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Abstract 

Krzysztof Kamocki 

 
 
 

THE ROLE OF CERAMIDES IN CIGARETTE SMOKE-INDUCED ALVEOLAR 
CELL DEATH 

 
 
 
 

The complex pathogenesis of emphysema involves disappearance of 

alveolar structures, in part attributed to alveolar cell apoptosis. The mechanism 

by which cigarette smoke (CS) induces alveolar cell apoptosis is not known. We 

hypothesized that ceramides are induced by CS via specific enzymatic pathways 

that can be manipulated to reduce lung cell apoptosis. CS increased ceramides 

in the whole lung and in cultured primary structural lung cells. Exposure to CS 

activated within minutes the acid sphingomyelinase, and within weeks the de 

novo- ceramide synthesis pathways. Pharmacological inhibition of acid 

sphingomyelinase significantly attenuated CS-induced apoptosis. To understand 

the mechanisms by which ceramides induce apoptosis, we investigated the cell 

types affected and the involvement of RTP801, a CS-induced pro-apoptotic and 

pro-inflammatory protein. Direct lung augmentation of ceramide caused 

apoptosis of both endothelial and epithelial type II cells. Ceramide upregulated 

RTP801 and the transgenic loss of RTP801 inhibited only epithelial, but not 

endothelial cell apoptosis induced by ceramide. In conclusion, CS induces acid 

sphingomyelinase-mediated ceramide upregulation and apoptosis in a cell-

specific manner, which in epithelial cells involves induction of stress response 
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proteins that may further amplify lung injury. Molecular targeting of amplification 

pathways may provide therapeutic opportunities to halt emphysema progression. 

 
 
 
 

Irina Petrache, M.D., Chair 
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A. INTRODUCTION 

 

1. COPD  

The term chronic obstructive pulmonary disease (COPD) covers two 

diseases: chronic bronchitis and emphysema. Chronic bronchitis is characterized 

as a chronic cough for at least three months per year in two consecutive years, 

with increased production of mucus and sputum. Emphysema is defined as an 

abnormal, permanent enlargement of airspaces distal to the terminal bronchiole, 

through the destruction of their walls [1]. There are many risk factors responsible 

for the development of COPD, including tobacco smoke [2], indoor [3] and 

outdoor air pollutions [4], and genetic factors, like cystic fibrosis (CF) and α-1-

antitrypsin deficiency [5] and diet [6]. The processes invoked in the pathogenesis 

of COPD include oxidative stress, inflammation, and matrix proteolysis [7], [8]. In 

addition extensive apoptosis of lung parenchyma leading to alveolar cell 

destruction is involved in the pathogenesis of emphysema [9]. Emphysema is a 

disease with a high mortality and no cure [10] and COPD is the 3rd leading cause 

of death in the US [11]. COPD is becoming an economic burden not only for the 

costs of diagnosis and management, but also for causing disability and early 

death. Only in 2005 the cost of COPD treatment was $38.8 billion [1]. 
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1.1. Inflammation in COPD  

 CS is the major factor which causes an inflammatory reaction and many 

kinds of inflammatory cells, including neutrophils, macrophages, and T 

lymphocytes have been documented to be involved in the pathogenesis of COPD 

[12]. Recent data indicate an important role of T lymphocytes and their excessive 

biological activity correlates with COPD progression [13]. Specifically, the 

number of CD3+ and CD8+ T cells was found to be amplified in bronchi [14], 

parenchymal tissue, pulmonary arteries and small airways [15], and the quantity 

of T cells was inversely proportional to predicted FEV1%. In addition, both the 

number of CXCR3+ cells, CXCR3-ligand, and CXCL10 were elevated in the 

lungs of COPD patients. Neutrophils are also involved in pathogenesis of COPD 

via several mechanisms. CS causes rapid PMN recruitment to the lung [16]. 

Granulocyte adhesion and diapedesis are increased due to the over-expression 

of various adhesion molecules, such as ICAM-1 and E-selectin, on inflammatory 

cells and in pulmonary lung vasculature, respectively [17], [18]. Moreover, both 

neutrophils and macrophages discharge a multitude of cytokines and chemo-

attractants, for example IL-8 and LTB4 [19, 20], thereby self-perpetuating 

inflammatory processes. Macrophages, which specialize in the clearance of 

detrimental particles from the lower respiratory system, are increased in number 

in COPD patients and they participate in delineation of specific inflammatory 

phenotypes during its course [21, 22]. Macrophages, as MHC II cell are also 

responsible for the engulfment and presentation of antigens to CD4+ T cells and 

modulating immune responses in the lungs [23]. 
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1.1.2. Ceramides and inflammation 

 Inflammatory cytokines such as tumor necrosis factor-α (TNF-α) may play 

an important role in the generation of ceramides in vascular endothelial cells. 

TNF-α normally causes endothelial cell activation through transcription factors 

NF-κB and -Jun/ATF-2. Studies performed on human umbilical vein endothelial 

cells showed the significance of the adaptor protein TRAF-2 for activation of both 

NF-κB and JNK [24]. In addition, JNK activation occurs via small G proteins Rac-

1 and/or cdc-42. Interestingly, TNF-α induces apoptosis when combined with 

protein synthesis inhibitor, cycloheximide (CHX) or ceramide. The apoptotic 

pathways seems to be dissimilar, because pathway induced with TNF-α + CHX is 

inhibited by the caspase inhibitors crmA or the peptide zVAD.fmk, whereas that 

induced by TNF-α + cer is blocked by the anti-apoptotic proteins Bcl-2, Bcl-XL or 

Al [24]. These data indicate a dual role of TNF-α, whereby it can act as a pro-

apoptotic agent when associated with cytotoxicity or irradiation. The mechanism 

involved in this process includes TNF-α mediated induction of nSMase, 

augmentation of ceramides and apoptosis. The adaptor protein FAN plays a key 

role in the activation of nSMase, as TNF-α is not able to generate appropriate 

level of ceramides, when FAN is underexpressed [24]. 

Action of inflammatory cytokine IL-1β is also linked with ceramide 

synthesis in many tissues. In anterior hypothalamic (AH) neurons IL-1β inhibits 

neuronal signaling by rapidly increasing the phosphorylation of the tyrosine 

kinase Src and kinase suppressor of Ras (ceramide activated protein kinase) 
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(CAPK/KSR), leading to activation of the neutral sphingomyelinase and 

accumulation of ceramide [25]. 

The involvement of ceramide as a second messenger in inflammatory lung 

diseases has been shown for acute lung injury and emphysema. Ceramides play 

a pathologic role in acute lung injury induced by platelet-activating factor (PAF). 

PAF-dependent pulmonary edema develops either trough the activation of the 

cyclooxygenase pathway or activation of acid sphingomyelinase with the latter 

leading to accumulation of ceramides [26]. 

Acid sphingomyelinase also has a role in the formation of ceramides 

following injection of lipopolysaccharide (LPS) or TNF-α, into C57BL/6 mice, 

which was associated with apoptosis in endothelium of intestine, lung, fat and 

thymus. Interestingly, the apoptosis was inhibited in the endothelium by 

administration of TNF-binding protein, a protective factor against LPS-induced 

cell death. That ASMase knockout mice were protected against endothelial cell 

apoptosis suggested the importance of ceramides in programmed cell death [27]. 

Vascular endothelial growth factor (VEGF) family and its receptors are 

major mediators responsible for angiogenesis and vasculogenesis [28], [29]. 

Chronic blockade of VEGFR in rats with the inhibitor SU5416 causes alveolar cell 

apoptosis and emphysema [30], a finding recapitulated in VEGFloxP mice, after 

ablation of the VEGF gene following intra-tracheal administration of an adeno-

associated cre recombinase virus (AAV/Cre) [31]. Ceramide, a second 

messenger lipid, was a critical mediator of alveolar destruction in emphysema 

caused by blockade of the vascular endothelial growth factor receptors in both 



5 

rats and mice [32]. Inhibition of enzymes controlling de novo ceramide synthesis 

prevented alveolar cell apoptosis, oxidative stress and emphysema. In a model 

of emphysema reproduced with intratracheal instillation of ceramide in naive 

mice, a feed-forward mechanism was observed, in that synthesis of ceramides 

was mediated by activation of secretory acid sphingomyelinase [32]. 

Furthermore, reduction of lung levels of very long ceramides after 

administration of a neutralizing ceramide antibody in vivo and the inability of acid 

sphingomyelinase–deficient fibroblasts to augment endogenous ceramide 

synthesis in response to exogenous ceramide also indicated a feed-forward 

mechanism of ceramide regulation mediated via the secretory acid 

sphingomyelinase [33]. 

 

1.2. Protease-antiprotease disequilibrium in emphysema 

 The concept of protease-antiprotease imbalance was the first mechanism 

involved in emphysema development. It has been shown, that emphysema 

develops when there is an overabundance of proteases with/or a decrease in 

antiproteases activity, which leads to destruction of the lung matrix. Neutrophils 

participate in the destruction of lung tissue in COPD via secretion of numerous 

proteases, such as elastase, proteinase-3, catepsins G and B [34-37] leading to 

lung tissue digestion. Macrophages can also participate in lung destruction. They 

synthesize and discharge many proteinases, including matrix metalloproteases 

(MMPs), cathepsin K, L and S [38], [23]. Interestingly, they are able to engulf and 
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store elastase from neutrophils for later release [39]. The antiproteases degrade 

or neutralize proteases, maintaining appropriate homeostatic balance, as 

illustrated by the action of α-1-antitrypsin, an inhibitor of neutrophil elastase [40] 

[41]. Low circulating levels of α-1-antitrypsin are associated with a panacinar type 

of emphysema development at an earlier age compared to usual emphysema 

[42]. 

 

1.3. Oxidative stress in emphysema 

 Oxidative stress can be characterized as disproportion between reactive 

oxygen species (ROS) production and capability of cells or tissues for 

neutralization of ROS via antioxidants [43]. In humans, oxidative stress has been 

implicated in the pathogenesis of many diseases, including cancer [44], 

Parkinson’s and Alzheimer’s diseases [43], atherosclerosis, myocardial infarction 

[45], and emphysema [7]. For the development of COPD and particularly 

emphysema, CS is considered the most important environmental factor. CS 

contains approximately 4,700 chemical compounds and one CS puff comprises 

1015 ROS of whose alkyl and peroxyl types are the most common [46]. CS also 

comprises many chemical particles with high redox potential, responsible for 

indirect generation of superoxide anion, peoxynitrite, alkyl peroxynitrites and 

hydrogen peroxides [47]. Moreover, CS accumulates over time in the lungs of 

smokers in the form of tar, that constitutes a permanent source of ROS 

production, especially when antioxidant mechanisms, such as GSH, Nrf2, SOD 
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are depleted [48], [49]. In patients with COPD, the increased influx of 

inflammatory cells, such as neutrophils and macrophages is also a prolific ROS 

source. ROS, that include H2O2, superoxide peroxynitrite, are responsible for 

many pathological issues during the course of COPD, such as suppression of 

antiproteolytic enzymes, peroxidation of membrane lipids, extracellular matrix 

remodeling and direct injury of alveolar cells, including apoptosis [46]. The 

oxidative stress participates in the generation of ceramide and is responsible for 

ceramide-induced apoptosis in human lung epithelial cells [50]. It has been 

proposed that apoptosis can be a consequence of an imbalance between 

reactive oxygen species (ROS), and antioxidants production [51]. 

 

2. Sphingolipids  

2.1. The role of sphingolipids in cell biology 

Sphingolipids are a group of lipids which have as a backbone a sphingoid 

base, an amino alcohol to which various groups are attached. They were first 

discovered in extracts from brain in the 1870s. The reason they were named 

after the mythological Sphinx was because of their enigmatic structure. 

Sphingolipids, including ceramides are important components of cellular 

membranes and their composition impact plasma and other membrane functions 

and dynamics. 

Ceramides are involved in signaling of a variety of cellular processes, 

such as apoptosis, growth arrest, and senescence [52-54] and they have been 

reported to be a second messenger of apoptosis of both lung endothelial and 

http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/Amino
http://en.wikipedia.org/wiki/Sphinx
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epithelial cells in vitro. Overproduction and accumulation of ceramides are 

involved in the alterations of the lung parenchyma induced by CS, which 

culminate in the development of emphysema [55], [9]. Ceramide can be 

synthesized via several pathways, of which the most relevant are the de novo 

and sphingomyelinase pathways. Enzymes involved in the de novo ceramide 

synthesis can be activated by many environmental factors, including heat stress, 

oxidative stress and many others which collectively lead to overproduction of 

different ceramide species. An increase in ceramide production or paracrine 

action of instilled ceramides in experimental emphysema models leads to 

activation of death receptors and finally to caspase-3 activation. Petrache et al. 

previously identified ceramide as an upstream mediator of lung cell apoptosis in 

a murine model of emphysema which is induced by blockade of the vascular 

endothelial growth factor [32]. They then documented increased ceramide levels 

in response to smoking. However, the mechanism by which various 

environmental factors, including CS increases ceramide species in the lung is still 

not fully understood. Because in a simplified experimental model of emphysema 

development extensive lung apoptosis was dependent on increased in ceramides 

[32], I propose that ceramide may be an important mediator of cigarette smoke-

induced lung cell death and hence emphysema. Since ceramides are actively 

regulated by both synthetic enzymes and various degradation pathways, they 

may be targeted for therapeutic purposes to reduce CS-induced lung cell 

apoptosis. 
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2.2. Overview of sphingolipids biochemistry 

2.2.1. De novo pathway of ceramide synthesis 

2.2.1.1. Serine palmitoyl transferase  

Serine palmitoyl transferase (SPT) [EC 2.3.1.50] is responsible for the first 

committed step in the de novo ceramide synthesis pathway (Schematic 1) in all 

organisms studied to date [56]. Although its role is to combine serine and 

palmitoyl-CoA into 3-ketodihydrosphingosine (KDS), STP is able to synthetize 

alternative sphingoid bases [57] from compatible acyl-CoA [58] and amino acids 

[59]. SPT is a member of pyridoxal 5V-phosphate (PLP)-dependent α-oxoamine 

synthases (POAS) family. In mammals, SPT is represented as a heterodimer of 

53-kDa LCB1 and 63-kDa LCB2 subunits or SPT1 (SPTLC1) and SPT2 

(SPTLC2), respectively, and those subunits are localized in the endoplasmic 

reticulum (ER) with type I topology. LCB2, when dissociated from LCB1, may 

become unstable. Activity of SPT, a housekeeping enzyme, is regulated both 

transcriptionally and post-transcriptionally, and its activation may play a role in 

apoptosis induced by certain types of stresses [56]. Since both subunits appear 

crucial for embryonic development, either SPTLC1 and SPTLC2 knockout mice 

are non-viable [60]. 

SPT is expressed in normal epithelial and endothelial lung cells, but its 

subunits vary in specific cell compartments. For example, in adrenomedullary 

chromaffin cells the LCB1 subunit was found in both nucleus and cytoplasm, 

whereas LCB2 was primarily found in cytoplasm [61]. The LCB1 subunit’s 

transmembrane domain plays an essential role in upholding the LCB2 
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component and the SPT integrity in mammalian cells [62]. A recently identified 

novel SPT subunit, SPTLC3, shows about 68% identity to SPTLC2 and also 

includes a pyridoxal phosphate consensus motif. SPTLC3 subunit has a high 

affinity for myristoyl (C14: 0)-CoA and less affinity for palmitoyl (C16: 0)-CoA [63], 

thus generating C16-sphingoid bases. 

Regulation of SPT activity 

Members of ORMDL family ER transmembrane proteins are responsible 

for regulation of SPT activity. These proteins were first discovered during 

analysis of genes responsible for retinitis pigmentosa [64]. First described in 

yeast as Orm1 and Orm2, in mammals they are represented by ORMDL1, 

ORMDL2 [65] and ORMDL3, a gene recently associated with asthma 

susceptibility in humans [66]. ORMDL proteins interact and inhibit SPT activity. 

The inhibitory activity of Orm depends on the phosphorylation level of the protein 

(the higher the phosphorylation – the higher the SPT inhibition), and myriocin 

(Myr), a potent inhibitor of SPT works by phosphorylation of ORMDL proteins 

[67]. 

In yeast, a protein kinase Ypk1 seems to be an essential upstream 

regulatory factor for Orm protein family. It acts by phosphorylation specific three 

residues which are also phosphorylated by Myr. The activity level of Ypk1 kinase 

is also phosphorylation dependent and recent data indicate rapamycin complex 

kinase 2 (TORC2) as an upstream activator of Ypk1 [68]. 
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2.2.1.2. Ceramide synthases 

Ceramide synthases are enzymes that use either dihydroshingosine or 

sphingosine and specific acyl-coA as substrates [69], [70], [71] (Schematic 1). 

Discovery of the gene products Lag1p and Lac1p in yeasts and the fact that they 

were responsible for the production of C26-ceramide [72], [73], resulted in the 

report of the six paralogs of Lag1 and Lac1 in mammals, including human and 

mouse, which were named LASS (longevity assurance) genes and later CERS 

(Ceramide synthases); in all species studied to date, at least two LASS genes 

have been found in every organism. The CERS genes encode for multi-

transmembrane (TM) spanning proteins. Although neither the topology nor the 

exact number of TM domains have not been precisely yet evaluated [70], [74], 

[75], some conclusions about LASS mammalian proteins structure and function 

have been made based on studies with yeasts proteins Lag1 and Lac1. Those 

have eight TM domains, with the N and C termini of the proteins facing the 

cytoplasm [76], and one TLC domain (after Tram, Lag, CLN8) [77]. There is little 

information provided about the catalytic synthetic mechanism for LASS enzymes, 

although some data generated in yeast indicate the importance of two conserved 

histidine residues within the Lag1 motif [74], [78], [76]. Each mammalian CerS 

enzyme, with the exception of CerS1 has a Hox domain as well, which appears 

to be important for CerS5 and CerS6 activity [79]. CerS, like other enzymes of 

the de novo pathway are localized in ER [80], [81], [82], [83], [76]. All CerS 

enzymes have comparable Km to the sphinganine substrate [84], but they have 

different affinity for a particular second substrate, acyl-S-CoA. CerS1 is 
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predominantly responsible for the synthesis of C18 ceramides [82], CerS2 

synthesizes C20-C24 ceramides, CerS4 and CerS5 synthetize C18/20 and C16 

ceramides, respectively [83]. CerS6 produces C14 and C16 [81], and CerS3 

generates C18 and C24 ceramides [85]. CerS have various tissue distribution 

and expression levels. CerS1 is found in skeletal muscles and testis and is highly 

expressed in brain tissue, specifically in neurons [86], which correlates with 

elevated level of C18 ceramides. CerS2 is found in many different human 

tissues, including brain, kidney, liver and lungs [87], [88], [86]. CerS3 is mostly 

expressed in testes [89], in the skin [85], especially in keratinocytes [90], where it 

is responsible for the maintenance of water permeability barrier [91]. CerS4 is 

found in skin, leukocytes, heart and liver [88]. Moreover, CerS4 may play a role 

in development of Alzheimer’s disease, because it was found increased in the 

brain of mice with experimentally induced Alzheimer’s disease [92]. CerS5 is 

found to be in high level in the lungs [93] and brain tissue [86]. CerS6 is localized 

mostly in rapidly developing tissues including embryonic [94] and cancer tissues 

[95], [96]. Others and our lab demonstrated that in the lungs, CerS2 and CerS5 

exhibit the highest activity [88], [93], [77]. 

Regulation of ceramide synthases 

Laviad et al. proposed recently that different CerS modulate their activities 

by dimer formation within ER. This process allows not only for modulation of 

activities of different CerS isoforms, but also permits increased synthesis of 

ceramides in the de novo pathway [97]. 
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2.2.1.3. Dihydroceramide desaturases 

A product of SPT, 3-dehydrosphinganine, undergoes spontaneous 

reduction by the NADPH-dependent 3-dehydrosphinganine reductase to D-

erythrosphinganine [98], [99], [100]. For several years it was not clear whether 3-

dehydrosphinganine was first desaturated to form sphingosine and then acylated 

to yield ceramide or first acylated and then desaturated [71], [56]. The discovery 

of fumonisin B1, an inhibitor of N-acylation of sphingoid base catalyzed by a 

group of CerS brought the evidence that dihydroceramide (DHC) was an 

intermediate in sphingolipid biosynthesis and not sphingosine [56]. D-erythro-

sphinganine is first acylated and the subsequent introduction of the 4,5-double 

bond by the dihydroceramide desaturase leads to the formation of ceramide [98]. 

There are 2 isoforms of DHC desaturase. The DHC desaturase 1 (DEGS1) 

presents various affinity to its substrates which seems to rely on many factors 

such as: alkyl chain length of the sphingoid base (C18 > C12 > C8) and fatty acid 

(C8 > C18); the stereochemistry of the sphingoid base (D-erythro- > L-threo-

dihydroceramides); the nature of the headgroup, with the highest activity for 

dihydroceramide, but some (about 20%) also for dihydroglucosylceramide [98]. 

Dihydroceramide desaturase (DEGS) enzymatic action appears similar with the 

mechanism of delta 9-desaturase (stearoyl-CoA desaturase) [99], [98]. 

Oxygen is necessary for dihydroceramide desaturase activity and cyanide, 

divalent copper, as well as antibodies against cytochrome b5, and dithiothreitol 

act as inhibitors [98]. Oxydative stress inhibits activity of DEGS, leading to the 

accumulation of DHC. Interestingly, DEGS protein level during exposure to CS is 
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not changed [101]. Data from our lab indicate that DEGS is an oxygen sensor in 

minor hypoxic conditions, regulating the flow of ceramide production in the de 

novo pathway [102]. The role of DEGS2 is more enigmatic. DEGS2 is able to 

provide a desaturation of DHC; in addition it serves as hydroxylase [103]. 

 

2.2.3. Sphingomyelinase pathway of ceramide synthesis 

2.2.3.1. Sphingomyelinases 

Shingomyelinases are enzymes (EC 3.1.4.12) responsible for the 

hydrolysis of sphingomyelin to phosphocholine and ceramide [104]. 

Sphingomyelinases are classified into 3 main groups based on their optimum pH 

(acid, neutral and alkaline) and they can be additionally subcategorized based on 

their cellular compartmentalization and specific cations requirement [105]. 

Alkaline sphingomyelinase was found almost exclusively in intestinal 

mucosa of mammals, and in the human liver [106]. 

Lysosomal acid sphingomyelinase (L-ASMase) was found primarily in 

lysosomes, but it can be displaced to the outer leaflet of plasma membrane [105], 

[107]. L-ASMase was first described in 1963 as being active at acidic pH [108] 

and a deficiency of L-ASMase causes Niemann-Pick disease [109], [110]. A gene 

encoding for L-ASMase was described as Smpd1 [111]. A secreted ASMase 

isoform, first found in fetal bovine serum and localized to the outer leaflet of the 

plasma membrane, shares also the same gene [112]. Zn2+ cations are necessary 

for activity of both ASMase isoforms: lysosomal ASMase has Zn2+ firmly 

attached, whereas for secreted ASMase, Zn2+  needs to be supplemented for its 
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activity [113], [114]. The secreted form of ASMase may be responsible for 

paracrine effects leading to upregulation of ceramides at sites other than the 

source of ASMase. 

 Neutral sphingomyelinase (nSMase) has been localized to the ER and 

Golgi apparatus [105], [115] and it was found to be translocated to the inner 

leaflet of the plasma membrane [116], [115], [117]. There are three different 

types of nSMases, designated as nSM1, nSM2 and nSM3 with theirs ascribed 

genes: Smpd2, Smpd 3 and Smpd 4, respectively [118], [119], [115]. The role of 

nSM1 in cell biology still remains uncertain [120] and nSM1KO mice show no 

changes in phenotype when compared to WT animals [121]. The nSM2 is 

universally expressed and is crucial for many processes, including skeletal 

growth [122]. NSM2 has been shown to be activated in human airway epithelial 

cells in vitro by H2O2 or CS exposure [123], [124]. NSMase was found to be 

responsible for the accumulation of ceramides and apoptosis in the lungs of 

experimental animals following CS with concomitant over-expression nSM2 in 

both rodent and emphysematous human lungs [125]. Whereas hydrogen 

peroxide activates nSM2 similarly to CS, this effect is inhibited by antioxidants, 

like GSH [124]. NSM3 is a C-tail anchored membrane protein, being associated 

with both the TNF-α receptor type 1(TNFR1) and the adaptor protein FAN (factor 

associated with nSMase activation). Interestingly, its mRNA is highly expressed 

in the heart [115]. 
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Regulation of sphingomyelinases activity 

Recent data indicate that nSM2 is a phosphoprotein and its 

phosphorylation level is regulated by oxidative stress [126]. Calcineurin (CaN) 

phosphatase, known as PP2B, normally deactivates nSM2 via 

dephosphorylation. Oxidative stress causes degradation of CaN, leading to 

activation of nSM2, which when fully phosphorylated, activates downstream PKC 

and p38 MAPK [126]. There are five conserved serine phosphorylation sites on 

nSM2 and all need to be phosphorylated for full enzyme activity [125, 127]. In 

addition, aSMase in human airway epithelial cells (HAE) was found upregulated 

exclusively by peroxynitrite (ONOO−), whereas nSM was not [128]. 

 

2.2.3.2. Spingomyelin synthases 

Sphingomyelin is a major component of plasma membranes of 

eukaryotes, especially abundant in mammalian neural tissue [129] and in some 

prokaryotes [130]. Sphingomyelin synthases (SMS) are enzymes responsible for 

the synthesis of sphingomyelin from ceramide and phosphocholine, although it 

has been postulated that SMS can also provide a reverse reaction [131]. SMS 

have two histidines and one aspartic acid in catalytic domain, which are 

evolutionary stable [132]. There are 2 SMS isoforms: SMS1and SMS2. SMS1 is 

localized in the Golgi apparatus, whereas SMS2 is present both in Golgi and 

plasma membrane [133], [134]. A study suggests SMS2 is also confined to the 

nuclear membrane and chromatin [135]. In yeast, Sms1 counteracts detrimental 
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effects associated with the accumulation of ceramide, being functionally opposed 

to pro-apoptotic BAX [136] and suppression of either SMS isoforms by specific 

siRNA in mice leads to apoptosis [137]. In addition, SMS1 plays regulatory role in 

ROS generation, associated with mitochondrial function and controls insulin 

secretion [138]. 

SMS2 participates in atherosclerosis development [139], [140] via NF 

kappa B-mediated signaling process [141] and in mice with macrophages 

deficient in SMS2, the atherosclerosis progress was attenuated [142]. SMS2 may 

also be involved in controlling certain drug transporters in the brain [143]. 

Spingomyelin synthases regulation 

TNF-α, ceramide, and sphingosine are negative regulators of 

sphingomyelin synthase activity via direct mechanism [144]. IL-2 and PI-3 kinase 

are known as major positive regulatory factors of sphingomyelin synthase [145]. 

 

2.2.3. Recycling pathway of ceramide synthesis 

Ceramide is considered a central compound in sphingolipid biochemistry. 

It can serve as a substrate for the synthesis of varied sphingolipids, like 

sphingomyelins, as discussed above [139]. Ceramide phosphorylation by 

ceramide kinase (CK) leads to the synthesis of ceramide 1-phosphate (C1P) 

[146]. Ceramide can also serve as a substrate for the synthesis of more complex 

sphingolipids. In this processes glucose or galactose is added to the ceramide 

through the action of glucose or galactose ceramide synthases, respectively 

[147]. 
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In turn, the catabolism of ceramide by ceramidases [148], [149], and that 

of sphingosine-1-phosphate by sphingosine-1-phosphate phosphatases [150] 

produces sphingosine, which serves as a substrate for the synthesis of 

ceramides in a salvage pathway or is converted to S1P via the action of two 

sphingosine kinases: SK1 and SK2 [151]. In addition, S1P can be irreversibly 

metabolized to ethanolamine phosphate and hexadecenal via enzyme S1P lyase 

[152]. 

 

3. Apoptosis 

Apoptosis is a highly controlled cell death phenomenon, which is important 

for both a embryonic development and normal tissue integrity in higher 

organisms [153], [154], [155], [156], [157], [158]. There are characteristic 

histological changes during late apoptosis, like cell shrinkage, condensation of 

chromatin, and plasma membrane blebbing, which are visible by light microscopy 

[159], [160]. However, there is no inflammatory process, no leakage of cellular 

components is observed and cell content is quickly engulfed by macrophages 

with no involvement of inflammatory molecules [161], [162]. 

There are two main pathways leading to apoptosis: the extrinsic or death 

receptor pathway and the intrinsic or mitochondrial pathway, which can be 

interrelated via molecular crosstalk [163]. A third apoptotic pathway is induced 

via either granzyme B or granzyme A, and is involved in T-cell mediated 

cytotoxicity [164]. 
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The extrinsic apoptotic pathway starts with binding of specific ligands to 

their corresponding receptors on cell membrane, and the best described models 

for this type of interaction are: FasL/FasR and TNF-α /TNFR1. Following receptor 

clustering, cytoplasmic adapter proteins with death domains are recruited and 

interact with death receptors. For example, both the interaction of Fas ligand with 

Fas receptor or TNF-α with TNF-α receptor recruits adapter protein FADD or 

TRADD, along with binding of FADD and RIP, respectively [165], [166, 167]. 

Following FADD recruitment of procaspase-8, a death-inducing signaling 

complex (DISC) is created, leading to activation of caspase-8 and initiation of 

apoptosis [168]. 

The intrinsic pathway is a non-receptor mediated pathway, and is 

triggered by either negative or positive signals, leading to increased inner 

mitochondrial membrane permeability. Negative signals are described as 

deficiency of specific factors necessary for maintenance of cellular integrity, like 

growth factors, hormones and cytokines. Examples of positive signals are 

radiation, toxins, hypoxia, hyperthermia, viral infections, and free radicals [169]. 

An important step in the intrinsic apoptotic pathway is opening of the 

mitochondrial permeability transition (MPT) pore via a process called 

mitochondrial outer-membrane permeabilization (MOMP) [170]. That event 

causes liberation of two groups of pro-apoptotic proteins from the mitochondrial 

intermembrane space into the cytosol [171]. Cytochrome c, Smac/DIABLO, and 

HtrA2/Omi [172], [173], [174] are members of the first group of pro-apoptotic 

proteins, responsible for triggering the caspase-dependent mitochondrial 



20 

pathway. As soon as cytochrome c is released from mitochondria, it activates 

both Apaf-1 and procaspase-9. That causes the formation of more complex 

structure, called “apoptosome” and activation of caspase-9. Activated caspase-9 

is an initial signal for executioner caspases pathway, including activation of 

caspase-3 [175]. In addition, proteins Smac/DIABLO and HtrA2/Omi enhance 

apoptotic processes by blocking IAP (inhibitors of apoptosis proteins) activity 

[173], [176]. A second group of pro-apoptotic proteins discharged from 

mitochondria, include apoptosis inducing factor (AIF), endonuclease G and 

caspase-activated DNAse (CAD), which are translocated into the nucleus leading 

to DNA fragmentation [177], formation of oligonucleosomal DNA fragments [178], 

and nuclear condensation [179], [180]. CAD activation is caspase-3 dependent 

[181]. 

The intrinsic apoptotic pathway is largely controlled by proteins from Bcl-2 

family. The Bcl-2 family consists of three groups, which are not only functionally 

different, but also composed of various numbers of Bcl-2 homology domains 

(BH1-4 domains) [170]. The role of anti-apoptotic Bcl-2 proteins is to bind and 

hamper pro-apoptotic Bcl-2 proteins. The pro-apoptotic molecules comprise two 

groups. The effector group, including proteins BAK and BAX is responsible for 

formation of pores in the outer mitochondrial membrane and subsequent 

cytochrome c release [182], [183], [184]. The second group consists of the BH3-

only proteins and is responsible either for direct enhancement of BAK/BAX-

dependent MOMP (BID) [185], or hampering the activity of the anti-apoptotic 

proteins (BAD) [186], [187], [188]. The final endpoint for both extrinsic and 
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intrinsic pathways is execution phase. Caspase-3, caspase-6 and caspase-7 are 

effectors of the execution phase and responsible for many late nuclear and 

cytoplasm changes, including cleavage of proteins such as PARP and 

cytokeratins [189]. 

 

3.1. Ceramides involvement in apoptosis 

Sphingolipids act as signaling molecules, leading to multiple different 

cellular responses. In general, ceramides are pro-apoptotic, whereas S1P is a 

pro-survival molecule. Ceramides participate in development of apoptosis via 

several mechanisms. Enhancement of sASMase activity caused immediate 

ceramide production from sphingomyelin in the plasma membrane, enrichment of 

specific rafts in ceramides, which leads to the formation of death receptor 

complexes on plasma membrane, herein augmenting the extrinsic apoptotic 

pathway [190]. 

In addition, ceramides activate protein phosphatase 1 (PP1), which 

regulates the alternative splicing processes in Bcl-2 family with overproduction of 

pro-apoptotic molecules. Ceramides also activate PPA2, which, in turn, 

inactivates Bcl-2, an important anti-apoptotic protein, by dephosphorylation at 

serine 70 [191]. Thus, activation of both PP1 and PP2A turns on the intrinsic 

apoptotic pathway. Apoptosis is also triggered by ceramide via direct activation of 

cathepsin D [192]. 

Autophagy or autophagocytosis is a process leading the degradation of a 

cell's own components by lysosomes [193], [194]. This process plays a normal 
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part in cell growth and homeostasis, helping to maintain a balance between the 

syntheses, degradation, and recycling of cellular products. Autophagy can have a 

protective role, for example against oxidized low density lipoprotein (ox-LDL)-

induced injury of human umbilical vein endothelial cells [105], [115]. Autophagic 

cell death can be initiated by damaged plasma membrane, sphingolipids, and 

ceramide. For instance, exposure of human umbilical vein endothelial cells to 

glycated collagen I (GCI) causes lysosomal permeabilization followed by 

clustering of membrane rafts and it was linked to sphingomyelinase activity, 

accumulation of ceramide, clustering, and later internalization of lipid rafts [105]. 

 

3.2. Cell specific apoptosis in the lung  

Not all cells undergo apoptosis in response to ceramides. We noted an 

intracellular increase in ceramides in human lung endothelial, epithelial cells, and 

alveolar macrophages (AM) after exposure to CS (Petrusca et al., manuscript in 

preparation) [195]. Intracellular ceramides trigger apoptosis in lung endothelial 

cells [77]. However, Petrusca et al. and others noted that AM are resistant to 

ceramide-induced apoptosis [195]. This could be explained by robust activation 

of signaling pathways that promote survival of AM. Indeed, when ceramide 

production was amplified by LPS in human macrophages, the activation of PI 3-

kinase by those ceramides was observed, which led to activation of pro-survival 

pathway [196]. Some indicate also a beneficial role of ABCA1, ABCG1 

transporters, and HDL in protection and preserving viability of macrophages 
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against oxidative burst following exposure to oxidized phospholipids and/or 

apoptotic cells [197]. 

AM are responsible for the elimination of apoptotic cells in a process 

called efferocytosis [104]. Our laboratory observed that CS-dependent up-

regulation in ceramides led to an increase in number of apoptotic alveolar 

epithelial and endothelial cells in the lung with accumulation of AM. Interestingly, 

experiments from our lab showed a decrease in efferocytosis of AM in response 

to either endogenous or exogenous ceramides stimulation [195]. An inhibitory 

effect of ceramide on efferocytosis was linked to decreased membrane ruffle 

formation and impairment of Rac1 plasma membrane recruitment. This may 

imply that the upregulation of ceramides in the lungs causes both apoptosis of 

parenchymal cells and impairment of efferocytosis by AM, which collectively may 

augment lung injury [195]. 

 

3.3. Ceramide upregulation in lung endothelial cells 

Upregulation of ceramides can mediate both extrinsic and intrinsic 

pathways of apoptosis in various cell types, including endothelial cells, via 

multiple mechanisms, such as death cell receptor clustering [176] and activation 

of caspase-8 [175], direct activation of protein phosphatases 1 and 2a [15, 20, 

177], and direct effect on mitochondrial membrane permeability [198]. In addition 

to apoptosis, ceramides have been involved in endothelial oxidative stress [199-

201], growth arrest [202, 203], cytoskeletal changes [204], and senescence 
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[205]. Through these effects, ceramides regulate major aspects of lung 

endothelial cell function and, not surprisingly have been implicated in the 

pathogenesis of several conditions associated with pulmonary vascular 

dysfunction. 

Ceramides generated by the acid SMase pathway have been implicated in 

pulmonary edema induced by excessive platelet activating factor in models of 

acute lung injury or in response to surges in TNF-α that may occur following 

acute exposure to LPS in sepsis [26, 206]. The mechanism by which ceramide 

signaling leads to lung injury involves modulation of NO signaling in endothelial 

cell caveoli in a fashion that appears unique to the pulmonary circulation [207]. 

Interestingly, the pro-edemagenic effect of ceramides on the lung endothelium 

appears to be apoptosis-independent [208], the typical cellular response induced 

by excess ceramides. This dichotomy in the signaling effects of ceramides on the 

cultured lung endothelium recapitulates that of TNF-α [209] is a key inflammatory 

cytokine and a potent inducer of ceramides in endothelial cells. 

The consequences of sustained or chronic ceramide upregulation in the 

lung endothelium, induced either by direct instillation of ceramides to the lung or 

by a decrease in VEGF signaling, or by targeted endothelial mitochondrial 

damage, have been associated with increased endothelial cell apoptosis, and in 

vivo, with airspace enlargement and a phenotype consistent with lung 

emphysema [210], [211], [212]. Cigarette smoke, which is the most common 

cause of emphysema, increases ceramides in endothelial cells and in the whole 

lung animal models and in individuals who smoke or who have a diagnosis of 
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emphysema [32, 201, 213-215]. Petrache et al. demonstrated, that increased of 

lung ceramides are sufficient to cause alveolar endothelial and epithelial cell 

apoptosis, activation of macrophages and matrix proteolysis, which altogether 

recapitulate the phenotype of emphysema and that upregulation of ceramides via 

the de novo pathway of synthesis was necessary for apoptosis and airspace 

enlargement in the VEGF receptor blockade model of emphysema [32]. More 

recently, a requirement of neutral SMase-generated ceramides has been 

reported in relation to cigarette smoke-induced epithelial cell apoptosis [214]. The 

relative contribution of endothelial and epithelial cell-generated ceramides to 

apoptosis and airspace enlargement in response to cigarette smoke remains to 

be elucidated and will be addressed in my thesis. Cigarette smoke exposure may 

elevate ceramides either by oxidative stress, by VEGF receptor deprivation, or as 

recently reported, via alterations in the function of cystic fibrosis transmembrane 

regulator (CFTR), which in turn regulates ceramides at the plasma membrane 

through a process that may involve the de novo pathway [216]. Noe et al. 

demonstrated that in lung endothelial cells, CFTR was required for proper 

ceramide homeostasis through a process that involved intracellular pH regulation 

that in turn affected both the sphingomyelinase and the de novo pathway 

enzymatic function [217]. These findings complement the elegant work by 

Gulbins et al. which demonstrated the importance to ceramide-mediated effects 

on epithelial cells with mutant CFTR in models of cystic fibrosis, where acid 

SMase plays a key role in the pathogenesis of this disease, controlling rates of 

epithelial cell apoptosis and the susceptibility to chronic lung infection [218, 219]. 
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The mechanisms by which ceramides contribute to emphysema development 

involve increased oxidative stress and apoptosis, which are linked via mutual 

interaction and self-amplification [201]. In addition, de novo synthesized 

ceramides, and especially downstream production of sphingosine via acid 

ceramidase profoundly inhibit the clearance of apoptotic cells by specialized 

alveolar macrophages [220]. This is yet another self-perpetuating cycle triggered 

by ceramides, which both increases apoptosis of structural endothelial and 

epithelial cells in the lung and inhibits their clearance by macrophages, a process 

which may contribute to increased inflammation in the lungs of smokers and 

patients with COPD [221]. 

The involvement of endothelial cell ceramides in the pathogenesis of 

pulmonary vascular diseases that include pulmonary hypertension or ischemia 

reperfusion injury has not been reported, indicating a need for future 

investigations in these areas. 

Harnessing ceramide’s pro-apoptotic signaling in the endothelium could 

be achieved by inhibiting ceramide synthesis in the context of injury, or by 

counteracting its biological effect through concomitant upregulation of pro-

survival pathways, such as those initiated by S1P. Both acid and neutral SMase 

inhibitors, as well as inhibitors of the de novo pathway of ceramide synthesis 

effectively inhibited ceramide-induced apoptosis in the lung in various acute or 

chronic injury models in vivo, in which these pathways were found activated, as 

mentioned above, and recently reviewed by Uhlig and Gulbins [222]. Petrache et 

al. demonstrated that inhibition of ceramide synthesis in the context of normal 
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lung homeostasis may be detrimental, as shown in previous work with fumonisin 

B1, a ceramide synthases inhibitor, which dose-dependently increased 

endothelial cell apoptosis, lung apoptosis, and airspace enlargement in naïve 

mice [32]. Such approach may deplete cells from normally required ceramide for 

proper sphingolipid metabolism, including that of generating pro-survival 

metabolites. The role of S1P in cell survival and proliferation has long been 

recognized [171], an effect that in endothelial cells could be mediated via its 

receptors, also known as endothelial differentiation, G-protein-coupled receptors 

[223]. Diab KJ et al. proposed that, similar to other organs, a balance between 

proapoptotic ceramide and prosurvival S1P is required for maintenance of 

alveolar structures in the lung [210]. Treatment of mice with agonists of S1P1 

receptor inhibited endothelial cell apoptosis and airspace enlargement typically 

induced by VEGF receptor blockade [32], suggesting the pro-apoptotic function 

of ceramide can be antagonized by engaging S1P signaling in the lung [210]. 

In addition to cell survival, S1P modulates pulmonary endothelial cell 

motility and barrier function either intracellularly [224], or outside-in via specific 

S1P receptors, such as S1P1, which typically exerts barrier protective actions 

[225], or S1P2, which is barrier disruptive [226]. There is evidence of a complex 

interplay between signaling initiated by specific S1P receptors of the presence of 

intracellular targets of S1P or its synthetic analogs, along with a cell-specificity for 

responses to S1P [227-229]. 
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3.4. RTP801 and lung cell apoptosis 

There is ample evidence that mechanisms of amplification of lung injury 

lead to destruction of alveolar walls and persistence of inflammatory systemic 

and lung responses in COPD [8], [230]. Ceramide and RTP801 have been 

identified as potential signaling relays that are engaged early by CS exposure, 

which may interact and therefore amplify alveolar wall injury in emphysema [32, 

201, 231]. Both ceramide and RTP801 are involved in apoptosis, but it is not 

known if they are mechanistically linked. 

RTP801, also known as REDD1, is a stress response protein and 

signaling mediator stimulated by oxidative stress generated by CS and triggers 

NF-κB-mediated inflammation in the lung as well as apoptosis of alveolar 

structural cells [231]. The upregulation of RTP801 was detrimental to the lung, 

since mice lacking RTP801 were protected against CS-induced emphysema, 

concomitant with an increase in trophic factors including VEGF. The finding that 

lungs of patients with emphysema exhibit increased RTP801 expression [231] 

spurred on interest in RTP801 as a therapeutic molecular target. Mechanistic 

studies of RTP801 have been performed in the CS mouse model that 

recapitulates many aspects of the complex pathogenesis of COPD. A further 

simplified model which replicates the paucity of VEGF signaling in the lung 

parenchyma of patients with emphysema and highlights the apoptotic destruction 

of lung alveoli is obtained by inhibition of the VEGF receptors (VEGFR) [30]. In 

this murine model, apoptosis-dependent emphysema develops 4 weeks following 

a single subcutaneous injection of the VEGFR inhibitor SU5416 [30, 32]. 
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Petrache et al. measured robust upregulation of ceramide production in the lungs 

of VEGFR-inhibited rats and mice via the de novo pathway during the first week 

following SU5416 injection [32]. The time of ceramide upregulation coincided with 

increased oxidative stress and apoptosis, all preceding the onset of airspace 

enlargement [32]. However, it is not known if RTP801 is stimulated in this model, 

a question I approached in my work. 

Based on recent evidence, RTP801 may be one of the earliest stress 

responses to CS exposure that integrates oxidative stress with lung inflammation 

and apoptosis [231]. Since both ceramide and RTP801 may be central amplifiers 

of alveolar wall destruction in emphysema, we investigated if they are 

mechanistically linked and if RTP801 is one of the mechanisms by which 

ceramide induces alveolar cell apoptosis. 
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B. HYPOTHESES 

1. Cigarette smoke increases lung ceramides via activation of its synthetic 

pathways. 

2. Ceramides are necessary for cigarette smoke-induced alveolar cell 

death. 

3. Ceramide induces alveolar epithelial and/or endothelial cell apoptosis via 

RTP801 upregulation. 
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C. MATERIALS AND METHODS  

1. Chemicals and reagents 

All chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO), 

unless otherwise stated. 

 2. Mouse strains  

C57BL/6 mice 6-10 weeks old females were purchased from Harlan 

(Indianapolis, IN) and housed in the Laboratory Animal Resource Center at 

Indiana University School of Medicine (Indianapolis, IN). C57Bl/6 mice were 

utilized for studies of RTP801 or ceramide C12:0 augmentation and for VEGFR 

inhibition and CS studies. 

DBA2/J2 mice 6-10 weeks old females were purchased from Jackson’s 

laboratory (Bar Harbor, ME) and were used in CS exposure experiments. 

Rtp801-null mice (C57bl/6x129SvEv) (females; at least 3 months old) 

were from Quark Pharmaceutical Inc. Wild type controls of similar genetic 

background (C57Bl/6 x 129SvEv females; at least 3 months old) were from 

Taconic, (Fremont, CA). Rtp801-null mice or wild type controls were utilized for 

studies of ceramide C16:0 augmentation. 

All animal studies were approved by the Institutional Animal Care and Use 

Committee at Indiana University (Indianapolis, IN). 
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3. Animal experiments 

3.1. Cigarette smoke exposure 

  In vivo CS exposure was performed as previously described [40]. Briefly, 

C57Bl/6 (female, age 12 weeks; n=5-10 per group), DBA/2J (male or female; age 

12-14 weeks; n=5-10 per group) or CerS2KO mice were exposed to CS 5 hours 

a day 5 days a week or to ambient air for up to 24 weeks. More specifically, mice 

were exposed to 11% mainstream and 89% side-stream smoke from reference 

cigarettes (3R4F; Tobacco Research Institute, KY) using a Teague 10E whole 

body exposure apparatus (Teague Enterprise, CA). The exposure chamber air 

was monitored for total suspended particulates (average 90 mg/m3) and carbon 

monoxide (average 350 ppm). Unless otherwise specified, mice were euthanized 

and lungs were processed as previously described (3) the day following the last 

day of CS exposure. 

 

3.2. Intra-tracheal instillation of pro-apoptotic molecules 

Indirect method 

Mice were anesthetized by brief inhalational halothane exposure, the 

tongue was gently pulled forward by forceps and the trachea instilled with 

ceramide-containing or vehicle (ethanol) containing perfluorocarbon solution 

applied at the base of the tongue via a blunt angiocatheter [232], via an indirect 

method of instillation, as previously described [32]. 
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Direct method 

After anesthesia, the trachea was exposed in aseptic conditions and either 

the compound or its vehicle was introduced directly into the trachea using a 

sterile needle. Following suture of the neck soft tissues, mice were allowed to 

recover. 

 Ceramide C12:0, Avanti (Alabaster, AL), was first solublilized in 100%, 

ethanol and then suspended in sterile perfluorocarbon (15 µl). The oxygen-

carrying properties of perfluorocarbon ensured adequate tolerance by the animal 

at these volumes, while its physical-chemical properties allowed for efficient 

distal lung delivery following intra-tracheal instillation [32, 201]. 

Ceramide C16:0 (Avanti) was administered intra-tracheally either as 

solution in ethanol or conjugated with PEG. 

Rtp801 cDNA (50 µg) was delivered intra-tracheally in 80 µl saline. 

 

3.3. Vascular endothelial growth factor receptor (VEGFR) inhibition   

The VEGFR inhibition model is an apoptosis-dependent model of 

emphysema development, and was conducted, as previously described [30]. In 

this murine model, emphysema develops 4 weeks following a single 

subcutaneous injection of the VEGFR inhibitor SU5416 Calbiochem (Gibbstown, 

NJ) [30, 32]. Mice were injected subcutaneously with SU5416 (20 mg/kg) or 

vehicle (carboxymethylcellulose). 
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3.4. Pulmonary function tests  

Mice were anesthetized with inhaled isoflurane and suspended vertically 

from their incisors. The neck was transilluminated with a fiber optic light source 

and the glottic opening was visualized with a custom-made laryngoscope blade. 

A 0.025” diameter guide wire was probed through the glottic opening, and a 20-

gauge Teflon catheter was advanced over the guide wire into the trachea. 

Following removal of the wire, the animal was mechanically ventilated with a 

rodent ventilator using room air, at a rate of 140 breaths per minute, a tidal 

volume of 0.3 ml, and 5 cm H2O of positive end-expiratory pressure. The animals 

were placed on a heated (37 ºC) pad and pulmonary function tests were then 

performed with the Flexi Vent system (Scireq, Montreal, PQ, Canada). Starting at 

FRC, the system was programmed to deliver 7 inspiratory volume steps, for a 

total volume of 1 ml, followed by 7 expiratory steps, pausing at each step for at 

least 1 second. Compliance was calculated by dividing the cumulative volume 

delivered at each step by the plateau pressure, averaging 3 pressure volumes 

loops for each mouse. At the conclusion of testing, isoflurane was discontinued, 

and the animal was allowed to emerge from anesthesia. Once spontaneous 

respiration had been resumed and reflexes had been returned, the tracheal 

cannula was removed. 
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3.5. Animal tissue preparation and analysis 

3.5.1. Broncho-alveolar lavage  

The broncho-alveolar lavage (BAL) fluid was collected by lavaging the 

lungs with 3 aliquots of 1 ml each, totaling 3 ml of Ca2+ - and Mg2+ - free PBS 

supplemented with 0.1 mM EDTA. Samples were centrifuged (5 min; 500 g; 4 

°C). Pellets were collected in 1 ml of red blood cells (RBCs) lysis buffer, left for 5 

min on ice, and then resuspended in PBS and counted, using a hemocytomether. 

Cytospin slides containing 10,000 cells each were made with total volume 350 ml 

of PBS centrifuged at 1350 rpm for 5 min and stained using a 3 step stain set 

(Richard-Allan Scientific). The slides were rinsed in water twice and allowed to 

dry, and then cover glasses were applied with mounting medium (Fisher) and 

cells were scored by a technician blinded to the identity of the experimental 

group. The acellular BAL fluid was snap-frozen in liquid N2 and stored at -80 °C 

for future analysis. 

 

3.5.2. Lung tissue harvesting 

The trachea was exposed and a blunt probe was inserted under the 

trachea to free it from the surrounding tissue. While trachea was raised, a 4 cm 

suture was pulled underneath it. Fine tipped scissors were used to cut a small “V” 

shaped incision of the anterior aspect of the trachea, just below the thyroid 

cartilage. A cannula was inserted into the trachea and was secured with a suture. 

Meanwhile, the thoracic cavity was open and the right atrium was punctured with 

a needle. In some experiments blood was collected to obtain plasma for future 
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analysis. The lungs were flushed by perfusing 20 ml of PBS through the 

pulmonary circulation via the RV. The right bronchus was exposed and ligated 

with a suture. A pre-warmed (up to 57 oC) 0.25% solution of low melting point 

agarose (10% formalin with PBS) was slowly introduced into the left lung with 

constant pressure of 20 cm H2O. The trachea was then clamped with a 

haemostatic clamp, the lungs and the heart were dissected en block, transferred 

into 50 ml conical tube, and left on ice (4 oC) for 10 min. The right lungs were 

aliquoted and snap frozen in liquid N2. Left lungs were cut with a sharp blade in a 

coronal plane into 5 pieces, transferred into a plastic fixation cassette and stored 

in 10% formalin solution with PBS, and sent to the Histology Core facility for 

paraffin embedding and sectioning (4-5 µm sections). 

 

3.5.3. Histological assessment 

3.5.3.1. Hematoxylin and eosin staining 

Tissues on slides were deparaffinized 3 times for 3 minutes each in Clear-

Rite 3 (Richard-Allan Scientific) or xylene, followed by immersing (3 times for 1 

min) in 100% Flex (Richard-Allan Scientific) and in 95% Flex (1 minute). Slides 

were then rinsed in running tap water briefly and put for 4 minutes in hot water 

(60-70 ºC) for 1 min to remove agarose residues, and then rinsed in deionized 

water. Samples were immersed in hematoxylin solution for 2 min and rinsed in 

tap water, to remove excess stain. Then slides were put into clarifier (Richard-

Allan Scientific) for 30 seconds, rinsed in tap water, immersed in Bluing Reagent 

for 1 min and rinsed in tap water for 1 min. Slides were then stained in Eosin-Y 
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for 30 sec and were immersed (3 times for 1 min) in 100% Flex, then in xylene (3 

times for 1 min each), followed by mounting of cover glasses, using mounting 

media. 

3.5.3.2. Detection of Rtp801 by immunohistochemistry 

Rtp801 IHC was performed after deparaffinization of slides and antigen 

retrieval with citrate solution (pH 6.0; 30 min). After inhibition of endogenous 

peroxidase activity by incubation in H2O2 (3% methanol; 30 min) slides were 

rinsed in TBS and blocked in goat serum (10% in TBS; 30 min). Primary antibody 

against RTP801 was applied (Proteintech; 1:200; 1 h), followed by secondary 

biotinylated goat anti-rabbit antibody (1:200; 1 h), streptavidin peroxidase (30 

min), and chromogen (DAB; 5 min). A set of sections was then counterstained 

with Mayer’s hematoxylin. 

3.5.3.3. Detection of active caspase-3 by immunohistochemistry 

Active caspase-3 IHC was performed on lung sections, as previously 

described [233]. Briefly, following deparaffinization and hydration, sections were 

blocked with goat serum (10%) and incubated with anti-caspase-3 antibody (Cell 

Signaling; 1 h at room temperature or overnight at 4 ºC). Slides were then 

stained with biotin-conjugated goat anti-rat IgG secondary antibody (1:100; 

Vector Laboratories, Burlingame, CA) and streptavidin-coupled phycoerythrin or 

fluorescein isothiocyanate (1:1,000; Vector). Sections were counterstained with 

DAPI and mounted with Mowiol 488 (Calbiochem). Microscopy was performed on 

either Nikon Eclipse (TE200S) inverted fluorescence or a combined 

confocal/multiphoton inverted system (Spectraphysics laser, BioRad 
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MRC1024MP). Images were captured in a masked fashion and quantitative data 

were obtained by Metamorph Imaging software (Molecular Devices, Sunnyvale, 

CA) as previously described [233]. 

 

3.5.4. Morphometric analysis 

Morphometric analysis was performed on coded slides as described previously, 

using a macro developed by Dr. Tuder for MetaMorph [234]. 

 

3.5.5. Apoptosis assessment by flow cytometry 

Besides apoptosis evaluation with IHC, apoptosis of specific lung cell 

populations was measured in cell suspensions isolated after lung disintegration, 

followed by the detection of cleaved caspase-3 using flow cytometry. For channel 

setup, we used Jurkat cells (Lymphoma T cells from ATCC; 106 in 100 µl) stained 

with FITC labeled anti CD3 (eBioscience) for FL1 and with Phycoerythrin (PE) 

labeled anti CD3 (eBioscience) for FL2. Cell suspensions were incubated with 

anti CD32/16 antibody (Santa Cruz Biotechnology; 1 µg/106 cells; 10 min), 

followed by washing and transfer into flow cytometry tubes. Labeling of selected 

cell populations was achieved with rat anti-mouse CD31 FITC conjugated 

antibodies (BD Pharmingen; 30 min) for the detection of endothelial cells, using 

as isotype control a rat IgG 2 FITC conjugated (eBiosciences). For the detection 

of type I pneumocytes, Alexa Fluor 488 Golden Syrian Hamster IgG anti 

Podoplanin antibody (eBiosciences) was used, with an isotype control Golden 
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Syrian Hamster IgG FITC conjugated (eBiosciences) antibody as control. Cell 

suspensions stained for alveolar type II cell markers were first prepared for 

intracellular staining. All samples underwent fixation and permeabilization with 

paraformaldehyde (1% in PBS) and Triton-X 100 (0.1% in PBS), respectively. 

Pro-surfactant C rabbit anti-mouse FITC labeled Abs were used, which were 

obtained by labeling rabbit polyclonal anti-pro-surfactant C IgG antibodies 

(Millipore/Abcam) with FITC using a kit (Pierce), following the manufacturer’s 

instructions. For isotype control, cells were stained with rabbit anti-mouse 

polyclonal IgG antibody (SouthernBiotech) which was labeled with FITC using a 

similar kit. Staining for active caspase-3 in lung cell suspensions was achieved 

by using PE conjugated affinity purified polyclonal rabbit antibody raised against 

active caspase-3 (BD Pharmingen), and an isotype PE conjugated IgG antibody 

(Southern Biotech). Following staining (30 min), samples were washed, 

centrifuged (500g; 5 min; RT) and cell pellets were suspended in BSA (1% in 

PBS) for flow cytometry analysis. 

 

3.6. Enzymatic caspase-3 activity assay 

3.6.1. Preparation of samples 

3.6.1.1. Preparation of cells: Media was discarded and cells were washed 2x in 

PBS and harvested in caspase-3 lysis buffer with fresh protease inhibitors 

cocktail (1/100), using approximately 230 µl for each well from 6-well plates. 

Cells were collected on ice (4 ºC) by scraping, transferred into Eppendorf tubes, 

and sonicated for 20 sec. Then samples were centrifuged for 10 min, 4 ºC, at 
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10,000 rpm. The supernatants were collected into clean tubes and stored at 

minus 80 °C. 

3.6.1.2. Preparation of tissue: Lung tissue (4 - 5 mm3) was homogenized with 

electric homogenizer in caspase-3 lysis buffer with fresh protease inhibitors 

cocktail 1/100, using approximately 600 µl of buffer for each sample. Then, 

samples were sonicated for 20 sec and centrifuged for 10 min, 4 ºC, at 

10,000rpm. The supernatants were collected into clean tubes and stored at -80 

°C. 

For preparation of homogenates we used the following caspase-3 lysis 

buffer: 50 mM HEPES (pH 7.4); 100 mM NaCl; 0.1% CHAPS; 1 mM DTT; 0.1 

mM EDTA. 

3.6.2. Caspase-3 activity assay 

While working on ice (4 oC), 50 µl of each sample was added into each of 

a 96 well plate in duplicates. Next, 50 µl of substrate for caspase-3, 2-DEVD-

R110 (x100) (Promega) (1/100 dilution in caspase-3 assay buffer) was added 

into each well. A 1.5 hour kinetics assay was performed using λ= 485 nm for 

excitation and λ= 538 nm for emission in a fluorometer plate reader (Promega, 

Fitchburg, WI). 

Human caspase-3 (active) recombinant protein (Chemicon International, 

25 units) was used as positive control. The negative control was caspase-3 

assay buffer: 50 mM HEPES (pH 7.4), 100 mM NaCl; 0.1% CHAPS; 1 mM DTT; 
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0.1 mM EDTA; 10% glycerol. The results of caspase-3 activity were normalized 

by the protein concentration of the sample. 

 

4. Cells culture experiments 

4.1. Cell lines used in experiments 

HLMVEC-human lung microvascular endothelial cells; Lonza, 

(Walkersville, MD); media: EBM-2 Basal Medium 500ml with EGM-2 SingleQuot 

Kit Suppl. & Growth Factors, all from Lonza. 

L2-primary rat lung epithelial cells; ATCC, (Manassas, VA), cultured in 

Hams F12 media with 10% FBS, (American Type Culture Collection, ATCC). 

RLMLEC-rat lung microvascular endothelial cells were from the University 

of South Alabama, (Mobile, AL), cultured in DMEM; Cellgro (Herndone, VA) and 

supplemented with 10% FBS and penicillin/streptomycin. 

SAEC-small airway epithelial cells (human) were from Lonza; cultured in 

SABM Basal Medium 500 ml with SAGM with SingleQuot Kit Suppl. & Growth 

Factors (Lonza). 

All cells were cultured in a humidified 37 oC, 5% CO2 incubator. 

 

4.2. Preparation of CS extract 

An aqueous CS extract was prepared from filtered research grade 

cigarettes (1R3F) from the Kentucky Tobacco Research and Development 
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Center at the University of Kentucky. A stock (100%) CS extract was prepared by 

bubbling smoke from 2 cigarettes into 20 ml of PBS at a rate of 1 cigarette per 

minute to 0.5 cm above the filter, modifying a method developed by Carp and 

Janoff (30). The extract’s pH was adjusted to 7.4, followed by filtration (0.2 µm, 

25 mm Acrodisc; Pall, Ann Arbor, MI) and used in cell culture experiments within 

20 min. A similar procedure was used to prepare the control extract, replacing 

the CS with ambient air. 

 

4.3. Preparation of treatment media  for all culture studies. 

Prior to addition to cell culture media, sphingosine-1 phosphate (S1-P) 

(Sigma) was dissolved in DMSO. D-sphingosine (Sigma) was dissolved in 

methanol. FTY-720 was dissolved in DMSO. Ceramide C16: 0 was dissolved in 

ethanol. CS extract (100%) was diluted volume: volume at the indicated 

concentrations. 

 

4.4. Whole lung disintegration 

Mice were sacrificed using isoflurane and immediately cannulated with an 

intra-tracheal catheter. Vessels on both sides of the neck were open and lungs 

were perfused via the right ventricle with PBS without calcium and magnesium 

ions, at 37 ºC. Large vessels and bronchi were discarded. The remaining lung 

tissue was placed in 60 mm tissue culture dishes, each containing disintegration 

solution and then dissected and minced into 1-2 mm diameter fragments, 

followed by immediate transfer into 50 ml conical tube. The lung tissue 
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disintegration solution contained fetal bovine serum in Dulbecco's modified Eagle 

medium (10%), DNase I, (6.5 µg/ml, Stemcell Tech, Vancouver, Canada). 

and collagenase A (12 µg/ml) ( Roche). Lung fragments were disintegrated in this 

solution (30 min; 37 ºC) until a clear cell suspension was obtained. Cell 

suspension was filtered through a cell strainer (70 µm; Fisher Scientific, Fair 

Lawn, NJ), followed by centrifugation (10 min, 300 g, 4 ºC). Cell pellets were 

resuspended in PBS followed by the addition of Geye’s solution (erythrocyte cell 

lysis buffer) and repeated centrifugation. Cell pellets were then resuspended in 

1ml of PBS with 1% FBS. All procedures in above protocol for isolation of cells 

for culture purposes were performed in sterile conditions. 

 

4.5. Isolation of lung endothelial cells  

For isolation of lung endothelial cells, we used positive selection of 

CD146+ cells from mouse using CD146 for liver sinusoidal endothelial cells 

(LSEC) MicroBeads (Miltenyi Biotec, Cambridge, MA). All procedures followed 

Miltenyi Biotec guidelines. 

4.5.1. Magnetic labeling of cells 

Following whole lung disintegration using the above protocol, the cell 

number in each sample was determined. Cells were centrifuged for 10 min, 300 

g, at 4 ºC and supernatants were discarded. Cell pellets were resuspended in 90 

µl of MACS buffer per 107 total cells and 10 µl of CD146 (LSEC) MicroBeads per 

107 cells were added. Samples were mixed well and incubated for 15 minutes at 

4 °C. Cells were washed by adding 1-2 ml of MACS buffer per 107 cells and 
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centrifuged at 300 g for 10 minutes. The supernatant was aspirated and cells 

were resuspended in 500 µl of MACS buffer up to 107 cells, followed by magnetic 

separation. 

4.5.2. Magnetic separation with MS columns 

The column was placed in the magnetic field of suitable MACS separator. 

The columns were prepared by rinsing with the 500 µl of MACS buffer. 

Previously prepared cell suspensions were applied onto the columns and flow - 

through containing unlabeled cells was collected. The columns were washed 3 

times with 500 µl of MACS buffer. Unlabeled cells were collected for efficiency 

analysis. Washing steps were performed by adding buffer aliquots only when the 

column reservoir was empty. 

The column was then removed, placed at a distance from the separator in 

a suitable collection tube. 1 ml of MACS buffer was added onto the column and 

the magnetically labeled cells were immediately flushed out by firmly pushing the 

plunger into the column. The cell suspension was saved for culture or 

experimental evaluation. 

 

4.6. Flow cytometry analysis of apoptosis using Annexin-V/PI detection kit 

4.6.1. Cells harvest 

At the end of the experiment, either SAEC or HLMVEC were washed in 

PBS (w/out Ca and Mg), trypsinized and collected in media, followed by 

centrifugation at 500 g for 5 min at RT. Next, they were washed in 500 µl of cold 

2% BSA in PBS (with Ca and Mg) and centrifuged again at 500 g for 5 min RT. 
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4.6.2. Evaluation of apoptosis 

Apoptotic and necrotic events were quantified by Annexin V/PI staining 

using an apoptosis detection kit (R&D Systems, Minneapolis, MN) the flow 

cytometry evaluation was performed with a Beckman Coulter Cytomics FC500 

cytofluorimeter (Beckman Coulter, Fullerton, CA) with CXP software. As a 

positive control UV-treated Jurkat or rat thymocytes were used. 

 

4.7. Proliferation assay 

RLMVECs were cultured overnight in 96-well plate in full DMEM medium. 

Then cells were pretreated with 2% FBS DMEM media for 1 h and treated with 

CS along with BrdU labeling solution. After appropriate time of incubation (from 6 

to 72 h) cell proliferation was measured via BrdU incorporation using Cell 

Proliferation ELISA BrdU Kit, Roche (Indianapolis, IN). 

 

5. Evaluation of lipids 

5.1. Lipids extraction 

Lung tissue was added into 2 ml methanol, homogenized, and 1 ml of 

chloroform was then added. For samples prepared for mass spectrometry 

analysis, 20 µl of 1 ng/µl Cer 17:0 standard was added. Samples were vortexed 

briefly and sonicated for about 20 sec to break down tissue/cells clumps. Then 

samples were left 2-3 h at RT or at 4 ºC overnight. Chloroform (1 ml) and 0.1 N 

HCl (1.3 ml) were added, samples were vortexed vigorously (1 min) and 

centrifuged (16 min at 2,600 g). The lower chloroform phase was transferred with 
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a Pasteur pipette into 4 ml clear glass. The solvent was evaporated under 

nitrogen stream in the heating block and the lipid film was re-dissolved in 1 ml of 

solvent (methanol: chloroform 3:1) and stored for further analysis. 

Cell lysates were prepared in 1 ml of methanol (body fluids or 

supernatants were prepared in 2 ml of methanol), and then assayed as above, 

using ratios of methanol to chloroform to water (or 0.1 N HCl) at 1:1:0.9. 

 

5.2. Lipid phosphorus (Pi) determination by optical density 

The key assumption of this experiment is that one mole of phospholipids 

contains one mole of phosphate (Pi) that is released with heat treatment in the 

presence of perchloric acid. Therefore, by measuring released (Pi) one can 

estimate the phospholipids content of the cell lysate/tissue that is proportionate to 

the total amount of the cell/tissue used. The amount of ceramides normalized by 

(Pi) is then compared among samples within the same experiment. 200 µl of the 

lipid solution (for physiological fluids) or 100 µl (for tissue) was transferred to 8 ml 

glass tube and dried out under the nitrogen stream in. Then 50 µl of 70% HClO4 

with 1% Na2MoO4*2H2O was added into each tube, which was covered with 

Teflon tape and baked in a heating block at 200 ⁰C for 40 min. While the samples 

were exposed to heat, working reagents were prepared from 2.6 ml of 1 N H2SO4 

and 6.85 ml of ddH2O. 
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Eight standard solutions of Pi via serial dilution using the stock standard 

(100 mM K2HPO4*3H2O with 0.01% NaN3) were prepared. The sample and 

standard tubes were cooled down to RT, followed by the addition of 0.45 ml of 

working reagents to each tube. 50 µl of ddH2O was added to the samples and 50 

µl of the standard Pi concentration to the standard tubes. The tubes were capped 

tightly, sealed with Teflon tape and boiled in a water bath for 15 min. Then they 

were cooled down to RT and 200 µl of each was transferred in duplicates in 96-

well plate for colorimetric measurement (absorbance 815 nm). 

A standard curve was prepared, subtracting the background of the 0 

nmol/50 µl standard. The Pi values in the samples were interpolated. 

 

5.3. Ceramide quantification  

The sphingolipids were ionized via electrospray ionization (ESI) with 

detection via multiple reactions monitoring (MRM) by our collaborator, Dr. Walter 

Hubbard. Analyses of the sphingolipids were performed by combined liquid 

chromatography/ tandem mass spectrometry (LC/MS/MS). The instrumentation 

employed was an API4000 Q-trap hybrid triple quadrupole linear ion-trap mass 

spectrometer (Applied Biosystems, Foster City, CA) equipped with a 

turboionspray ionization source interfaced with an automated Agilent 1100 series 

liquid chromatograph and autosampler (Agilent Technologies, Wilmington, DE) 

[235], [236]. S1P and DHS1P were quantified as bis-acetylated derivatives with 

C17-S1P as the internal standard employing reverse-phase HPLC separation, 
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negative ion ESI, and MRM analysis. Details of this approach are described in 

[236, 237]. 

 

6. Enzymatic activity assays 

6.1. Serine-palmitoyl transferase assay 

Lungs were homogenized in SPT lysis buffer, containing 10 mM HEPES 

(pH 7.5 in NaOH); 250 mM Sucrose; 1 mM EDTA; proteinase inhibitor cocktail in 

ddH2O. An equal volume (100 µl) of each sample was used in 100 µl of SPT 

assay buffer, containing 0.1 M HEPES (pH 8.3); 2.5 mM EDTA; 50 µM pyridoxal 

phosphate; 5 mM DTT; 1 mM L-serine, prepared in ddH2O. SPT activity was 

determined by measuring the incorporation of (3H) L-serine (American 

Radiolabeled Chemicals, Inc., St. Louis, MO) into palmitoyl-CoA and expressed 

as a number of counts per minute, measured using a scintillation plate reader. 

The results were normalized by protein concentration. A boiled tissue sample 

was used as a negative control. 

 

6.2. Ceramide synthase-2 and -5 (CerS2 and CerS5) assays 

Cells or lung tissue were homogenized in ceramide synthase lysis buffer: 

5 mM EGTA; 25 mM Hepes pH 7.4; 50 mM NaF; 1 µg/ml Leupeptin; 10 µg/ml 

Soybean trypsin inhibitor in ddH2O. First, D-erythro-sphinganine (C16 

dihydrosphingosine, Avanti) was added to each glass tube and dried under N2. 

Next, it was resuspended in assay buffer, containing 2 mM MgCl2; 20 mM Hepes; 

0.5 mM DTT; 20 mM defatted BSA. For CerS 2 activity assay, “cold’ behenyl-
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CoA with radioactive 14C behenyl-CoA was utilized. For CerS 5 activity assay, 

“cold” palmitoyl-CoA, and 14C palmitoyl-CoA (American Radiolabeled Chemicals) 

were used. After 1 hour incubation at 37 oC, samples were dried out under N2, 

resuspended in 20 µl chloroform and methanol (1:1) containing 1 mg/ml bovine 

brain ceramide and 1 mg/ml diacylglycerol, and 15 ml of this mixture was loaded 

onto silica TLC plates. Liquid chromatography was performed in TLC solvent, 

containing chloroform, methanol and 3.5 N aqueous ammonium hydroxide in a 

ratio 85:15:1, respectively. Particular bands on silica plate were captured by 

Phosphoimager. Activities of ceramide synthases were calculated by 

densitometric analysis and normalized by the protein concentration of the 

homogenate. 

 

6.3. Sphingomyelinase activity assays 

The activities of specific sphingomyelinase isoforms were evaluated with 

Amplex Red Sphingomyelinase Assay Kit (Molecular Probes, Eugene, OR), 

following manufacturers protocol. Tissues were homogenized in lysis buffers 

specific for each isoform [238]. For lysosomal ASM, we used cell lysis buffer, 

composed of: 0.2% TritonX-100; 100 mM sodium acetate (pH 5.0); 2 mM EDTA; 

0.1 mM Na3VO4 (fresh); 1 mM PMSF (fresh); 10 µl/ml aprotinin (fresh); 10 µl/ml 

leupeptin (fresh), adjusted to 10 ml of ddH2O; for secreted acid 

sphingomyelinase: 0.2% TritonX-100; 100 mM sodium acetate (pH 5.0); 0.1 mM 

Na3VO4 (fresh); 1 mM PMSF (fresh); 10 µl/ml aprotinin (fresh); 10 µl/ml leupeptin 

(fresh), adjusted to 10 ml of ddH2O; and for neutral sphingomyelinase cell lysis 
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buffer: 0.2% TritonX-100; 20 mM Hepes, pH 7.4; 2 mM EDTA; 10 mM MgCl2; 5 

mM DTT (added fresh); 10 mM Beta-glycerophosphate; 0.75 mM ATP (fresh); 

0.1 mM Na3VO4;10 µl/ml Aprotinin (fresh); 10 µl/ml Leupeptin (fresh), adjusted to 

10 ml of ddH2O. The kinetics for both acid and neutral sphingomyelinases was 

measured using a fluorescence microplate reader. Hydrogen peroxide and 

purified neutral sphingomyelinase were used as positive controls. The enzyme 

activity results were expressed normalized to protein concentration. 

 

7. Evaluation of protein concentration 

Protein concentration was evaluated using BCA Protein Assay Kit (Pierce).  

 

8. Western blotting 

Detection of Rtp801. Lung tissue or cells were homogenized in a lysis 

buffer containing 20 mM HEPES, (pH 7.5), 1.5 mM MgCl2, 150 mM NaCl, 10% 

glycerol, 1% Triton X-100, 2 mM EDTA, 2 mM Na3VO4, 50 mM NaF, 1 mM 

PMSF, and protease inhibitor cocktail Set I (Calbiochem). Protein lysates were 

run on SDS- PAGE and transferred to nitrocellulose membrane, using the 

Criterion system (Biorad). The membranes were blocked with Superblock 

blocking buffer (Pierce Biotech) and incubated with indicated primary antibodies 

overnight (rabbit anti-mouse Rtp801, Quark Pharmaceuticals Inc.), and with 

secondary antibodies conjugated with horseradish peroxidase (Vector). The blots 

were developed using enhanced chemiluminescence kit (GE Healthcare). 
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9. Additional buffers and media 

PBS w/Ca,Mg: 0.1 g of CaCl2 (anhydrous), 0.1 g of MgCl2-6H20, 0.2 g of KCl, 

0.2 g of KH2PO4, 8 g of NaCl, 2.1 g of Na2HPO4-7H2O in 1000 mL of ddH2O (pH 

7.4). 

PBS w no Ca,Mg: 8 g NaCl, 0.2 g KCl. 1.44 g of Na2HPO4 and 0.24 g of 

KH2PO4 in 1000 ml of ddH2O water (pH 7.4). 

Geye’s Lysis Solution (Red cell lysis buffer); Solution A: In a 1 L beaker, 

17.5 g of NH4Cl, 0.925 g of KCl, 0.225 g of Na2HPO4 (anhydrous), 0.055 g of 

KH2PO4, 0.25 g of glucose were added to nearly 500 ml of ddH20, adjusted to a 

final volume of 0.5 L and then the buffer was filter-sterilized; Solution B: In a 0.5 

L beaker, 1.05 g of MgCl2*6H2O, 0.36 g of MgSO4*7H2O, 0.85 g of CaCl2 were 

added to nearly 250 ml of ddH20, adjusted to a final volume of 250 ml and then 

the buffer was autoclaved; Solution C: In a 0.5 L beaker, 5.625 g of NaHCO3 

was added and adjusted to 250 ml with ddH2O and then was autoclaved. 

Geye’s Solution was then constituted by adding: 10 ml Solution A, 2.5 ml 

Solution B, 2.5 ml Solution C and 35 ml dH2O. To lyse RBC, 12 to 13 ml Geye’s 

solution was added and incubated for 5 min at +4 oC. 

 

10. Statistical analysis was performed with Sigma Stat (Systat Software Inc, 

Chicago, IL), using unpaired Student t-test, ANOVA, or Kruskal-Wallis One Way 

Analysis of Variance on ranks, as appropriate. Statistical significance was 

accepted at p<0.05. 
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D.RESULTS 

1. Cigarette smoke (CS) exposure effect on lung cells ceramides and 

apoptosis in vitro and in vivo 

1.1. Lung epithelial and endothelial cells upregulate ceramides and 

undergo apoptosis in response to CS 

1.1.1. CS exposure inhibits cell proliferation in vitro 

Chronic CS exposure of decades leads to lung emphysema in susceptible 

individuals. In mice, emphysematous changes are observed as early as after 4-6 

months after CS, depending on the strain. Both lung epithelial and endothelial 

cells have been shown to undergo apoptosis in emphysema models. To 

investigate the role of ceramide in CS-induced apoptosis, I first studied the ability 

of a soluble cigarette smoke extract (CSE) to affect primary lung alveolar cell 

function. Prior to the onset of programmed cell death due to CS, there are many 

changes in cellular physiology, including inhibition of cell proliferation. I asked if 

CSE affects proliferation of endothelial cells, using rat lung microvascular 

endothelial cells (RLMVECs) as an experimental model. First, I wanted to 

determine the CSE concentration that inhibits cell proliferation of RLMVECs. I 

exposed RLMVECs for 48 h to 1, 1.5, and 2.5% CSE concentrations and 

measured proliferation by BrdU incorporation using Cell Proliferation ELISA BrdU 

Kit. I found a significant inhibition of RLMVECs proliferation at 2.5 % CSE (Figure 

1A), which is considered typically a low CSE concentration, as cell death is 

usually noted only with 5-10% CSE in these cells. Then, I used 2.5% CSE in 
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order to determine how cell proliferation is affected in RLMVECs during different 

time points of CSE. I exposed RLMVECs to CSE (2.5%) for 6, 24, and 72 hrs. 

There was a statistically significant inhibition of proliferation in all CSE treated 

cells when compared to air control (AC) extract (Figure 1B). These data indicated 

that even low CSE concentrations inhibit cell proliferation in RLMVECs, and even 

helped select CSE concentration and timepoints for our next experiment. 

1.1.2. CS exposure causes lung cell apoptosis in vitro 

To test whether CS causes apoptosis in a relevant in vitro model, I 

exposed human lung endothelial or human lung epithelial cells to increasing CSE 

concentrations (from 0.1 to 10%) for 6 h. I used commercially available human 

lung microvascular endothelial cells (HLMVEC) and small airway epithelial cells 

(SAEC), which are primary cells harvested from human lungs. After CSE 

exposure, cells were harvested and analyzed for apoptosis. Apoptotic events 

were quantified by Annexin-V/PI staining, using the Apoptosis detection kit (R&D 

Systems) and flow cytometry. In HLMVEC, there was increase in apoptosis when 

exposed to 5% and 10% CSE, which was dose-dependent (Figure 2A). In SAEC, 

I observed a similar response, albeit more robust and with less variability (Figure 

2B). These data may suggest that SAECs are more sensitive to CSE than 

HLMVEC and both cell types undergo apoptosis in response to increasing CSE 

concentration. 
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1.1.3. CS exposure increases lung cell ceramides content in vitro 

Since ceramide upregulation causes cell apoptosis, I investigated if 

human alveolar cells in culture upregulate ceramide in response to CS. Both 

SAEC and HLMVEC were exposed to increasing CSE concentrations, 

specifically from 0.1 to 10% of CSE for 24 hours. Cells were harvested and 

analysed for total ceramide content. I found increased ceramides in a dose-

dependent manner in both SAECs and HLMVECs following CSE treatment 

(Figure 3). Interestingly, the ceramide content in HLMVEC was higher than that 

in epithelial cells both at baseline and following CSE treatment. That might be 

attributed to a known large pool of acid sphingomyelinase in the endothelium 

[239]. These data show that CSE leads to the accumulation of ceramides in both 

lung epithelial and endothelial cells, and the rate and pathway of ceramide 

accumulation may determine apoptosis outcomes. 

1.1.4. CS upregulates enzymes responsible for ceramide synthesis in vitro 

If CS-induced apoptosis is due to the overproduction of ceramide, I should 

observe an increase in enzymatic activities responsible for ceramide synthesis 

after CSE treatment. Since endothelial cells are highly abundant in ASMase, I 

next determined if their activities are triggered by CS in human primary lung 

endothelial cells (HLMVEC) exposed to 5% or 10% CSE for 1, 4 and 24 h.  

There was a trend for lysosomal ASMase activation, by both moderate and high 

CSE concentrations (Figure 4A), while the secretory ASMase was significantly 

and robustly activated at 24 h (Figure 4B). In contrast, HLMVEC did not activate 

nSMase in these conditions (Figure 4C). 
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CSE of rat lung epithelial cells (L2) triggered activation of both the de novo and 

the sphingomyelinase pathways. In lung epithelial cells, exposure to moderate 

CSE concentration (5%) elicited significant activation of SPT (Figure 5A) at 4 h, 

with brief but not significant elevations of CerS5 and CerS2 activities (Figure 4b). 

By 24 h of exposure, both CerS (Figure 5B and 5C) and lysosomal ASMase 

(Figure 6A) were actually inhibited by CS. Higher concentration of CSE (10%) 

also activated SPT even earlier (at 1 h) (Figure 5A), having a positive early (4 h) 

increase in CerS5 and CerS2 activities (Figure 5B, 5C), without reaching 

significance. ASMase was also activated by high CSE concentrations in a 

sustained manner (Figure 6A and B). No change in activity was observed for 

nSM during these conditions (Figure 6C). These data show that CS activates 

ceramide enzymatic pathways in both epithelial and endothelial lung cells with 

different kinetics and amplitudes, having in epithelial cells robust activation of 

SPT and exhibiting increase of ASMase activity in endothelial cells. 

 

 1.2. CS exposure in vivo increases lung ceramides 

1.2.1. CS exposure increases total lung ceramides and DHC 

Chronic CS is associated with alveolar cell apoptosis and causes 

emphysema in susceptible individuals after decades of exposure. In mouse 

models, airspace enlargement develops after 4-6 months of CS exposure and 

apoptosis is detected as early as 1-4 weeks of exposure. To address my 

hypothesis that ceramide is involved in CS- induced apoptosis, I first measured 

ceramide following 1 or 4 weeks of CS exposure, in C57Bl/6 mice. Lung tissue 



56 

was harvested, ceramide and DHC levels were evaluated by LC-MS/MS and 

normalized to lipid phosphorus content. I observed increased levels of ceramide 

in the whole murine lungs at 4 weeks of CS, compared to mice of similar age 

exposed to ambient air or to those exposured to CS for only 1 week (Figure 7A). 

Interestingly, DHC, the ceramide precursor in the de novo pathway , was also 

upregulated after 4 weeks of CS (Figure 7B). these data are in concordance to 

previous studies in our lab, showing increase ceramide levels in DBA2/J mice 

exposed to CS at 4 weeks [210], and an increase ceramide levels in smokers 

lungs in humans [32], [102]. 

 

1.2.2. CS exposure activates the nSMase in vivo in both endothelial and 

epithelial type I cells 

Since cells in culture may behave differently than in situ, I investigated if 

ceramide synthetic pathways are activated in lung endothelial and epithelial cells 

type I in vivo, I exposed DBA2/J mice to CS for 1 week. Following CS exposure, 

lungs were immediately harvested, enzymatically disintegrated and sorted for the 

collection of both endothelial cells and epithelial type I cells using a Miltenyi 

Biotec system (Figure 8A). I used specific antibodies with iron microbeads and 

positive selection process. Podoplanin-specific Abs and CD146-specific 

antibodies were used for isolation of epithelial type I and endothelial cells, 

respectively. I then determined the activities of lysosomal ASMase, nSMase, and 

caspase-3 activities in both endothelial cells (Figure 8B, C and D) and epithelial 
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cells type I (Figure 8E and F). Of all enzymes investigated, I found a significant 

increase in nSMase in both cell types (Figure 8C and 8E). Only in epithelial type I 

cells I found a significant increase in caspase-3 activity, which indicates 

increased apoptosis in these types of cells following in vivo CSE for this short 

time (Figure 8F). 

 

1.2.3. CS exposure rapidly activates the SMase pathway of Cer synthesis in 

the whole lung 

SMases are known to be highly activated by stress, but their activities may 

be short-lived. I investigated if; unlike in the chronic model of CS exposure when 

mice are allowed to recover from CSE before harvest, immediately following 

CSE, lungs may show activation of sphingomyelinases. DBA2/J mice were 

exposed to CS for 0.5, 1, 2, and 5 hours (Figure 9A). Lung tissue was harvested 

immediately following CS and activities of sphingomyelinases were determined.  I 

found a significant increase in the activities of both acid sphingomyelinase 

isoforms: lysosomal and secreted after 1 hour following CS, with return to 

baseline after 5 hours (Figure 9B). In a separate experiment, I noted that both 

ASMase and nSMase are activated as early as 30 min following CSE (Figure 

9C). This indicates acute activation of lung sphingomyelinases during CSE. In 

contrast, the activity of CerS5, which is responsible for the synthesis of ceramide 

C16: 0, one of the most abundant lung ceramide, showed a trend for decreased 

activity after 1 hour of CS (Figure 9D). 
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1.2.4. Chronic CS activates the de novo pathway of ceramide synthesis in 

the whole lung  

Given that the upregulation of DHC suggested the activation of de novo 

ceramide synthesis, I measured the activities of enzymes in this pathway. SPT is 

the first enzyme responsible for the committed step in the de novo ceramide 

synthesis. I determined SPT activities in the whole lung tissue following 1, 2, and 

4 months of CS (Figure10). After an initial decrease after 1 month, SPT activity 

significantly increased later, at 4 months of CS exposure (Figure 10). These data 

provide evidence of upregulation of the de novo pathway following chronic CS 

exposure in DBA2/J mice. 

I next evaluated CerSs in response to CS. There are six CerS, responsible 

for synthesis of different Cer species. It is not known about the abundance of 

specific CerS in the lung. Previous work indicated that CerS5 is abundant in lung 

epithelial cells [32]. 

In collaboration with Dr. Futerman, our lab studied the relative expression 

levels of all CerS in the C57Bl/6 lung during CS exposure. They measured CerS 

expression using real time PCR of mouse lung homogenates. CerS2 and CerS5 

were the most abundant CerS in the lung (Figure11). In response to CS, CerS2 

mRNA expression was elevated late, after 6 months of CS (Figure11). 

Interestingly, the mRNA levels of one of the most abundant isoform, CerS5 

decreased starting at 1 week of CS, with return towards baseline after 6 months 

of CS (Figure11). The mRNA levels of both CerS1 and CerS4 showed a steady 
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decrease with time of CS. The only CerS, that exhibited an early upregulation in 

the expression of mRNA level, was CerS3, which increased after 1week of CS 

(Figure 10), but the low abundance of transcripts makes the significance of this 

increase unclear. In the C57Bl/6 mice, the mRNA levels for CerS2 was preceded 

by increased activity of CerS2 after 2 months of exposure (Figure12A), while 

CerS5 activity was upregulated at 2 months of CS (Figure11B), followed by 

return to (Figure 12A and B) or even below baseline activity in the C57Bl/6 

(Figure12C) late in the course of CS. 

Interestingly, there were no changes in the enzymatic activity of 

sphingomyelinases after prolonged CS, compared to control lungs (Figure 13A, 

B, C). Of note, lungs were harvested 16-24 hours following removal from active 

CS exposure. This data suggest that the de novo pathway is activated by chronic 

CS (2-4months), in particular SPT and CerS2. 

 

2. Effect of inhibition of enzymes responsible for ceramide synthesis on 

lung apoptosis following CS 

My hypothesis is that ceramide are necessary for CS-induced alveolar cell 

apoptosis. It has been shown previously that accumulation of ceramides was 

associated with VEGF blockage model of emphysema development and that 

direct instillation of ceramides led to extensive apoptosis of lung parenchyma 

[32]. If my hypothesis is true, downregulation of ceramide production will 
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decrease apoptosis. That could be achieved by using various inhibitors of 

enzymes responsible for ceramide synthesis. 

 

2.1. Effect of inhibition of ASMases on CS-induced lung apoptosis 

I first tested the effectiveness of amytryptiline (Amy), a known inhibitor of 

ASMases to prevent the activation of ASMase after acute CS exposure. I 

compared the effectiveness intra-peritoneal (i. p.) or intra-tracheal (i. t.) 

administration of Amy on the inhibition of lung ASMase (Figure14A). The i.p. 

administration of Amy significantly inhibited the activities of both lysosomal and 

secreted isoforms of ASMase in the lung following 1h CS exposure (Figure 14B 

and C). I therefore administered Amy i.p. in a chronic model of CS exposure in 

DBA2/J mice to test if the acute activation of ASMase is important for lung 

apoptosis after chronic CS exposure. Mice were exposed to CS smoke for four 

months and one group was injected with Amy for the first 2 consecutive months, 

as an early intervention (Figure 15A). Another group was injected with Amy for 

only the last two months of CS exposure, concomitant with CS exposure, as a 

late intervention (Figure 15A). After 4 months lungs from animals were harvested 

and alveolar tissue apoptosis was determined by IHC. 

There was a significant increase in caspase-3-expressing cells in the lung 

parenchyma of mice from CS group vs. AC group. There was a significant 

decrease in active caspase-3-expressing cells in the lungs of mice from early 

Amy treatment group exposed to CS (Figure 15B), compared to untreated CS-
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exposed mice (Figure 15B). These early inhibition of ASMase was not as 

effective at inhibition apoptosis at 4 months of CS. These data suggest that 

inhibition of ASMase late in the course of CS inhibits CS-induced apoptosis. 

 

2.2. Effect of inhibition of SPT on lung apoptosis due to CS 

SPT is the first enzyme in the de novo pathway of ceramide synthesis, 

and because I observed previously an increase in SPT activity in DBA2/J mice 

after 2 months of CS I asked if administration of myriocin (Myr), a potent inhibitor 

of SPT, would decrease CS-induced apoptosis. I exposed DBA2/J mice to either 

CS or ambient air for 2 months and appropriate groups were concomitantly 

administered with Myr (Figure 16A). After two months, lung tissue was harvested 

and analyzed. As expected, Myr downregulated the SPT activity in response to 

both CS and at baseline (Figure 16B). Treatment with myriocin did not 

significantly affect ASMase activity at 2 months of CS exposure (data not shown). 

However, nSMase was found significantly activated in the myriocin-treated group 

(Figure 16C), suggesting a compensatory feedback. Myriocin-treated mice had a 

significant decrease in caspase-3 activity of the whole lung, when compared to 

untreated CS exposed mice (Figure 16D). However, I could not detect any 

difference in caspase-3 activity in the whole lung after 2 months between CS and 

air control groups. (Figure 16D). I therefore evaluated lung parenchyma-only 

apoptosis, using IHC for active caspase-3. Indeed, there was increase in active 

caspase-3-expressing lung cells in alveolar tissue of CS-exposed mice (Figure 
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16E). Unexpectedly, Myr treatment actually increased the number of cells 

expressing active caspase-3 in CS exposed animals (Figure 16E). These data 

suggest that inhibition of ASMase was more effective at reducing lung 

parenchyma apoptosis following CS exposure than inhibition of SPT. 

 

3. Role of RTP801 on ceramide-induced lung cell-specific death 

3.1. RTP801 is upregulated in the lung ceramide-dependent model of 

emphysema 

I asked if RTP801 is involved in the mechanism of ceramide-induced 

apoptosis. As a first step in elucidating the crosstalk between RTP801, ceramide, 

and apoptosis, it was documented by the Petrache lab, that the oxidative stress-

responsive RTP801 was upregulated in the lungs during the first 7 days following 

VEGFR inhibition (Figure 17A). In this model, ceramide is upregulated and 

causes apoptosis. Interestingly, treatment of mice with the ceramide synthesis 

inhibitor FB1 inhibited the VEGFR-inhibitor-induced RTP801 protein expression, 

suggesting ceramide synthesis may be upstream of RTP801 upregulation in this 

model (Figure 17A). These data, together with previous work on RTP801 as a 

stress response molecule in the CS model of emphysema [32] indicated a 

possible interrelation between RTP801 and ceramide expression in the lung. To 

investigate if induction of RTP801 expression can increase ceramide levels, the 

Petrache lab in collaboration with Dr. Tuder and Dr. Feinstein, overexpressed 

RTP801 in the lung. 
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3.2. Rtp801 is sufficient to trigger lung apoptosis, airspace enlargement, 

and to increase lung ceramides 

I measured outcomes of another experiment, that overexpressed RTP801 

cDNA (50µg) or empty plasmid via intra-tracheal instillation [240]. At day 3 

following administration, when compared to control mice that received empty 

plasmid, the lungs of mice instilled with RTP801-expressing plasmid exhibited 

increased RTP801 protein (Figure 17B), and increased active caspase-3 as 

measured by IHC (Figure 17C). In RTP801-instilled mice, I measured an 

increased number of enlarged alveoli (Figure 17D). Interestingly, there was a 

marked increase in lung ceramides in response to RTP801 instillation, which was 

prevented by pretreatment with the ceramide synthase inhibitor FB1 (Figure 1E). 

These results suggested that VEGFR inhibition can increase RTP801 in a 

ceramide-dependent manner while, conversely, upregulated RTP801 suffices to 

trigger ceramide synthesis. 

 

3.3. Direct augmentation of ceramides in the lung increases endogenous 

ceramides and causes apoptosis, airspace enlargement, and RTP801 

upregulation 

It was previously demonstrated that a single intra-tracheal instillation of 

ceramides with a 12-carbon fatty acid side chain (C12:0; 1 mg/kg) administered 

with perfluorocarbon vehicle [32], caused overproduction of endogenous 

ceramides and lung cell apoptosis at 24h and 48h associated with an increase in 
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alveolar size [32, 201]. To further characterize the lung changes induced by 

ceramide, I instilled mice intra-tracheally with ceramide (C12:0; 1 mg/kg) or a 

with control vehicle (sham) and compared them with untreated mice. To 

distinguish exogenous from endogenous ceramides, I used tandem mass 

spectrometry to identify and measure only endogenous sphingolipids with longer 

than 14-carbon fatty acid chain. Since ceramide is the precursor of sphingosine-1 

phosphate, an important pro-survival sphingolipid, in collaboration with Dr. 

Berdyshev, I measured the ratio of ceramide to sphingosine-1 phosphate in the 

lungs following C12:0 ceramide instillation, as a better reflection of a pro-

apoptotic sphingolipid imbalance. The endogenous lung ceramide/S1P ratio 

increased at 4 h and was highest at 24 h after ceramide instillation, followed by a 

return to sham levels at 48 h (Figure 18A). Ceramide induced activation of 

executioner caspases-3/7 after 4 h, which persisted for 48 h following instillation 

(Figure 18B and C). As expected, ceramide instillation decreased alveolar 

surface area/lung volume, which became significant at 48 h (Figure 18D). To 

determine if ceramide increases are sufficient to elevate RTP801 expression in 

the lung, I next administered via a similar protocol of intra-tracheal instillation as 

C12:0 ceramide a more common endogenous ceramides, C16:0 ceramide, using 

this time polyethylene glycol conjugation to achieve improved solubilization of 

this more hydrophobic molecule. Compared to sham-instilled mice, the lungs of 

mice in which C16:0 was augmented had a 2-fold increase in RTP801 

expression in the lung parenchyma (Figure 18E and F). These results suggest a 

mutual interaction of ceramide and RTP801 induction in the lung. 
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3.4. Rtp801-null mice are protected from ceramide-induced epithelial cell 

apoptosis and emphysema-like disease 

I next asked if RTP801 induction was necessary for the pathogenic effects 

of ceramide in the lung. I instilled ceramide C16:0 intra-tracheally in the lungs of 

Rtp801-null mice, which were previously characterized in detail [231]. Compared 

to wild type mice, RTP801-deficient mice had significantly less caspase-3/7 

activity in whole lung tissue homogenates following ceramide augmentation 

(Figure 19A). Because of differential susceptibility of distinct lung alveolar cells 

types to ceramide in vivo is not known, I evaluated caspase-3/7 activation in 

specific alveolar structural cell types isolated from the lung at 48 h following 

ceramide instillation. I enzymatically disintegrated lungs and investigated the 

vulnerability to apoptosis of lung endothelial, epithelial type I, and epithelial type 

II cells in both Rtp801 KO and WT mice. Alveolar cell-type markers (CD31, 

podoplanin, and prosurfactant-C, respectively) and active caspase-3 were 

detected using labeling with specific antibodies followed by flow cytometry. 

Ceramide instillation significantly increased apoptosis in both lung endothelial 

and epithelial type II cells in wild type mice (Figure 19B). Interestingly, in Rtp801-

null mice only type II pneumocytes were protected against ceramide-induced 

apoptosis (Figure 19B). Given that RTP801 is largely upregulated in type II cells 

(but not in endothelial cells) after exposure to cigarette smoke in vivo [231], these 

findings concordantly demonstrate that RTP801 is necessary for ceramide to 

activate caspase-3 in alveolar type II epithelial cells. 
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To determine if other features of emphysema-like disease induced by 

ceramide are impacted by RTP801, we measured lung inflammation by counting 

inflammatory cells in the bronchoalveolar lavage fluid of mice. There was a 

relative increase in the polymorphonuclear (PMN) cells following ceramide 

instillation in wild type mice, which was significantly reduced in the rtp801-null 

mice (Figure 19C). As expected, alveolar macrophages exhibited reciprocal 

changes (Figure 19D). 

To measure the effect of ceramide 16:0 and the role of RTP801 on lung 

parenchyma morphology and function, following lung function testing, the left 

lung was inflated under constant pressure and airspace size was determined by 

morphometry. Compared to wild type mice, where ceramide augmentation 

increased airspace size measured by mean linear intercepts (MLI) from 37.1 to 

39.1 µm (p=0.02), in rtp801-null mice ceramide had a negligible effect on 

changes in MLI from 36.5 to 37.8 µm (p=0.3), suggesting that the lack of RTP801 

was protective against ceramide-induced apoptosis (Figure 20A and B). 

Similarly, wild type mice exhibited significant increases in the lung static 

compliance (p=0.01) in response to ceramide instillation, whereas rtp801-null 

mice did not (Figure 20C). Interestingly, ceramide instillation also elevated the 

airflow resistance in mice and this, similar to the increase of airspace size was 

more pronounced in wild type than in rtp801-null mice (Figure 20D). These data 

show that ceramide induces a COPD-like physiological phenotype, which is 

ameliorated by absence of RTP801. 
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E.DISCUSSION 

1. Cigarette smoke (CS) exposure increases ceramides both in vitro and in 

vivo, which leads to lung cell apoptosis 

1.1. Lung epithelial and endothelial cells increase ceramide levels in 

response to CSE, which leads to a programmed cell death 

1.1.1. CS exposure inhibits cell proliferation in vitro 

I showed inhibition of proliferation in RLMVEC when exposed to even low 

CSE concentration. This response allowed me to select CSE concentration 

parameters for subsequent studies. It is not known, how CSE inhibits cell 

proliferation. Excess of cellular ceramides has known pro-apoptotic effect, but 

basal levels of ceramides are necessary for cell viability, because ceramides 

serve as intermediaries for synthesis of other sphingolipids, including those with 

pro-survival and pro-proliferative role, like S1P. It is possible that the reduction in 

cell proliferation in CS exposed cells is due to either increase of DHC, increase 

ceramide to S1P ratio, or molecular changes unrelated to ceramide. 

 

1.1.2. Lung alveolar cells exhibit an increase in apoptosis in response to 

CS 

Both human lung endothelial and epithelial cells exhibited increased 

apoptosis in response to CSE, in a dose dependent manner. SAEC had a more 

consistent apoptotic response than HLMVEC when exposed to similar 
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concentrations of CS. There was no measurable necrosis in response to CSE as 

measured by Annexin/Pi. This is, to my knowledge, the first comparison between 

the apoptotic responses of these two cell types, which suggests, that HLMVECs 

have more robust survival response to CS than SAEC. 

 

1.1.3. CS generates ceramides in vitro 

CSE levels that caused apoptosis were associated with increased 

ceramide levels in both epithelial and endothelial cells, in a dose dependent 

manner. Interestingly, the highest increase of ceramides was observed in 

HLMVEC, cells which also had the highest baseline ceramide levels. This may 

be attributed to acid sphingomyelinase levels, which are the highest in 

endothelial cells. Interestingly, the decrease in the level of ceramides in HLMVEC 

at 10% CSE concentration when compared to 5% might be attributed to complete 

blockage of the de novo ceramide synthesis via DEGS inhibition or to complete 

utilization of available stores of membrane sphingomyelin via activated 

sphingomyelinases. The fact that HLMVEC had the highest ceramide content, 

but were more apt for survival than SAEC suggests that either pro-survival S1P 

is equally robustly increased, or that it is not the total content, but rather the rate 

of increase and the manner of increase in specific ceramides that induce 

apoptosis. 
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1.1.4. CS activates enzymes involved in the synthesis of ceramides 

The upregulation of the de novo and sphingomyelinase pathways by CS 

was cell type-, time-, and concentration-specific. Both ASMase and nSMase 

were briskly activated, whereas SPT and CerS were early on inhibited or 

unaffected, followed by late activation. Epithelial cells relied more on nSMase, 

whereas endothelial cells upregulated ASMase more robustly. 

 

1.2. CS upregulates ceramides in vivo 

1.2.1. Total lung Cer and DHC are increased following chronic CS exposure 

Chronic CS exposure upregulated ceramides along with DHC, indicating 

upregulation of at least the de novo pathway. Fact that the magnitude of DHC 

increase was higher than ceramide increase indicated a partial inhibition of 

DEGS, possibly via oxidative stress. Alternatively, ceramide might be quickly 

utilized for the synthesis of other metabolites. 

1.2.2. Acute CS exposure activates the sphingomyelinase pathway in the 

whole lungs 

Both isoforms of ASMase were found to be upregulated after 1h following 

CS exposure. This data are in agreement with previous reports of quick 

sphingomyelinase activation by stress, including oxidative stress [125]. The 

decrease in CerS5 activity after 1 h of CS exposure may indicate an early 
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inhibition of the de novo pathway, but whether this acute downregulation is due 

to inhibition by DHC or other regulatory processes remains to be determined. 

1.2.3. Chronic CS exposure activates the de novo pathway of ceramide 

synthesis in the whole lung 

The activity of SPT, the first enzyme from the de novo pathway was found 

to be upregulated after 4 months of CS exposure after initial inhibition at 4 weeks 

of CS exposure. These findings correlate well with the occurrence of lung cell 

apoptosis as detected in lung IHC after 4 months of chronic CS. CerS are 

enzymes, which are responsible for the synthesis of various dihydroceramides, 

depending on utilization of specific acyl chains. CerS (LASS) exist in 6 isoforms, 

having specific organ distribution and activity. Interestingly, the expression of 

mRNA level of given CerS does not correspond always with their activity level. Of 

all CerS isoforms, only the mRNA level for CerS2 correlated with its activity 

which was the highest at 6 months of CS exposure. The downregulation of CerS 

mRNA expression early in the CS course may suggest involvement of specific 

transcriptional regulatory mechanisms to prevent overproduction of ceramides or 

DHC in the lungs. My data imply that the de novo pathway is activated by 

prolonged CS exposure, in particular with SPT and CerS2 involvement, with no 

significant coactivation of SMase pathway. However, the timing of harvest of lung 

tissue (16-24 hours) following removal from CS doesn’t exclude a brisk 

participation of sphingomyelinases (minutes) in the generation of ceramides even 

this late in the course of CS exposure. 
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2. Effect of enzyme inhibition on lung apoptosis following CS 

2.1. Inhibition of SPT with Myr does not inhibit lung parenchyma apoptosis 

due to CS 

I noted discordant results between total lung caspase enzymatic activity 

and apoptotic caspase composition by IHC in lungs treated with the SPT 

inhibitor, Myr. This may be explained by the contribution of other lung cells to 

caspase-3 activity. In contrast, IHC only focuses on the lung parenchyma. Only 

on lung parenchyma I detected increases in apoptosis in response to CSE. Myr 

did not decrease it; in contrast it increases apoptosis in response to CS. This 

may suggest that compensatory production of ceramides via neutral 

sphingomyelinases in face of blocked de novo pathway has contributed to 

apoptosis of alveolar cells. 

 

2. 2. Inhibition of ASMase with Amy inhibited lung parenchyma apoptosis 

due to CS 

Amytryptiline is an inhibitor of ASMase accelerating its lysosomal 

degradation. Both ASMase isoforms activated early by CS exposure were 

effectively inhibited by Amy. The i. p. administration of Amy was more effective at 

inhibition of lung ASMase than i. t. administration. Using IHC methodology, we 

demonstrated significant increase in caspase-3 activity following chronic CS. The 

i. p. administration of ASMase inhibitor decreased active caspase-3, induced by 

chronic CSE. Collectively, this data indicate that ceramides produced by ASMase 
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during chronic CS are pro-apoptotic. Although ceramides are produced by both 

de novo and sphingomyelinase pathways, ceramide provided by ASMase, even 

when only briefly activated have a role in triggering caspase-3 activation in 

alveolar parenchyma. 

 

3. RTP801 is required for ceramide-induced cell-specific death in the 

murine lung 

I used in vivo gain of ceramide function approaches, which are 

characterized by alveolar cell apoptosis and oxidative-stress dependent airspace 

enlargement. I have shown that ceramide augmentation induces apoptosis of 

both lung endothelial cells and type II epithelial cells and is associated with 

alveolar wall apoptosis and enlargement of airspaces accompanied by an 

increase in static compliance, suggesting an emphysema phenotype. The 

airspace enlargement was inhibited in mice lacking RTP801, which showed lack 

of apoptosis of epithelial type II cells in response to ceramide. These results 

causally implicate RTP801 as an upstream sensor of lung cellular stresses in 

lung epithelial cells. Although alveolar destruction also involves capillary 

endothelial cells, our data positions type II cells as key in the amplification of the 

alveolar destruction mediated by the interaction of ceramide and RTP801.  

Interestingly, type I cells not only were not protected from apoptosis in the 

RTP801 null mouse, but they exhibited heightened caspase-3 activation in 

response to ceramides. This may suggest a possible crosstalk between stress-
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protected alveolar type II cells, which are considered precursors of type I cells, 

and the type I cells, which are bona-fide structural components of the alveolo-

capillary membrane. It is possible that rescued type II cells may replace 

apoptosing type I cells at a rate sufficient to preserve airspace size, and/or that 

RTP801 has opposing roles in the two cell types, being pro-apoptotic in type II 

cells, but anti-apoptotic in type I cells. 

A common denominator linking ceramide and RTP801 upregulation could 

be oxidative stress, a known inducer of both molecules, which is also generated 

downstream of both ceramide and RTP801 upregulation [32, 201, 231, 240]. 

Oxidative stress caused directly by CS or endogenous sources, such as 

inflammatory and parenchymal cells, plays a central unifying roles in all stages of 

emphysema. Reduction in anti-oxidant defenses in NRF-2 knockout mice leads 

to increased susceptibility to emphysema, which is characterized by heightened 

alveolar cell death [241]. Oxidative stress is most likely sensed by a susceptible 

host as a cellular stress in the setting of exposure to CS. RTP801, a negative 

regulator of mTOR signaling, is therefore activated as part of a prototypic 

response to adverse cell stress responses. However, its activation promotes 

cellular injuries triggered by CS, including further oxidative stress, cell death, and 

alveolar inflammation. Excessive ROS could also have been responsible for 

RTP801 increases in response to VEGFR inhibition [234]. In addition, we have 

shown that ceramide-induced airspace enlargement is dependent on oxidative 

stress [201], which may have also upregulated RTP801 in response to intra-

tracheal ceramide administration. 
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Ceramide is a prototypic lipid-signaling molecule, which we have shown to 

amplify lung injury due to CS [32, 77, 201, 220, 242]. Prior studies have also 

highlighted that ceramide not only amplifies, but its synthesis is triggered by 

oxidative stress [201]. I present novel evidence that RTP801 is not only sufficient 

but also necessary to mediate increases in lung ceramide via the de novo 

pathway of ceramide synthesis. These data position RTP801 in type II cells as 

upstream of ceramide synthesis in vivo, in settings that reproduce features of 

CS-induced alveolar injury. Of note, increases of lung expression of either 

RTP801 or ceramide levels suffice to lead to alveolar enlargement and alveolar 

cell death. Whether ceramide mediates all or part of RTP801 dependent 

pathogenesis due to CS will await further experimentation in mice deficient of 

ceramide synthetic enzymes. 

The significance of increased airflow resistance in response to ceramide 

upregulation and its attenuation in the RTP801 null animals is yet to be clarified. 

This airway response was associated with increased RTP801 expression in the 

larger airways as well as airway inflammation, as suggested by elevated levels of 

inflammatory cells (PMN) in the bronchoalveolar lavage fluid of wild type animals, 

which was largely RTP801-dependent. The mechanism by which RTP801 

triggers this large airway inflammation is not known. 

The data that VEGF receptor inhibitor also triggers RTP801 expression 

further expands the concept of RTP801 as a stress sensor, in that alterations in 

alveolar maintenance, such as those caused by interruption of VEGF survival 

signals, may be also interpreted as part of a lung cellular stress response. CS 
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has been shown to decrease VEGF signaling in the alveolar lung tissue and 

VEGFR blockade is sufficient to upregulate ceramides, induce oxidative stress, 

and trigger alveolar cell apoptosis, events that precede the onset of airspace 

enlargement [30, 32, 234, 243]. Furthermore, as increases in lung ceramide 

activate RTP801 expression; endogenous lung stress responses may perpetuate 

this pathogenic loop. It will be important to elucidate whether lung injury is more 

severe when these responses become repetitive, possibly exhausting repair 

mechanisms. 

In conclusion, my results highlight the concept of self-amplifying injury in 

response to CS exposure, the role of ASMase activation in lung cell apoptosis, 

the importance of alveolar type II cell apoptosis in this process, and the cell-

specific apoptotic signaling of ceramide in vivo. Early interruption of such self-

perpetuating stress responses may prevent emphysema development, or may 

allow proper repair mechanisms to prevail.  
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F.FUTURE STUDIES 

I demonstrated in vitro and in vivo studies that ceramides play an 

important role in the development of lung cell apoptosis in response to CS.  

There are still many unanswered questions. Lungs consist of more than 50 

different cell types and there are multiple complex interactions between them, 

including various type of signaling. Both epithelial and endothelial cells from 

alveolar units are the first line of cells responsible for apoptotic changes due to 

harmful insults, including CS exposure. In vitro studies, although well conducted, 

can delineate only some aspects of pathophysiologic changes due to exogenous 

insults, including CS exposure. In vivo, when embedded in a complex 

microenvironment, particular cells responses to noxious stimuli may differ to 

those observed in vitro. This is specifically important when studying ceramide 

synthesis due to CS exposure.  Particular cells may differ in the way they 

synthesize ceramides. Even the same cells can activate different biosynthetic 

pathways depending on stimulus. For example, endothelial cells may produce 

ceramides acutely via acid spingomyelinase activity due to CS exposure or TNF-

α, which can eventually activate the de novo pathway. Thus, further studies on 

particular cell lines in vivo, using sorted cells following rapid lung disintegration 

may be needed for precise cell-specific kinetics of ceramide activation and 

apoptosis. 

Other studies should be directed for biochemical compounds for targeted 

inhibition of pathways for ceramide synthesis. Pharmacological inhibition of the 

enzymes involved in the synthesis of ceramides could have off target effects. 
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Furthermore, since ceramides are important intermediaries for more complex 

sphingolipids, including those responsible for activating pro-survival pathways, 

the inhibition of ceramide synthetic patways may lead to scarcity of ceramides in 

certain cells, and paradoxically, to enchanced apoptosis. For this reason 

research should be directed to specifically inhibit the synthesis of ceramides only 

in these cells which are extremaly sensitive to ceramides. 
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Schematic 1 
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Figure 1. Proliferation assay performed on rat lung endothelial cells following CS 

exposure. That assay was determined with BrdU incorporation using ELISA. (A) 

Proliferation of cells exposed for 48h to the indicated concentrations of CSE. 

Mean +SEM; * p,0.05; n=3. (B) Proliferation of cells exposed to CS (2.5% CSE)  

for the indicated time. Mean +SEM; #: p<0.01; n=3. AC - air control; CS - 

cigarette smoke. 
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Figure 2. Evaluation of apoptosis events in lung alveolar cells following different 

CS exposure. Apoptotic events were quantified by Annexin-V/PI staining and flow 

cytometry. (A) Apoptosis measured in small airway epithelial cells (SAEC) 

following CS exposure (0.1 to 10% CSE) for 6 h. Mean+ SEM; *: p<0.05, 

ANOVA; n=2-3/group. (B) Apoptosis measured in human lung microvascular 

epithelial cells (HLMVEC) following CS exposure (0.1 to 10% CSE) for 6 h. 

Mean+ SEM; ANOVA; n=2/ each concentration.  
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Figure 3. Ceramide content of lung cells following CS exposure. Total ceramides 

levels in lung microvascular endothelial cells (HLMVEC) or small airway epithelial 

cells (SAEC) exposed to CS (0.1, 1, 5, 10%) for 24 h. Mean+ SEM; *p<0.05; 

n=3/HLMVEC and 5/SAEC/group. 
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Figure 4. Effect of CS exposure on the activity on the sphingomyelinase pathway 

in cultured human lung endothelial cells. Cultured cells were exposed to CS (5 or 

10%) for the indicated time. (A) The lysosomal ASMase activity, (B) secreted 

ASMase activity, and (C) neutral SMase activity, were expressed as activity rates 

normalized by protein concentration. Mean+ SEM; n=2-3/group. 
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Figure 5. Effect of CS exposure on the enzymatic activities in the de novo 

ceramide synthesis pathway in rat lung epithelial cells. Cultured cells were 

exposed for the indicated time to CS (5 and 10% CSE). (A) SPT activity was 

expressed as arbitrary units (AU) derived from the number of scintillation counts 

per minute, normalized by the protein concentration of the sample. Mean+ SEM; 

n=2-3/group. (B) Ceramide synthase-5 activity was expressed as AU derived 

from densitometric density of TLC bands, normalized by the protein 

concentration. Mean+ SEM; n=2-3/group. (C) Ceramide synthase-2 activity was 

expressed as AU derived from densitometric density of TLC bands, normalized 

by the protein concentration. Mean+ SEM; n=2-3/group. 
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Figure 6. Effect of CS exposure on the activity of enzymes in the 

sphingomyelinase pathway in rat lung epithelial cells. A-C: Cultured rat lung 

epithelial cells (L2) were exposed for the indicated time to CS (5 and 10% CSE). 

(A) Lysosomal ASMase activity; (B) secreted ASMase activity; and (C) neutral 

SM activity were each normalized to protein concentration. Mean+ SEM; n=2-

3/group. *: p<0.05, ANOVA. 
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Figure 7. CS exposure increases production of ceramides in vivo. Lung 

ceramide levels in response to CS exposure for 4 weeks in C57Bl/6 mice. Left 

panel: total ceramide level adjusted to lipid phosphorus concentration. Mean+ 

SEM; p<0.05 vs. control AC; n=5/group. Right panel: total dihydroceramide level 

adjusted to lipid phosphorus concentration. Mean+ SEM; p<0.05 vs. control AC; 

n=5/group. Ceramide content was evaluated by Walter Hubbard, JHU. 
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Figure 8. Determination of enzymatic activities in sphingomyelinase ceramide 

synthesis pathway in both endothelial and epithelial cells type I isolated from 

enzymatically disintegrated lungs, following 1 week of CS exposure. (A) Design 

for the experiment: DBA2/J mice were exposed to CS for 1 week, lungs were 

enzymatically disintegrated and sorted for endothelial and epithelial type I cells. 

In both groups of cells the activities of lysosomal ASMase, neutral SMase and 

caspase-3 were determined. (B) Lysosomal ASMase activity in endothelial cells 

normalized to protein concentration. Mean+ SEM; n=4-5/group. (C) Neutral 

SMase activity in endothelial cells normalized to protein concentration. Mean+ 

SEM; n=4-5/group (D) Caspase-3 activity in endothelial cells (measured in 16.86 

µg of protein per sample). Mean+ SEM; * p< 0.05; n=4-5/group. (E) Neutral 

SMase activity in epithelial cells type I normalized to protein concentration. 

Mean+ SEM; * p< 0.05; n=4-5/group. (F) Caspase-3 activity in epithelial cells 

type I (measured in 16.86 µg of protein per sample). Mean+ SEM; * p< 0.05; n=4-

5/group. 
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Figure 9. Effect of short term CS exposure on the activity of ceramide synthesis 

enzymes in the whole lung tissue of DBA2/J mice. (A) Experimental design for 

acute CS exposure in. (B) Lysosomal and secreted acid sphingomyelinase 

activities normalized by protein concentration. Mean+ SEM; * p<0.05; n=5/group. 

(C) Lysosomal and (D) neutral sphingomyelinase activities normalized by protein 

concentration. Mean+ SEM; * p<0.05; n=4/group. (E) Ceramide syntase 5 activity 

expressed as arbitrary units calculated from densitometry units normalized to 

protein concentration. Mean+ SEM; n=5/group. 
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Figure 10. Effect of CS on enzymes of the de novo ceramide synthesis pathway 

in the whole lungs. Mice (DBA2/J) were exposed to CS for the indicated time and 

SPT activity was determined using tritium-labeled L-serine and expressed as 

arbitrary units normalized by protein concentration. Mean+ SEM; p< 0.05; 

n=3/group. 
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Figure 11. Expression of mRNA levels of distinct lung ceramide synthase 

isoforms in the whole lung of C57Bl6 mice following CS exposure for the 

indicated time. (A-F) mRNA levels  were measured by real time PCR. For all 

panels: Mean+ SEM; * p< 0.05 vs. air control; n=5. Data provided by Dr. A. 

Futerman (Weizmann Institute, Israel). 
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Figure 12. CS exposure activates enzymes of the de novo pathway in the lungs 

of DBA2/J mice. (A) Ceramide synthase 2 activity in lungs of DBA2/J mice, 

expressed as arbitrary units (AU) of densitometry normalized by protein 

concentration. Mean+ SEM; p< 0.05 vs. AC; n=5/group. (B) Ceramide synthase 5 

activity in lung of DBA2/J mice, expressed as arbitrary units (AU) of densitometry 

normalized by protein concentration. Mean+ SEM; p< 0.05 vs. AC; n=5/group. 

(C) Activity levels of lung ceramide synthase 5 in C57Bl/6 mice during chronic CS 

exposure, expressed as arbitrary units (AU) of densitometry normalized by 

protein concentration. Mean+ SEM; p< 0.05 vs. AC; n=5/group. 
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Figure 13. Effect of CS exposure on the activity of enzymes in the 

sphingomyelinase pathway in the whole lung tissue of DBA2/J mice. (A) 

Lysosomal acid sphingomyelinase, (B) soluble acid sphingomyelinase, and (C) 

Neutral sphingomyelinase activities were measured following CS exposure for 

the indicated time and were normalized by protein concentration. Mean+ SEM; 

n=4/group.  
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Figure 14. Effect of the ASMase inhibitor amytryptilline (Amy) on the lysosomal 

and secreted ASMase activities induced by short term CS exposure in lungs of 

DBA2/J mice. (A) Experimental design: mice were intratracheally instilled or 

intraperitoneally injected with Amy (0.3 mg/kg, once) or with vehicle (PBS) 1 h 

prior to exposure to CS (for 1 h). Whole lung (B) lysosomal and (C) secreted 

sphingomyelinases activities were normalized to protein concentration. Mean + 

SEM; * p<0.05; n=4/group. 
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Figure 15. Effect of ASMase inhibition with amytryptilline on lung apoptosis 

following chronic CS exposure in DBA2/J mice. (A) Experimental design. (B) 

Caspase-3 activity measured by IHC with active caspase-3 antibody and image 

analysis of lung parenchyma only. Boxplot (box indicating the 25th and 75th 

percentile with the middle line showing the median and the 5th and 95th 

percentiles indicated by whiskers); Abbreviations: AmyP: Amy prophylactic, 

AmyT: Amy treatment, AmyC: Amy Control: ANOVA; *p<0.05; n=5-10/group. 
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Figure 16. Effect of SPT inhibition with myriocin on lung apoptosis following 

chronic CS exposure of DBA2/J mice. (A) Experimental design. (B) Whole lung 

SPT activity expressed as arbitrary units (AU) derived from scintillation counts, 

normalized to 50 mg tissue protein. Mean + SEM; n=4-5/group. (C) Whole lung 

neutral SMase activity normalized to protein concentration. Mean+ SEM; p<0.05; 

n=4-5/group. (D-E) Apoptosis measured via caspase-3 activity in the whole lung 

tissue normalized per 11.49 ug protein (D) or specifically in the lung parenchyma 

by immunohistochemistry (E) using active caspase-3 antibody and image 

analysis. Mean+ SEM; * p<0.05; n=4-5/group.  
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Figure 17. Elevation of lung RTP801 is associated with increases of airspace 

size, apoptosis, and ceramide levels. (A) In a model of apoptosis-dependent 

emphysema by vascular growth factor receptor inhibition expression of RTP801 

is increased in the lung tissue. RTP801 protein expression was measured by 

Western blotting in lung homogenates from individual mice treated with SU5416 

(20 mg/kg; s. c. once) and harvested after the indicated number of days, with 

vehicle control (Veh; s.c. once, lungs harvested at day 7), or with SU5416 and 

ceramide synthase inhibitor Fumonisin B1 (FB1; 1.1 mg/kg, i.p. daily; lungs 

harvested at day 7). Each lane represents a different mouse lung. Vinculin 

immunoblotting was used as a loading control. (B-E) Effects of intra-tracheal 

instillation (i-t) of RTP801-expressing plasmid (50 mg) in the lung: (B) Increased 

RTP801 protein measured in the lung homogenates by Western blot following 

RTP801 instillation compared to control plasmid. (C): The left panel shows active 

caspase-3 positive cells detected by immunohistochemistry (brown; arrow) in 

fixed lung tissue from control animals following intra-tracheal instillation of empty 

plasmid (50 mg; lungs harvested after 3 days) or of RTP801-plasmid; size bar 10 

mm. The right panel represents quantification of data from IHC; Mean + SEM, 

*p<0.05 vs. control; Student’s t test; n=3 mice/group; 8-10 lung fields/mouse). (D) 

Airspace enlargement was measured by morphometry of the hematoxyllin-eosin-

stained fixed lungs (inset) 3 days after RTP801-plasmid instillation and 

expressed as the mean frequency of alveoli of a certain diameter. Note a shift the 

right (towards a higher frequency of larger diameter alveoli) in mice instilled with 

RTP801-plasmid (grey line) compared to control (black line); n=3/group. (E) Total 
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ceramide content of mouse lungs at 3 days following RTP801-plasmid instillation, 

with or without ceramide synthase inhibitor fumonisin B1 (FB1; 2.2 mg/kg), 

measured by DAG kinase assay and expressed as arbitrary units (from 

densitometric analysis of ceramide on TLC plates) normalized by lipid inorganic 

phosphorus (lipid Pi). Mean + SEM, *p<0.05; ANOVA; n=3-5/group. 
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Figure 18. Increases in lung ceramide content are associated with airspace 

enlargement, apoptosis, and RTP801 upregulation. Effect of a single intra-

tracheal instillation of ceramide C12:0 (A-D) or C16:0 (E-F) (5 mg/kg) in mice on: 

(A) Endogenous ceramides/sphingosine-1 phosphate (S1P) ratio in lung tissue 

homogenates at the indicated time in sham-operated mice (that underwent 

exposure of the trachea only), negative control mice (that were administered the 

vehicle only) or mice that received exogenous C12:0. Boxplot (box indicating the 

25th and 75th percentile with the middle line showing the median and the 5th and 

95th percentiles indicated by whiskers); ANOVA; *p<0.05; n=4-5/group.(B) Lung 

caspase-3/7 enzymatic activity was measured in whole lung lysates of mice that 

were instilled with C12:0 (n=7) and expressed relative to the activity measured in 

control mice (n=5). Mean ± SEM; *: p<0.05 vs. control; Student’s t test). (C) Lung 

active caspase-3 expression detected by IHC (brown, arrows) shown in 

representative micrographs (size bar 50 mm). (D) Lung surface/volume ratio 

determined by standardized lung morphometry of alveolar spaces of mice 

following ceramide instillation timecourse and 48h, respectively. Boxplot, 

ANOVA; * P<0.05; n=2 (Sham); n=3-4/group; 8-10 lung fields/mouse. (E) 

RTP801 expression detected by IHC in the lung sections of mice following C16: 0 

instillation compared to control animals or rtp801-null mice. Note an increase in 

RTP801 (brown, arrows) in the lung parenchyma and also (see insets) in the 

vascular (v) endothelium as well as bronchial (b) epithelium in ceramide-instilled 

mice. (F) RTP801 expression in the lung parenchyma was quantified via blinded 

image analysis software and expressed as arbitrary units (AU); Mean + SEM, *: 
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p<0.05, Student’s t test; n=4, except for RTP801-null mice, which was n=2; 8-10 

lung field/mouse. 
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Figure 19. Requirement for RTP801 in ceramide-induced apoptosis of type II 

epithelial cells and neutrophil infiltration. (A) Caspase-3/7 activity levels in whole 

lungs homogenates normalized by protein concentration. Mean + SEM; *: 

p<0.05; Student’s t test; n=2-4/group. (B) Cell specific apoptosis expressed as 

relative abundance (%) apoptotic active caspase-3/7- positive cells among lung 

endothelial (CD31-positive), alveolar epithelial type I (podoplanin positive) and 

type II (pro-surfactant-C positive) cells in murine lung cell suspensions, detected 

by flow cytometry with fluorescence-labeled specific antibodies. Mean + SEM; *: 

p<0.05; n=4-5/group. Note that only type II epithelial cells were protected against 

ceramide-induced apoptosis in rtp801-null mice. (C-D) Analysis of abundance (% 

of total cells) of polymorphonuclear cells (PMN), (C) and alveolar macrophages 

(D) counted in cytospins of the bronchoalveolar lavage fluid in mice. Mean + 

SEM, *: p<0.05; n=4-5/group. 
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Figure 20. Requirement for RTP801 in ceramide-induced changes of lung 

alveolar morphology and function. (A-D) Measurements in response to 

exogenous ceramide 16:0 (5mg/kg; 48 h) or vehicle (control) intra-tracheal 

instillation in wild type or rtp801-null mice. (A-B) Mean linear intercept (MLI); (A) 

expressed as boxplot (box indicating the 25th and 75th percentile with the middle 

line showing the median; the 5th and 95th percentiles indicated by whiskers; n=5; 

* NS

*      NSD
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8-10 lung fields/mouse) measured by automated morphometry of lung 

parenchyma on paraffin embedded lung sections stained with hematoxyllin-eosin 

(B). (C) Lung compliance measured with Flexivent in anesthetized mice; Box 

plot; n=4 (wild type) or 5 (rtp801-null). Two-way ANOVA; *: p<0.05 or NS (not 

statistically significant). (D) Airflow resistance measured with Flexivent in 

anesthetized mice. Two-way ANOVA: * p<0.05 or NS (not statistically significant); 

n=5/group. 
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