
 

 

 
 

AN IMPROVED UTILITY DRIVEN APPROACH TOWARDS 

K-ANONYMITY USING DATA CONSTRAINT RULES 

 

 

 

 

 

Stuart Michael Morton 

 

 

 

 

 

 

 

 
Submitted to the faculty of the University Graduate School 

in partial fulfillment of the requirements 
for the degree 

Doctor of Philosophy 
in the School of Informatics, 

Indiana University 
 
 
 

 October 2012  

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/46957353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii 
 

 
 
 
 
 
Accepted by the Faculty of Indiana University, in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy. 

 

 

_________________________________ 

Mathew Palakal Ph.D., Chair 
 
 
 

_________________________________ 

Malika Mahoui Ph.D. 
Doctoral Committee 

 
 
_________________________________ 

P. Joseph Gibson Ph.D. 
July 26, 2012 

 
 
_________________________________ 

Hadi Kharrazi Ph.D. 
 
 

  



iii 
 

ACKNOWLEDGMENTS 

 I would like to thank all of my coauthors for the work in the various chapters, 

especially Dr. Malika Mahoui, Dr. P Joseph Gibson and Saidaiah Yechuri for their 

significant contributions to this dissertation. I would also like to thank Dr. Hadi Kharrazi 

and Dr. Mathew Palakal for their advice and comments. Finally, I would like to thank my 

wife and my parents for all of their support over the last five years. 

  



iv 
 

ABSTRACT 

Stuart Michael Morton 
 

AN IMPROVED UTILITY DRIVEN APPROACH TOWARDS K-ANONYMITY USING 
DATA CONSTRAINT RULES 

 
As medical data continues to transition to electronic formats, opportunities arise 

for researchers to use this microdata to discover patterns and increase knowledge that 

can improve patient care. Now more than ever, it is critical to protect the identities of the 

patients contained in these databases. Even after removing obvious “identifier” 

attributes, such as social security numbers or first and last names, that clearly identify a 

specific person, it is possible to join “quasi-identifier” attributes from two or more publicly 

available databases to identify individuals.  

K-anonymity is an approach that has been used to ensure that no one individual 

can be distinguished within a group of at least k individuals. However, the majority of the 

proposed approaches implementing k-anonymity have focused on improving the 

efficiency of algorithms implementing k-anonymity; less emphasis has been put towards 

ensuring the “utility” of anonymized data from a researchers’ perspective. We propose a 

new data utility measurement, called the research value (RV), which extends existing 

utility measurements by employing data constraints rules that are designed to improve 

the effectiveness of queries against the anonymized data. 

To anonymize a given raw dataset, two algorithms are proposed that use pre-

defined generalizations provided by the data content expert and their corresponding 

research values to assess an attribute’s data utility as it is generalizing the data to 

ensure k-anonymity. In addition, an automated algorithm is presented that uses 

clustering and the RV to anonymize the dataset. All of the proposed algorithms scale 

efficiently when the number of attributes in a dataset is large. 

Mathew Palakal Ph.D., Chair 
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AN ENHANCED UTILITY-DRIVEN DATA ANONYMIZATION METHOD 

Abstract 

As medical data continues to transition to electronic formats, opportunities arise 

for researchers to use this microdata to discover patterns and increase knowledge that 

can improve patient care. We propose a data utility measurement, called the research 

value (RV), which reflects the importance of a database attribute with respect to the 

other database attributes in a dataset as well as reflect the significance of the content of 

the data from a researcher’s point of view. Our algorithms use these research values to 

assess an attribute’s data utility as it is generalizing the data to ensure k-anonymity. The 

proposed algorithms scale efficiently even when using datasets with large numbers of 

attributes. 

Introduction 

With the advances made in technology during the last few decades, health 

organizations have amassed large amounts of electronic, health related data. This data 

constitutes a valuable resource for researchers, analysts and decision makers. For 

example, epidemiologists may use emergency visits to detect potential arising outbreaks 

that need to be further investigated and appropriate actions can be taken in a timely 

manner. Health related information is also made available to the general public as a 

contribution to public health awareness and education. For example, electronic birth and 

death certificates may: 1) provide a rich source for researchers investigating risk factors 

for infant deaths or other poor birth outcomes, 2) provide advocates, health care 

providers, and government or nonprofit agencies with specific local information about 

maternal and child health issues, and 3) help guide policy development. Like other 

health departments across the country, the Marion County Public Health Department 

(MCPHD) of Indiana provides the public with access to Datamart, an Internet application 

that presents aggregate birth and death certificate data [9]. Users may obtain summary 



2 
 

information on features such as birth risk factors aggregated by year (since 1997), by 

census tract, by race, etc. 

In order to preserve the anonymity of statistical data, two main approaches have 

been adopted: restricting the query capabilities (also known as query restriction), and 

adding noise to the data (also called data perturbation) [38, 40]. Under query restriction 

three techniques have been utilized, data partitioning, cell suppression, and query size 

control (also called blocking) [37]. This last technique ensures that the value of a cell 

returned as a result of a query is generally above a threshold value. This approach is 

used in Datamart, where aggregate values less than five are replaced by the character 

“#”. The advantage of this approach is that it is simple to implement and ensures privacy 

preserving as long as the threshold value is appropriate. Its drawback is that it penalizes 

the utility of the data especially for cases where actual values (i.e. instead of the “#” 

character) are necessary in order to make use of the query results.  

Under the data perturbation approach, noise is added either to the data or to the 

results of the queries. Recently k-anonymity was proposed to assess the disclosure risk 

of confidential information. K-anonymity ensures that the identity of an individual cannot 

be reversely identified within a set of k individuals. Algorithms have been proposed to 

achieve k-anonymity mostly using suppression and generalization [33]. Loss of 

information is a trade-off of this approach as attributes are either abstracted to higher 

concepts (e.g. age value is generalized to range values) or suppressed. A great effort in 

the proposed algorithms was towards improving the efficiency of the k-anonymization 

process as it is known that  achieving an optimal k-anonymity solution is NP-hard [4, 26]. 

Few contributions have focused on the utility of the information when it is 

transformed to satisfy k-anonymity. Work such as in [22, 33, 42] characterizes 

information loss in terms of the number of entities (individuals that falls within each group 

that satisfies k-anonymity (minimum is k) or in terms of the size of the generalized 
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domain of the attributes. Xu et al. [42] takes into account the importance of the attributes 

in their specification of the information loss, providing the ability to give a weight for each 

attribute that needs to be generalized. Samarati et al. [30], use generalization heights to 

represent the information loss of a generalized dataset; but this approach does not take 

into account that a generalization height in one attribute may be not as costly as in 

another attribute. Another utility metric, discernability [7], assigns a cost to each tuple 

based upon how many other tuples are identical to that tuple. Although this is an 

interesting approach, however it does not take into consideration data distribution. As 

stated in [13], an anonymized dataset where the original distribution attributes are 

uniformly distributed represent less information loss than an anonymized group where 

the original attributes were skewed. 

While the existing approaches allow for automatic characterization of information 

loss, they do not account for the non-linearity of the change in the value of the data as it 

becomes more generalized. The value of data to a researcher is often not proportional to 

the number of specific values or combinations of values in a dataset. For the researcher, 

it is much more important to provide an anonymized dataset that provides de-identified 

content while still maintaining the content or meaning of the original data. For instance, 

in health care research, age generalizations that preserve general inflection points in 

health care status, such as the late teens, 65 years old, and 80 years old, may be more 

valuable than generalizations that obscure those boundaries but include more age 

groupings. Losing an age group boundary at 80 years old may only decrease the data’s 

utility slightly, while losing the 65 year old boundary may produce a significant change in 

the data utility. One approach to assess the utility of the data after the anonymization 

process is to determine the amount of informative patterns that can be discovered using 

data mining techniques in comparison to the patterns that are discoverable in the raw 

dataset. When anonymizing a dataset, the input of the data content expert can provide 
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insight into the needs of the end user (such as maintaining important age boundaries), 

so that information may be maintained as much as possible in the anonymized dataset. 

In this paper we propose a fully user-driven utility metric to guide the process of 

k-anonymization; and we describe two utility-based privacy preserving approaches that 

implement the new data utility metric while still ensuring k-anonymity. As described in 

[11], a utility-based privacy preserving algorithm has two goals: 1) protecting private 

information and 2) reducing information loss due to generalization. Our new utility metric 

considers information loss from the perspective of the end user, who often desires to 

assess patterns that may not be preserved in a sanitized dataset that conforms to a 

distribution-based utility metric. The experiments we have conducted using real data 

show that our approach scales well to datasets that contain large numbers of attributes 

and multiple generalization levels within those attributes, while incorporating the view of 

the data from an end user perspective as the attributes undergo generalization. More 

specifically, the contributions of this paper are the user-driven utility metric and the two 

proposed algorithms which are designed to approach the aspect of utility-based 

anonymization from a holistic view (global optimization) and an intra-attribute view (local 

optimization). 

Definitions 

The basic definitions provided here are also presented in [14, 15] as we find that 

their description of attributes generalization is very concise and applies to our work. 

Attribute Identifiers 

Let T= {t1,t2,…tm} be a table storing information about individuals, described with 

a set of attributes A = {A1, A2, . . . ,An}. We distinguish three types of attributes in A, 

labelled as explicit identifiers, quasi-identifiers and sensitive identifiers as defined in [16].  

An attribute Ai is labeled as explicit identifier if it can be used to uniquely identify 

an individual. Examples include social security number and name. To preserve the 
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privacy of the published data we assume that the explicit identifier attributes undertake a 

transformation process such as randomization [11]. Quasi-identifiers are defined in the 

next section, and sensitive identifiers are attributes that contain data that are considered 

to be extremely personal, such as disease state or a salary. 

Quasi-Identifier Attribute 

A set of attributes {A1, A2, . . . ,An} of a table T is called a quasi-identifier set if 

these attributes can be linked with external data to uniquely identify at least one 

individual in the general population Ω [25]. It is assumed that the quasi-identifier 

attributes are known based upon the specific knowledge of the domain experts. 

In the work described in [16], a sub-class of quasi-identifier attributes are defined 

and labeled as sensitive attributes. An example of a sensitive attribute is cause of death 

such as individual X died of cancer. In our work this distinction is not made, which will be 

addressed in the algorithm discussion. 

Frequency Set 

Let Q= {A1, A2, …, Aq} be a subset of A. The frequency set of T with respect to Q 

is a mapping from each unique combination of values {v0, … vq} of Q in T (the value 

groups) to the total number of tuples in T with these values of Q (the counts) [13]. In 

other words, the frequency set of T with respect to Q stores the set of counts of each 

unique combination of values of Q in T. 

K-Anonymity Property 

Relation T is said to satisfy the k-anonymity property (or to be k-anonymous) with 

respect to attribute set A if every count in the frequency set of T with respect to A is 

greater than or equal to k [34]. Similar to [20], in order to determine the frequency set 

from table T with respect to a set of attributes A, we are utilizing the COUNT(*) 

functionality of SQL with A as the attribute list in the GROUP BY clause of the query. In 

addition to the value returned by COUNT(*), we are using the MIN(list) function to allow 
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of all the calculations for the frequency to be performed at the SQL database level. For 

example, a sample query of the patient database may look like this expression: 

select min(myCount) as count from (select count(*) as myCount from DB1 group by q1, q2) 

The result from this query is compared against the k-anonymity threshold value 

“k” for the combinations of attributes q1 and q2. 

Attribute Generalization and Suppression 

The basic idea of generalization is to abstract the domain of attributes to make it 

more difficult to distinguish individual values and therefore increasing the chances of 

achieving k-anonymity. Examples of generalization include generalizing zip code values 

by replacing the last digit with wild card (i.e. *) or generalizing individual age values into 

a range of values. Suppression of attributes is simply regarded as the case where the 

attribute is generalized to the highest or most general level (e.g. zip code attribute is 

generalized to *****). Please note that we will refer to the highest/most general level of 

an attribute as the root level in the attribute generalization tree later in the paper. As an 

attribute approaches the root level in the generalization tree, the information loss for that 

particular attribute increases. Minimizing the level of an attribute’s generalization during 

the anonymization process will minimize the amount of information loss. Therefore there 

is a need for the existence of different levels of attribute domain generalization to be 

available for the transformation process so that the trade-off between information loss 

and anonymization can be requested. Let D represents the set of attributes domains 

including both categorical and numerical domains; and let <DG denotes the domain 

generalization relationship between domains; where the notation “Dl_i ≤ Dl_j” between two 

domains Dl_i and Dl_j defined on attribute Al, means that either Dl_i is identical to Dl_j, or 

Dl_j is a generalization of Dl_i. The mapping between values from Dl_i and Dl_j can be 

represented by a many-to-one generalization function denoted by γ. By Convention i<j; 

and Dl0 represents the most specific domain (also noted Dl) for attribute Al. 
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Figure 1. Generalization of race attribute 

 

For each attribute we can define a hierarchy of domain nodes totally ordered 

using <DG; where the root of the hierarchy represents the most generalized domain, and 

the leaf nodes represent the most specific domain (i.e. original domain of the attribute). 

Figure 1 and Figure 2 provide examples of the domain generalization hierarchies for the 

race and zip code attributes.  

Figure 2. Generalization of the zip code attribute 

 

 

 

 

 

 

 

 

Direct edges between two nodes are the results of direct generalization produced 

by applying the generalization function γ; and paths between nodes are implied 

generalization between domains produced by a series of composition of the 
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labeled with the attribute number x and the generalization level y (Ax_y). The most 

specific data for an attribute is labeled with a zero, Ax_0, and as the attribute becomes 

more generalized the value increases by one. In Figure 1, the most generalized level is 

labeled as A1_2. 

Full Domain Generalization 

As described in [8, 38], several models exist to transform table T to the k-

anonymized view V, including the global recoding. In global recoding the initial values of 

each quasi-identifier attribute are mapped to new values to satisfy k-anonymization. 

Several approaches exist for global recoding; see [7, 8] for more information. Using full-

domain generalization approach, initial values of each quasi-identifier attribute are 

mapped to values in the same domain in the attribute domain hierarchy. More formally, 

let T be a relation with quasi-identifier attributes A1,…An. A full-domain generalization is 

denoted by a set of functions, Φ1,…Φn, each of the form Φi : DAi  DQi , where DAi <DG 

DQi . Φi maps each value “q” from DAi to some value “a” in DQi such that a = q or a 

belongs to γ+(q). A full-domain generalization V of T is obtained by replacing the value q 

of attribute Ai in each tuple of T with the unique value Φi(q) [30, 32]. This is in contrast 

with local recoding [13, 14, 27], where initial values of an attribute Ai can be mapped to 

values in different domains in the attribute domain hierarchy. For example, the age 

attribute value of 15 exists in the 15-20 domain as well as in the 14-18 domain. The 

general idea of local recoding is to minimize the interval size, which may achieve less 

information loss due to smaller intervals than global recoding. We address the issues of 

the same values existing in different domains in the Utility Metric section. 

This property allows generalizing attribute domains into higher domains. The 

hierarchies of an attribute domain generalization can be constructed by progressively 

mapping the attribute domain values into a higher attribute domain. 
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The race attribute is shown in Figure 1, and the zip code attribute is shown in 

Figure 2. It is initially defined at the most specific level of the attribute to be (White, 

Black, Hispanic, Asian). It was then generalized to the level (White, Black, Other) and 

then into an even more generalized level (White, Other). The generalization groupings of 

the race attribute example demonstrate a concept that is critical to our new data content 

expert based utility measurement, which is that particular values in an attribute are 

maintained as much as possible even if they exist in multiple generalization levels. For 

example, the values of White and Black exist in three generalization levels, and the 

reasoning for this is that those two values in the race attribute have been designated by 

the data content expert as critical for research purposes. If a generalization level is 

required to drop one of these critical values, the data content expert considers the 

information loss to be significant. With that in mind, the assigned utility metric for a 

generalization level without the data content experts desired values intact will reflect that 

loss. More details on the calculation of the utility metric are defined in the Utility Metric 

section. 

Related Work 

The protection of microdata has been an active research issue [39], and many 

researchers have been utilizing k-anonymity to protect the identities of the individuals in 

a database. K-anonymity and the deployment of generalization/suppression to satisfy k-

anonymity were originally characterized in [32], and a binary search algorithm to find a 

single full-domain generalization was described in [30]. New optimization methods were 

developed in [2, 4, 7, 20, 21, 26]. For example in [20], the authors introduce a class of 

algorithms for a multi-dimensional data model that produce k-anonymous full-domain 

generalizations while still maintaining a substantial performance improvement over 

existing full-domain algorithms. 
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An area of research within privacy protection has been the analysis of k-

anonymity, and whether or not it protects the privacy of data. L-diversity, proposed by 

[25], suggests that k-anonymity is susceptible to homogeneity of the data combined with 

the knowledge of the attacker. An examples is that if the attacker knows that a dataset 

includes all persons in a county, and the data shows that all persons in the datasets with 

syphilis also have AIDS, and the attacker has external knowledge that his acquaintance 

Jim, a county resident, has syphilis, the data has revealed to the attacker than Jim has 

AIDS. As initially described, l-diversity proposes to protect not only the quasi-identifiers, 

but provides special attention to a subset of the attributes called sensitive attributes (e.g. 

an attribute storing HIV status for a patient, which the patient would not want disclosed) 

characterized by having at least l well-represented values exist in a set of records that 

have the same values for the quasi-identifiers. In contrast to l-diversity, [22] proposes a 

concept called t-closeness. This concept is based on the premise that for any 

equivalence class, which is a set of quasi-identifiers, the distance between the 

distribution of a sensitive attribute in the equivalence class and the distribution of the 

attribute in the whole table is no more than a threshold of t.  

We consider all attributes in a dataset to be sensitive attributes, so during the 

anonymization process, our algorithms ensure that we have k records to prevent identity 

disclosure. Even though our anonymized dataset may not satisfy t-closeness, we ensure 

that we have at least k records for each of the “sensitive” attributes as classified in [25]. 

An attacker may have external information about any subset of attributes within a 

dataset, and so any attribute must be treated as a possible contributor to identity 

disclosure, as illustrated by the two attributes Resident County and syphilis status in the 

prior example. To achieve k-anonymity, there must be at least k records with any 

combinations values from all of the attributes in the anonymized dataset, not just values 
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from some subset of attributes that have been categorized as identifiers or quasi-

identifiers. 

Among studies of the utility of the data after anonymization, the research of Xu et 

al. [28] is one of the few studies that emphasized the need to build utility aware 

anonymization in terms of weights among individual attributes. The example they 

provide highlights the difference in importance that exists between age and zip code 

attributes when conducting a study for disease analysis. More precisely, age has more 

importance in this type of study. Therefore, it makes sense to try to minimize the level of 

generalization of age when compared to zip code during the transformation process. It 

should be noted that the weights are not intended to create different anonymized 

datasets for each type of user, but instead provide weight on attributes that are generally 

more important for the majority of users of the data. For this aim, an attribute weight has 

been introduced in the utility metric they proposed; although it has been set to one all 

across the attributes when actually implemented. The utility metric obtained corresponds 

to the sum of the weighted utility of each attribute. The utility metric, also called 

normalized certainty penalty, is expressed in terms of the loss of information generated 

by the generalization process. In a case of a numeric quasi-identifier attribute Ai whose 

initial domain Di is generalized to domains Di_0, Di_1, ... Di_m, the loss of information is 

expressed in terms of the sum of the ranges of each sub domain Di_j normalized by the 

range of the initial domain. Di. Similar reasoning can be extended for categorical 

attributes. 

In other works of k-anonymization such as in [7, 16, 21] the authors have also 

introduced utility matrices to guide the transformation process; but did not take into 

account the importance of the attributes. For example in [7], the discernability model is 

introduced to measure the information loss for each attribute Ai, by assigning a penalty 

to each tuple in the table based on the number of tuples having the same generalized 
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sub-domain Di_j. In the work described in [14], the normalized average equivalence class 

size is introduced. For each quasi-identifier attribute Ai, the information loss is expressed 

in terms of the number of tuples in the table divided by the number of group-bys for the 

attribute Ai generated in the next generalization level. 

In the work described in [12], the authors propose to release frequency related 

information about the data called marginals. For example, if there are five people in a zip 

code that are forty years of age, the authors will release a table with an entry of forty with 

a count of four. The determination of what marginals are released is dependent on an 

entropy measure and not based on the needs of the researcher who wants to mine that 

data. The concept of a normalized certainty penalty (NCP) is introduced in [10, 28] to 

capture information loss as the data is generalized into intervals, therefore losing 

accuracy in query answering. For example, a user may want to know how many 18 year 

old men purchased beer and diapers in 2005, but may only be able to count men ages 

16 to 20 years old if age has been aggregated into five year domains in the dataset. For 

all numerical attributes, Ai, from table T, NCP is defined as 

| |
 

where |Ai| is defined to be the  .   . ,  i.e. the range of all tuples 

on attribute Ai. The numerator contains that variables yi, and zi, which are the 

generalized values for xi. Finally, wi reflects the weight of the utility for attribute Ai as 

compared to the other attributes in the dataset.  

Categorical attributes follow the following formula for the NCP: 

 
| |

 

where the size(u) is the number of common descendants and |A| is the number of 

distinct values for attribute A. The NCP is an interesting concept, but its limitation is that 
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it does not take into account the importance of particular values in the dataset that have 

been identified by the data content expert as critical to the analysis of the researcher. In 

the next section, we present our utility metric that builds upon aspects of the NCP, but 

also penalizes a particular generalization level of an attribute if the critical values of that 

attribute have been generalized. The data content expert, who is very familiar with the 

needs of the researchers receiving the data, pre-defines these critical data values in 

rules that may be a value like “white, or black” for a categorical attribute like race, or a 

range of numbers like 12-18 for age is well accepted as “adolescent.”  If these values 

are not present in a particular generalization level, then the information loss increases 

and the penalty also increases. 

Utility Metric 

We propose that the data curators should have more control defining the utility of 

the attributes and how they relate to the overall content of the data that is contained in 

the datasets that they own. The expertise of the data researchers provides an 

understanding particular to critical thresholds in the data that should be maintained 

through the anonymization process, so that the meaning of the data is well maintained. 

In [27, 28], a new utility measurement called the research value (RV) was introduced to 

encapsulate the utility of the each attribute with respect to the following conditions:  

 Significance of the attribute relative to the other attributes;  

 The distinct number of elements in a group at a particular generalization level;  

 The number of records that exist for each group in a generalization level; 

 The number of data constraint rules that are maintained in that generalization 

level.  

A data constraint rule (DCR) defines groupings of data or ranges of data that, if 

maintained, help to maximize the meaning of the data for the end researcher. The data 
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constraint rules can exist in two forms depending on the data type of the attribute: 

categorical or continuous. Categorical attributes use data constraint rules that preserve 

distinctions between data values or between data value domains. When all of the data 

constraint rules are satisfied at a particular generalization level of an attribute, the value 

of the data constraint rule in the RV is the sum of all possible importance values divided 

by the sum of all the importance values in the raw dataset, which would be one. Any 

generalization that violates such a constraint rule would be penalized by multiplying the 

generalization string’s total research value with a value less than one. Using the race 

attribute as an example, the data expert may assign the following importance values to 

the elements that exist for race in a database: 

Table 1. Possible Data Constraint Rules for the Race Attribute 

Constraint Rule Importance value 

Do not mix White and Hispanic in same group 5 

Do not mix White and Black in the same group 20 

Do not mix Hispanic and Black in the same group 10 

Do not mix Hispanic and Asian in the same group 5 

 

If a generalization level violated the mixing of Hispanic and Black individuals, 

then the data constraint portion of the RV would be 30/40 = 0.75. 

For a continuous attribute like age, the data constraint rules could define 

inflection points of ages that would be important for someone who is interested in mining 

the data. For example, preserving a distinction between age 20 and 21 years may be 

important to a researcher examining alcohol use, since drinking alcohol usually becomes 

legal on a person’s 21st birthday. Similar to the continuous data constraint rules, the 
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importance values assigned for each of the ranges of values for an attribute are 

normalized to one.  

Table 2. Possible Data Constraint Rules for Numerical Attribute 

Attribute Constraint Rule 
Importance 

value 

Age 64-65 25 

Education Number 12-13 20 

Capital Gain 10000-10001 45 

 

The research value (RVk) of a numerical attribute x at generalization level k is 

defined to be: 

RV w
∑ R  NR

∑ R  NR
 
∑ DR
∑ DR

 

where wx is defined to be the importance weight of attribute x in reference to the other 

attributes in the dataset. The numerator ∑ R  NR  is the sum of the number of 

elements within each sub-group i times the range of values for those elements in the ith 

group at the most specific generalization level of attribute x. ∑ R  NR  is the sum of 

the number of elements within each sub-group i times the range of values for those 

elements in the ith group at the kth generalization level of attribute x. Finally, the data 

constraint rules portion of the equation is the ratio of the sum of the data constraint rules 

that exist at the kth generalization level, ∑ DR , divided by the total value of all the data 

constraint rules at the most specific generalization level, ∑ DR . Each dataset has an 

inherit value even if all of the data constraint rules are broken during the merging of two 

clusters, so to resolve this, the data owner has the ability to add a base value to the data 

constraint ratio, so that it does not zero out a RV if all of the rules are broken. The weight 
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calculation of each attribute can be determined by establishing a correlation matrix 

among attributes using the original raw dataset. The total sum of all the weights is 

normalized to be 1. If an attribute does not correlate highly with any other attribute, then 

that attribute is considered to be an independent attribute and will be assigned a higher 

weight. On the other hand, if an attribute is highly correlated with the other attributes, 

then it will be assigned a lower weight. As the number of attributes increases, the 

complexity of determining the correlations between attributes increases dramatically. For 

the experiment we describe in this paper, the data expert manually assigned weights for 

each of the attributes in both the MCPHD and Adult datasets, but the proposed utility 

metric to calculate the RV values was used at each generalization level of the two 

datasets. 

For categorical attributes in a dataset, the research value (RVk) of attribute x at 

generalization level k is defined to be: 

RV w
|A |
|A |

 
∑ DR
∑ DR

 

where all the elements are defined to be the same as those for the numerical attributes, 

except for the 
|A |

|A |
 ratio which is defined the number of unique elements at generalization 

level k divided by the number of unique elements defined at the most specific 

generalization level of the attribute.  

To demonstrate the calculation of the research value for the kth level of attribute x 

containing numerical data, the following example is presented. The weight of the 

attribute x is calculated to be 0.2; there are three groups in this generalization level with 

25, 45 and 55 elements in each group spanning 10, 15 and 25 values, respectively. The 

most specific generalization level of this attribute has 125 elements with a group 

spanning of 1. The sum of the data constraint rules, which include the base value as 

determined by the data owner, that exist at the kth level is 50, while the sum of the data 
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constraint rules at the most specific generalization level is 100. Given all of these values, 

the research value for the kth level of attribute x is determined as: 

           0.2  
125 1

25 10   45 15  55 25
50

100
0.0054 

At the most specific level, the RV of an attribute is equal to wx. It becomes 

apparent that as one moves to more generalized levels within an attribute, the 

denominator will continue to grow, and thus the RV value will continue to decrease. As 

the number of elements increases within a sub-group at a particular generalization level 

for an attribute, the chances are greater that those set of values will produce a 

measurable pattern during data analysis. In contrast, if the range of values within a sub-

group is very large, then the chances of producing a measurable pattern in the dataset 

decrease. 

It is important to note that given two attributes Am and An such that Dm_0 ≤ Dn_0, 

then the initial importance status is not necessarily maintained as attributes Am and An 

are generalized. That is, Dm_i ≤ Dn_j where i<j does not always hold in the general case. 

This is a result of the data constraint rules defined for a particular attribute, and how the 

generalization levels are defined for those attributes. Informally, the partial order 

between research values allows for flexibility in defining domain hierarchies for each 

attribute and the ability to re-evaluate the utility of the attribute and its importance with 

respect to the other attributes as the attributes undergoes global recoding. Compared to 

the information loss defined in [10], the research value metric can be regarded as an 

opposite metric, wherein the more the attribute undergoes transformation, the less 

research value it will have. 

To optimize the final overall utility of the transformed data using the research 

value metric, two alternative algorithms are proposed: 
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 Optimization of the overall research value of the dataset after generalization by 

maximizing the overall sum of the research values of the transformed attributes. 

We call this option global research value optimization 

  Optimization of individual attribute research value, by maximizing the individual 

research value of each transformed attribute. We call this alternative local 

research value optimization 

 It should be noted that the research values used by these proposed algorithms 

were manually calculated by the content expert, and that our future work will be to 

automatically generate the research values of the attributes. 

Methodology 

In this section, we will describe the two algorithms that address the global 

research value optimization and the local research value optimization and the datasets 

that were used for running experiments on the algorithms. 

DataSets 

For this project, we utilized two datasets, the public Adult Census data from the 

UC Irvine machine learning repository [29], and the proprietary death certificate dataset 

from the Marion County Public Health Department (MCPHD) of Indianapolis, Indiana. 

We included the Adult Census dataset in order to compare our proposed algorithms 

against existing methodologies, since the MCPHD is not available for public download, 

and the Adult Census dataset is the gold standard for gauging anonymity techniques.  

The Adult dataset was configured in a similar manner to [41] using 30,162 tuples 

and eight attributes (age, work class, education number, marital status, occupation, race, 

sex and native country). Age and education number were used as numeric values, while 

the remaining attributes were used as categorical attributes. Work class and marital 

status used a three level hierarchy structure. For the other categorical attributes, a two 
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level hierarchy was used with the most specific level having all values, and the second 

level was set to “ALL,” (i.e. complete suppression).  

For the Marion County Health Department’s death certificate dataset (a total of 

216,000 records) comprised of 76 attributes was paired down to 36 attributes based 

upon their utility for data mining. These attributes include: race, sex, college education, 

cause of death, etc are listed in Table 3. For each attribute, we created n levels of 

generalization, where n ranged from one to six. The original version of the MCPHD 

dataset contained a wide range of values in each attribute. This variety produced many 

outlier values that needed to be reclassified for categorical attributes, or removed in the 

case of numerical data after performing a distribution analysis of each attribute to identify 

outliers. 

Table 3. Marion County Public Health DB Attributes 

Marion County Public Health Department Database Attributes 

Race, Sex, Age in Days, College, Industry, Autopsy, Census Tract, Cause of Death 
Certifier Type, Citizenship, City of Birth, Date of Birth, Date of Death, Disposition 
Method, Education, Farm, Informant Relationship, Injury AM/PM, Injury Census, Injury 
County Code, Injury Date, Manner of Death, Marital Status,  Military Motor Vehicle 
Accident, Occupation Category, Occupation Code, Place of Death City, Place of 
Death Code, Place of Death State, Place of Death Zip, Pregnant, State of Birth, US 
Vet, Zipcode, Injury Time, Time of Death 

 

These identified outliers were then recoded to a general category within the 

attribute. As described above, every level of generalization for each attribute was 

assigned a research value (RV), which ranged from zero to one hundred (i.e. normalized 

values). Table 4 demonstrates another generalization example of the two attributes 

(Race and Gender), and the corresponding research values for each level of 

generalization within the attribute. 
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Table 4. Research Value Examples 

Attribute RV Generalization Levels 

Race 0.95 W, B, L, A, O 

Race 0.72 W, B, L, O 

Race 0.58 W, B, O 

Race 0.10 W, O 

Gender 0.85 M, F, O 

Gender 0.65 M, U or F, U 

(W=White, B=Black, L=Latino, A=Asian, O=Other, M=Male, F =Female, U=Unknown) 
 

Data Preparation 

Using the MCPHD and the Adult census raw datasets, a perturbed dataset was 

created by running a SAS® script that formatted the data into generalization columns. 

For each attribute, x columns were created based upon the number of levels of 

generalization each attribute contains, as discussed in the previous section. In Figure 1, 

we can see how the race attribute, which has three generalization columns, will be 

created (A1_0, A1_1, and A1_2). In the A1_0 column, all of the records will contain either 

“White,” “Black”, “Hispanic”, “Asian.” In the A1_1 column all records containing either 

“Asian” is abstracted into “Other”; and in A1_2 column all records containing either 

“Black”, “Hispanic” or “Other (from the previous level) are abstracted into “Other.” The 

last level (not shown in Figure 1 and 2) is the most general level with a zero research 

value, where all records contain the same value, “any”, for the generalized attribute. 

Throughout the hierarchy creation process, no attribute values were allowed to be in two 

groups at once. For example, a generalization of the age attribute could not have 

overlapping groupings, like age 13-17 and age 15-22. When values are allowed to cross 

groupings, it makes it very difficult to discriminate what grouping of a particular value (i.e. 

15 in this example) is responsible for a pattern in the dataset. In effect, the groupings for 

age would range from 13-22, because you could not assert if 15 was in the 13-17 
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grouping, or the 15-22 grouping; thus the utility of the dataset has been decreased. This 

is a weakness of the local recoding methodology. Publications using local recoding 

where values are allowed to cross groupings during the anonymization process include 

[3, 4, 13, 42]. This process was repeated for all thirty attributes in the MCPHD dataset 

and then for the Adult census dataset. 

After all thirty attributes of the MCPHD had been generalized, multiple 

combinations of those thirty attributes were created to test the effectiveness of the two 

proposed algorithms. A combination contained as little as three attributes and up to the 

maximum of thirty attributes. The criteria for the selection of the attributes that were 

selected for each combination fell into two categories: 1) Random or 2) Maximum 

number of generalization levels. The maximum number of generalization levels 

approach would examine two attributes A1 and A2 and select A1 if it had more 

generalization levels than A2, or vice versa. In the case where A1 and A2 had the same 

number of generalization levels, then one would be selected randomly. The random 

combinations were labeled as ri (e.g. r03 and r08), which indicates a random selection of 

i attributes from the original pool of thirty attributes. The maximum combinations were 

labeled in a similar manner mi (e.g. m03 and m08). For the Adult dataset, all of the 

attributes were used in during the testing phase of the algorithms. 

Algorithms 

To ensure that a dataset is k-anonymous, it is critical to test the worst case 

scenario for the data, which in this case is a combination of all possible attributes being 

searched in a single query. This is due to the fact that as the number of attributes that 

are combined in a query increases, the chances of k-anonymity being violated also 

increases. Herein after we represent this combination of attributes as a string called 

generalization string A1_1A2_2…Am_n composed of the combination of the individual 
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attribute generalization level strings Ai_j. For example, the race and zip code attributes 

would create generalization strings like A1_0A2_0, A1_0A2_1, A1_1A2_0, etc. 

The aim is to efficiently compute a dataset generalization string that optimizes 

(globally or locally) the overall research value of the transformed view V. Let us call this 

string globally (resp. locally) optimized generalized string. 

One problem with this strategy is that a dataset with large numbers of attributes 

will create millions of possible combinations of generalization strings. From efficiency 

perspective the bottleneck point for either one of the alternatives is the computation of 

the frequency set for any dataset generalization string, as it involves a database call to 

compute a select-group-by SQL statement. 

Given a set of attributes A = A ,A ,…,A  and a set D of attribute domain 

generalization hierarchies, the initial number of dataset string generalizations is function 

of the number “n” and the number of levels of each attribute domain hierarchy in D. 

Therefore to reduce the number of initial dataset generalization strings, we need to 

reduce either the number of initial attributes and/or the hierarchy depth of the attributes. 

The pre-pruning phase addresses both options. 

Pre-Pruning 

The strategy employed in the pre-pruning phase is supported by the following 

properties also used in [14]. The first property called the generalization property states 

that if two sets of attributes P and Q have their domains satisfying DP ≤ DQ, and if T is k-

anonymous with respect to P; then T is k-anonymous with respect to Q. 

The second property called subset property states that if T is k-anonymous with 

respect to a set of attribute P, then T is also anonymous with respect to any subset of P. 

Using the negation of the subset property we can infer that if T is not k-

anonymous with respect to an attribute in A, then it is not k-anonymous with respect to 

any superset obtained by combining the attribute with the other attributes of A. Using the 
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negation of the generalization property we can infer that if T is not k-anonymous with 

respect to Ai_j then it is not k-anonymous with respect to Ai_l such that l<j. The outline of 

the pruning strategy is depicted in Figure 3.  

Figure 3. Pre-Pruning Algorithm 

 

The pre-pruning strategy uses the negation of both properties, by checking for 

each attribute whether or not it satisfies k-anonymity (Line 3). If it does not, then it can 

be pruned from the composition of the initial generalization string set. To account for the 

existence of different domains for each attribute, we refine the pruning process to prune 

for each attribute any generalization domain that does not meet k-anonymization. For 

example, in Figure 1, if attribute A10 does not meet the k-anonymization threshold but A11 

and A12 do, then the domain hierarchy of attribute A1 will be trimmed to include only the 

top two levels; and therefore only A11 and A12 will be used in generating the set of initial 

dataset generalization strings. If an attribute A1 fails k-anonymity at the most 

generalized level, then that attribute is removed from the dataset, because it would 

cause other attributes that were combined with A1 to also fail k-anonymity. The benefit 

Input: Table T containing attribute names, research values (RV) of 

attributes, generalization levels of each attributes. 

Output: List L containing generalization levels passing k-anonymity 

Method:  

1. While an attribute and generalization level (gli) >= k exists { 
2.        For each generalization level gli of attribute am test k-

anonymity { 
3.               If  gli passes k-anonymity {    
4.                     Add gli and RVi to List L 
5.                } 
6.               Else { 
7.                      Select attribute  am + 1 
8.               } 
9.            } 
10. } 
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of this pre-pruning process is a more efficient k-anonymity algorithm by minimizing the 

number of calls to the database to test the generalization strings for k-anonymity.  

Global Optimization of the Utility Metric 

The aim is to compute the dataset generalization string that meets the k-

anonymity threshold and have the best global research value. The global research value 

is computed by summing all of the research values from each respective attribute in the 

successful generalization string. This method requires that the research values of all 

combinations of the attributes’ generalizations be calculated. This may produce a very 

large number of generalization strings, as is the case for the MCPHD dataset, but the 

pre-pruning eliminates a large portion of the strings that do not satisfy k-anonymity. To 

minimize the number of database calls, we deploy a binary search over the list of all 

dataset generalization strings sorted in ascending order on their global research value. 

At each step of the binary search, we apply several strategies to minimize the number of 

generalization strings that need the computation of the frequency set. The pruning steps 

depend on whether the selected generalization string fails the k-anonymity test. The 

details of the global optimization algorithm are shown in Figure 4. 

For the case of a success, the generalization string is added to the list of 

successful strings SL and the pruning strategies are applied. The first pruning strategy 

eliminates all generalization strings with a global research value less than the successful 

string. The second pruning strategy eliminates all generalization strings that are more 

general that the successful strings. A generalization string is considered to be more 

general if all of the component attributes of that string have a generalization level glk > gli 

where i is the generalization level of the current string, and k is the generalization level of 

the string that could be removed from the list. 
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For the case when the current generalization string fails, then the only pruning 

strategy that applies is to remove all generalizations strings that are more specific than 

the current string. 

Figure 4. Global Optimization Algorithm 

 

The binary search process is repeated for the remaining list of non- pruned 

generalization strings until no more strings are left to be analyzed. If multiple successful 

generalization strings were found after running the algorithm, all having similar research 

values, then it would be at the discretion of data content expert to select a generalization 

string that would be most beneficial from the end-user perspective. The number of root 

Input: List L 

Output: A k-anonymous T’ 

               A list S of successful generalization strings and their corresponding 

research values  

               Number of root nodes within any successful generalization string 

Method:  

1. Init: Create all possible strings (GSi) from L, sort by total RV. Store in List 
A  

2. While there exists a generalization string GSi in List A { 
3.         Select GSi  as midpoint(List A) 
4.         If min(count(GSi))  >= k { 
5.               Add GSi to success list SL, 
6.               Remove all GSk from List A with RVk < RVi 
7.                      Remove all GSk from List A where glk > gli 
8.         } 
9.         Else { 
10.                Remove all GSk from List A where glk < gli 
11.         } 
12.         Remove GSi from List A 
13.   } // End while 
14.  
15.   For each GSi in SL { 
16.         Determine root # of attributes where glx = glMAX 
17.   } 
18.  
19.  Apply GSi from SL with (>> RVk  && min(root)) on table T 
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nodes (most specific levels of an attribute) is determined to provide the data content 

expert the ability to choose from multiple success strings after the anonymization 

process is complete. 

Local Optimization of the Utility Metric 

The objective of the local optimization approach is to achieve K-anonymity with 

optimum RV values for each attribute (i.e. local). As opposed to the global optimization 

approach where the focus is to find the best RV combined over all attributes, the aim of 

this approach is to balance the global RV value between the attributes. In other words, 

finding generalization strings that minimize the cases where generalization strings 

include very specific attributes at the expense of most general attributes. For example, 

using attributes race and zip code in Figures 1, the best generalization string using the 

global strategy would generate the generalization string A1_2A2_0 (combined RV=0.90) 

while the local  strategy may generate the generalization string A1_1A2_1 (combined 

RV=0.50). 

Unlike the global approach, the local approach does not use a combined list of all 

possible strings to select a generalization string for k-anonymity testing. Instead, each 

attribute is regarded separately (As shown in Figure 5), and at each step, a 

generalization level within each attribute is selected and combined with the other 

selected generalization levels of the other attributes in order to create a combined 

generalization string to be tested for K-anonymity. If that particular generalization string 

succeeds, then the next selected generalization level in each attribute moves half way 

up the height of the attribute towards the more specific data of an attribute (i.e. the data 

is not grouped or suppressed). On the other hand, if the generalization string fails, then 

the next selected generalization level selected in each attribute moves half way up the 

height of that attribute towards the more general data. This continues until it is not 

possible to move in all of the attributes that compose the generalization string. If the 
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current generalization string passes k-anonymity, then the current string is added to the 

success list SL along with its total research value. No pruning occurs in the local 

optimization algorithm, but a hybrid version of the local optimization as described in the 

next section does use pruning. 

To facilitate a binary search in each of the attributes of the generalization string, 

we utilize pointers to maintain the current selection level of the attribute, and also the 

highest and lowest points still available for selection.  

Figure 5. Local Optimization Algorithm 

 

This procedure continues until the current selection level does not change during 

an iteration, which is classified as a stopping condition for that attribute. When all of the 

attributes have met their “stopping condition,” the algorithm terminates. At this point, 

Input: List of n attributes  

Output:  A k-anonymous T’’ 

                A list S of successful generalization strings with research values  

                Number  of root nodes within any successful generalization string 

Method: 

1. // Initialize the following index pointers: Hi, Lo & Mid 
2. While (Total Stops <> # of attributes) do{   
3.        Select a generalization string GSi using Mid  index j of all attributes 

A1 to An  
4.        If min(count(GSi))  >= k { 
5.                Add GSi to success list SL 
6.               Set Lo = Mid 
7.         } Else { 
8.                Set Hi = Mid 
9.         } 
10.         Mid = (Hi + Lo)/2 
11. } // End while 
12.  
13. For each GSi in SL { 
14.         Determine root # of attributes where glx = glMAX  
15. } 
16.  
17. Apply GSi from SL with (>> RVk  &&  min(root)) on table T 
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similar to the global approach, all of the success strings are examined for any roots. The 

aim is to eliminate success generalization strings with attributes at the most general 

level. The generalization string with the greatest research value and fewest number of 

root attributes would then be applied against the raw database to ensure anonymity 

while still maintaining some of the utility of the data. 

Hybrid Utility Algorithm 

The hybrid approach is a combination of the local approach and the global 

approach that takes advantage of the quick examination of strings via the local algorithm 

and then uses the wider scope of the global algorithm to identify any remaining success 

strings. Unlike the local optimization approach, the hybrid optimization makes use of the 

list of all possible generalization strings for a dataset, and pruning of those strings as the 

algorithm executes. It starts of using the local algorithm until all of the high and low 

pointers for all of the attributes are equal. Once this point is reached, if there are any 

entries left in the remaining list of generalization strings, the global algorithm is then 

called until no entries exist in that list. 

Distributed Version of the Global Optimization 

As described in Global Optimization Algorithm section, the global approach 

assumes that all possible generalization strings are generated a priori and provided as 

an input (residing in main memory) for the algorithm. This assumption generates 

implementation issues as soon as we have a number of attribute combinations greater 

than twelve. To address this issue we propose a distributed version of the algorithm that 

leverages the subset property described in Global Optimization Algorithm section. The 

main idea of the distributed version of the algorithm is to decompose the generalized 

string into subsets of generalization strings that can fit in memory; and then run the 

generalization algorithm described in the Global Optimization Algorithm section on each 

of the subsets looking for successful strings within those subsets. Once all of the strings 
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have been analyzed for a particular subset, the algorithm then starts on the next subset. 

After all of the subsets have been analyzed, the successful strings from all of those 

subsets are combined and then tested for k-anonymity. Any successful strings from 

these combined strings are then tested for any attributes that are at the root level and 

the string with the highest RV is applied to the raw database. Since the datasets we 

used only produced successful generalization strings using three and six attributes, the 

distributed approach was not needed, but as we increase the number of attributes 

beyond twelve, the distributed approach will be needed to ensure the scalability of the 

algorithm. 

Experiments 

Algorithm Performance 

The performance of the local optimization algorithm is  log2(max height of n 

attributes in generalization string) is based on the fact that the local algorithm uses a 

binary search technique, and it repeats until no more moves are allowed in any of the 

attributes. For the global optimization algorithm, the performance of the algorithm is log2 

(generalization of all strings). 

Utility Measurement 

MCPHD Dataset 

The global optimization utility metric algorithm was tested using multiple k values 

on the Marion County death certificate database to test how the algorithms would 

perform. For this dataset, the research values were established by the data content 

expert and not the utility function. Currently, we are testing our algorithms with the 

research values generated using our utility function to compare the outcomes from the 

values generated by the data content experts and our new utility function. We plan on 

submitting this as a future publication. 
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Results from the MCPHD dataset using k values of three and five with multiple 

combinations of attribute are shown in Table 5. As the k value increases, the amount of 

successful records drops off dramatically (in most cases, there were zero successful 

strings found) for datasets that contained more than twenty-four attributes. So the data is 

not shown for those cases. We will discuss the possible reasons for no successful 

generalization strings using the MCPHD dataset. In Table 5 and Table 6, any empty 

entries found in the tables indicate that no successful generalization string was found for 

that run. Datasets mYY contain the attributes that have the most generalization levels 

within the attribute, while the rXX datasets have randomly selected attributes. m12 had 

fewer total strings due to the fact that the pre-pruning phase eliminated a considerable 

amount of generalization levels in the attributes for that dataset, and thus the total 

number of combinations of generalization strings was less than the r12 for example. 

Table 5. Global Optimization Utility Algorithm 

K Value 
Run 

Time 
(Secs) 

Dataset 
Name 

Total 
Strings 

Generated 

Highest 
RV of 

Successful 
String 

Minimum 
RV 

Maximum 
RV 

3 8 m03 1 0.15 0.15 0.15 

5 9 m03 1 0.15 0.15 0.15 

3 41 m08 28 1.10 0.15 2.00 

5 41 m08 28 1.10 0.15 2.00 

3 49 m12 28 1.00 0.25 1.85 

5 49 m12 28 1.00 0.25 1.85 

3 25764 m24 44800 1.2 0.25 6.03 

3 17 r03 20 0.95 0 1.75 

5 13 r03 5 0.48 0 0.995 

3 270 r08 700 1.00 0.10 3.67 

5 282 r08 700 1.00 0.10 3.67 

3 2459 r12 8400 1.00 0.10 4.87 

5 2498 r12 8400 1.00 0.10 4.87 
5 14961 r24 24  0 6.07 
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Table 5 shows the different runs that use K values of three or five. Within each 

run, the highest total research value for the dataset is listed along with the maximum and 

minimum research values for the run. The maximum research value corresponds to an 

anonymized dataset that contains attributes that all contain their most specific 

generalization levels, while the minimum research value corresponds to an anonymized 

dataset that contains attributes that all contain their most generic generalization levels. 

The empty entries in the highest RV of a successful string column indicate that no 

selected generalization strings passed the k-Anonymity test. 

Table 6 shows the results of running the local optimization utility algorithm under 

the same k value conditions as the global algorithm. This table contains the same fields 

as that of the global optimization utility algorithm to allow for comparisons of the two 

algorithms on the same datasets. 

Table 6. Local Optimization Utility Algorithm 

K 
Value 

Run 
Time 

(Secs) 

Dataset 
Name 

Total 
Strings 

Generated 

Highest 
RV of 

Successful 
String 

Minimum 
RV 

Maximum 
RV 

3 17 m03 1 0.15 0.15 0.15 
5 9 m03 1 0.15 0.15 0.15 
3 32 m08 28 1.10 0.15 2.00 
5 42 m08 28  0.15 2.00 
3 42 m12 28 1.15 0.25 1.85 
5 52 m12 28  0.25 1.85 
3 119 m24 44800 1.20 0.25 6.03 
3 12 r03 20 0.95 0 1.75 
5 11 r03 5 0.95 0 0.95 
3 40 r08 700 1.05 0.10 3.67 
5 59 r08 700  0.10 3.67 
3 54 r12 8400 1.05 0.10 4.87 
5 73 r12 8400  0.10 4.87 
5 115 r24 56000  0.25 5.97 
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Adult Census Dataset 

As a means to show how our algorithm performs against existing utility 

methodologies, our two proposed algorithms were run using the public Adult census 

dataset using a range of k values (k=3, k=5 and k=10). 

Unfortunately, the local optimization algorithm was not able to find any solutions 

using the Adult DB, and this will be addressed in the next section. We then ran the 

Bottom Up algorithm as defined in [42] using the same three values of k to compare with 

our methodology and utility metric. The authors of [29] presented a Top Down and 

Bottom Up algorithm, but both showed very similar results, with the only difference being 

the execution time, which was not a concern for us in this exercise. For this dataset, we 

did use our new utility function to establish the research values for each of the attributes 

and the generalization levels of those attributes.  

In order to examine the effects of the anonymization process, we used recursive 

partitioning (RP), which is a multivariable technique that is used to find patterns in large 

datasets, on the raw Adult dataset to see which of the attributes were most responsible 

for differentiating individuals who make <=50K or >50K in yearly salary. Salary was 

chosen, because it is the attribute of interest in the Adult dataset for analysis. As seen in 

Figure 6, out of the original 30162 records, 75% of the individuals had a yearly salary of 

<=50K and 25% had a salary >50K.  
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Figure 6. Raw Adult Dataset Recursive Partitioning 

 

The three attributes that significantly differentiated the two salary groups are 

Capital Gain, Age and Education Number. Bucket #1 indicates that when an individual 

has Capital Gains >=$7298, 98% probability of the 1330 individuals having a yearly 

salary of >50K. On the other hand, bucket #2 shows that when Capital Gains <$7298 

and Age is <28 years old, 97% probability of 7162 individuals having salaries <=50K. 

After running the global optimization algorithm using a k value of 5, the 

anonymized dataset was analyzed using recursive partitioning and it produced the 

breakdown as shown in Figure 7. Bucket #1 shows that when the Capital Gain is 

>=$6001, 95% probability of the 1387 individuals having a yearly salary of >50K. 

The Bottom-Up algorithm with a k value of 5 was also run against the Adult dataset and 

the recursive partitioning results are shown in Figure 8. Bucket #1 has a mixture of 

Capital Gains that range from zero to $15,000+, so no conclusions can be drawn from 
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this bucket. When the Education Number is Pre-college for all values  of Capital Gains, 

86% of the 18686 individuals from the 516 clusters in bucket #2 have Salaries <=50K. 

Figure 7. Global Optimization RP using k=5 

 

Both algorithms were also run on the Adult dataset using a k value of 10. The 

Global Optimization algorithm did not produce a valid solution where the Salary attribute 

is not generalized to a value of both <=50K and >50K. On the other hand, the Bottom-Up 

algorithm produced a result that is found in Figure 9. 

As in the previous runoff of the Bottom-Up algorithm, Bucket #1 had Capital Gain 

represents a full range of values. Therefore no conclusion can be determined. Bucket #2 

has a full range of Capital Gain values and Education Numbers of Pre-College have 

86% of the 18686 individuals have a Salary <=50K. When the value of k was raised to 

be 10, neither the local nor the global optimization algorithms could produce a solution 

where the salary attribute did not contain the most generalized values for the salary (i.e. 

salary= “both”). In contrast, Figure 9 shows that the Bottom Up algorithm was able to find 
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a solution. As present in the k=5 solution, Bucket #1 had the full range of Capital Gain 

values. Bucket # 2 represents Capital Gain values <$7000 that have 86% of 20,000+ 

individuals having a Salary <=50K. 

Figure 8. Bottom-Up Recursive Partition using k=5 
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Figure 9. Bottom-Up Recursive Partition k=10 

 

Discussion 

The goal of the algorithms described in the previous section provide the 

optimization of data utility in a dataset while still protecting the anonymity of the 

individuals stored in that dataset. As shown in Table 5 and Table 6, the global 

optimization utility metric algorithm and the local optimization algorithm are extremely 

close in terms of the highest research value of the successful strings.  

Marion County Public Health Department 

For the Marion County Health Department database, the local optimization 

algorithm (Table 6) performed better than the global optimization algorithm when you 

compare the highest successful research value discovered relative to the maximum total 

research value using the mXX datasets, where XX was under 12 attributes. As the 
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number of attributes increased in the mXX series, the global algorithm produced higher 

success research values due to the increased number of success strings that were 

found during the execution of the algorithm. The local optimization algorithm failed to find 

a success string in three of the mXX tests, while the global optimization algorithm was 

able to find a successful string for each of the mXX datasets. Upon examination of the 

distribution of the data when all of the attributes were used by both algorithms, it became 

apparent that there were many outlier instances where the combination of all the 

attributes failed to produce a record count greater than one. This leads us to believe that 

certain large datasets will require some sort of suppression of records after an overall 

distribution analysis has been completed. These records would be selected for 

suppression with the goal of minimizing the impact on data utility, but this exercise is out 

of the scope of this paper. 

The ability of the global optimization algorithm on the rXX dataset was far 

superior to that of the local optimization algorithm in regards to both the highest research 

value discovered and the ability at least one successful generalization string. As 

expected, the time performance to run the two algorithms favoured the local algorithm 

due to the fact that the local algorithm only examines a small subset of all possible 

generalization strings when compared to those examined by the global algorithm. This 

explains why the local algorithm did not find success strings for all of the experiments. 

For this study, we examined all possible combinations off-line of each dataset without 

concern for performance and without pruning. This was done to determine all possible 

successful generalization strings from that dataset to ensure that the global optimization 

algorithm was in fact correctly executing and finding the maximum utility in the research 

value while still upholding the given k-anonymity criteria.  

The results from the hybrid approach, which were not included in Table 4 or 

Table 5, mirrored the global algorithm in terms of execution time and the highest 
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research values found for a successful string, which is not surprising due to the fact that 

the local algorithm only examined a small subset of all possible strings and then 

removed them from the total pool of possible strings. After the local algorithm completed 

its execution, the global algorithm then examined the remaining possible strings, which 

in the case of an attribute pool of 24 attributes, was a large number of strings; thus the 

time and successes swayed toward the run results where only the global algorithm was 

executed.  

As for the distributed approach, it was used when the number of attributes in a 

testing datasets surpassed 18 attributes due to memory limitations of Java. This allowed 

the global optimization algorithm to effectively examine the set of 24 attributes in a 

timelier manner, even though no successful strings were discovered where k was 

satisfied due to the presence of outliers in the dataset, which prevented a tuple (record) 

count to surpass the k criteria as described in the previous paragraph. 

Adult Census Dataset 

Both the Local and Global Optimization algorithms were run using the Adult 

dataset from the UCI website, using multiple values of k (k=3, k=5 and k=10). 

Additionally, the Bottom-Up algorithm [42] was run on the same Adult dataset. Due to 

the limited size of the Adult DB, the local algorithm was not able to find any successful 

strings among the subset of generalization strings that it examined. We are currently re-

examining how each attribute is being grouped in the different generalization levels to 

see if that will aid in the discovery of a successful generalization string while only 

examining a small subset of all possible strings. 

On the other hand, the global optimization algorithm performed quite well. As 

demonstrated in Figure 7, the anonymized dataset using a k value of 3 or 5 was able to 

maintain the pattern discovered by the raw dataset where individuals who have Capital 

Gains >=$6001 had yearly salaries of >50K. In contrast, the Bottom-Up algorithm when 
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run using a k value of 3 or 5, the same pattern was lost, because the Capital Gain in 

Bucket #1 covered the full range of values. Although the Bottom-Up algorithm produced 

a result for Bucket #2 to differentiate the individuals who have a yearly salary <=50K, the 

wide range of Capital Gains and the overlapping of groupings of those Capital Gains 

diminish the impact of that discovery. Similarly, the Bottom-Up algorithm failed to 

discover the pattern in Bucket #1 due to the full range of Capital Gain values, and the 

Bucket #2 had overlapping values and did not find the Education Numbers of Pre-

College.  

When the k value was raised to 10, our algorithm was not able to find any 

solutions that did not include the most generalized values for the salary attribute. In 

contrast, the Bottom Up algorithm had Bucket #1 that had the Capital Gain representing 

a full range of values therefore no conclusion can be determined. Bucket #2 had Capital 

Gain values <$7000 where 86% of the 20000+ individuals had a Salary of <=50K.  

Similar to the MCPHD, we examined off-line all possible combinations of the 

generalization strings to ensure that the algorithms were discovering the highest utility 

strings that passed the given k-anonymity criteria. Although the utility metric defined in 

[42] can help understand the penalty associated with an anonymized dataset, the NCP 

does not take into account different sizes of groups within a generalization level, nor 

does it account for range thresholds defined by the data expert to be critical for data 

mining exercise, or categorical values that must be maintained within a generalization 

level that could be used to find patterns or trends in a dataset. Additionally, the Bottom-

Up algorithm does not prevent attributes from having overlapping values, and this 

dramatically diminishes the utility of the anonymized dataset as demonstrated in the 

previous section. 
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Summary and Future Work  

In summary, we have introduced two approaches for achieving k-anonymity while 

aiming at maximizing a user driven data utility. Each algorithm has its strengths and 

weaknesses, but as described before, the ultimate goal is to create a generalized 

dataset that maximizes the utility of the transformed data. Unfortunately, data utility and 

anonymity are in an inverse relationship; as we try to improve data utility, we expose the 

confidentiality of the data, and vice versa. Therefore, we must find an acceptable 

balance between the two. The Global Optimization algorithm was shown to outperform 

the Bottom-Up utility algorithm using recursive partitioning. 

Based on the experiments we performed, global optimization utility metric 

algorithm seems to provide this balance although it may require longer run times as the 

number of attributes in a dataset increase. The pre-pruning portion of the algorithm 

helped to cut down on the unnecessary database calls with generalization strings that 

fail k-anonymity. In order to maximize the data utility of a given dataset, it was necessary 

to rank the importance of the attributes relative to each other, and also within each 

attribute. Our research value metric is an attempt to encapsulate these constraints. The 

algorithms we described implementing this concept have the ability to eliminate 

unwanted generalization strings while still reaching a desirable solution that satisfies 

both k-anonymity and data utility for a researcher.  

We are currently working on an automated generalization approach that clusters 

tuples together to satisfy anonymity requirements only when it maximizes our proposed 

RV utility metric. Preliminary results have shown that our automated approach improves 

upon existing methodologies. 
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AN IMPROVED DATA UTILITY CLUSTERING METHODOLOGY USING DATA 

CONSTRAINT RULES 

Abstract 

Many data privacy models have been built in the last few years using the k-

anonymization methodology including l-diversity, p-sensitive k-anonymity, and t-

closeness. While these methods differ in their approaches and quality of the results, they 

all focus on ensuring the anonymization of the data while at the same time attempt to 

protect the quality of the data by minimizing the loss of the information contained in the 

original data set. In this paper, we propose an automated k-anonymity approach that 

uses clustering to maximize the utility of the data while ensuring that the data privacy is 

maintained. Our method employs data constraint rules, which are defined by the data 

research expert to represent especially informative distributions in categorical attributes 

or inflections points in a continuous attribute. The values of the data constraints are an 

integral component of our utility function, which is used to maximize the utility of the 

anonymized dataset. Finally, we present our experimental results that show that our 

approach meets or exceeds existing methods that do not incorporate data constraint 

rules. 

Introduction 

The explosion of personal data that is now electronically available from multiple 

application areas, such as finance, healthcare, and social networks, has increased 

concern about protecting the privacy of the individuals that are represented in those 

datasets before the data is released for secondary uses. Existing government 

regulations stipulate that the privacy of the individuals described in electronic datasets 

must be protected during their collection, storage, distribution and use [14]. It is usually 

necessary to modify the original raw dataset before it is released for other use, such as 

by healthcare researchers identify risk factors in a community.  
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A method used that is widely used to protect the privacy of individuals is 

modification or masking, where the original values in a dataset are changed so that an 

adversary cannot link records from multiple data sources to expose the private 

information of an individual [5]. Existing anonymity models for masking are k-anonymity 

[33, 34] or one of its follow-up augmentations: l-diversity [25], p-sensitive k-anonymity 

[36], and t-closeness [22]. At its roots, k-anonymity was designed to ensure that the 

identity of an individual cannot be reversely identified within a set of k individuals. This is 

accomplished by satisfying the k-anonymity property that states that every tuple in a 

dataset is indistinguishable from at least (k-1) other tuples with respect to attributes 

defined to be quasi-attributes. These quasi-identifiers are defined in detail in the 

following section. Existing augmentations of k-anonymity ensure that either the count or 

the distribution of sensitive attributes, also defined in the next section, is guaranteed for 

every k group of tuples.  

Recently, work in the area of k-anonymity has focused on clustering methods to 

provide data privacy and utility. Clustering is an unsupervised classification technique to 

put patterns (observations, data items, or feature vectors)  into groups or clusters, and 

the main activities involved in clustering  are shown in Figure 10 [1]. 

Figure 10. Stages in Clustering 

 

 

 

The crucial component of any successful clustering algorithm is a similarity 

measurement that defined the distances between the feature spaces of two clusters. 

Early clustering methods used Euclidean distance, which is the straight line distance 

between two points. Traditional clustering methods require that a particular number of 
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clusters exist in the solution, but for a dataset to k-anonymous, each cluster in the 

solution must contain at least k records.  

To translate conventional clustering methodologies to address the data privacy 

problem, [17] introduced the concept of the k-member clustering problem to anonymize 

a dataset while minimizing intra-cluster distances using a normalized distances between 

numerical values and hierarchical distances from a taxonomy tree for categorical data. In 

contrast, [12] cluster records into an arbitrary space according  to a maximum cluster 

radius that contains at least r members. When the data is published, three types of 

features about the cluster are included: 1) quasi-identifier value for the cluster center, 2) 

number of elements in each cluster, and 3) a set of values for the sensitive attributes. 

Recently, a new anonymity clustering approach was presented in [6] where the 

clustering minimizes information loss during the anonymization process by creating a set 

of specified privacy constraints that can span clusters. The intent of the privacy 

constraints in the anonymization process is to limit generalization that obscures 

especially important distinctions within attributes. 

 In this work, we propose an automated clustering-based approach that is utility 

driven and minimizes the information loss. Unlike the existing approaches, our utility 

function uses the concept of data constraint rules that are based upon well-defined 

inflection points for numerical attributes and data expert groupings of categorical 

attributes. The contributions of this work are the following: 

 We propose a novel clustering-based methodology inspired by the framework 

introduced in [41], but it is driven by a new utility function that extends the 

normalized certainty penalty to include the data constraint rules 

 We implement two efficient anonymization algorithms based upon our 

clustering methodology. Both of the algorithms investigate all possible 

combinations in order to minimize the information loss while ensuring that the 
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dataset protects the privacy of the individuals represented in the dataset and the 

data constraint rules are followed as much as possible. The first algorithm 

clusters the data according to our new utility function, and the second algorithm 

extends the utility function to include the record suppression. 

 Finally, we perform extensive experiments using a public benchmark dataset 

and a proprietary patient dataset. The results of our experiments confirm that our 

new algorithms meet or exceed existing algorithms. 

Background and Related Work 

In this section, we summarize the k-anonymity approach and principles as well 

as provide the basic concepts of clustering and the types of problems solved by 

clustering.  

K-Anonymity 

The basic definitions provided here are also presented in [21, 22] as we find that 

their description of attributes generalization is very concise and applies to our work. 

Attribute Identifiers 

Let T= {t1,t2,…tm} be a table storing information about individuals, described with 

a set of attributes A = {A1, A2, . . . ,An}. We distinguish three types of attributes in A, 

labelled as explicit identifiers, quasi-identifiers and sensitive identifiers as defined in [25].  

An attribute Ai is labelled as explicit identifier if it can be used to uniquely identify an 

individual. Examples include social security number and name. To preserve the privacy 

of the published data we assume that the explicit identifier attributes undertake a 

transformation process such as randomization [8]. Quasi-identifiers are defined in the 

next section, and sensitive identifiers are special attributes that contain data that are 

considered to be extremely personal, such as disease state or a salary.  
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Quasi-Identifier Attribute 

A set of attributes {A1, A2, . . . ,An} of a table T is called a quasi-identifier set if 

these attributes can be linked with external data to uniquely identify at least one 

individual in the general population Ω [19]. It is assumed that the quasi-identifier 

attributes are known based upon the specific knowledge of the domain experts. In the 

work described in [25], a sub-class of quasi-identifier attributes are defined and labeled 

as sensitive attributes. An example of a sensitive attribute is cause of death such as 

individual X died of cancer. In our work this distinction is not made, which will be 

addressed in the algorithm discussion. 

Frequency Set 

Let Q= {A1, A2, …, Aq} be a subset of A. The frequency set of T with respect to Q 

is a mapping from each unique combination of values {v0, … vq} of Q in T (the value 

groups) to the total number of tuples in T with these values of Q (the counts)  [16]. In 

other words, the frequency set of T with respect to Q stores the set of counts of each 

unique combination of values of Q in T. 

K-Anonymity Property 

Relation T is said to satisfy the k-anonymity property (or to be k-anonymous) with 

respect to attribute set A if every count in the frequency set of T with respect to A is 

greater than or equal to k [34]. Similar to [20], in order to determine the frequency set 

from table T with respect to a set of attributes A, we are utilizing the COUNT(*) 

functionality of SQL with A as the attribute list in the GROUP BY clause of the query. In 

addition to the value returned by COUNT(*), we are using the MIN(list) function to allow 

of all the calculations for the frequency to be performed at the SQL database level. For 

example, a sample query of the patient database may look like this expression: 

select min(myCount) as count from (select count(*) as myCount from DB1 group by q1, q2) 
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The result from this query is then compared against the k-anonymity threshold 

value “k” for the combinations of attributes q1 and q2. 

Attribute Generalization and Suppression 

The basic idea of generalization is to abstract the domain of attributes to make it 

more difficult to distinguish individual values and therefore increasing the chances of 

achieving k-anonymity. Examples of generalization include generalizing zip code values 

by replacing the last digit with wild card (i.e. *) or generalizing individual age values into 

a range of values. Suppression of attributes is simply regarded as the case where the 

attribute is generalized to the highest or most general level (e.g. zip code attribute is 

generalized to *****).  

Figure 11. Generalization of the Race attribute 

 

Figure 11 provides an example of the domain generalization hierarchy for the 

Race attribute. As an attribute approaches the most generalized level of a hierarchy tree, 

the information loss an attribute increases dramatically. Minimizing the height of an 

attribute in its hierarchy tree during the anonymization process will minimize the amount 

of information loss and increase the accuracy of queries executed against the 

generalized dataset. 

Recoding Methods  

Two specific types of generalization are local and global recoding [15, 21, 35, 

42]. In global recoding, the data space is partitioned into a set of non-overlapping 

regions, such that all tuples from a single attribute domain region are mapped to the 
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same generalized or changed tuple [42]. Local recoding on the other hand can map an 

individual tuple to different generalized tuples. In other words, “allows the same detailed 

value to be mapped to different generalized values in each anonymized group [35].”  

Table 7. Global and Local Recoding Example 

 

 

 

Using the example from [15], you can see in Table 7 that the Age value 30 is 

mapped to different types of Education in the 3-anonymous table using local recoding, 

while the Age of 30 is mapped to only “Any” in the 3-anonymous  table using global 

recoding. In general, local recoding may provide less information loss than global 

recoding, but it introduces the issue of mapping a single value to many values which is 
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detrimental when performing data analysis queries on the resulting anonymized 

datasets. 

Related Work 

K-anonymity and the deployment of generalization/suppression to satisfy k-

anonymity were originally characterized in [31], and a binary search algorithm to find a 

single full-domain generalization was described in [30]. New optimization methods were 

developed in [2, 4, 7, 20, 21, 26]. For example in [15], the authors introduce a class of 

algorithms for a multi-dimensional data model that produce k-anonymous full-domain 

generalizations while still maintaining a substantial performance improvement over 

existing full-domain algorithms. 

An area of research within privacy protection has been the analysis of k-

anonymity, and whether or not it protects the privacy of data. L-diversity, proposed by 

[25], suggests that k-anonymity is susceptible to homogeneity of the data combined with 

the knowledge of the attacker. An examples is that if the attacker knows that a dataset 

includes all persons in a county, and the data shows that all persons in the datasets with 

syphilis also have AIDS, and the attacker has external knowledge that his acquaintance 

Jim, a county resident, has syphilis, the data has revealed to the attacker than Jim has 

AIDS. As initially described, l-diversity proposes to protect not only the quasi-identifiers, 

but provides special attention to a subset of the attributes called sensitive attributes (e.g. 

an attribute storing HIV status for a patient, which the patient would not want disclosed) 

characterized by having at least l well-represented values exist in a set of records that 

have the same values for the quasi-identifiers. In contrast to l-diversity, [17] proposes a 

concept called t-closeness. This concept is based on the premise that for any 

equivalence class, which is a set of quasi-identifiers, the distance between the 

distribution of a sensitive attribute in the equivalence class and the distribution of the 

attribute in the whole table is no more than a threshold of t.  
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We consider all attributes to be sensitive attributes, so during the anonymization 

process, our algorithms ensure that we have k records to prevent identity disclosure. 

Even though our anonymized dataset may not satisfy t-closeness, we ensure that we 

have at least k records for each of the “sensitive” attributes as classified in [25]. An 

attacker may have external information about any subset of attributes within a dataset, 

and so any attribute must be treated as a possible contributor to identity disclosure, as 

illustrated by the two attributes Resident County and syphilis status in the prior example. 

To achieve k-anonymity, there must be at least k records with any combinations values 

from all of the attributes in the anonymized dataset, not just values from some subset of 

attributes that have been categorized as identifiers or quasi-identifiers. 

Among studies of the utility of the data after anonymization, the research of Xu et 

al. [33] is one of the few studies that emphasized the need to build utility aware 

anonymization in terms of weights among individual attributes. The example they 

provide highlights the difference in importance that exists between age and zip code 

attributes when conducting a study for disease analysis. More precisely, age has more 

importance in this type of study. Therefore, it makes sense to try to minimize the level of 

generalization of age when compared to zip code during the transformation process. It 

should be noted that the weights are not intended to create different anonymized 

datasets for each type of user, but instead provide weight on attributes that are generally 

more important for the majority of users of the data. For this aim, an attribute weight has 

been introduced in the utility metric they proposed; although it has been set to one all 

across the attributes when actually implemented. The utility metric obtained corresponds 

to the sum of the weighted utility of each attribute. The utility metric, also called 

normalized certainty penalty, is expressed in terms of the loss of information generated 

by the generalization process. In a case of a numeric quasi-identifier attribute Ai whose 

initial domain Di is generalized to domains Di_0, Di_1, ... Di_m, the loss of information is 
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expressed in terms of the sum of the ranges of each sub domain Di_j normalized by the 

range of the initial domain. Di. Similar reasoning can be extended for categorical 

attributes. 

In other works of k-anonymization such as in [7, 16, 21] the authors have also 

introduced utility matrices to guide the transformation process; but did not take into 

account the importance of the attributes. For example in [7], the discernability model is 

introduced to measure the information loss for each attribute Ai, by assigning a penalty 

to each tuple in the table based on the number of tuples having the same generalized 

sub-domain Di_j. Described in [14], the authors propose to release frequency related 

information about the data called marginals. For example, if there are five people in a zip 

code that are forty years of age, the authors will release a table with an entry of forty with 

a count of four. The determination of what marginals are released is dependent on an 

entropy measure and not based on the needs of the researcher who wants to mine that 

data. The concept of a normalized certainty penalty (NCP) is introduced in [11] to 

capture information loss as the data is generalized into intervals, therefore losing 

accuracy in query answering. For example, a user may want to know how many 18 year 

old men purchased beer and diapers in 2005, but may only be able to count men ages 

16 to 20 years old if age has been aggregated into five year domains in the dataset. For 

all numerical attributes, Ai, from table T, NCP is defined as 

| |
 

where |Ai| is defined to be the  .   . ,  i.e. the range of all tuples 

on attribute Ai. The numerator contains that variables yi, and zi, which are the 

generalized values for xi. Finally, wi reflects the weight of the utility for attribute Ai as 

compared to the other attributes in the dataset.  
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Categorical attributes follow the following formula for the NCP: 

 
| |

 

where the size(u) is the number of common descendants and |A| is the number of 

distinct values for attribute A. The NCP is an interesting concept, but its limitation is that 

it does not take into account the importance of particular values in the dataset that have 

been identified by the data content expert as critical to the analysis of the researcher. In 

[27, 28], we introduced our new utility metric that builds upon aspects of the NCP, but 

also penalizes a particular generalization level of an attribute if the critical values of that 

attribute have been generalized. The data content expert, who is very familiar with the 

needs of the researchers receiving the data, pre-defines these critical data values in 

rules that may be a value like “white, or black” for a categorical attribute like race, or a 

range of numbers like 12-18 for age is well accepted as “adolescent.”  If these values 

are not present in a particular generalization level, then the information loss increases 

and the penalty also increases. 

Clustering 

Clustering is a methodology that aggregates similar elements into groups, such 

that the elements in one cluster are more similar than elements in another cluster [1]. In 

the research community, clustering is used for data-mining, pattern classification and 

document retrieval. As shown in Figure 10, the typical activities involved in clustering are 

creating a pattern representation, defining a measurement that defines the distance 

between patterns, clustering/grouping of the patterns, potential abstracting the data and 

assessing the output of the clustering. The pattern representation defines the number of 

classes or features that are available to the clustering algorithm, while the distance 

measurement used to determine clusters during the execution of the algorithm can be as 

simple as a Euclidean distance, or a more sophisticated measurement as used in [12]. 
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Grouping of elements can be “hard” or “fuzzy”, where hard clustering allows a pattern to 

only be in one cluster and fuzzy clustering allows membership to multiple clusters. 

Abstracting the data offers the user or the algorithm the ability to represent the data in a 

simplistic format to improve the clustering process, and assessing the output of the 

clustering is a means to evaluate how successful the algorithm was creating groups of 

data from the initial input set of data.  

Clustering Approaches 

In [1], they discuss multiple techniques that have been used to cluster data. 

Agglomerative and divisive techniques equate to bottom-up versus top-down strategies, 

where the agglomerative starts with each pattern in a distinct cluster and then 

aggregates the clusters until some stopping criteria has been met. On the other hand, 

the divisive approach starts with all the patterns in one cluster and then divides that 

cluster into multiple clusters until a stopping criterion has been met. Figure 12 illustrates 

the differences between agglomerative and divisive clustering.  

Figure 12. Agglomerative vs. Divisive Clustering 

 

Finally, as described in the previous section, allocation of patterns of the data in 

clusters can be either “hard” or “fuzzy”, where hard clustering allows a pattern to only be 

in one cluster and fuzzy clustering allows membership to multiple clusters.  
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Related Work 

Clustering has been used for many years in the arena of data mining to 

aggregate similar collections of data, but it has recently entered into the realm of data 

privacy protection through k-anonymity. In [17], they proposed a greedy k-member 

clustering algorithm that attempts to minimize information loss while maintaining data 

quality. The algorithm works by randomly selecting a record r that is used as the seed for 

the first cluster and then additional records are added to the cluster so that the 

information loss is minimized within the cluster until at least k records belong to the 

cluster. Once the cluster reaches k records, a new record r that is furthest from the 

previous cluster is selected to start a new cluster in order to repeat the same 

aggregation process. Any records that are left over after this process is completed will 

be assigned to the closest clusters. This algorithm is slow and is susceptible to outliers 

that can cause increased information loss. A similar approach was implemented by [24] 

to anonymize a dataset. Unlike the previous algorithm, they chose the seed record 

randomly and continued to add records to the cluster until a user defined information 

loss threshold was exceeded. Any clusters that contained less than k records were 

deleted. The deletion of records could lead to significant information loss, and 

determining the information loss threshold is difficult to accomplish a priori. 

In order to improve utility and performance times from the previous described 

algorithms, [23] offered an efficient k-mean clustering approach that first creates all 

clusters at a time and sorting them based upon their quasi-identifiers. The number of 

clusters to create is determined by dividing the total number of records by the desired k 

value. After the total cluster number is established, the algorithm selects p records to 

use as seeds for the p clusters. For each of the records in the dataset, the record is 

assigned to the closest cluster and the center point of that cluster is then updated. If any 

cluster has more than k records, the excessive records that are most dissimilar to the 
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rest of the records in the cluster are reassigned to more appropriate clusters. This 

algorithm is again susceptible to outliers and does not address the l-diversity issue. In 

[18], they describe an algorithm that attempts to provide at least k records and l ≥ 2 

distinct sensitive attribute values in each cluster that have minimal intra-cluster distances 

via a two-step method. The first step establishes a set of clusters from the input dataset 

such that each cluster satisfies the k-anonymity requirement, and the second step is 

responsible for ensuring that each cluster contains at least l ≥ 2 distinct sensitive 

attribute values. If the clusters from the first step provide the l-diversity criteria, the 

second step is not required. Unfortunately, no experimental results are presented to 

indicate if the algorithm provides effective protection for the sensitive attributes. 

Unlike the preceding approaches, [6] introduce an algorithm that attempts to 

preserve data utility based upon utility requirements after a dataset has been 

anonymized. The utility requirements are implemented using utility constraints that 

specify the mapping of each item to a generalized item that can occur during the 

anonymization process. A data owner is responsible for creating the utility constraints 

based upon particular application requirements. The results from this work appear 

promising for constraining (bounding) the data during the automated generalization 

process, but it does not address inflection points within numerical attributes nor 

groupings of categorical attributes that are addressed by our proposed data constraint 

rules. 

Methodology 

In this section, we will describe the two algorithms, the utility metric, and the two 

datasets that were used during the experimental phase of our work. 

DataSets 

For this project, we utilized two datasets, the public Adult census data from the 

UC Irvine machine learning repository [29], and the proprietary death certificate dataset 
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from the Marion County Public Health Department (MCPHD) of Indianapolis, Indiana. 

We included the Adult Census dataset in order to compare our proposed algorithms 

against existing methodologies, since the MCPHD data is not available to for public 

download, and the Adult Census dataset is the gold standard for gauging anonymity 

techniques. The attributes used from the Adult dataset are Age, Education Number, 

Capital Gain and Salary, and the attributes used from the MCPHD dataset are Age, Sex, 

Education Number, Race and Cancer Status.  

Utility Metric 

We propose that the data curators should have more control defining the utility of 

the attributes and how they relate to the overall content of the data that is contained in 

the datasets that they own. The expertise of the data researchers provides an 

understanding particular to critical thresholds in the data that should be maintained 

through the anonymization process, so that the meaning of the data is well maintained. 

In [27, 28], a new utility measurement called the research value (RV) was introduced to 

encapsulate the utility of the each attribute with respect to the following conditions: 

 Significance of the attribute relative to the other attributes;  

 The distinct number of elements in a group at a particular generalization level;  

 The number of records that exist for each group in a generalization level; 

 The number of data constraint rules that are maintained in that generalization 

level. 

A data constraint rule (DCR) defines groupings of data or ranges of data that, if 

maintained, help to maximize the meaning of the data for the end researcher. The data 

constraint rules can exist in two forms depending on the data type of the attribute: 

categorical or continuous. Categorical attributes use data constraint rules that preserve 

distinctions between data values or between data value domains. When all of the data 
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constraint rules are satisfied at a particular generalization level of an attribute, the value 

of the data constraint rule in the RV is the sum of all possible importance values divided 

by the sum of all the importance values in the raw dataset, which would be one. Any 

generalization that violates such a constraint rule would be penalized by multiplying the 

generalization string’s total research value with a value less than one. Using the race 

attribute as an example, the data expert may assign the following importance values to 

the elements that exist for race in a database: 

Table 8. Possible Data Constraint Rules for the Race Attribute 

Constraint Rule Importance value 

Do not mix White and Hispanic in same group 5 

Do not mix White and Black in the same group 20 

Do not mix Hispanic and Black in the same group 10 

Do not mix Hispanic and Asian in the same group 5 

 

If a generalization level violated the mixing of Hispanic and Black individuals, 

then the data constraint portion of the RV would be 30/40 = 0.75. 

For a continuous attribute like age, the data constraint rules could define inflection points 

of ages that would be important for someone who is interested in mining the data. For 

example, preserving a distinction between age 20 and 21 years may be important to a 

researcher examining alcohol use, since drinking alcohol usually becomes legal on a 

person’s 21st birthday. Similar to the continuous data constraint rules, the importance 

values assigned for each of the ranges of values for an attribute are normalized to one.  
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Table 9. Possible Data Constraint Rules for Numerical Attribute 

Attribute Constraint Rule Importance value

Age 64-65 25 

Education Number 12-13 20 

Capital Gain 10000-10001 45 

 

The research value (RVk) of a numerical attribute x at generalization level k is 

defined to be: 

∑  

∑  
 
∑
∑

 

where wx is defined to be the importance weight of attribute x in reference to the other 

attributes in the dataset. The numerator ∑   is the sum of the number of elements 

within each sub-group i times the range of values for those elements in the ith group at 

the most specific generalization level of attribute x. ∑   is the sum of the number 

of elements within each sub-group i times the range of values for those elements in the 

ith group at the kth generalization level of attribute x. Finally, the data constraint rules 

portion of the equation is the ratio of the sum of the data constraint rules that exist at the 

kth generalization level, ∑ , divided by the total value of all the data constraint rules at 

the most specific generalization level, ∑ . Each dataset has an inherit value even if 

all of the data constraint rules are broken during the merging of two clusters, so to 

resolve this, the data owner has the ability to add a base value to the data constraint 

ratio, so that it does not zero out a RV if all of the rules are broken. The weight 

calculation of each attribute can be determined by establishing a correlation matrix 

among attributes using the original raw dataset. The total sum of all the weights is 

normalized to be 1. If an attribute does not correlate highly with any other attribute, then 
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that attribute is considered to be an independent attribute and will be assigned a higher 

weight. On the other hand, if an attribute is highly correlated with the other attributes, 

then it will be assigned a lower weight. As the number of attributes increases, the 

complexity of determining the correlations between attributes increases dramatically. For 

the experiment we describe in this paper, the data expert manually assigned weights for 

each of the attributes in both the MCPHD and Adult datasets, but the proposed utility 

metric to calculate the RV values was used at each generalization level of the two 

datasets. 

For categorical attributes in a dataset, the research value (RVk) of attribute x at 

generalization level k is defined to be: 

| |
| |

 
∑
∑

 

where all the elements are defined to be the same as those for the numerical attributes, 

except for the 
| |

| |
 ratio which is defined the number of unique elements at generalization 

level k divided by the number of unique elements defined at the most specific 

generalization level of the attribute.  

To demonstrate the calculation of the research value for the kth level of attribute x 

containing numerical data, the following example is presented. The weight of the 

attribute x is calculated to be 0.2; there are three groups in this generalization level with 

25, 45 and 55 elements in each group spanning 10, 15 and 25 values, respectively. The 

most specific generalization level of this attribute has 125 elements with a group 

spanning of 1. The sum of the data constraint rules, which include the base value as 

determined by the data owner, that exist at the kth level is 50, while the sum of the data 

constraint rules at the most specific generalization level is 100. Given all of these values, 

the research value for the kth level of attribute x is determined as: 
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           0.2  
125 1

25 10   45 15  55 25
50

100
0.0054 

At the most specific level, the RV of an attribute is equal to wx. It becomes 

apparent that as one moves to more generalized levels within an attribute, the 

denominator will continue to grow, and thus the RV value will continue to decrease. As 

the number of elements increases within a sub-group at a particular generalization level 

for an attribute, the chances are greater that those set of values will produce a 

measurable pattern during data analysis. In contrast, if the range of values within a sub-

group is very large, then the chances of producing a measurable pattern in the dataset 

decrease. 

It is important to note that given two attributes Am and An such that Dm_0 ≤ Dn_0, 

then the initial importance status is not necessarily maintained as attributes Am and An 

are generalized. That is, Dm_i ≤ Dn_j where i<j does not always hold in the general case. 

This is a result of the data constraint rules defined for a particular attribute, and how the 

generalization levels are defined for those attributes. Informally, the partial order 

between research values allows for flexibility in defining domain hierarchies for each 

attribute and the ability to re-evaluate the utility of the attribute and its importance with 

respect to the other attributes as the attributes undergoes global recoding. Compared to 

the information loss defined in [10], the research value metric can be regarded as an 

opposite metric, wherein the more the attribute undergoes transformation, the less 

research value it will have. 

To optimize the final overall utility of the transformed data using the research 

value metric, two algorithms are proposed: 
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 Utility-driven clustering algorithm that maximizes the research value 

 Suppression version of the utility-driven clustering algorithm that selects 

clusters based upon potentially suppressing values from the attributes contained 

in the cluster. 

Algorithms 

To ensure that a dataset is k-anonymous, it is critical to test the worst case 

scenario for the data, which in this case is a combination of all possible attributes being 

searched in a single query. This is due to the fact that as the number of attributes that 

are combined in a query increases, the chances of k-anonymity being violated also 

increases. To ensure that the anonymized dataset accounts for this issue, all of the initial 

clusters contain tuples that are a result of executing a SQL “select” statement on the raw 

dataset using a “group by” on all of the attributes. For this paper, we will only present 

numerical attributes due to the fact that the categorical attributes in the MCPHD data 

have a specifically complicated hierarchical structure and the solution for resolving these 

MCPHD categorical attributes is not relevant to this paper. 

Utility-Driven Clustering (No Suppression) 

The intent of this algorithm is to create an anonymized dataset that satisfies 

contains at least k records for all the attributes (both quasi-identifiers and sensitive 

identifiers) while maximizing the utility of the data at the same time. Unlike [27, 28], 

where all of the possible generalization groupings for each attribute along with the 

corresponding research values were pre-determined before running the global or local 

optimization algorithms, this automated utility-driven clustering algorithm starts with the 

raw data and then creates clusters until all clusters have at least k members. The first 

step in the algorithm is to execute the following SQL select statement to create thee 

initial group of clusters: 

select attr1, attr2, attr3, count(*) as Count from DB group by attr1, attr2, attr3 
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where attrx is an attribute from the raw dataset, and the count is the number of tuples 

where the values for each of the attributes are equal. The results of the query are then 

stored into a cluster object that establishes a cluster ID, min and max values for each 

attribute and a count of the tuples that are represented in the cluster as shown in Figure 

13. For the initial clusters, then min and max values are set to the same value for 

numerical attributes.  

Figure 13. Cluster Object 

 

Once the initial clusters have been established, the algorithm then identifies the 

clusters that contain less than k records (tuples) and stores these clusters into the 

under-K (UK) list. An entry from the UK list is then compared one by one to each of the 

clusters from the master list of clusters. A temporary RV is calculated during each 

comparison between the cluster from the UK list and a cluster from the master list. This 

temporary RV reflects the modified min and max values for all of the attributes if the two 

clusters were to be combined, the combined tuple count if the two clusters were to be 

merged, as well as the total count of the data constraint rules of the potential merger. 

After all the clusters from the master list are examined against the entry from the UK list, 

the  merged cluster that resulted in the largest RV will be merged with the corresponding 

cluster from the master list by modifying the appropriate min and max values for all the 

attributes as well as update the tuple count for the merged cluster. The cluster from the 

UK list will then be deleted. The algorithm would then create a new UK list, which could 

contain the newly created node if its record count was below k, and repeat the 

 Cluster ID 
 Mi n_Value[# of attributes] 
 Max_Value[# of Attributes] 
 Record_Count 
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comparison process until all clusters contain at least k records. Figure 14 provides an 

overview of the utility driven clustering algorithm that does not use record suppression. 

Figure 14. Utility-Driven Clustering (No Suppression) 

 

Utility-Driven Clustering (Suppression) 

 The utility-driven clustering with suppression is similar to the clustering method 

that does not use suppression with the exception of the following points: 

  

Input: List L 

Output: A k-anonymous Table T 

Method: 

1. Init: Create the initial master cluster list (ML) and the under-k list (UK) 
2. While (true){ 
3.        Create the UK list 
4.       If (Size(UK) > 0){ 
5.          Select cluster I from UK 
6.          RV = 0 
7.          Accepted_Cluster_ID = 0 
8.          For each cluster c in ML select cluseri{ 
9.               Calculate the New_RVi of merged cluster c and l 
10.               If New_RVi greater than RV { 
11.                    Set RV = New_RVi 
12.                    Set Accepted_Clister_ID = clusteri.Cluster_ID 
13.               } 
14.               } 
15.           Update cluster c_ID that equals Set Accepted_Clister_ID 
16.           Remove cluster c from UK list 
17.       } 
18.       Else 
19.       Break 
20.    } 
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 During the merger process, the algorithm calculates three separate RVs.  

o One RV that does not use suppression 

o One RV that suppresses one or more attribute values from the under K 

(UK) list 

o One RV that suppresses one or more attribute values from the master list 

 The greatest RV of the three is then compared against the running RV from the 

other possible merged clusters 

o If it is greater than the running RV, then this potential cluster mergers’ RV 

becomes the running RV, and this merger is marked as the best merger. 

o If it is not greater, then a new a new entry from the UK list is examined. 

After all the clusters from the master list have been examined against the entry 

form the UK list, the one with the greatest RV becomes a new cluster in the master list, 

and the UK cluster is then recalculated to see if any clusters still have a record count 

under k. 

Results and Discussion 

As a means to show how our algorithm performs against existing utility 

methodologies, our two proposed algorithms were run using the public Adult Census 

dataset  and the proprietary death certificate dataset from the Marion County Public 

Health Department (MCPHD) of Indianapolis, Indiana using a range of k values (k=3, 

k=5 and k=10). The two proposed utility driven clustering algorithms described in the 

previous section along with the Bottom-Up algorithm [42] and a simple clustering 

algorithm using Euclidean distance were evaluated using the two datasets. To evaluate 

the effects of the anonymization process of each of the algorithms relative to the raw 

values of the two datasets, we used recursive partitioning (RP), which is a multivariate 

technique that finds the attributes that are able to differentiate a control parameter. The 



64 
 

results and discussion of the experiments of each of the algorithms are described in this 

section. 

 Adult Consensus Dataset 

The control parameter in the Adult Consensus dataset is salary, which has two 

values: <=50K or >50K in yearly salary. Figure 15 shows the raw Adult Consensus 

dataset that has 30,162 records where 75% of the individuals had a yearly salary of 

<=50k and 25% of the individuals had a yearly salary of >50K. 

Figure 15. Raw Adult Consensus Dataset Recursive Partitioning 

 

Out of the attributes contained in the Adult Consensus dataset, the three 

attributes that significantly differentiated the two salary groups in order of importance 

were Capital Gain, Age and Education. The first split point involved a Capital Gain value 

of $7298, where Capital Gain values >=$7298 produced a statistically significant leaf 

node that had 98% of 1330 individuals who had yearly salaries >50K. This leaf node is 

labeled as Bucket #1 for comparison purposes against the algorithms run during the 

experimental phase of the project. On the other side of the first partition, individuals who 
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had a yearly salary <=50K did not produce a node that was statistically significant from 

the parent node, so it was necessary to split this node to further refine the differentiation 

criteria for a salary. Splitting the right Capital Gain node again with the Age attribute 

value of 28 produced Bucket #2, which had 97% of the 7162 individuals that had a 

yearly salary of <=50K. The left node form the Age split did not produce a significant 

change, so a further split was required that utilized the education attribute to produce 

Bucket #3. Bucket #3, which is a coin toss in terms of classification of the salary 

attribute, can also be considered a 100% improvement form the original node that had 

only 25% of the individuals with a yearly salary of >50K, but the end users of the 

anonymized dataset would not find this 50/50 coin toss useful. 

Each of the algorithms was then tested against the Adult Consensus dataset 

using k values of 3, 5 and 10. After the proposed automated utility driven clustering 

algorithm without suppression was executed using a k value of 3, the anonymized 

dataset was analyzed using recursive partitioning and it produced the dissection of 

clusters as shown in Figure 16. The 1852 count in the parent node represents the 30162 

records in the Adult Census dataset. The left node shows a 99.8% probability of 

individuals in this node that have a salary >50K (Bucket #1), but there is some overlap 

with the right node in terms of Capital Gains. After filtering the overlap in ranges of 

Capital Gains between the right and left nodes, 144 individuals of the 1528 individuals 

who had Capital Gains exceeding $35K had a salary >50K. Partitioning beyond the 

Capital Gain node produced a cut point using Education, but there was complete overlap 

between the two nodes. 
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Figure 16. Utility Driven Clustering without Suppression, k =3 

 

The Bottom-Up algorithm produced similar results to the proposed algorithm 

where 100% of the individuals in the node who had Capital Gains in the left node had a 

salary >50K as shown in Figure 17. 

. 
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Figure 17. Bottom-Up Algorithm, k=3 
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It was again necessary to filter the overlap between the left and right nodes, 

resulting in 148 of the 1621 individuals in the left node with Capital Gains >$34K had a 

Salary >50K. Similar to the utility driven algorithm, the Bottom-up algorithm did not 

produce any further splits towards Bucket #2 that were plausible due to complete 

overlap in the Education attribute. 

Interestingly, the results from the utility-driven with suppression for a k value of 3 

produced a partition that first split using the Education attribute as shown in Figure 18. 

The bottom left node has 100% of the 1381 of the 1397 individuals who have an 

Education >9 and Capital Gains >$5178 have salaries >50k, and in the top right node, 

3706 individuals with and Education less than 7 have salaries <=50K. 

Figure 18. Utility-Driven Clustering with Suppression, k=3 

 

The Euclidean distance clustering did not produce any partitions that did not 

involve complete overlap between the left and right split nodes for a k value of 3, 5 or 10. 

When using k values of 5 or 10, the Bottom-Up algorithm did not generate any partitions 

of significance, but the utility driven clustering algorithm did work for the remaining 

values of k. 
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When the utility driven clustering algorithm used a k value of 5, it created a first 

partition using Capital Gain for 100% of the individuals in the left node that had a salary 

>50k. As before using a k value of 3, it was necessary in this case to again filter the 

overlap between the right and left nodes, but it not to the degree as was seen when k 

was set to 3. Eliminating the overlap, 1019 of the 1440 individuals in the left node in 

Figure 19 who had Capital Gains >$7400 had a Salary >50K, which is significantly closer 

to the cutoff of Bucket #1 seen in the raw dataset in Figure 15. It should be noted that 

the utility driven clustering using a k value of 5 had far fewer clusters than the Bottom-Up 

and Euclidean, and even the utility driven clustering using a k value of 3. 

Figure 19. Utility Driven Clustering, k =5 

Only the utility driven clustering algorithm produced any results for a k value of 

10 with 100% of the individuals in the left node had a salary of >50K, but it did have 

some overlap with the right node although not as significant as the two previous k values 
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using the utility driven clustering. After the removal of the overlap, 1174 of the 1322 

individuals in the left node with Capital Gains >$7444 had a salary >50k. This iteration 

still did not produce any results for the Bucket #2 as shown in Figure 20. 

Figure 20. Utility Driven Clustering, k=10 
 

 

Overall, the proposed utility driven clustering algorithm that did not use record 

suppression outperformed both the Euclidean Distance clustering and the Bottom-Up 

algorithm. Only the new utility driven clustering algorithm without suppression was able 

to produce a result for Bucket #1 for k values of 5 and 10, and none of the algorithms 

were able to generate a solution for Bucket #2 or Bucket #3. The number of clusters 

generated by the utility driven clustering algorithm was much fewer than the Bottom-Up 

and Euclidean Distance clustering algorithms, which led to the improved partitioning 

results compared with the other two algorithms. 
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 Marion County Public Health Department (MCPHD) 

The control parameter for the Marion County Public Health Department is the 

cancer, which has been binned into two categories: non-cancer and cancer. Figure 21 

shows the breakdown for the MCPHD dataset, which is comprised of ~122,000 records 

where 89% of the records contain non-cancer (0) entries compared to 11% cancer (1) 

entries in the root node. The attributes from this dataset that were examined were the 

following: Cancer status, Age, Sex, Education and Race. Unlike the Adult Census 

dataset, the MCPHD is a much more skewed dataset, and this is very apparent from the 

recursive partitioning splits as shown in Figure 21 where even after two splits on the left 

side of the tree, the distribution is not much different than the root node, but the split on 

Education produced a node where 99% of the individuals in the node had a diagnosis 

that was not cancer related. The next split was Age, but it did not differentiate 

significantly from the previous cut, and further attempts to split the data did not generate 

any noteworthy nodes. 
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Figure 21. Marion County Public Health Department 

 

Each of the algorithms was run against the MCPHD to determine which algorithm 

which one would perform the best against the dataset. Unfortunately, none of the four 

algorithms (Utility driven with and without suppression, Bottom-Up and Euclidean 

distance) could produce any substantial outcomes anonymizing the MCPHD dataset. 

Figure 22 shows an example of the partitioning results, which in 

Figure 22. Utility Driven Clustering Algorithm 
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this particular case are from the utility driven clustering algorithm. As you can see from 

the figure, there is complete overlap between the two Education splits, so conclusions 

can be drawn to separate the cancer status categories. 

Summary and Future Directions 

Two new utility driven clustering algorithms were presented to aid in the 

anonymization process while still maximizing the utility of the data, so that researchers 

can still find trends and patterns in the data. Central to the new algorithms is a new utility 

function that builds upon previous utility functions, but extends them by adding the 

concept of data constraint rules that allow the data owner to define inflection points in 

the dataset that are based upon well-defined attribute groupings for continuous 

parameters, and for collections of values for a categorical attribute. The new utility driven 

clustering algorithm was compared against existing algorithms, and it outperformed 

those algorithms using the gold standard dataset (Adult Consensus). Unfortunately, 

neither the new algorithms nor the existing algorithms were able to produce a plausible 

solution for the Marion County Public Health Department dataset, which can be 

attributed to the skewed nature of that dataset for the cancer status end point. Future 

directions for this project would be to add an automated means to provide weighting for 

each of the attributes in the dataset that can improve the results from the partitioning 

process. In addition, further improvements to the utility function in terms of an 

importance factor which can be set between zero and one that the data owner can set 

that will reflect the granularity portion of the utility function versus the value of the data 

constraint rules. This allows the data owner to put more emphasis on portions of the 

utility function based upon the needs of the users of the data. 

  



74 
 

DISCUSSION 

Introduction 

 In the previous two chapters, four novel algorithms that employ a new user-

driven utility function have been presented. The results of the experiments that were 

performed using each of the four novel algorithms to evaluate the effectiveness of the 

algorithms as compared to existing algorithms were also presented in the preceding 

chapters. The purpose of this chapter is to summarize those overall results, as well as 

identify and discuss the limitations of each of the four algorithms. Finally, future work will 

be discussed. 

Results 

In this section, the results of the experimental runs of the proposed algorithms 

will be presented and discussed in terms of their performance relative to the existing 

methodologies using the standard reference anonymity database, Adult Census [29].  

Utility Functions 

Listed in Table 10 are the utility functions that were used during the experimental 

phase of this project, where the intent of the experiment was to maximize the utility of 

the Adult Census database while still providing privacy protection for the individuals in 

that database. The Euclidean Distance is simply the sum of the ranges (max minus min) 

of each attribute when two clusters are being merged. During the anonymization 

process, the two clusters that produce the smallest Euclidean Distance would be 

merged.  
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Table 10. Utility Functions 

Name 
Euclidean 
Distance 

Normalized Certainty 
Penalty (NCP) 

Utility-Driven RV (UDRV) 

Formula 
| |

 
∑  

∑  
 
∑
∑

 

 

The Normalized Certainty Penalty (NCP) [42] formula was implemented in the 

Bottom-Up clustering algorithm. Compared to the Euclidean Distance utility function, the 

NCP adds two new features to the utility function realm: an attribute weight and the 

overall range of an attribute in the dataset. The NCP is the sum of all attributes where 

each attribute’s contribution is the range of an attribute in a cluster divided by the 

maximum range for that attribute times the weight factor of the attribute. A weight factor 

is defined to be the importance of that attribute relative to the other attributes in the 

dataset. The weight factor can be determined using correlation analysis and/or feature 

selection, as well as input from the data expert. 

Finally, the Utility-Driven Research Value (UDRV), which was used by the 

optimization algorithms and the proposed automated clustering algorithms, adds the 

following features to the its utility function: data constraint rules; the sum of the ratio of 

number of elements in a cluster times the range of values at the most specific 

generalization level divided by the number of elements in the cluster times the range of 

values at generalization level k. The ratio in the utility-driven research value extends the 

ratio from the NCP. By adding the number of elements into the ratio portion of the utility 

function, it provides a means to weight the range of the values at a particular 

generalization level. As the range of value increases and the number of elements in that 

range increases, it decreases the utility of that generalized dataset. 
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Table 11 provides an overview of each algorithm and the associated utility 

function features, as well as the question of whether an algorithm has the ability to scale 

to datasets that contain a large number of attributes. Out of all the algorithms, the 

Euclidean Distance Clustering algorithm had the least number of the listed features, 

which makes sense since it was designed to be a simple distance solution. As 

mentioned in the previous paragraph, the NCP utility function added the ability to weigh 

each attribute to reflect its importance in terms of that particular  

Table 11. Utility Function Features 

Algorithm  
Name 

Range of 
Attribute 

Value 

Weight of 
Attribute 

Number of 
Records in 

Range 

Data 
Constraint 

Rules 

Scalability 
to Larger 
Datasets 

Euclidean 
Distance 

Clustering 
Yes     

Bottom-Up 
Clustering 
using NCP 

Yes Yes    

Global 
Optimization 
using UDRV 

Yes Yes Yes Yes Yes* 

Local 
Optimization 
using UDRV 

Yes Yes Yes Yes Yes& 

Clustering 
using UDRV  

(No 
Suppression) 

Yes Yes Yes Yes  

Clustering 
using UDRV  

(Suppression) 
Yes Yes Yes Yes  

* Using distributed approach, correlation analysis (Feature selection) to reduce # of attributes 
& Only examines a subset of all possible generalization strings 
 

attribute relative to the other attributes in the dataset. How this weighting is determined 

can be fashioned by a multitude of available techniques, such as recursive partitioning or 

feature ranking.  
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The Global Optimization using UDRV covered the full span of the features 

including the number of records in a range, data constraint rules and scalability to larger 

datasets. In order to satisfy the scalability feature, the Global Optimization was modified 

to allow a distributed approach were the attributes are divided into sub-groupings and 

then the successful sub-grouping generalization strings are combined and analyzed to 

ensure k-anonymity. This was necessary, because the Global Optimization algorithm 

generates all the possible generalization strings for all the attributes before it performs 

the k-anonymity checks, which for datasets where the number of attributes starts to 

exceed twenty-five attributes the number of total possible strings will exceed 225 

combinations when there are just two possible values for each attribute. For complex 

datasets that contain a large number of attributes with multiple values per attribute like 

the Marion County Public Health Department’s (MCPHD) Death Certificate dataset (See 

Table 2 in the first chapter), the number of possible combinations could become 

overwhelming. To address this escalating number of generalization strings, a correlation 

analysis of the attributes can be performed in order to eliminate attributes that are highly 

correlated. Removal of the all of the correlated attributes from a group except for one 

attribute will not have an adverse effect on the resultant anonymized database. 

The Local Optimization using UDRV also contained all of the features listed in 

Table 11, including the ability to scale to larger datasets, which is accomplished because 

it does not pre-calculate all the possible generalization strings, but instead only 

examines a subset of all possible generalization strings. During the testing phase of the 

optimization algorithms on the MCPHD Death Certificate dataset, the Global 

Optimization was able to find more successful generalization strings as the number of 

tested attributes in the dataset increased. It should be noted that the Local Optimization 

algorithm was able to find the same solution as the Global Optimization algorithm for the 

twenty-four attribute test set from the MCPHD Death Certificate dataset when using a k 
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value of 3. Finally, as can be seen in Table 11, the remaining proposed algorithms 

(Clustering using UDRV with no suppression and Clustering using UDRV with 

suppression) each contained all of the features except for the ability to scale to larger 

datasets.  

 Determining the Proper k-Value  

Although it is out of the scope of this work to find an ideal k value for a given 

dataset, a set of simulations were run to see the effect of increasing the number of 

attributes in dataset and the chances that the dataset could be anonymized to a 

particular k value given known number of records in the dataset. This analysis provides 

some insight into whether it is worth trying to anonymize a particular dataset. In these 

simulations, the possible values for the attributes have been limited to only two 

possibilities, so one could imagine the complexity of the problem when a specific 

attribute or a group of attributes have more than fifty possible values, where the values 

could occur with different frequencies. As shown in the results from the first chapter for 

the Marion County Public Health Department’s Death Certificate dataset, as the number 

of attributes increased beyond twenty-four attributes that had many more than two 

possible values for each of those attributes, neither of the proposed optimization 

algorithms were able to produce an anonymized dataset that satisfied k-anonymity.  

For these simulation tests, the number of attributes tested ranged from three to 

nine attributes along with corresponding k values of three, five and ten, as well as a 

simulation using twenty attributes with a k value of 5. Each attribute in the simulation had 

two possible values: zero or one, which were randomly generated with a 50:50 chance 

of occurring. All of the attribute values were then combined and a grouping operation 

was performed to aggregate similar records. These groupings were then tested to see if 

those aggregations contained at least k entries. Table 12 contains the results of the 

simulations and the criteria used for each for simulation. As you can see from the table 
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and figure, when there are three attributes in a dataset, the number of required records 

to satisfy k-anonymity for k values of three or five were at or under 100 records, When 

the attribute count jumped to seven along with a k value of five, the number of records 

required to satisfy k-anonymity jumps dramatically to around  7500 records.  

Table 12. k Value Simulation 

Number of Attributes/ 
K Value/ 

Number of Records/ 
Number of Repetitions 

Success Rate of Achieving k-
Anonymity 

3/3/50/50 68% 
3/3/75/50 100% 
3/5/75/50 74% 

3/5/100/50 100% 
7/5/1200/500 0% 
7/5/7500/500 100% 

12/5/30000/500 0% 
12/5/100000/500 100% 
15/5/750000/200 96% 

18/5/2000000/200 0% 
 

For an attribute count of twelve and a k value of five, the record count required to 

satisfy k-anonymity for each of the five hundred repetitions approaches at least 100,000 

records. When the number of attributes was increased to eighteen with a k value of five, 

even with two million records in the dataset, there were no successes for k-anonymity 

during any of the two hundred repetitions. Figure 23 graphically shows the increase of 

records needed to satisfy k-anonymity as the number of attributes increases. 
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Figure 23. K-Value Simulation Results

 

 

 

This analysis shows that it worthwhile to simulate a possible dataset before 

performing a k-anonymization process, and it can also aid in understanding why a 

particular full dataset with greater than thirty-six attributes like the Marion County Public 

Health Department’s Death Certificate cannot be anonymized without significant pre-

work. This brings to mind that it will be necessary to work with the data owner to identify 

attributes in the dataset that will have impact for researchers, as well as aid in the 

identification of outliers in the numerous attributes that could be removed before the 

anonymization process begins to increase the chances that an anonymized dataset can 

be generated. 

Number of Records 
k-Anonymity Value 

Number of Attributes 
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 Experimental Summary 

As a means to show how our algorithm performs against existing utility 

methodologies, our two proposed algorithms were run using the public Adult Census 

dataset using a range of k values (k=5 and k=10). To evaluate the effects of the 

anonymization process of each of the algorithms relative to the raw values of the 

dataset, we used recursive partitioning (RP), which is a multivariate technique that finds 

the attributes that are able to differentiate a control parameter. Although we did not 

exhaustively test our proposed algorithms performance against the available public 

datasets, the Adult Census dataset is considered the standard dataset for testing new 

anonymity algorithms. In Table 13, the results of the proposed algorithms and existing 

anonymity algorithms are listed. The entries in the table indicate the number of 

individuals that were present in a partition node, the features or attributes from the 

dataset that partitioned the data, and the split percentage of the sensitive attribute 

(Salary: >50K or <=50K) in that node. The results are listed Bucket #1 represents those 

individuals who have a Salary >50K, while Bucket #2 represents those who have a 

Salary <=50K. 

Table 13. Optimization Algorithms Performance using k=5 

 
Adult Census 
Raw Dataset 

Global 
Optimization 
using UDRV 

Local 
Optimization 
using UDRV 

Bottom-Up 
Clustering 
using NCP 

Bucket #1: 
Individuals/ 
Feature(s)/ 

Split 
Percentage 

1330/ 
Capital Gain 

>=$7300/ 
99% 

1387/ 
Capital Gain 

>=$6000/ 
95% 

NA NA 

Bucket #2: 
Individuals/ 
Feature(s) / 

Split 
Percentage 

7162/ 
Capital Gain  

<= $7300 and 
Age < 28/ 

97%  

NA NA 

18686/ 
Education is  
Pre-College/ 

86% 
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Examining the information presented in Table 13, only the Global Optimization 

algorithm was able to produce a generalized solution for Bucket #1 that mirrored the 

recursive partitioning features that were seen in Bucket #1 from the raw dataset. The 

Bottom-Up algorithm found a solution for Bucket #2, but the full range of Capital Gain 

values as well as using the Education attribute did not align with the raw Adult Census 

dataset for Bucket #2. 

Table 14. Optimization Algorithms Performance using k=10 

 
Adult Census 
Raw Dataset 

Global 
Optimization 
using UDRV 

Local 
Optimization 
using UDRV 

Bottom-Up 
Clustering 
using NCP 

Bucket #1: 
Individuals/ 
Feature(s)/ 

Split 
Probability 

1330/ 
Capital Gain 

>=$7300/ 
99% 

NA NA NA 

Bucket #2: 
Individuals/ 
Feature(s) / 

Split 
Percentage 

7162/ 
Capital Gain  

<= $7300 and 
Age < 28/ 

97%  

NA NA 

20000/ 
Capital Gain 

<$7000/ 
86% 

 

In Table 14, the Bottom-Up algorithm was the only method to find a solution 

when the k value was increased to 10, but the amount of individuals was much higher 

than was seen in the raw Adult Census dataset. The remaining tables (Table 15,Table 

16 and Table 17) show the comparisons between the Clustering using UDRV with and 

without suppression against the Bottom-Up clustering and Euclidean distance. Overall, 

the proposed utility driven clustering algorithm that did not use record suppression 

outperformed both the Euclidean Distance clustering and the Bottom-Up algorithm. Only 

the new utility driven clustering algorithm without suppression was able to produce a 

result for Bucket #1 for k values of 5 and 10, and none of the algorithms were able to 

generate a solution for Bucket #2 or Bucket #3. The number of clusters generated by the 

utility driven clustering algorithm was much fewer than the Bottom-Up and Euclidean 
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Distance clustering algorithms, which led to the improved partitioning results compared 

with the other two algorithms.  

Table 15. Proposed Clustering Algorithm Performance, using k=3 

 

Adult 
Census 

Raw 
Dataset 

Clustering 
using UDRV 

(No 
Suppression) 

Clustering  
using UDRV  

(Suppression) 

Bottom-Up 
Clustering 
using NCP 

Euclidean 
Distance 

Bucket #1: 
Individuals/ 
Feature(s)/ 

Split 
Percentage 

1330/ 
Capital 
Gain 

>=$7300/ 
99% 

144/ 
Capital Gain 

>$35K/ 
100% 

1381/ 
Capital Gains 
> $5178 and 
Education >9/ 

100%  

148/ 
Capital 
Gain 

>$35K 
100% 

NA 

Bucket #2: 
Individuals/ 
Feature(s) / 

Split 
Percentage 

7162/ 
Capital 
Gain  

<= $7300 
and  

Age < 28/ 
97%  

NA 
3706/ 

Education <7 
97% 

NA NA 

 

Table 16. Proposed Clustering Algorithm Performance, using k=5 

 

Adult 
Census 

Raw 
Dataset 

Clustering 
using UDRV 

(No 
Suppression) 

Clustering  
using UDRV  

(Suppression) 

Bottom-Up 
Clustering 
using NCP 

Euclidean 
Distance 

Bucket #1: 
Individuals/ 
Feature(s)/ 

Split 
Percentage 

1330/ 
Capital 
Gain 

>=$7300/ 
99% 

1019/ 
Capital Gain 

>$7400/ 
100% 

NA NA NA 

Bucket #2: 
Individuals/ 
Feature(s) / 

Split 
Percentage 

7162/ 
Capital 
Gain  

<= $7300 
and  

Age < 28/ 
97%  

NA NA NA NA 
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Table 17. Proposed Clustering Algorithm Performance, using k=10 

 

Adult 
Census 

Raw 
Dataset 

Clustering 
using UDRV 

(No 
Suppression) 

Clustering  
using UDRV  

(Suppression) 

Bottom-Up 
Clustering 
using NCP 

Euclidean 
Distance 

Bucket #1: 
Individuals/ 
Feature(s)/ 

Split 
Percentage 

1330/ 
Capital 
Gain 

>=$7300/ 
99% 

1174/ 
Capital Gain 

>$7444/ 
100% 

NA NA NA 

Bucket #2: 
Individuals/ 
Feature(s) / 

Split 
Percentage 

7162/ 
Capital 
Gain  

<= $7300 
and  

Age < 28/ 
97%  

NA NA NA NA 

 

Algorithm Limitations and Future Work 

In this section, an analysis of the limitations of the four proposed algorithms is 

presented. The following list details the limitations of each algorithm, and a short 

discussion on future work to resolve these limitations will be discussed. 

 Optimization Algorithms 

 Global Optimization using UDRV 

o All generalization levels of an attribute must be pre-defined 

o RVs pre-calculated for each level of generalization of an attribute 

o Computationally intensive as number of attributes  increases 

o Does not guarantee t-closeness or l-diversity 

 Local Optimization using UDRV 

o All generalization levels of an attribute must be pre-defined 

o RVs pre-calculated for each level of generalization of an attribute 

o Not guaranteed to find the best generalization string 

o Does not guarantee t-closeness or l-diversity 
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Both the Global and Local Optimization algorithms share similar limitations. In 

particular, each of  these algorithms require pre-calculating the utility-driven research 

value before the algorithms are executed, as well as defining the generalization levels of 

those attributes. As stated in the previous sections, the Global Optimization algorithm 

generates all the possible generalization strings, which can become cumbersome as the 

number of attributes increases. Pre-pruning the generalizations levels within an attribute 

that do not pass the k-anonymity test aids in reducing the total number of generalization 

strings that need to be analyzed by the Global Optimization algorithm. Pre-pruning also 

helps the Local Optimization algorithm reduce unnecessary testing of generalization 

strings that will not pass the k-anonymity test, but this impact is seen more in the time to 

complete the anonymization. Although we do not divide attributes into quasi-identifiers 

and sensitive identifiers, our optimization algorithms do not guarantee that the final 

anonymized dataset complies with either t-closeness or l-diversity. This is an item that 

could be addressed in future work. 

 Automated Clustering Algorithms 

 Clustering using UDRV (No Suppression) 

o Does not guarantee t-closeness or l-diversity 

o Only examined using continuous data 

o Categorical data will require pre-defined legal groupings 

o Clusters contain overlapping numerical ranges 

 Clustering using UDRV (Suppression) 

o Does not guarantee t-closeness or l-diversity 

o Only examined using continuous data 

o Categorical data will require pre-defined legal groupings 

o Clusters contain overlapping numerical ranges 
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The clustering algorithms were developed to address the pre-defining 

generalization issue from the optimization algorithms that requires a substantial amount 

of manual work before the optimization algorithms could be executed. Again, although 

we do not discriminate attributes into quasi-identifiers and sensitive identifiers, our 

optimization and clustering algorithms do not guarantee that the final anonymized 

dataset complies with either t-closeness or l-diversity. For this project, only continuous 

data was examined during the experimentation phase of the project. Categorical data 

introduces complexity in terms of our data constraint rules, ie which elements from the 

dataset should be aggregated together and which elements should not be aggregated 

together to maintain utility in the anonymized dataset.  

Using the clinical guidelines from government organizations such as the FDA or 

the EMA, the established grouping of categorical medical data could be accomplished in 

a reasonable manner, so that the data expert can define a well-defined set of data 

constraint rules that comply with agency requirements. Finally, during the anonymization 

process, overlapping ranges of an attribute were not prevented. From the research 

perspective, if there is extensive overlapping of ranges between the clusters for a 

particular attribute, then the utility of the dataset decreases dramatically. For example, 

for the Age attribute, if one cluster has a range of 1-10 and another cluster has a range 

of 9-23, then the researcher will not be able to differentiate between children, teens or 

young adults. The prevention of creating a new cluster where the range of an attribute 

does not span boundaries of any existing ranges of the attribute in other clusters is very 

computationally intensive, and should be considered for future work.  

One final item that is often discussed in the area of data privacy is the need to 

add new data to a dataset and ensure that the release of this updated data does not 

expose previous releases of the data to violations of k-anonymity. Some may try to use a 

process to control the use of updated versions of the anonymized dataset, but with the 
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massive release of some datasets on the Internet, that does not seem possible. As an 

area of future work, releasing update versions of a dataset might only contain data that 

is more general than the previous release, to prevent cross-examination of the data to 

find a particular individual. 
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