sites either in the promoter region or first exon. This data suggest that c-

MYC plays a role in controlling ATF4 expression which likely is conserved. Other labs have also 

found that c-MYC combines with bortezomib to induce cell death. The Soengas and Lightcap 

labs have shown that c-MYC enhances bortezomib induced cell death in melanoma and colon 

cancer, respectively (122, 146). 
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In terms of clinical implications, our studies may partially contribute to our 

understanding of why multiple myeloma is sensitive to bortezomib. Multiple myeloma responds 

well to bortezomib treatment for two reasons both of which relate to c-MYC and the UPR. 

Multiple myeloma is a B cell cancer and B cells secrete their own weight in antibodies every day. 

This massive amount of secretion puts stress on these cells endoplasmic reticulum and may 

sensitize them to ER stress induced cell death by bortezomib. Synergizing with this effect, these 

cells typically have high levels of c-MYC expression which has been shown to control total ER 

content, protein synthesis, and aggregate formation in these cells (147). Knocking down c-MYC 

has been shown to protect multiple myeloma cells from bortezomib induced cell death similar to 

our observation that the Myc inhibitor II prevents apoptosis (147). Our studies may link these two 

aspects of bortezomib-sensitivity in multiple myeloma, because we show that the UPR directly 

involves c-MYC when it induces cell death. Additionally, c-MYC and ATF4 have been shown to 

control the expression of the proapoptotic gene NOXA which may also be involved in bortezomib 

induced cell death in Elt3 cells (154).         
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CHAPTER 4. PROTEASOME INHIBITION-INDUCED ER VACUOLATION 

REQUIRES mTORC1 ACTIVATION 
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4.1 Introduction 

 Autophagy gives a cell the ability to adapt to changes in environment and maintain 

homeostasis through the destruction of unwanted or damaged proteins and organelles. In order to 

respond appropriately to specific types of nutrient and environmental stress, organelle specific 

forms of autophagy have evolved. These forms of autophagy specifically target mitochondria 

(mitophagy), peroxisomes (pexophagy), ribosomes (ribophagy), and endoplasmic reticulum 

(reticulophagy) for degradation. For example when a cell switches from a fatty-acid nutrient 

source to other food sources, peroxisomes are no longer needed and cells will undergo pexophagy 

(155). Similarly, mitophagy is induced when cells are exposed to starvation conditions and no 

longer need excess mitochondria (156). The focus of this chapter will be autophagic degradation 

of the endoplasmic reticulum or reticulophagy and its regulation by the mammalian target of 

rapamycin complex-1 (mTORC1) pathway and the unfolded protein response (UPR). 

 mTORC1 is a master suppressor of the initiation phase of autophagy. When amino acids 

and other nutrients are abundant, Rag and Rheb small GTPases bind to and activate mTORC1 by 

localizing it to specific perinuclear endosomes (43, 44). Active mTORC1 phosphorylates and 

inhibits unc-51-like kinase 1 (ULK1) which participates in a complex with mammalian Atg13 

and focal adhesion kinase interacting protein of 200 kD (FIP200) (60-62). In the absence of these 

nutrients, mTORC1 becomes delocalized and inactive. This allows ULK1-mATG13-FIP200 

complex to autophosphorylate and promote the downstream initiation of autophagy (60-62). 

mTORC1 inhibition and induction of autophagy can also be achieved by treatment with the 

mTORC1-specific inhibitor rapamycin. Autophagy will then progress though four additional 

phases: elongation, closure, maturation, and degradation. During these stages the autophagic 

target is enclosed within a double membrane vacuole which is subsequently fused to lysosomes, 

acidified, and degraded (157).  

 In addition to mTORC1 inhibition, autophagy can be induced by damage to the cell 

caused by various toxins. Our research and that of others has shown that chemicals which disrupt 
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the protein folding processes of the ER are strong promoters of autophagy (158-160). These 

chemicals, such as tunicamycin, thapsigargin, and dithiothreitol (DTT), cause proteins which are 

folding in the ER to misfold by altering the environment within the ER or by inhibiting 

chaperones that promote proper protein folding. These unfolded proteins accumulate within the 

ER and ultimately activate the UPR which consists of three branches: inositol-requiring enzyme-1 

(IRE-1), activating transcription factor-6 (ATF6), and protein kinase-like ER kinase (PERK) 

(132, 133). These three branches help the cell adapt to the unfolded protein stress by promoting 

the synthesis of ER membrane, protein folding machinery, and arresting global protein synthesis. 

The UPR does this primarily by activation of PERK as activation of the other UPR branches rely 

on PERK for their downstream signaling. PERK is responsible for the phosphorylation of eIF2α 

and subsequent arresting of global protein synthesis (85, 132). During this global arrest of protein 

synthesis, stress responsive mRNAs with complex signaling sequences in their 5’-untranslated 

regions (5’-UTR) are translated more efficiently. Two of these mRNAs code for the transcription 

factors ATF4 and CHOP (139, 161). These transcription factors will promote the return to 

homeostasis; however, their prolonged activation will cause the cell to undergo cell death through 

apoptosis or other forms of cells death.  

 The ER-associated decay (ERAD) pathway is another pathway involved in the clearance 

of misfolded proteins from the ER and is essential for both ER and cellular homeostasis. When 

the UPR is activated the ERAD pathway is also activated and disulfide bonds and sugar moieties 

are removed from unfolded proteins destined for degradation. These proteins are then 

ubiquitinated and translocated from the ER for either proteasomal or autophagic degradation 

(133). Chemicals that inhibit the proteasome, such as MG-132 and bortezomib, inhibit the 

proteasomal degradation arm of the ERAD pathway and may place an extra burden on autophagic 

degradation to clear misfolded proteins. Treatment with either of these inhibitors results in an 

accumulation of unfolded proteins within the ER, activation of the UPR, and ultimately cell 

death. Proteasome inhibitors are currently being explored as a chemotherapeutic tools because of 
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their ability to induce cell death via the UPR (162). These inhibitors may be useful in the 

treatment of diseases such as tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis 

(LAM) where the activity of the TSC2 tumor suppressor is lost. TSC1 and 2-null cells have high 

mTORC1 activity, high protein synthesis rates, and reduced levels of autophagy (3). These cells 

have also been shown to be more sensitive to ER stressing drugs than their wild-type counter 

parts (102, 111, 130). These traits of TSC1 and 2-null cells may make them an ideal candidate for 

treatment with inhibitors that target the proteasome.  

 In this chapter, we show that treating the TSC2-null 621-101 cell line with proteasome 

inhibitors induces the UPR and the mTORC1 inhibitor rapamycin is able to suppress this 

activation of the UPR. Rapamycin pretreatment increased levels of LC3 cleavage and decreased 

p62 levels compared to untreated cells indicating higher levels of autophagy in rapamycin treated 

cells. Additionally, the cytoplasm of the non-rapamycin treated cells is filled with MG-132 

induced vesicles derived from the ER that do not appear in rapamycin pretreated cells. Using a 

novel imaging technique, we demonstrate that these vesicles may represent a failure of mature ER 

derived vesicles to become acidified autolysosomes. However, acidified autolysomes derived 

from the ER could be detected in the rapamycin cells during proteasome inhibition. 

       

4.2 MG-132 induces vacuolation and cell death in a rapamycin-sensitive manner 

eIF2α is phosphorylated in response to the accumulation of unfolded protein within the 

ER. This phosphorylation also controls the arrest in global protein synthesis and directs the 

transcription and translation of downstream UPR targets that include ATF4 and CHOP. We began 

our study by determining if rapamycin reduced activation of the UPR in 621-101 cells. Cells were 

treated with 50 nM rapamycin for 48 hours in serum-free media. We found that these treatments 

significantly reduced the basal levels of eIF2α phosphorylation as shown in figure 4-1a. 

Messenger RNA levels of ATF4 and CHOP as well as the ATF4 transcriptional targets LC3B and 

asparagine synthase (ASNS) were also reduced by the rapamycin treatments after 48 hours of 
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rapamycin treatment (Figure 4-1b). Both of these transcription factors have been shown to 

promote cell death during the UPR. The higher levels of ATF4 and CHOP in the cells that were 

not pretreated with rapamycin correlated with increased cell death after 24 hours of MG-132 

treatment according to trypan blue staining (Figure 4-2a). Strikingly, these cells also showed 

massive vacuolation within their cytoplasm which was not seen in the rapamycin pretreated cells 

(Figure 4-2b, upper and lower right).  

In order to determine if these vacuoles were derived from the ER, we used an mCherry 

red fluorescent protein probe which is targeted to and retained within the ER through a 5’-amino 

terminal ER targeting signal from the ER-resident chaperone calreticulin and a 3’-carboxyl 

terminal-KDEL peptide sequence, which facilitates ER retention. In untreated cells or rapamycin 

treated cells, this probe labeled the ER, which appears as a smooth reticulated perinulear signal. 

Cells treated with MG-132 without rapamycin were found to contain the mCherry label within the 

cytoplasmic vacuoles. MG-132 and rapamycin co-treated cells appeared to have normal ER 

structures (Figure 4-3).  
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Figure 4-1. Rapamycin decreases ER stress markers 

(A) 621-101 cells were treated with 50 nM rapamycin for different time points over 48 

hours in serum-free DMEM. eIF2α phosphorylation was measured by western blot and 

quantified. This ER stress readout decresased over time after rapamycin treatment. (B) CHOP, 
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LC3B, ASNS, and ATF4 mRNA levels were measured after 48 hours of rapamycin treatment. 

Rapamycin decreased all four stress readouts. (*P<0.05)   
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Figure 4-2. Rapamycin treatment prevents vacuolation and cell death induced by MG-132 

 A) 621-101 cells were treated with rapamycin 24 hours prior to being stressed with MG-

132 from 24 hours. Cells treated only with MG-132 show decreased viability; however, 
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rapamycin prevented this decrease in viability. B) Rapamycin also prevented the vacuolation 

observed after MG-132 treatment. (*P<0.05) 
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Figure 4-3. Vacuoles induced by proteasome inhibition contain ER 

 The ER of 621-101 cells was labeled using mCherry targeted to the ER. We found that 

when vacuoles form during MG-132 treatment they contain the ER label (upper right panel). 

These results suggest that these membrane structures are derived from the ER. Cells pretreated 

with rapamycin have normal ER morphology (lower right panel).  
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4.3 Cell death and vacuolation is not associated with caspase-dependent apoptosis 

 Cell death through the formation of cytoplasmic vacuoles is commonly associated with 

non-apoptotic forms of cell death, such as autophagy. However, it has been reported that loss of 

TSC2, as is the case for 621-101 cells, reduced autophagy due to mTORC1 repression of the 

ULK1-mATG13-FIP200 complex (Figure 1-3). Additionally, these vacuoles appear to have an 

endoplasmic reticulum origin rather than an endosomal/lysosomal origin and are very large (~3-

10 µm) compared to a typical autophagosome (~0.2-0.5 µm) (Measurements are based on size 

bars on florescent images in figure 4-3 which represent 10 µm).  

 In order to determine what role, if any, caspase-dependent apoptosis plays in the 

formation of the cytoplasmic vacuoles or the cell death observed after MG-132 treatment, we 

blocked this protease activity using the pan-caspase inhibitor, Z-VAD-FMK. Cells were co-

treated with MG-132 with or without 50 µM Z-VAD-FMK for 12 hours at which time cell were 

assayed for viability using trypan blue staining. Caspase inhibitor treatment failed to enhance cell 

survival (Figure 4-4a). Additionally, cells co-treated with MG-132 and Z-VAD-FMK showed a 

similar amount of vacuolation to those treated with MG-132 alone (Figure 4-4b).   
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Figure 4-4. Caspase activation is not required for MG-132-induced cell death or ER 

vacuolation 

 621-101 cells were pretreated with 50µM Z-VAD-FMK 2 hours before being stressed 

with MG-132 for 24 hours. (A) Trypan blue staining shows a decreased viability of cells treated 

with MG-132. Cells pretreated with Z-VAD-FMK showed a similar amount of cell death. (B) 

Cells pretreated with Z-VAD-FMK showed ER vacuolation similar to that seen in cells treated 

only with MG-132.     
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4.4 Rapamycin pretreatment enhances basal autophagic processes  

 Having seen no significant contribution to cell death or vacuolation from caspase 

activation, we next addressed whether autophagic cellular processes may be contributing to the 

cell death. Autophagy is characterized by the conversion of unprocessed LC3-I to cleaved and 

lipidated LC3-II which coats autophagic vesicles. These vesicles then form and fuse with 

lysosomes to degrade the autophagomes’ contents. The contents of these vesicles are targeted to 

the autophagosome by p62 which is itself degraded during the completion of autophagic 

degradation. These processes have been reported to be inhibited in TSC2-null cell lines, like 621-

101, leading to an accumulation of p62 and low levels of processes LC3-II (3). 

 Both LC3 and p62 marker levels suggested the induction of autophagy by the 

combination of rapamycin and MG-132. Rapamycin treated cells show much less p62 

accumulation at all time-points indicating that rapamycin has allowed the cell to once again 

process its autophagic cargos. Additionally, this autophagy is enhanced after 2 hours of MG-132 

treatment as shown by increased LC3-II cleavage (Figure 4-6b, lane 6).  

 The maturation of autophagosomes by fusion to lysosomes can be tracked by the 

visualization of GFP-mCherry dual tagged LC3 as shown in figure 4-5. This technique takes 

advantage of the acid-labile nature of GFP. At the typical cytosolic pH, ~7.2-7.4, GFP and 

mCherry are both able to fluoresce, and when both fluoresce proteins are used as a dual tag for 

LC3 the overlapping image of autophagosomes generated will appear green or yellowish. 

However inside an autolysosome the pH is very acidic, GFP will become bleached and only the 

mCherry component of the chimera will fluoresce. Under these acidic conditions, the 

autolysosme will appear red (163). In this manner, one can view the progression of 

autophagosome to autolysosomes. 
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Figure 4-5. Fluorescent proteins used to measure cellular pH 

A) The normal pH of the cytosol is about 7.2. At this pH, both GFP and mCherry 

fluoresce. This dual signal is depicted as yellow/orange in micrographs; however, the pH inside 

an autolysosome is about 4.8. At this pH, GFP bleaches but mCherry retains fluorescence and 

lysosomes are visualized red. This effect means that one can use a lack of GFP fluorescence and 

the presence of mCherry fluorescence to visualized acidic regions of the cell. B) We created LC3 

with this dual tag and also targeted it to the endoplasmic reticulum (ER) using the calreticulin ER 

targeting sequence and the KDEL ER-retention signal as indicated above.  
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 When dual tagged GFP-mCherry-LC3 was visualized in 621-101 cells that had been 

pretreated with rapamycin, both yellow autophagosomes and red autolysosomes could be seen in 

cells treated with or without MG-132 indicating that autophagy was progressing through its 

mature stages under both rapamycin treated conditions. However in cells not treated with 

rapamycin, GFP-mCherry-LC3 appeared in much fewer and larger vesicles. These vesicles were 

yellow indicating they likely did not fuse with lysosomes and consequently not progress through 

autophagy correctly (Figure 4-6a). Additionally, there was an accumulation of p62 in 621-101 

cells that was suppressed by rapamycin pretreatment. LC3-II levels are also higher when cells are 

treated with both MG-132 and rapamycin compared to MG-132 treatment alone (Figure 4-6b).    
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Figure 4-6. Rapamycin treatment restores autophagic processes  

(A) 621-101 cells expressing mCherry-GFP-LC3 fusion protein were treated with 1µM 

MG-132 for 6 hours with or without 24 hours 50 nM rapamycin pretreatment. Images of GFP and 

mCherry localization are overlaid to illustrate regions of LC3 acidification. (B) 621-101 cells 

were treated for the indicated time with 1µM MG-132 with or without 24hrs of 50nM rapamycin 

pretreatment. Lysates were prepared and western blotted.  
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4.5 Autophagy may play a role in ER expansion during MG-132 treatment 

 During activation of the UPR, cells will expand the ER. This increase in ER volume will 

decrease the concentration of unfolded protein contained within the ER relieving the unfolded 

protein stress. Typically, this expansion is accompanied by increases in ER-resident chaperones 

and other components that promote proper protein folding; however, these components are not 

absolutely required for resolution of the unfolded protein stress by membrane expansion (164).  

We find that despite rapamycin suppressing the UPR stress components ATF4 and 

CHOP, treatment with this macrolide antibiotic alone is sufficient to promote expansion of the 

ER. Rapamycin further cooperates with MG132 to enhance ER expansion. On the other hand, 

621-101 cells which were not treated with rapamycin fail to show any significant increase in ER 

volume when exposed to MG-132 (Figure 4-7). Due to the fact that ER expansion was only 

observed under the conditions of increased autophagy, we tested two autophagy inhibitors for 

their ability to block ER expansion in rapamycin treated cells. We found that 3-methyl adenine 

(3-MA) or spautin-1 treatment reversed the ER expansion phenotype in cells that were treated 

with rapamycin. Additionally, these inhibitors blocked the further expansion of the ER after MG-

132 treatment (Figure 4-8).   
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Figure 4-7. mTORC1 inhibition is required for ER expansion 

The ER of 621-101 cells was labeled using mCherry targeted to the ER (Red). These cells 

were then treated with 50nM rapamycin or vehicle control for 48 hours prior to being treated with 

1µM MG-132 for 6 hrs. These cells were then fixed. The plasma membrane was labeled using 

AF488-wheat germ agglutinin (Green) and the nucleus was labeled using DAPI (Blue). The area 
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of each cell’s plasma membrane and ER was measured using Zeiss software. We find that only 

cells treated with rapamycin showed increased ER volume when treated with MG-132. (*P<0.05)  
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Figure 4-8. Autophagy inhibitors reverse rapamycin-associated ER expansion 

Cells were treated as in figure 4-7 except 2 hours prior to MG-132 treatment cells were 

treated with 1µM Spautin-1, 2µM Chloroquine, or 10mM 3-MA. The area of each cell’s ER and 

plasma membrane were determined. (*P<0.05 vs. untreated control) (*P<0.05 vs. rapamycin 

control) 
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4.6 Vacuoles may represent failed autophagosomal degradation of ER 

 The changes we observe in ER expansion in the presence or absence of autophagy 

suggest a possible role of autophagy in expansion of the ER and also in the formation of the 

cytoplasmic vacuoles seen during late stages of MG-132 treatment. Previous reports have shown 

that autophagy is induced during UPR induction and that the ER is a substrate for autophagic 

degradation (158-160, 165, 166). In order to observe the specific degradation of the ER by 

autophagy, we created an ER targeted GFP-mCherry expression construct. This construct 

functions similar to the GFP-mCherry-LC3 expression construct used to track all autophagosome 

maturation. However, the GFP-mCherry-ER labels the ER and should only track the acidication 

of autophagosomes containing the ER as a substrate.  

 We find that in non-rapamycin treated cells the GFP-mCherry-ER construct labels the ER 

a yellow color indicating that very little ER is being degraded by acidic autolysosomes (Figure 4-

9 upper left panel). However, rapamycin treated cells show red punctate regions (Figure 4-9 

lower left panel) in a similar area to where the LC3 labeled autophagosomes in figure 4-6, 

suggesting the ER is actively being turned over by autophagy. When these cells were treated with 

MG-132, the non-rapamycin treated cells formed vacuoles which contained the GFP-mCherry-

ER probe and appear yellow suggesting that these vacuoles are likely derived from the ER and 

ultimately fail to acidify due to low levels of autophagic activity (Figure 4-9 upper right panel). 

However, the rapamycin treated cells show an increase in the amount of red vesicles suggesting 

an increase in autophagosomal degradation of the ER after MG-132 treatment (Figure 4-9 lower 

right panel).  
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Figure 4-9. Vacuoles derived from the ER do not acidify in the absence of rapamycin 

 The ER of 621-101 cells was labeled using GFP-mCherry targeted to the ER. We find 

that the large vacuoles that form after MG-132 treatment are yellowish-orange indicating that 

these vacuoles are not acidic. However, the small vesicles that form in rapamycin treated cells are 

acidic (Red) and contain the ER label. 
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4.7 PI3P fails to accumulate in the ER in the absence of rapamycin 

 One of the proposed origins of the membranes autophagosomes are made of is the ER, 

where it has been shown that the lipid PI3P accumulates at regions named “omegasomes” (167). 

These omegasomes are believed to be a precursor for autophagomes. Using a GFP-tagged FYVE 

domain that is specifically targeted to the cytosolic face of the ER membrane, one can measure 

the accumulation of PI3P into these structures (168). We find that untreated cells do not have 

many omegasomes (Figure 4-11); however, cells treated with rapamycin form many 

omegasomes. This effect is even more pronounced when cells are treated with MG-132. We 

presume this increase in omegasome formation during MG-132 treatment is the result of 

increased demand on autophagic processes. 
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Figure 4-10. Measuring PI3P specifically in the ER 

 We used a construct that labels the PI3P specifically in the ER which is constructed 

using a PI3-binding FYVE domain from FENS1 fused to GFP and an ER transmembrane 

domain. A C347S mutation was introduced into the FYVE domain in order to prevent it from 

binding lipid. This mutant serves as a negative control.  
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Figure 4-11. mTORC1 activation inhibits accumulation of PI3P in the ER 

 Cells were treated as described in figure 7.We find that PI3P is present at higher levels in 

the ER when treated with rapamycin as evidenced by the punctate pattern of GFP in these cells. 
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4.8 JNK activation is required for omegasome formation during UPR induced autophagy 

 c-Jun N-terminal kinase (JNK) is a protein kinase that is activated by an assortment of 

different stresses, including genotoxic stress and UPR agonists (169, 170). Additionally, 

inhibition of mTORC1 with rapamycin has been shown to activate JNK (171). An inhibitor of 

JNK has previously been shown to block the induction of autophagy by the ER stressors 

tunicamycin and thapsigarin (158). However, it fails to block the induction of autophagy caused 

by non-ER stressors, such as amino acid starvation (158). To explore the relationship of these 

nutrient stressors with the activation of the UPR and formation of omegasomes on the ER 

membrane, we treated 621-101 cells that express the GFP-FYVE omegasome labeling construct 

with media that lacked either amino acids or glucose for 6hrs. We found that similar to rapamycin 

treatment, glucose starvation induced omegasome formation (Figure 4-12). Treatment of cells 

with the JNK inhibitor SP600125 resulted in strong inhibition of even the small amount of basal 

omeagasome formation. During rapamycin treatment, SP600125 blocked nearly all omegasome 

formation (Figure 4-12).  



95 
 

 

Figure 4-12. mTORC1 inhibition and JNK activation are required for accumulation of PI3P 

in the ER 

 Cells were treated as describe in figure 4-11.We find that PI3P is present at higher levels 

in the ER when treated with rapamycin as evidenced by the punctate pattern of GFP in these cells. 
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4.9.1 Discussion 

 The described ER expansion studies, although largely descriptive, significantly contribute 

to our understanding of the UPR and autophagy. These studies have also lead to the creation of 

two new techniques for measuring ER expansion and ER degradation by autophagy. These 

techniques may be adapted by other labs to create new and exciting angles for their research on 

the UPR. Because these techniques are new, the observations found in these studies are unique 

and may require validation with more established techniques. These studies also address the 

formation of omegasomes during the UPR for the first time.   

 

4.9.2 Unifying Model Linking Autophagy and the UPR 

 The findings of this study and the results of other (158-160) have shown that activation of 

the UPR leads to expansion of the endoplasmic reticulum. The current studies are unique because 

we are studying cells that cannot correctly enter into autophagy without first inhibiting mTORC1 

with rapamycin. We find that activation of autophagy by rapamycin treatment alone causes 

expansion of the ER. This is an interesting finding because we also find that rapamycin reduces 

basal levels of eIF2α phosphorylation as well as mRNA levels of ATF4 and CHOP. Interestingly 

when we look at only autophagy of the ER itself, we find that rapamycin treatment is required for 

the creation of mature autophagosomes which contain the ER as a substrate and become mature 

acidic autolysosomes. However when cells are stressed with MG-132 in the absence of 

autophagy, they will still form vesicles containing the ER marker which eventually fill the 

cytoplasm but will not acidify.    

This lack of ER expansion may represent an inability of these cells to quickly reallocate 

building materials (lipids, carbohydrates, amino acids, etc.) to the synthesis of new ER. 

Rapamycin, by alleviating the blockade on autophagy imparted by TSC2 inactivation, leads to 

larger pools of available material to make ER. Additionally, the vacuoles formed from the ER in 

these cells during MG-132 treatment may fail to fuse with lysosomes and acidify because they 
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lack the correct labeling or targeting signals as shown in the illustration below. These signals may 

include having high membrane concentrations of PI3P or binding to LC3 in some manner which 

will be discussed later in this section.   
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Figure 4-13. ER vacuole accumulation model 
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4.9.3 Parallels may exist between Mitophagy and Reticulophagy 

 There are very few studies in mammalian cells that focus on reticulophagy and other 

forms of cargo specific autophagy. Interestingly however, these processes have also been 

observed in yeast. In the yeast genetic system, the specific targeting of damaged mitochondria, 

misfolded proteins, and invading pathogens has been studied extensively. We may be able to 

better understand reticulophagy by applying the concepts we currently understand about 

mitophagy in yeast. Yeast genetic screens have identified proteins that are required for 

mitophagy. Some of these proteins are unique to mitophagy and others serve a purpose in general 

autophagy. In these screens, mitophagy was identified by the accumulation of mitochondrial 

proteins in the vacuole of stationary-phase respiring cells. One of the top hits found in these yeast 

screens was autophagy protein Atg32 (172, 173). Atg32 (which has no known metazoan 

homologue) is a 60-kDa protein that spans the outer mitochondrial membrane (174). It is required 

for mitophagy that occurs in response to enforced respiration but not for non-selective autophagy 

in response to nutrient deprivation or for pexophagy (172, 173). Under mitophagy-inducing 

growth conditions, Atg32 binds to Atg11, which is known to recruit a range of cargo, including 

peroxisomes, into autophagosomes by interacting with Atg8. Interestingly, the cytosolic domain 

of Atg32 contains a WXXL-like Atg8-binding motif, which is required for binding to Atg8 and 

for mitophagy (172, 173). Thus, Atg32 can interact with Atg8 indirectly through Atg11 and 

directly through the WXXL-like motif. The direct and indirect (when bridged by Atg11) 

association of mitochondrial membrane-anchored Atg32 with isolation membrane-bound Atg8 is 

thought to recruit mitochondria into autophagosomes (174). Although Atg32 expression increases 

under oxidizing conditions, which suggests that it might also participate in mitochondrial quality 

control, no defects in mitochondria were identified in Atg32-null yeast (174). How the expression 

and activity of Atg32 are regulated to eliminate the appropriate number of mitochondria remains 

unknown and is an intriguing area for further study.  
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We may be able to draw parallels between the yeast mitophagy regulation and what we 

observe in mammalian cells undergoing reticulophagy. First, there is likely an ER-linked 

autophagy signal protein similar to ATG32. This signal protein is likely a membrane-anchored 

protein or a protein that binds to another protein which is anchored to the cytosolic side of the ER 

membrane. This signal protein will likely interact with LC3 (ATG8) through either a WXXL-like 

motif or an indirect interaction with a WXXL-like motif containing protein. This targeting protein 

will either increase in expression, activity, or ER localization in times of extreme ER damage like 

during MG-132 treatment. This protein which targets LC3 to ER vesicles to be degraded by 

autophagy may be induced by inhibition of mTORC1 by rapamycin and its expression may be 

reduced in 621-101 cells where mTORC1 is constitutively active. This inability to label ER 

vesicles for degradation may explain their accumulation in the cytoplasm.  

 

4.9.4 Reticuluophagy must have unique aspects from other cargo specific forms of autophagy 

 All forms of known autophagy have at least three general themes which they share in 

common. The cargo must be labeled in some manner. This labeling can be achieved by 

ubiquitination, phosphorylation, or through binding to another protein (174). The cargo must also 

interact with LC3 in some manner (174). This interaction can be either direct or indirect. Lastly, 

the cargo must be enveloped by membrane which then fuses with lysosomes to degrade the 

contents of the vesicle. It is this third theme where reticuluophagy appears to differ drastically 

from other forms of cargo specific autophagy. 

 The endoplasmic reticulum is orders of magnitude larger than other cargo specific 

autophagy targets like mitochondria, protein aggregates, and ribosomes. Additionally, there is 

only one ER in the cell and it must continue to exist in order to perpetuate its own existence, as 

the ER is the site of most de novo lipid synthesis (175). Therefore, a system must exist to remove 

damaged portions of the ER in small enough sections that they can be enveloped and degraded by 

an autophagosome. Removing these small sections of ER may be accomplished by the processes 
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already associated with removing sections of the ER and transporting them elsewhere in the cell. 

There is some evidence that the ER to Golgi transport system is upregulated during activation of 

the UPR in a manner that relies on the activation of PERK and ATF4 (143). Interestingly, 

blocking ER to Golgi transport by brefeldin A (BFA) treatment leads to activation of the unfolded 

protein response in MEFs (143). This effect may be similar to proteasome inhibitors activating 

the UPR by blocking ERAD. BFA treatment would block the removal of bulk protein aggregates 

and undesired lipid membrane resulting in the activation of the UPR. Another possibility is that 

the ER to Golgi transport system shuttles the unfolded protein out of the cell; however, the bulk 

secretion of unfolded proteins by a cell would likely be highly toxic to a multicellular organism. 

      

4.9.5 The ER as a coordinator of autophagy 

 The ER has been proposed to be the origin of the membrane used to make 

autophagosomes. This assertion is based on mainly two observations. First, the ER is the sight of 

omegasome formation which is a PI3P rich region of ER membrane that may provide a scaffold 

for an autophagosome to form and fill with their cargo (168). Second, the ER regulatory protein 

Beclin1 resides in the ER where it has been shown to regulate autophagy. This was demonstrated 

by overexpression of the BH3 only protein inhibitor Bcl2, engineered to specifically target to the 

ER. This Bcl2 mutant bound Beclin1 specifically in the ER, preventing both Beclin-VPS34 

interaction and subsequent activation of autophagy. In contrast, Bcl2 targeted specifically to the 

mitochondria had no effect on autophagy (176). Accompanying these strong functional and 

spatial links between autophagy and the ER may be physical links to the ER’s UPR signaling 

machinery. JNK signaling from IRE1 activation has already been shown to drive the activation of 

autophagy after treatment with ER stressing drugs (158). Our data shows that in these cells there 

is a strong link between the expansion and contraction of the ER with activation or inhibition of 

autophagy, respectively. These links may be associated with expanding the ER to meet the 

demand for phospholipids for autophagic membranes. The ER may also actively operate as a 
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platform for autophagic signaling processes similar to the actin cytoskeleton’s role in other cell 

signaling events.      

 

4.9.6 ER expansion, autophagy, and human health 

  In this chapter, we found that cells deficient for TSC2 fail to expand their ER and activate 

autophagy when stressed with MG-132. This inability to expand the ER may be related to the 

increased sensitivity to MG-132 we observe in this cell line and may contribute to our 

understanding of how TSC-associated cells respond to other ER stressing small molecules. This 

failed expansion may be used to kill tumors which cannot be removed by surgery in TSC patients. 

Despite the fact our study was conducted on cells which lack TSC2, we do not believe this 

mutation is required for this phenotype. We believe this because many mutations in cancer and 

other diseases can cause the activation of mTORC1, inhibition of autophagy, or directly lead to 

protein misfolding. Indeed, heavy vacuolation has been observed in cells with wild-type TSC1 

and TSC2 expression (177, 178). 

ER stress has been proposed to play a role in many chronic human ailments ranging from 

diabetes to neurodegenerative diseases (132, 133). General autophagy and ER-specific autophagy 

may help alleviate these and other disorders. For example, mutations to α-antitrypsin cause it to 

misfold in the ER where it cannot escape to be degraded by ERAD or it overwhelms the ability of 

the ERAD to export misfolded protein from the ER to the proteasome (177). In this disease, cells 

must rely almost exclusively on autophagy of the ER to dispose of the misfolded mutants of α-

antitrypsin. Overexpression of mutants of α-antitrypsin has been shown to cause dilation/ 

vacuolation of the ER similar to what we observe in 621-101 cell with proteasome inhibition 

(177). Using drugs like rapamycin that enhance reticulophagy may be helpful for the elimination 

of protein aggregates trapped in the ER in diseases like α-antitrypsin deficiency.  

 This compartmental separation of misfolded protein from the proteasome may be a 

major theme in diseases like α-antitrypsin deficiency or cystic fibrosis. Additionally, diseases 
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involving misfolded protein in the cytosol may also adversely affect ERAD’s ability to maintain 

healthy ER by tying up the proteasome. Huntington’s disease and Alzheimer’s disease are both 

characterized by the accumulation of protein aggregates and have been link to ER stress (179, 

180). The progression of these diseases may be delayed by using rapamycin to improve clearance 

of ER protein aggregates. This approach would be superior to the cell’s natural mechanism of 

inducing autophagy because rapamycin induced autophagy is not linked to cell death; whereas, 

PERK activation is a strong inducer of both autophagy and apoptosis.   

Additionally, TSC patients develop cortical tubers which present with cytoplasmic 

vacuolation similar to the vacuolation we observe after treatment with MG-132 (181). These 

patients also suffer from autism, seizures, and other problems associated with the brain (1). A 

mosaic mouse model of TSC1 loss in neural progenitors has been developed to mimic this aspect 

of TSC disease. Neural progenitors with loss of TSC1 develop vacuolation similar to that seen in 

the cortical tubers taken from patients (181). These mice also suffer from seizures. Rapamycin 

treatment of these mice effectively reduces both the seizures and appearance of vacuolated cells 

in these mice brains (181).            
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APPENDIX 1: qRT-PCR and CHIP PRIMERS 

qRT-PCR Primers 

Target 
 Gene Species Forward Primer Reverse Primer 

Roche 
Probe 

ATF4 Rat tcagacaccggcaaggag gtggccaaaagctcatctg #85 
CHOP Rat accaccacacctgaaagca agctggacactgtctcaaagg #13 
MYC Rat gctcctcgcgttatttgaag gcatcgtcgtgactgtcg #10 
NOXA Rat gcgaaagagcacgatgaga gatcacactcgtccttcaggt #117 
ATF4 Human tctccagcgacaaggctaa caatctgtcccggagaagg #76 
CHOP Human cagagctggaacctgaggag tggatcagtctggaaaagca #9 
LC3 Human cgcaccttcgaacaaagag cttctcacccttgtatcgttctatt #89 
ASNS Human cgtcaagctgtccacatcc tggtattcaaattcaaaatgctgt #30 

 

ChIP Primers 

ATF4 
Gene 

Location Forward Primer Reverse Primer 
-855 AAGCTGCTTCCTCCGGGTGG GCAACGCTGCTGCTGGGTTTC 
-141 CGGGCCAGAGCGTCAATGGG CTGCAAAGGCCAACGCTGCC 
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APPENDIX 2: shRNA SEQUENCES 
 

sh_RNA Name Sequence 
sh_Scramble CCTAAGGTTAAGTCGCCCTCG 
sh_c-MYC #1 GAACTATGACCTCGACTACGA 
sh_c-MYC #2 GAATGTCAAGAGGCGAACACA 
sh_eIF4E CCAAAGATAGTGATTGGTTAT 
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